1
|
Di Marco L, Cannova S, Ferrigno E, Landro G, Nonni R, Mantia CL, Cartabellotta F, Calvaruso V, Di Marco V. A Comprehensive Review of Antiviral Therapy for Hepatitis C: The Long Journey from Interferon to Pan-Genotypic Direct-Acting Antivirals (DAAs). Viruses 2025; 17:163. [PMID: 40006918 PMCID: PMC11860415 DOI: 10.3390/v17020163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 01/19/2025] [Accepted: 01/20/2025] [Indexed: 02/27/2025] Open
Abstract
The treatment landscape for hepatitis C virus (HCV) infection has transformed over the past few decades, evolving from the limited efficacy of interferon (IFN) monotherapy to the highly successful pan-genotypic direct-acting antivirals (DAAs) used today. Initially, alpha-interferon monotherapy, introduced in the 1990s, was the standard treatment, yet it provided low sustained virological response (SVR) rates and caused significant adverse effects, limiting its utility. The development of pegylated interferon (peg-IFN) improved the pharmacokinetic profile of IFN, allowing for less frequent dosing and modestly improved response rates. When combined with ribavirin, peg-IFN achieved higher SVR rates, especially in non-genotype 1 HCV infections, but the combination also brought additional side effects, such as anemia and depression. The advent of the first-generation DAAs, such as telaprevir and boceprevir, marked a significant milestone. Combined with peg-IFN and ribavirin, these protease inhibitors boosted response rates in patients with genotype 1 HCV. However, high rates of adverse effects and drug resistance remained challenges. Second-generation DAAs, like sofosbuvir and ledipasvir, introduced IFN-free regimens with improved safety profiles and efficacy. The most recent advances are pan-genotypic DAAs, including glecaprevir-pibrentasvir and sofosbuvir-velpatasvir, which offer high SVR rates across all genotypes, shorter treatment durations, and fewer side effects. Current pan-genotypic regimens represent a cornerstone in HCV therapy, providing an accessible and effective solution globally.
Collapse
Affiliation(s)
- Lorenza Di Marco
- SIcilian Network for Therapy, Epidemiology and Screening In Hepatology (SINTESI), 90127 Palermo, Italy; (L.D.M.); (F.C.); (V.C.)
- Department of Oncology and Hematology, Azienda Ospedaliero-University Hospital of Mod, 41124 Modena, Italy
- Clinical and Experimental Medicine PhD Program, University of Modena and Reggio Emilia, 41100 Modena, Italy
| | - Simona Cannova
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, 90127 Palermo, Italy; (S.C.); (E.F.); (G.L.); (R.N.); (C.L.M.)
| | - Emanuele Ferrigno
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, 90127 Palermo, Italy; (S.C.); (E.F.); (G.L.); (R.N.); (C.L.M.)
| | - Giuseppe Landro
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, 90127 Palermo, Italy; (S.C.); (E.F.); (G.L.); (R.N.); (C.L.M.)
| | - Rosario Nonni
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, 90127 Palermo, Italy; (S.C.); (E.F.); (G.L.); (R.N.); (C.L.M.)
| | - Claudia La Mantia
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, 90127 Palermo, Italy; (S.C.); (E.F.); (G.L.); (R.N.); (C.L.M.)
| | - Fabio Cartabellotta
- SIcilian Network for Therapy, Epidemiology and Screening In Hepatology (SINTESI), 90127 Palermo, Italy; (L.D.M.); (F.C.); (V.C.)
- Department of Medicine, Buccheri-La Ferla Hospital, 90123 Palermo, Italy
| | - Vincenza Calvaruso
- SIcilian Network for Therapy, Epidemiology and Screening In Hepatology (SINTESI), 90127 Palermo, Italy; (L.D.M.); (F.C.); (V.C.)
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, 90127 Palermo, Italy; (S.C.); (E.F.); (G.L.); (R.N.); (C.L.M.)
| | - Vito Di Marco
- SIcilian Network for Therapy, Epidemiology and Screening In Hepatology (SINTESI), 90127 Palermo, Italy; (L.D.M.); (F.C.); (V.C.)
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, 90127 Palermo, Italy; (S.C.); (E.F.); (G.L.); (R.N.); (C.L.M.)
| |
Collapse
|
2
|
Caraballo Cortes K, Zagordi O, Jabłońska J, Pawełczyk A, Kubisa N, Perlejewski K, Bukowska-Ośko I, Płoski R, Radkowski M, Laskus T. Spouse-to-Spouse Transmission and Evolution of Hypervariable Region 1 and 5' Untranslated Region of Hepatitis C Virus Analyzed by Next-Generation Sequencing. PLoS One 2016; 11:e0150311. [PMID: 26918636 PMCID: PMC4769329 DOI: 10.1371/journal.pone.0150311] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 02/11/2016] [Indexed: 12/16/2022] Open
Abstract
Hepatitis C virus (HCV) transmission between spouses remains poorly characterized, largely due to the limited availability of samples from the early stage of infection, as well as methodological constraints. A fifty-eight year-old male developed acute hepatitis C infection and his 53-year old spouse has been HCV-positive for over 10 years. Serum samples were collected from both at the time of acute hepatitis C diagnosis in male (baseline) and then at 9 and 13 months. Hypervariable region 1 (HVR1) and 5’ untranslated region (5’UTR) sequences were amplified and subjected to next generation sequencing (NGS) using a pyrosequencing platform. Genetic variants were inferred by Shorah reconstruction method and compared by phylogenetic and sequence diversity analysis. As the sequencing error of the procedure was previously determined to be ≤ 1.5%, the analysis was conducted with and without the 1.5% cut-off with regard to the frequency of variants. No identical HVR1 variants were identified in spouses at baseline and follow-up samples regardless whether the cut-off was applied or not. However, there was high similarity (98.3%) between a minor baseline donor variant (1.7% frequency) and the most abundant baseline recipient variant (62.5% frequency). Furthermore, donor and recipient strains clustered together when compared to 10 control subjects from the same area and infected with the same HCV subtype. There was an increase in HVR1 complexity (number of genetic variants) over time in both spouses. In contrast, the 5'UTR region was stable and of low complexity throughout the study. In conclusion, intrafamilial HCV transmission may be established by a very minor variant and investigation of this phenomenon requires high-sensitivity assays, such as NGS.
Collapse
Affiliation(s)
- Kamila Caraballo Cortes
- Department of Immunopathology of Infectious and Parasitic Diseases, Medical University of Warsaw, Warsaw, Poland
- * E-mail:
| | - Osvaldo Zagordi
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Joanna Jabłońska
- Clinics of Infectious, Tropical Diseases and Hepatology, Medical University of Warsaw, Warsaw, Poland
| | - Agnieszka Pawełczyk
- Department of Immunopathology of Infectious and Parasitic Diseases, Medical University of Warsaw, Warsaw, Poland
| | - Natalia Kubisa
- Department of Immunopathology of Infectious and Parasitic Diseases, Medical University of Warsaw, Warsaw, Poland
| | - Karol Perlejewski
- Department of Immunopathology of Infectious and Parasitic Diseases, Medical University of Warsaw, Warsaw, Poland
| | - Iwona Bukowska-Ośko
- Department of Immunopathology of Infectious and Parasitic Diseases, Medical University of Warsaw, Warsaw, Poland
| | - Rafał Płoski
- Department of Medical Genetics, Medical University of Warsaw, Warsaw, Poland
| | - Marek Radkowski
- Department of Immunopathology of Infectious and Parasitic Diseases, Medical University of Warsaw, Warsaw, Poland
| | - Tomasz Laskus
- Department of Immunopathology of Infectious and Parasitic Diseases, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
3
|
Analysis of interferon signaling by infectious hepatitis C virus clones with substitutions of core amino acids 70 and 91. J Virol 2011; 85:5986-94. [PMID: 21490101 DOI: 10.1128/jvi.02583-10] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Substitution of amino acids 70 and 91 in the hepatitis C virus (HCV) core region is a significant predictor of poor responses to peginterferon-plus-ribavirin therapy, while their molecular mechanisms remain unclear. Here we investigated these differences in the response to alpha interferon (IFN) by using HCV cell culture with R70Q, R70H, and L91M substitutions. IFN treatment of cells transfected or infected with the wild type or the mutant HCV clones showed that the R70Q, R70H, and L91M core mutants were significantly more resistant than the wild type. Among HCV-transfected cells, intracellular HCV RNA levels were significantly higher for the core mutants than for the wild type, while HCV RNA in culture supernatant was significantly lower for these mutants than for the wild type. IFN-induced phosphorylation of STAT1 and STAT2 and expression of the interferon-inducible genes were significantly lower for the core mutants than for the wild type, suggesting cellular unresponsiveness to IFN. The expression level of an interferon signal attenuator, SOCS3, was significantly higher for the R70Q, R70H, and L91M mutants than for the wild type. Interleukin 6 (IL-6), which upregulates SOCS3, was significantly higher for the R70Q, R70H, and L91M mutants than for the wild type, suggesting interferon resistance, possibly through IL-6-induced, SOCS3-mediated suppression of interferon signaling. Expression levels of endoplasmic reticulum (ER) stress proteins were significantly higher in cells transfected with a core mutant than in those transfected with the wild type. In conclusion, HCV R70 and L91 core mutants were resistant to interferon in vitro, and the resistance may be induced by IL-6-induced upregulation of SOCS3. Those mechanisms may explain clinical interferon resistance of HCV core mutants.
Collapse
|
4
|
ElHefnawi MM, Zada S, El-Azab IA. Prediction of prognostic biomarkers for interferon-based therapy to hepatitis C virus patients: a meta-analysis of the NS5A protein in subtypes 1a, 1b, and 3a. Virol J 2010; 7:130. [PMID: 20550652 PMCID: PMC3238222 DOI: 10.1186/1743-422x-7-130] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2010] [Accepted: 06/15/2010] [Indexed: 12/19/2022] Open
Abstract
Background Hepatitis C virus (HCV) is a worldwide health problem with no vaccine and the only approved therapy is Interferon-based plus Ribavarin. Response prediction to treatment has health and economic impacts, and is a multi-factorial problem including both host and viral factors (e.g: age, sex, ethnicity, pre-treatment viral load, and dynamics of the HCV non-structural protein NS5A quasispecies). We implement a novel approach for extracting features including informative markers from mutations in the non-structural 5A protein (NS5A), specifically its Interferon sensitivity determining region (ISDR) and V3 regions, and use a novel bioinformatics approach for pattern recognition on the NS5A protein and its motifs to find biomarkers for response prediction using class association rules and comparing the predictability of the different features. Results A total of 58 sequences from sustained responders and 94 from non-responders were downloaded from the HCV LANL database. Site-specific signatures for response prediction from the NS5A protein were extracted from the alignments. Class association rules were generated (e.g.: sustained response is associated with position A2368T in subtype 1a (support 100% and confidence 52.19%); in subtype 1b, response is associated with E2356G/D/K (support 76.3% and confidence 67.3%). Conclusion The V3 region was a more accurate biomarker than the ISDR region. Subtype-specific class association rules gave better support and confidence than profile hidden Markov models HMMs scores, genetic distances or number of variable sites, and would thus aid in the prediction of prognostic biomarkers and improve the accuracy of prognosis. Sites-specific class association rules in the V3 region of the NS5A protein have given the best support and confidence.
Collapse
Affiliation(s)
- Mahmoud M ElHefnawi
- Informatics and Systems Department, Division of Engineering Research, National Research Centre, Tahrir Street, Cairo, Egypt.
| | | | | |
Collapse
|
5
|
Eckerle LD, Becker MM, Halpin RA, Li K, Venter E, Lu X, Scherbakova S, Graham RL, Baric RS, Stockwell TB, Spiro DJ, Denison MR. Infidelity of SARS-CoV Nsp14-exonuclease mutant virus replication is revealed by complete genome sequencing. PLoS Pathog 2010; 6:e1000896. [PMID: 20463816 PMCID: PMC2865531 DOI: 10.1371/journal.ppat.1000896] [Citation(s) in RCA: 328] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2009] [Accepted: 04/05/2010] [Indexed: 01/30/2023] Open
Abstract
Most RNA viruses lack the mechanisms to recognize and correct mutations that arise during genome replication, resulting in quasispecies diversity that is required for pathogenesis and adaptation. However, it is not known how viruses encoding large viral RNA genomes such as the Coronaviridae (26 to 32 kb) balance the requirements for genome stability and quasispecies diversity. Further, the limits of replication infidelity during replication of large RNA genomes and how decreased fidelity impacts virus fitness over time are not known. Our previous work demonstrated that genetic inactivation of the coronavirus exoribonuclease (ExoN) in nonstructural protein 14 (nsp14) of murine hepatitis virus results in a 15-fold decrease in replication fidelity. However, it is not known whether nsp14-ExoN is required for replication fidelity of all coronaviruses, nor the impact of decreased fidelity on genome diversity and fitness during replication and passage. We report here the engineering and recovery of nsp14-ExoN mutant viruses of severe acute respiratory syndrome coronavirus (SARS-CoV) that have stable growth defects and demonstrate a 21-fold increase in mutation frequency during replication in culture. Analysis of complete genome sequences from SARS-ExoN mutant viral clones revealed unique mutation sets in every genome examined from the same round of replication and a total of 100 unique mutations across the genome. Using novel bioinformatic tools and deep sequencing across the full-length genome following 10 population passages in vitro, we demonstrate retention of ExoN mutations and continued increased diversity and mutational load compared to wild-type SARS-CoV. The results define a novel genetic and bioinformatics model for introduction and identification of multi-allelic mutations in replication competent viruses that will be powerful tools for testing the effects of decreased fidelity and increased quasispecies diversity on viral replication, pathogenesis, and evolution.
Collapse
Affiliation(s)
- Lance D. Eckerle
- Departments of Pediatrics and Microbiology and Immunology and Elizabeth B. Lamb Center for Pediatric Research, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Michelle M. Becker
- Departments of Pediatrics and Microbiology and Immunology and Elizabeth B. Lamb Center for Pediatric Research, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Rebecca A. Halpin
- The J. Craig Venter Institute, Rockville, Maryland, United States of America
| | - Kelvin Li
- The J. Craig Venter Institute, Rockville, Maryland, United States of America
| | - Eli Venter
- The J. Craig Venter Institute, Rockville, Maryland, United States of America
| | - Xiaotao Lu
- Departments of Pediatrics and Microbiology and Immunology and Elizabeth B. Lamb Center for Pediatric Research, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Sana Scherbakova
- The J. Craig Venter Institute, Rockville, Maryland, United States of America
| | - Rachel L. Graham
- Department of Epidemiology, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Ralph S. Baric
- Department of Epidemiology, University of North Carolina, Chapel Hill, North Carolina, United States of America
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | | | - David J. Spiro
- The J. Craig Venter Institute, Rockville, Maryland, United States of America
| | - Mark R. Denison
- Departments of Pediatrics and Microbiology and Immunology and Elizabeth B. Lamb Center for Pediatric Research, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| |
Collapse
|
6
|
Pang PS, Planet PJ, Glenn JS. The evolution of the major hepatitis C genotypes correlates with clinical response to interferon therapy. PLoS One 2009; 4:e6579. [PMID: 19668364 PMCID: PMC2719056 DOI: 10.1371/journal.pone.0006579] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2009] [Accepted: 07/09/2009] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND Patients chronically infected with hepatitis C virus (HCV) require significantly different durations of therapy and achieve substantially different sustained virologic response rates to interferon-based therapies, depending on the HCV genotype with which they are infected. There currently exists no systematic framework that explains these genotype-specific response rates. Since humans are the only known natural hosts for HCV-a virus that is at least hundreds of years old-one possibility is that over the time frame of this relationship, HCV accumulated adaptive mutations that confer increasing resistance to the human immune system. Given that interferon therapy functions by triggering an immune response, we hypothesized that clinical response rates are a reflection of viral evolutionary adaptations to the immune system. METHODS AND FINDINGS We have performed the first phylogenetic analysis to include all available full-length HCV genomic sequences (n = 345). This resulted in a new cladogram of HCV. This tree establishes for the first time the relative evolutionary ages of the major HCV genotypes. The outcome data from prospective clinical trials that studied interferon and ribavirin therapy was then mapped onto this new tree. This mapping revealed a correlation between genotype-specific responses to therapy and respective genotype age. This correlation allows us to predict that genotypes 5 and 6, for which there currently are no published prospective trials, will likely have intermediate response rates, similar to genotype 3. Ancestral protein sequence reconstruction was also performed, which identified the HCV proteins E2 and NS5A as potential determinants of genotype-specific clinical outcome. Biochemical studies have independently identified these same two proteins as having genotype-specific abilities to inhibit the innate immune factor double-stranded RNA-dependent protein kinase (PKR). CONCLUSION An evolutionary analysis of all available HCV genomes supports the hypothesis that immune selection was a significant driving force in the divergence of the major HCV genotypes and that viral factors that acquired the ability to inhibit the immune response may play a role in determining genotype-specific response rates to interferon therapy.
Collapse
Affiliation(s)
- Phillip S. Pang
- Department of Medicine, Division of Infectious Diseases and Geographic Medicine and Division of Gastroenterology and Hepatology, Stanford University School of Medicine, Palo Alto, California, United States of America
| | - Paul J. Planet
- Department of Pediatrics, Division of Infectious Diseases, Columbia Presbyterian Medical Center and, Sackler Institute of Comparative Genomics, American Museum of Natural History, New York, New York, United States of America
| | - Jeffrey S. Glenn
- Department of Medicine, Division of Gastroenterology and Hepatology, Stanford University School of Medicine and the Palo Alto Veterans Administration Medical Center, Palo Alto, California, United States of America
| |
Collapse
|
7
|
Fanning L. Practical Consequences of Hepatitis C Virus Quasispecies for Target‐Specific Antivirals. J Infect Dis 2008; 198:797-9. [DOI: 10.1086/591142] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
|
8
|
Cannon NA, Donlin MJ, Fan X, Aurora R, Tavis JE. Hepatitis C virus diversity and evolution in the full open-reading frame during antiviral therapy. PLoS One 2008; 3:e2123. [PMID: 18463735 PMCID: PMC2373758 DOI: 10.1371/journal.pone.0002123] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2008] [Accepted: 03/19/2008] [Indexed: 12/19/2022] Open
Abstract
Background Pegylated interferon plus ribavirin therapy for hepatitis C virus (HCV) fails in approximately half of genotype 1 patients. Treatment failure occurs either by nonresponse (minimal declines in viral titer) or relapse (robust initial responses followed by rebounds of viral titers during or after therapy). HCV is highly variable genetically. To determine if viral genetic differences contribute to the difference between response and relapse, we examined the inter-patient genetic diversity and mutation pattern in the full open reading frame HCV genotype 1a consensus sequences. Methodology/Principal Findings Pre- and post-therapy sequences were analyzed for 10 nonresponders and 10 relapsers from the Virahep-C clinical study. Pre-therapy interpatient diversity among the relapsers was higher than in the nonresponders in the viral NS2 and NS3 genes, and post-therapy diversity was higher in the relapsers for most of HCV's ten genes. Pre-therapy diversity among the relapsers was intermediate between that of the non-responders and responders to therapy. The average mutation rate was just 0.9% at the amino acid level and similar numbers of mutations occurred in the nonresponder and relapser sequences, but the mutations in NS2 of relapsers were less conservative than in nonresponders. Finally, the number and distribution of regions under positive selection was similar between the two groups, although the nonresponders had more foci of positive selection in E2. Conclusions/Significance The HCV sequences were unexpectedly stable during failed antiviral therapy, both nonresponder and relapser sequences were under selective pressure during therapy, and variation in NS2 may have contributed to the difference in response between the nonresponder and relapser groups. These data support a role for viral genetic variability in determining the outcome of anti-HCV therapy, with those sequences that are more distant from an optimal sequence being less able to resist the pressures of interferon-based therapy. Trial registration ClinicalTrials.gov NCT00038974
Collapse
Affiliation(s)
- Nathan A. Cannon
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, Saint Louis, Missouri, United States of America
| | - Maureen J. Donlin
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, Saint Louis, Missouri, United States of America
| | - Xiaofeng Fan
- Department of Internal Medicine, Saint Louis University School of Medicine, Saint Louis, Missouri, United States of America
| | - Rajeev Aurora
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, Saint Louis, Missouri, United States of America
| | - John E. Tavis
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, Saint Louis, Missouri, United States of America
- Saint Louis University Liver Center, Saint Louis University School of Medicine, Saint Louis, Missouri, United States of America
- * E-mail:
| | | |
Collapse
|
9
|
Thélu MA, Leroy V, Ramzan M, Dufeu-Duchesne T, Marche P, Zarski JP. IRES complexity before IFN-alpha treatment and evolution of the viral load at the early stage of treatment in peripheral blood mononuclear cells from chronic hepatitis C patients. J Med Virol 2007; 79:242-53. [PMID: 17245718 DOI: 10.1002/jmv.20792] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
At the early stage of treatment, IFN alpha-2a induces inhibition of HCV replication. The viral load reflects mainly the degradation rate of the viruses. However, differences in the behavior of the viral population depend on changes, which occurred in the HCV-IRES genome. In this study, cloning and sequencing strategies permitted the generation of a large number of IRES sequences from the PBMCs of 18 patients (5 women, 13 men) with chronic hepatitis C. The HCV IRES appeared to be highly conserved structurally. However, some variability was found between the different isolates obtained: 467 substitutions with a median of 7 variants/patients. No relationship was observed between pre-treatment IRES complexity and the viral load at the beginning. However, on review of the evolution of viral load in the PBMCs during the first 3 days of IFN alpha-2a treatment, patients could be classified into two groups: Group 1, in which the viral population continued to replicate and Group 2, in which the viral load decreased significantly (P = 0.01727). Positioning of the mutations on the predicted IRES secondary structure showed that the distribution of the mutations and their apparition frequency were different between the two groups. At the early stage of treatment, IFN alpha-2a was efficient in reducing the viral replication in a significant number of patients; mechanisms of response might affect the virus directly. However, pre-treatment genomic variations observed in the 5'NCR of HCV were not a parameter of a later response to antiviral therapy in chronic hepatitis C patients. (244)
Collapse
Affiliation(s)
- M A Thélu
- Département d'Hépato-Gastroentérologie, Hôpital Albert Michallon, Grenoble, France
| | | | | | | | | | | |
Collapse
|
10
|
Gallegos-Orozco JF, Loaeza-del Castillo A, Fuentes AP, García-Sandoval M, Soto L, Rodríguez R, Gutiérrez-Ruíz MC, Gutiérrez-Reyes G, Bonder A, Olivera MA, Kershenobich D. Early hepatitis C virus changes and sustained response in patients with chronic hepatitis C treated with peginterferon alpha-2b and ribavirin. Liver Int 2005; 25:91-5. [PMID: 15698404 DOI: 10.1111/j.1478-3231.2005.1040.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
BACKGROUND Interferon-based therapy induces changes in viral dynamics in chronic hepatitis C (CHC) patients. AIMS The aim of this study was to assess early hepatitis C virus (HCV)-RNA changes and evaluate its predictive value to achieve sustained viral response (SVR) in patients with CHC treated with peginterferon alpha-2b weekly plus ribavirin daily for 48 weeks. METHODS HCV-RNA was measured at baseline, 48 h, 4, 12, 24 and 48 weeks of treatment and 24 weeks after treatment. RESULTS Eighteen HCV genotype 1 patients were included (13 male, five female) with a mean age of 44.4+/-11.9 years. Nine patients achieved SVR (50%). Viral decline occurred as early as 48 h; the magnitude of decline was statistically different between both groups (P<0.01). Responders had a > or =1 log(10) drop in HCV-RNA at 48 h (positive predictive value (PPV) of 89% to achieve SVR) that persisted at week 4. By week 12, serum HCV-RNA was undetectable (PPV 100%). CONCLUSIONS Our data indicate that peginterferon alpha-2b plus ribavirin treatment produces significant changes in HCV dynamics that can be detected as early as 48 h after the first dose of peginterferon alpha-2b and that these changes are useful in predicting response to therapy in CHC patients.
Collapse
Affiliation(s)
- J F Gallegos-Orozco
- Departments of Gastroenterology and Infectology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, 14000 Mexico City, Mexico
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Abbate I, Lo Iacono O, Di Stefano R, Cappiello G, Girardi E, Longo R, Ferraro D, Antonucci G, Di Marco V, Solmone M, Craxì A, Ippolito G, Capobianchi MR. HVR-1 quasispecies modifications occur early and are correlated to initial but not sustained response in HCV-infected patients treated with pegylated- or standard-interferon and ribavirin. J Hepatol 2004; 40:831-6. [PMID: 15094232 DOI: 10.1016/j.jhep.2004.01.019] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2003] [Revised: 12/16/2003] [Accepted: 01/08/2004] [Indexed: 12/13/2022]
Abstract
BACKGROUND/AIMS HVR-1 quasispecies composition and evolution were investigated in patients chronically infected with genotype 1b HCV, treated with PEG-IFN alpha 2b or STD-IFN alpha 2b plus RBV. METHODS HVR-1 heterogeneity was assessed by calculating nucleotidic complexity, diversity, synonymous (S) and non-synonymous (NS) substitutions at baseline, after 4 weeks of therapy (T1) and at follow-up (T18). Evolution of viral quasispecies was analysed by constructing phylogenetic trees. RESULTS No correlation of baseline viremia with heterogeneity was observed. Nucleotidic complexity was lower in patients showing early virological response, and tended to be inversely correlated to viral load decline at 4 weeks of treatment. In the majority of SR, profound changes of quasispecies composition occurred during 4 weeks of treatment, while in NR virtually no major changes of pre-therapy variants were observed. Relapse showed both patterns of quasispecies evolution. Virus quasispecies after follow-up was similar to that found at T1 in both Relapsers and NR patients. CONCLUSIONS Baseline parameters of HVR-1 heterogeneity seem to be involved in the early response to treatment, and early response is associated with profound variations in the HVR-1 quasispecies. Viral quasispecies surviving early therapeutic pressure are most likely able to give rise to either virus rebound or persistence at T18.
Collapse
Affiliation(s)
- Isabella Abbate
- Department of Virology, National Institute for Infectious Diseases L. Spallanzani, Rome, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|