1
|
Li Y, Hu Y, Zhao Y, Wang Q, Ngassa Mbenda HG, Kittichai V, Lawpoolsri S, Sattabongkot J, Menezes L, Liu X, Cui L, Cao Y. Dynamics of Plasmodium vivax populations in border areas of the Greater Mekong sub-region during malaria elimination. Malar J 2020; 19:145. [PMID: 32268906 PMCID: PMC7140319 DOI: 10.1186/s12936-020-03221-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Accepted: 04/03/2020] [Indexed: 12/18/2022] Open
Abstract
Background Countries within the Greater Mekong Sub-region (GMS) of Southeast Asia have committed to eliminating malaria by 2030. Although the malaria situation has greatly improved, malaria transmission remains at international border regions. In some areas, Plasmodium vivax has become the predominant parasite. To gain a better understanding of transmission dynamics, knowledge on the changes of P. vivax populations after the scale-up of control interventions will guide more effective targeted control efforts. Methods This study investigated genetic diversity and population structures in 206 P. vivax clinical samples collected at two time points in two international border areas: the China-Myanmar border (CMB) (n = 50 in 2004 and n = 52 in 2016) and Thailand-Myanmar border (TMB) (n = 50 in 2012 and n = 54 in 2015). Parasites were genotyped using 10 microsatellite markers. Results Despite intensified control efforts, genetic diversity remained high (HE = 0.66–0.86) and was not significantly different among the four populations (P > 0.05). Specifically, HE slightly decreased from 0.76 in 2004 to 0.66 in 2016 at the CMB and increased from 0.80 in 2012 to 0.86 in 2015 at the TMB. The proportions of polyclonal infections varied significantly among the four populations (P < 0.05), and showed substantial decreases from 48.0% in 2004 to 23.7 at the CMB and from 40.0% in 2012 to 30.7% in 2015 at the TMB, with corresponding decreases in the multiplicity of infection. Consistent with the continuous decline of malaria incidence in the GMS over time, there were also increases in multilocus linkage disequilibrium, suggesting more fragmented and increasingly inbred parasite populations. There were considerable genetic differentiation and sub-division among the four tested populations. Temporal genetic differentiation was observed at each site (FST = 0.081 at the CMB and FST = 0.133 at the TMB). Various degrees of clustering were evident between the older parasite samples collected in 2004 at the CMB and the 2016 CMB and 2012 TMB populations, suggesting some of these parasites had shared ancestry. In contrast, the 2015 TMB population was genetically distinctive, which may reflect a process of population replacement. Whereas the effective population size (Ne) at the CMB showed a decrease from 4979 in 2004 to 3052 in 2016 with the infinite allele model, the Ne at the TMB experienced an increase from 6289 to 10,259. Conclusions With enhanced control efforts on malaria, P. vivax at the TMB and CMB showed considerable spatial and temporal differentiation, but the presence of large P. vivax reservoirs still sustained genetic diversity and transmission. These findings provide new insights into P. vivax transmission dynamics and population structure in these border areas of the GMS. Coordinated and integrated control efforts on both sides of international borders are essential to reach the goal of regional malaria elimination.
Collapse
Affiliation(s)
- Yuling Li
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, 110122, Liaoning, China.,Emergency Department, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, Liaoning, China
| | - Yubing Hu
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, 110122, Liaoning, China
| | - Yan Zhao
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, 110122, Liaoning, China
| | - Qinghui Wang
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, 110122, Liaoning, China
| | - Huguette Gaelle Ngassa Mbenda
- Division of Infectious Diseases and International Medicine, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, 33612, USA
| | - Veerayuth Kittichai
- Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Saranath Lawpoolsri
- Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Jetsumon Sattabongkot
- Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Lynette Menezes
- Division of Infectious Diseases and International Medicine, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, 33612, USA
| | - Xiaoming Liu
- Center for Global Health and Infectious Disease Research, College of Public Health, University of South Florida, Tampa, FL, 33612, USA
| | - Liwang Cui
- Division of Infectious Diseases and International Medicine, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, 33612, USA. .,Center for Global Health and Infectious Disease Research, College of Public Health, University of South Florida, Tampa, FL, 33612, USA.
| | - Yaming Cao
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, 110122, Liaoning, China.
| |
Collapse
|
2
|
Abstract
Malaria is a vector-borne disease that involves multiple parasite species in a variety of ecological settings. However, the parasite species causing the disease, the prevalence of subclinical infections, the emergence of drug resistance, the scale-up of interventions, and the ecological factors affecting malaria transmission, among others, are aspects that vary across areas where malaria is endemic. Such complexities have propelled the study of parasite genetic diversity patterns in the context of epidemiologic investigations. Importantly, molecular studies indicate that the time and spatial distribution of malaria cases reflect epidemiologic processes that cannot be fully understood without characterizing the evolutionary forces shaping parasite population genetic patterns. Although broad in scope, this review in the Microbiology Spectrum Curated Collection: Advances in Molecular Epidemiology highlights the need for understanding population genetic concepts when interpreting parasite molecular data. First, we discuss malaria complexity in terms of the parasite species involved. Second, we describe how molecular data are changing our understanding of malaria incidence and infectiousness. Third, we compare different approaches to generate parasite genetic information in the context of epidemiologically relevant questions related to malaria control. Finally, we describe a few Plasmodium genomic studies as evidence of how these approaches will provide new insights into the malaria disease dynamics. *This article is part of a curated collection.
Collapse
|
3
|
McDew-White M, Li X, Nkhoma SC, Nair S, Cheeseman I, Anderson TJC. Mode and Tempo of Microsatellite Length Change in a Malaria Parasite Mutation Accumulation Experiment. Genome Biol Evol 2020; 11:1971-1985. [PMID: 31273388 PMCID: PMC6644851 DOI: 10.1093/gbe/evz140] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/29/2019] [Indexed: 12/12/2022] Open
Abstract
Malaria parasites have small extremely AT-rich genomes: microsatellite repeats (1–9 bp) comprise 11% of the genome and genetic variation in natural populations is dominated by repeat changes in microsatellites rather than point mutations. This experiment was designed to quantify microsatellite mutation patterns in Plasmodium falciparum. We established 31 parasite cultures derived from a single parasite cell and maintained these for 114–267 days with frequent reductions to a single cell, so parasites accumulated mutations during ∼13,207 cell divisions. We Illumina sequenced the genomes of both progenitor and end-point mutation accumulation (MA) parasite lines in duplicate to validate stringent calling parameters. Microsatellite calls were 99.89% (GATK), 99.99% (freeBayes), and 99.96% (HipSTR) concordant in duplicate sequence runs from independent sequence libraries, whereas introduction of microsatellite mutations into the reference genome revealed a low false negative calling rate (0.68%). We observed 98 microsatellite mutations. We highlight several conclusions: microsatellite mutation rates (3.12 × 10−7 to 2.16 × 10−8/cell division) are associated with both repeat number and repeat motif like other organisms studied. However, 41% of changes resulted from loss or gain of more than one repeat: this was particularly true for long repeat arrays. Unlike other eukaryotes, we found no insertions or deletions that were not associated with repeats or homology regions. Overall, microsatellite mutation rates are among the lowest recorded and comparable to those in another AT-rich protozoan (Dictyostelium). However, a single infection (>1011 parasites) will still contain over 2.16 × 103 to 3.12 × 104 independent mutations at any single microsatellite locus.
Collapse
Affiliation(s)
| | - Xue Li
- Texas Biomedical Research Institute, San Antonio, Texas
| | - Standwell C Nkhoma
- Texas Biomedical Research Institute, San Antonio, Texas.,Malaria Research and Reference Reagent Resource Center (MR4), BEI Resources, American Type Culture Collection, 10801 University Boulevard, Manassas, VA
| | - Shalini Nair
- Texas Biomedical Research Institute, San Antonio, Texas
| | - Ian Cheeseman
- Texas Biomedical Research Institute, San Antonio, Texas
| | | |
Collapse
|
4
|
Singana BP, Mayengue PI, Niama RF, Ndounga M. Genetic diversity of Plasmodium falciparum infection among children with uncomplicated malaria living in Pointe-Noire, Republic of Congo. Pan Afr Med J 2019; 32:183. [PMID: 31312296 PMCID: PMC6620066 DOI: 10.11604/pamj.2019.32.183.15694] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 12/12/2018] [Indexed: 01/28/2023] Open
Abstract
Introduction Molecular characterization of malaria parasites from different localities is important to improve understanding of acquisition of natural immunity to Plasmodium falciparum, to assist in identifying the most appropriate strategies for control and to evaluate the impact of control interventions. This study aimed to determine the genetic diversity and the multiplicity of infection in Plasmodium falciparum isolates from Pointe-Noire, Republic of Congo. Methods Plasmodium falciparum isolates were collected from 71 children with uncomplicated malaria; enrolled into the study for evaluating the therapeutic efficacy of artemether-lumefantrine combination. Both msp-1 and msp-2 genes were genotyped. Results From 296 distinct fragments detected, 13 msp-1 and 27 msp-2 different alleles were identified. For msp-1, RO33 family was poorly polymorphic. The K1 family has shown the trend of predominance (41%), followed by Mad20 (35%). Comparatively to msp-2, 49.6% and 48.8% fragments belonged to 3D7 and FC27 respectively. Taking together msp-1 and msp-2 genes, the overall multiplicity of infection has been increased to 2.64 and 86% harbored more than one parasite genotype. Parasite density was not influenced by age as well as the multiplicity of infection which was not influenced neither by age nor by parasite density. Conclusion Genetic diversity of Plasmodium falciparum in isolates from patients with uncomplicated malaria in Pointe-Noire is high and consisted mainly of multiple clones. The overall multiplicity of infection has been largely increased when considering msp-1 and msp-2 genes together. With the changes in malaria epidemiology, the use of both msp-1 and msp-2 genes in the characterization of Plasmodium falciparum infection is recommended.
Collapse
Affiliation(s)
- Brice Pembet Singana
- Faculté des Sciences et Techniques, Université Marien Ngouabi, BP 69 Brazzaville, République du Congo
| | - Pembe Issamou Mayengue
- Faculté des Sciences et Techniques, Université Marien Ngouabi, BP 69 Brazzaville, République du Congo.,Laboratoire National de Santé Publique, BP 120 Brazzaville, République du Congo
| | - Roch Fabien Niama
- Faculté des Sciences et Techniques, Université Marien Ngouabi, BP 69 Brazzaville, République du Congo.,Laboratoire National de Santé Publique, BP 120 Brazzaville, République du Congo
| | - Mathieu Ndounga
- Programme National de Lutte contre le Paludisme, Direction Générale de l'Epidémiologie de la Maladie, Ministère de la Santé et de la Population, République du Congo
| |
Collapse
|
5
|
Mita T, Hombhanje F, Takahashi N, Sekihara M, Yamauchi M, Tsukahara T, Kaneko A, Endo H, Ohashi J. Rapid selection of sulphadoxine-resistant Plasmodium falciparum and its effect on within-population genetic diversity in Papua New Guinea. Sci Rep 2018; 8:5565. [PMID: 29615786 PMCID: PMC5882878 DOI: 10.1038/s41598-018-23811-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 03/21/2018] [Indexed: 11/18/2022] Open
Abstract
The ability of the human malarial parasite Plasmodium falciparum to adapt to environmental changes depends considerably on its ability to maintain within-population genetic variation. Strong selection, consequent to widespread antimalarial drug usage, occasionally elicits a rapid expansion of drug-resistant isolates, which can act as founders. To investigate whether this phenomenon induces a loss of within-population genetic variation, we performed a population genetic analysis on 302 P. falciparum cases detected during two cross-sectional surveys in 2002/2003, just after the official introduction of sulphadoxine/pyrimethamine as a first-line treatment, and again in 2010/2011, in highly endemic areas in Papua New Guinea. We found that a single-origin sulphadoxine-resistant parasite isolate rapidly increased from 0% in 2002/2003 to 54% in 2010 and 84% in 2011. However, a considerable number of pairs exhibited random associations among 10 neutral microsatellite markers located in various chromosomes, suggesting that outcrossing effectively reduced non-random associations, albeit at a low average multiplicity of infection (1.35–1.52). Within-population genetic diversity was maintained throughout the study period. This indicates that the parasites maintained within-population variation, even after a clonal expansion of drug-resistant parasites. Outcrossing played a role in the preservation of within-population genetic diversity despite low levels of multiplicity of infection.
Collapse
Affiliation(s)
- Toshihiro Mita
- Department of Tropical Medicine and Parasitology, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo, Tokyo, 113-8421, Japan.
| | - Francis Hombhanje
- Centre for Health Research & Diagnostics, Divine Word University, Nabasa Road, P.O. Box 483, Madang, Papua New Guinea
| | - Nobuyuki Takahashi
- Department of International Affairs and Tropical Medicine, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666, Japan
| | - Makoto Sekihara
- Department of Tropical Medicine and Parasitology, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo, Tokyo, 113-8421, Japan
| | - Masato Yamauchi
- Department of Tropical Medicine and Parasitology, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo, Tokyo, 113-8421, Japan
| | - Takahiro Tsukahara
- Department of International Affairs and Tropical Medicine, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666, Japan
| | - Akira Kaneko
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, SE-171 77, Stockholm, Sweden.,Department of Parasitology, Osaka City University Graduate School of Medicine, Asahi-cho 1-4-3, Abeno-ku, Osaka, 545-8585, Japan
| | - Hiroyoshi Endo
- Department of International Affairs and Tropical Medicine, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666, Japan
| | - Jun Ohashi
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| |
Collapse
|
6
|
Increasingly inbred and fragmented populations of Plasmodium vivax associated with the eastward decline in malaria transmission across the Southwest Pacific. PLoS Negl Trop Dis 2018; 12:e0006146. [PMID: 29373596 PMCID: PMC5802943 DOI: 10.1371/journal.pntd.0006146] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 02/07/2018] [Accepted: 12/01/2017] [Indexed: 01/17/2023] Open
Abstract
The human malaria parasite Plasmodium vivax is more resistant to malaria control strategies than Plasmodium falciparum, and maintains high genetic diversity even when transmission is low. To investigate whether declining P. vivax transmission leads to increasing population structure that would facilitate elimination, we genotyped samples from across the Southwest Pacific region, which experiences an eastward decline in malaria transmission, as well as samples from two time points at one site (Tetere, Solomon Islands) during intensified malaria control. Analysis of 887 P. vivax microsatellite haplotypes from hyperendemic Papua New Guinea (PNG, n = 443), meso-hyperendemic Solomon Islands (n = 420), and hypoendemic Vanuatu (n = 24) revealed increasing population structure and multilocus linkage disequilibrium yet a modest decline in diversity as transmission decreases over space and time. In Solomon Islands, which has had sustained control efforts for 20 years, and Vanuatu, which has experienced sustained low transmission for many years, significant population structure was observed at different spatial scales. We conclude that control efforts will eventually impact P. vivax population structure and with sustained pressure, populations may eventually fragment into a limited number of clustered foci that could be targeted for elimination. Plasmodium vivax is a major human malaria parasite, common in endemic areas outside sub-Saharan Africa, and more difficult to control than other malaria parasite species. The distinct lifecycle biology of P. vivax is thought to contribute to its more stable and efficient transmission allowing the maintenance of high diversity and potentially, gene flow. Independent studies are therefore needed to understand how P. vivax populations respond to changing transmission levels, in order to inform malaria control and elimination efforts. Here we have determined parasite population genetic structure in three countries of the Southwest Pacific, an island chain with a natural west to east decline in transmission intensity (Papua New Guinea > Solomon Islands > Vanuatu). With declining transmission, P. vivax populations experience only a modest decline in diversity but a significant increase in multilocus linkage disequilibrium and population structure, indicating that parasite populations become more inbred and begin to fragment into clustered foci. Analysis of two time points in one study area (Tetere, Solomon Islands) also show similar changes in association with intensifying malaria control. The results indicate that with long term sustained malaria control P. vivax populations will eventually fracture into population clusters that could be targeted for elimination.
Collapse
|
7
|
Qin H, Yang G, Provan J, Liu J, Gao L. Using MiddRAD-seq data to develop polymorphic microsatellite markers for an endangered yew species. PLANT DIVERSITY 2017; 39:294-299. [PMID: 30159522 PMCID: PMC6112293 DOI: 10.1016/j.pld.2017.05.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 05/26/2017] [Accepted: 05/27/2017] [Indexed: 05/31/2023]
Abstract
Microsatellites are highly polymorphic markers which have been used in a wide range of genetic studies. In recent years, various sources of next-generation sequencing data have been used to develop new microsatellite loci, but compared with the more common shotgun genomic sequencing or transcriptome data, the potential utility of RAD-seq data for microsatellite ascertainment is comparatively under-used. In this study, we employed MiddRAD-seq data to develop polymorphic microsatellite loci for the endangered yew species Taxus florinii. Of 8,823,053 clean reads generated for ten individuals of a population, 94,851 (∼1%) contained microsatellite motifs. These corresponded to 2993 unique loci, of which 526 (∼18%) exhibited polymorphism. Of which, 237 were suitable for designing microsatellite primer pairs, and 128 loci were randomly selected for PCR validation and microsatellite screening. Out of the 128 primer pairs, 16 loci gave clear, reproducible patterns, and were then screened and characterized in 24 individuals from two populations. The total number of alleles per locus ranged from two to ten (mean = 4.875), and within-population expected heterozygosity from zero to 0.789 (mean = 0.530), indicating that these microsatellite loci will be useful for population genetics and speciation studies of T. florinii. This study represents one of few examples to mine polymorphic microsatellite loci from ddRAD data.
Collapse
Affiliation(s)
- Hantao Qin
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Guoqian Yang
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Germplasm Bank of Wild Species in Southwest China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Jim Provan
- Institute of Biological, Environmental and Rural Sciences (IBERS), Aberystwyth University, Penglais, Aberystwyth, SY23 3DA, UK
| | - Jie Liu
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
| | - Lianming Gao
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
| |
Collapse
|
8
|
Salgueiro P, Vicente JL, Figueiredo RC, Pinto J. Genetic diversity and population structure of Plasmodium falciparum over space and time in an African archipelago. INFECTION GENETICS AND EVOLUTION 2016; 43:252-60. [DOI: 10.1016/j.meegid.2016.06.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 05/30/2016] [Accepted: 06/01/2016] [Indexed: 10/21/2022]
|
9
|
Delgado-Ratto C, Gamboa D, Soto-Calle VE, Van den Eede P, Torres E, Sánchez-Martínez L, Contreras-Mancilla J, Rosanas-Urgell A, Rodriguez Ferrucci H, Llanos-Cuentas A, Erhart A, Van geertruyden JP, D’Alessandro U. Population Genetics of Plasmodium vivax in the Peruvian Amazon. PLoS Negl Trop Dis 2016; 10:e0004376. [PMID: 26766548 PMCID: PMC4713096 DOI: 10.1371/journal.pntd.0004376] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Accepted: 12/18/2015] [Indexed: 11/18/2022] Open
Abstract
Background Characterizing the parasite dynamics and population structure provides useful information to understand the dynamic of transmission and to better target control interventions. Despite considerable efforts for its control, vivax malaria remains a major health problem in Peru. In this study, we have explored the population genetics of Plasmodium vivax isolates from Iquitos, the main city in the Peruvian Amazon, and 25 neighbouring peri-urban as well as rural villages along the Iquitos-Nauta Road. Methodology/ Results From April to December 2008, 292 P. vivax isolates were collected and successfully genotyped using 14 neutral microsatellites. Analysis of the molecular data revealed a similar proportion of monoclonal and polyclonal infections in urban areas, while in rural areas monoclonal infections were predominant (p = 0.002). Multiplicity of infection was higher in urban (MOI = 1.5–2) compared to rural areas (MOI = 1) (p = 0.003). The level of genetic diversity was similar in all areas (He = 0.66–0.76, p = 0.32) though genetic differentiation between areas was substantial (PHIPT = 0.17, p<0.0001). Principal coordinate analysis showed a marked differentiation between parasites from urban and rural areas. Linkage disequilibrium was detected in all the areas ( IAs = 0.08–0.49, for all p<0.0001). Gene flow among the areas was stablished through Bayesian analysis of migration models. Recent bottleneck events were detected in 4 areas and a recent parasite expansion in one of the isolated areas. In total, 87 unique haplotypes grouped in 2 or 3 genetic clusters described a sub-structured parasite population. Conclusion/Significance Our study shows a sub-structured parasite population with clonal propagation, with most of its components recently affected by bottleneck events. Iquitos city is the main source of parasite spreading for all the peripheral study areas. The routes of transmission and gene flow and the reduction of the parasite population described are important from the public health perspective as well for the formulation of future control policies. We present the population genetics of malaria vivax parasites in a large area of the Peruvian Amazon. Our results showed that the parasite population had a predominant clonal propagation, reproducing themselves with identically or closely related parasites; therefore, the same genetic characteristics are maintained in the offspring. The clonal propagation may favour the higher levels of genetic differentiation among the parasites from isolated areas compared to areas where human migration is common. The patterns of gene flow have been established, finding Iquitos city as a reservoir of parasite genetic variability. Moreover, a recent reduction of the parasite population was observed in areas where recent control activities were performed. This research provides a picture of the nature and dynamics of the parasite population which have a significant impact in the malaria epidemiology; therefore, this knowledge is crucial for the development of efficient control policies.
Collapse
Affiliation(s)
| | - Dionicia Gamboa
- Institute of Tropical Medicine Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Peru
- Departamento de Ciencias Celulares y Moleculares, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Veronica E. Soto-Calle
- Institute of Tropical Medicine Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Peter Van den Eede
- Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Eliana Torres
- Institute of Tropical Medicine Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Luis Sánchez-Martínez
- Institute of Tropical Medicine Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Juan Contreras-Mancilla
- Institute of Tropical Medicine Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Anna Rosanas-Urgell
- Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | | | - Alejandro Llanos-Cuentas
- Institute of Tropical Medicine Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Annette Erhart
- Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | | | - Umberto D’Alessandro
- Department of Public Health, Institute of Tropical Medicine, Antwerp, Belgium
- Medical Research Council Unit, Fajara, The Gambia
- London School of Hygiene and Tropical Medicine, London, United Kingdom
| |
Collapse
|
10
|
Genetic Diversity of Plasmodium falciparum in Haiti: Insights from Microsatellite Markers. PLoS One 2015; 10:e0140416. [PMID: 26462203 PMCID: PMC4604141 DOI: 10.1371/journal.pone.0140416] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 09/26/2015] [Indexed: 11/19/2022] Open
Abstract
Hispaniola, comprising Haiti and the Dominican Republic, has been identified as a candidate for malaria elimination. However, incomplete surveillance data in Haiti hamper efforts to assess the impact of ongoing malaria control interventions. Characteristics of the genetic diversity of Plasmodium falciparum populations can be used to assess parasite transmission, which is information vital to evaluating malaria elimination efforts. Here we characterize the genetic diversity of P. falciparum samples collected from patients at seven sites in Haiti using 12 microsatellite markers previously employed in population genetic analyses of global P. falciparum populations. We measured multiplicity of infections, level of genetic diversity, degree of population geographic substructure, and linkage disequilibrium (defined as non-random association of alleles from different loci). For low transmission populations like Haiti, we expect to see few multiple infections, low levels of genetic diversity, high degree of population structure, and high linkage disequilibrium. In Haiti, we found low levels of multiple infections (12.9%), moderate to high levels of genetic diversity (mean number of alleles per locus = 4.9, heterozygosity = 0.61), low levels of population structure (highest pairwise Fst = 0.09 and no clustering in principal components analysis), and moderate linkage disequilibrium (ISA = 0.05, P<0.0001). In addition, population bottleneck analysis revealed no evidence for a reduction in the P. falciparum population size in Haiti. We conclude that the high level of genetic diversity and lack of evidence for a population bottleneck may suggest that Haiti’s P. falciparum population has been stable and discuss the implications of our results for understanding the impact of malaria control interventions. We also discuss the relevance of parasite population history and other host and vector factors when assessing transmission intensity from genetic diversity data.
Collapse
|
11
|
Koepfli C, Rodrigues PT, Antao T, Orjuela-Sánchez P, Van den Eede P, Gamboa D, van Hong N, Bendezu J, Erhart A, Barnadas C, Ratsimbasoa A, Menard D, Severini C, Menegon M, Nour BYM, Karunaweera N, Mueller I, Ferreira MU, Felger I. Plasmodium vivax Diversity and Population Structure across Four Continents. PLoS Negl Trop Dis 2015; 9:e0003872. [PMID: 26125189 PMCID: PMC4488360 DOI: 10.1371/journal.pntd.0003872] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Accepted: 06/02/2015] [Indexed: 01/12/2023] Open
Abstract
Plasmodium vivax is the geographically most widespread human malaria parasite. To analyze patterns of microsatellite diversity and population structure across countries of different transmission intensity, genotyping data from 11 microsatellite markers was either generated or compiled from 841 isolates from four continents collected in 1999–2008. Diversity was highest in South-East Asia (mean allelic richness 10.0–12.8), intermediate in the South Pacific (8.1–9.9) Madagascar and Sudan (7.9–8.4), and lowest in South America and Central Asia (5.5–7.2). A reduced panel of only 3 markers was sufficient to identify approx. 90% of all haplotypes in South Pacific, African and SE-Asian populations, but only 60–80% in Latin American populations, suggesting that typing of 2–6 markers, depending on the level of endemicity, is sufficient for epidemiological studies. Clustering analysis showed distinct clusters in Peru and Brazil, but little sub-structuring was observed within Africa, SE-Asia or the South Pacific. Isolates from Uzbekistan were exceptional, as a near-clonal parasite population was observed that was clearly separated from all other populations (FST>0.2). Outside Central Asia FST values were highest (0.11–0.16) between South American and all other populations, and lowest (0.04–0.07) between populations from South-East Asia and the South Pacific. These comparisons between P. vivax populations from four continents indicated that not only transmission intensity, but also geographical isolation affect diversity and population structure. However, the high effective population size results in slow changes of these parameters. This persistency must be taken into account when assessing the impact of control programs on the genetic structure of parasite populations. Plasmodium vivax is the predominant malaria parasite in Latin America, Asia and the South Pacific. Different factors are expected to shape diversity and population structure across continents, e.g. transmission intensity which is much lower in South America as compared to Southeast-Asia and the South Pacific, or geographical isolation of P. vivax populations in the South Pacific. We have compiled data from 841 isolates from South and Central America, Africa, Central Asia, Southeast-Asia and the South Pacific typed with a panel of 11 microsatellite markers. Diversity was highest in Southeast-Asia, where transmission is intermediate-high and migration of infected hosts is high, and lowest in South America and Central Asia where malaria transmission is low and focal. Reducing the panel of microsatellites showed that 2–6 markers are sufficient for genotyping for most drug trials and epidemiological studies, as these markers can identify >90% of all haplotypes. Parasites clustered according to continental origin, with high population differentiation between South American and Central Asian populations and the other populations, and lowest differences between Southeast-Asia and the South Pacific. Current attempts to reduce malaria transmission might change this pattern, but only after transmission is reduced for an extended period of time.
Collapse
Affiliation(s)
- Cristian Koepfli
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
- Walter and Eliza Hall Institute, Parkville, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Australia
| | - Priscila T. Rodrigues
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Tiago Antao
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Pamela Orjuela-Sánchez
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Peter Van den Eede
- Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Dionicia Gamboa
- Instituto de Medicina Tropical Alexander Von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Nguyen van Hong
- National Institute of Malariology, Parasitology, and Entomology, Hanoi, Vietnam
| | - Jorge Bendezu
- Instituto de Medicina Tropical Alexander Von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Annette Erhart
- Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Céline Barnadas
- Walter and Eliza Hall Institute, Parkville, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Australia
| | - Arsène Ratsimbasoa
- Immunology Unit, Institut Pasteur de Madagascar, Antananarivo, Madagascar
| | - Didier Menard
- Institut Pasteur de Cambodge, Malaria Molecular Epidemiology Unit, Phnom Penh, Cambodia
| | - Carlo Severini
- Department of Infectious, Parasitic and Immunomediated Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Michela Menegon
- Department of Infectious, Parasitic and Immunomediated Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Bakri Y. M. Nour
- Department of Parasitology, Blue Nile National Institute for Communicable Diseases, University of Gezira, Wad Medani, Sudan
| | - Nadira Karunaweera
- Department of Parasitology, Faculty of Medicine, University of Colombo, Sri Lanka
| | - Ivo Mueller
- Walter and Eliza Hall Institute, Parkville, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Australia
- Barcelona Centre for International Health Research, Barcelona, Spain
| | - Marcelo U. Ferreira
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Ingrid Felger
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
- * E-mail:
| |
Collapse
|
12
|
Cao LJ, Wen JB, Wei SJ, Liu J, Yang F, Chen M. Characterization of novel microsatellite markers for Hyphantria cunea and implications for other Lepidoptera. BULLETIN OF ENTOMOLOGICAL RESEARCH 2015; 105:273-284. [PMID: 25772405 DOI: 10.1017/s0007485315000061] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
This is the first report of microsatellite markers (simple sequence repeats, SSR) for fall webworm, Hyphantria cunea (Drury) (Lepidoptera: Arctiidae), an important quarantine pest in some European and Asian countries. Here, we developed 48 microsatellite markers for H. cunea from SSR enrichment libraries. Sequences isolated from libraries were sorted into four categories and analyzed. Our results suggest that sequences classified as Grouped should not be used for microsatellite primer design. The genetic diversity of microsatellite loci was assessed in 72 individuals from three populations. The number of alleles per locus ranged from 2 to 5 with an average of 3. The observed and expected heterozygosities of loci ranged from 0 to 0.958 and 0 to 0.773, respectively. A total of 18 out of 153 locus/population combinations deviated significantly from Hardy-Weinberg equilibrium. Moreover, significant linkage disequilibrium was detected in one pair of loci (1275 pairs in total). In the neutral test, two loci were grouped into the candidate category for positive selection and the remainder into the neutral category. In addition, a complex mutation pattern was observed for these loci, and F ST performed better than did R ST for the estimation of population differentiation in different mutation patterns. The results of the present study can be used for population genetic studies of H. cunea.
Collapse
Affiliation(s)
- L J Cao
- Beijing Key Laboratory for Forest Pest Control,College of Forestry,Beijing Forestry University,Beijing 100083,China
| | - J B Wen
- Beijing Key Laboratory for Forest Pest Control,College of Forestry,Beijing Forestry University,Beijing 100083,China
| | - S J Wei
- Institute of Plant and Environmental Protection,Beijing Academy of Agriculture and Forestry Sciences,Beijing 100097,China
| | - J Liu
- Beijing Key Laboratory for Forest Pest Control,College of Forestry,Beijing Forestry University,Beijing 100083,China
| | - F Yang
- Beijing Key Laboratory for Forest Pest Control,College of Forestry,Beijing Forestry University,Beijing 100083,China
| | - M Chen
- Beijing Key Laboratory for Forest Pest Control,College of Forestry,Beijing Forestry University,Beijing 100083,China
| |
Collapse
|
13
|
Chakarov N, Linke B, Boerner M, Goesmann A, Krüger O, Hoffman JI. Apparent vector-mediated parent-to-offspring transmission in an avian malaria-like parasite. Mol Ecol 2015; 24:1355-63. [PMID: 25688585 DOI: 10.1111/mec.13115] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Revised: 02/05/2015] [Accepted: 02/11/2015] [Indexed: 11/30/2022]
Abstract
Parasite transmission strategies strongly impact host-parasite co-evolution and virulence. However, studies of vector-borne parasites such as avian malaria have neglected the potential effects of host relatedness on the exchange of parasites. To test whether extended parental care in the presence of vectors increases the probability of transmission from parents to offspring, we used high-throughput sequencing to develop microsatellites for malaria-like Leucocytozoon parasites of a wild raptor population. We show that host siblings carry genetically more similar parasites than unrelated chicks both within and across years. Moreover, chicks of mothers of the same plumage morph carried more similar parasites than nestlings whose mothers were of different morphs, consistent with matrilineal transmission of morph-specific parasite strains. Ours is the first evidence of an association between host relatedness and parasite genetic similarity, consistent with vector-mediated parent-to-offspring transmission. The conditions for such 'quasi-vertical' transmission may be common and could suppress the evolution of pathogen virulence.
Collapse
Affiliation(s)
- Nayden Chakarov
- Department of Animal Behaviour, Bielefeld University, PO Box 10 01 31, 33501, Bielefeld, Germany
| | | | | | | | | | | |
Collapse
|
14
|
Koepfli C, Timinao L, Antao T, Barry AE, Siba P, Mueller I, Felger I. A Large Plasmodium vivax Reservoir and Little Population Structure in the South Pacific. PLoS One 2013; 8:e66041. [PMID: 23823758 PMCID: PMC3688846 DOI: 10.1371/journal.pone.0066041] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Accepted: 05/01/2013] [Indexed: 12/02/2022] Open
Abstract
Introduction The importance of Plasmodium vivax in malaria elimination is increasingly being recognized, yet little is known about its population size and population genetic structure in the South Pacific, an area that is the focus of intensified malaria control. Methods We have genotyped 13 microsatellite markers in 295 P. vivax isolates from four geographically distinct sites in Papua New Guinea (PNG) and one site from Solomon Islands, representing different transmission intensities. Results Diversity was very high with expected heterozygosity values ranging from 0.62 to 0.98 for the different markers. Effective population size was high (12′872 to 19′533 per site). In PNG population structuring was limited with moderate levels of genetic differentiation. FST values (adjusted for high diversity of markers) were 0.14–0.15. Slightly higher levels were observed between PNG populations and Solomon Islands (FST = 0.16). Conclusions Low levels of population structure despite geographical barriers to transmission are in sharp contrast to results from regions of low P. vivax endemicity. Prior to intensification of malaria control programs in the study area, parasite diversity and effective population size remained high.
Collapse
Affiliation(s)
- Cristian Koepfli
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
- Infection & Immunity Division, Walter & Eliza Hall Institute, Parkville, Victoria, Australia
| | - Lincoln Timinao
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- PNG Institute of Medical Research, Goroka, Papua New Guinea
| | - Tiago Antao
- Department of Biological Anthropology, University of Cambridge, Cambridge, United Kingdom
| | - Alyssa E. Barry
- Infection & Immunity Division, Walter & Eliza Hall Institute, Parkville, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
| | - Peter Siba
- PNG Institute of Medical Research, Goroka, Papua New Guinea
| | - Ivo Mueller
- Infection & Immunity Division, Walter & Eliza Hall Institute, Parkville, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
- Barcelona Centre for International Health Research, Barcelona, Spain
| | - Ingrid Felger
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
- * E-mail:
| |
Collapse
|
15
|
Li W, Cama V, Akinbo FO, Ganguly S, Kiulia NM, Zhang X, Xiao L. Multilocus sequence typing of Enterocytozoon bieneusi: Lack of geographic segregation and existence of genetically isolated sub-populations. INFECTION GENETICS AND EVOLUTION 2013; 14:111-9. [DOI: 10.1016/j.meegid.2012.11.021] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Revised: 11/16/2012] [Accepted: 11/27/2012] [Indexed: 11/29/2022]
|
16
|
Development and characterization of 18 novel EST-SSRs from the western flower Thrips, Frankliniella occidentalis (Pergande). Int J Mol Sci 2012; 13:2863-2876. [PMID: 22489130 PMCID: PMC3317692 DOI: 10.3390/ijms13032863] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2011] [Revised: 02/27/2012] [Accepted: 02/28/2012] [Indexed: 01/01/2023] Open
Abstract
The western flower thrips, Frankliniella occidentalis (Pergande), is an invasive species and the most economically important pest within the insect order Thysanoptera. For a better understanding of the genetic makeup and migration patterns of F. occidentalis throughout the world, we characterized 18 novel polymorphic EST-derived microsatellites. The mutational mechanism of these EST-SSRs was also investigated to facilitate the selection of appropriate combinations of markers for population genetic studies. Genetic diversity of these novel markers was assessed in 96 individuals from three populations in China (Harbin, Dali, and Guiyang). The results showed that all these 18 loci were highly polymorphic; the number of alleles ranged from 2 to 15, with an average of 5.50 alleles per locus. The observed (HO) and expected (HE) heterozygosities ranged from 0.072 to 0.707 and 0.089 to 0.851, respectively. Furthermore, only two locus/population combinations (WFT144 in Dali and WFT50 in Guiyang) significantly deviated from Hardy–Weinberg equilibrium (HWE). Pairwise FST analysis showed a low but significant differentiation (0.026 < FST < 0.032) among all three pairwise population comparisons. Sequence analysis of alleles per locus revealed a complex mutational pattern of these EST-SSRs. Thus, these EST-SSRs are useful markers but greater attention should be paid to the mutational characteristics of these microsatellites when they are used in population genetic studies.
Collapse
|
17
|
Keirle MR, Avis PG, Feldheim KA, Hemmes DE, Mueller GM. Investigating the Allelic Evolution of an Imperfect Microsatellite Locus in the Hawaiian Mushroom Rhodocollybia laulaha. J Hered 2011; 102:727-34. [DOI: 10.1093/jhered/esr099] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
18
|
Genome-wide distribution and organization of microsatellites in plants: an insight into marker development in Brachypodium. PLoS One 2011; 6:e21298. [PMID: 21713003 PMCID: PMC3119692 DOI: 10.1371/journal.pone.0021298] [Citation(s) in RCA: 120] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2011] [Accepted: 05/25/2011] [Indexed: 11/29/2022] Open
Abstract
Plant genomes are complex and contain large amounts of repetitive DNA including microsatellites that are distributed across entire genomes. Whole genome sequences of several monocot and dicot plants that are available in the public domain provide an opportunity to study the origin, distribution and evolution of microsatellites, and also facilitate the development of new molecular markers. In the present investigation, a genome-wide analysis of microsatellite distribution in monocots (Brachypodium, sorghum and rice) and dicots (Arabidopsis, Medicago and Populus) was performed. A total of 797,863 simple sequence repeats (SSRs) were identified in the whole genome sequences of six plant species. Characterization of these SSRs revealed that mono-nucleotide repeats were the most abundant repeats, and that the frequency of repeats decreased with increase in motif length both in monocots and dicots. However, the frequency of SSRs was higher in dicots than in monocots both for nuclear and chloroplast genomes. Interestingly, GC-rich repeats were the dominant repeats only in monocots, with the majority of them being present in the coding region. These coding GC-rich repeats were found to be involved in different biological processes, predominantly binding activities. In addition, a set of 22,879 SSR markers that were validated by e-PCR were developed and mapped on different chromosomes in Brachypodium for the first time, with a frequency of 101 SSR markers per Mb. Experimental validation of 55 markers showed successful amplification of 80% SSR markers in 16 Brachypodium accessions. An online database ‘BraMi’ (Brachypodium microsatellite markers) of these genome-wide SSR markers was developed and made available in the public domain. The observed differential patterns of SSR marker distribution would be useful for studying microsatellite evolution in a monocot–dicot system. SSR markers developed in this study would be helpful for genomic studies in Brachypodium and related grass species, especially for the map based cloning of the candidate gene(s).
Collapse
|
19
|
Anmarkrud JA, Kleven O, Augustin J, Bentz KH, Blomqvist D, Fernie KJ, Magrath MJL, Pärn H, Quinn JS, Robertson RJ, Szép T, Tarof S, Wagner RH, Lifjeld JT. Factors affecting germline mutations in a hypervariable microsatellite: a comparative analysis of six species of swallows (Aves: Hirundinidae). Mutat Res 2011; 708:37-43. [PMID: 21291898 DOI: 10.1016/j.mrfmmm.2011.01.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2010] [Revised: 01/07/2011] [Accepted: 01/24/2011] [Indexed: 05/30/2023]
Abstract
Microsatellites mutate frequently by replication slippage. Empirical evidence shows that the probability of such slippage mutations may increase with the length of the repeat region as well as exposure to environmental mutagens, but the mutation rate can also differ between the male and female germline. It has been hypothesized that more intense sexual selection or sperm competition can also lead to elevated mutation rates, but the empirical evidence is inconclusive. Here, we analyzed the occurrence of germline slippage mutations in the hypervariable pentanucleotide microsatellite locus HrU10 across six species of swallow (Aves: Hirundinidae). These species exhibit marked differences in the length range of the microsatellite, as well as differences in the intensity of sperm competition. We found a strong effect of microsatellite length on the probability of mutation, but no residual effect of species or their level of sperm competition when the length effect was accounted for. Neither could we detect any difference in mutation rate between tree swallows (Tachycineta bicolor) breeding in Hamilton Harbour, Ontario, an industrial site with previous documentation of elevated mutation rates for minisatellite DNA, and a rural reference population. However, our cross-species analysis revealed two significant patterns of sex differences in HrU10 germline mutations: (1) mutations in longer alleles occurred typically in the male germline, those in shorter alleles in the female germline, and (2) male germline mutations were more often expansions than contractions, whereas no directional bias was evident in the female germline. These results indicate some fundamental differences in male and female gametogenesis affecting the probability of slippage mutations. Our study also reflects the value of a comparative, multi-species approach for locus-specific mutation analyses, through which a wider range of influential factors can be assessed than in single-species studies.
Collapse
Affiliation(s)
- Jarl A Anmarkrud
- National Centre for Biosystematics, Natural History Museum, University of Oslo, P.O. Box 1172 Blindern, NO-0318 Oslo, Norway.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Gatei W, Kariuki S, Hawley W, ter Kuile F, Terlouw D, Phillips-Howard P, Nahlen B, Gimnig J, Lindblade K, Walker E, Hamel M, Crawford S, Williamson J, Slutsker L, Shi YP. Effects of transmission reduction by insecticide-treated bed nets (ITNs) on parasite genetics population structure: I. The genetic diversity of Plasmodium falciparum parasites by microsatellite markers in western Kenya. Malar J 2010; 9:353. [PMID: 21134282 PMCID: PMC3004940 DOI: 10.1186/1475-2875-9-353] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2010] [Accepted: 12/06/2010] [Indexed: 11/13/2022] Open
Abstract
Background Insecticide-treated bed nets (ITNs) reduce malaria transmission and are an important prevention tool. However, there are still information gaps on how the reduction in malaria transmission by ITNs affects parasite genetics population structure. This study examined the relationship between transmission reduction from ITN use and the population genetic diversity of Plasmodium falciparum in an area of high ITN coverage in western Kenya. Methods Parasite genetic diversity was assessed by scoring eight single copy neutral multilocus microsatellite (MS) markers in samples collected from P. falciparum-infected children (< five years) before introduction of ITNs (1996, baseline, n = 69) and five years after intervention (2001, follow-up, n = 74). Results There were no significant changes in overall high mixed infections and unbiased expected heterozygosity between baseline (%MA = 94% and He = 0.75) and follow up (%MA = 95% and He = 0.79) years. However, locus specific analysis detected significant differences for some individual loci between the two time points. Pfg377 loci, a gametocyte-specific MS marker showed significant increase in mixed infections and He in the follow up survey (%MA = 53% and He = 0.57) compared to the baseline (%MA = 30% and He = 0.29). An opposite trend was observed in the erythrocyte binding protein (EBP) MS marker. There was moderate genetic differentiation at the Pfg377 and TAA60 loci (FST = 0.117 and 0.137 respectively) between the baseline and post-ITN parasite populations. Further analysis revealed linkage disequilibrium (LD) of the microsatellites in the baseline (14 significant pair-wise tests and ISA = 0.016) that was broken in the follow up parasite population (6 significant pairs and ISA = 0.0003). The locus specific change in He, the moderate population differentiation and break in LD between the baseline and follow up years suggest an underlying change in population sub-structure despite the stability in the overall genetic diversity and multiple infection levels. Conclusions The results from this study suggest that although P. falciparum population maintained an overall stability in genetic diversity after five years of high ITN coverage, there was significant locus specific change associated with gametocytes, marking these for further investigation.
Collapse
Affiliation(s)
- Wangeci Gatei
- Malaria Branch, Division of Parasitic Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Schultz L, Wapling J, Mueller I, Ntsuke PO, Senn N, Nale J, Kiniboro B, Buckee CO, Tavul L, Siba PM, Reeder JC, Barry AE. Multilocus haplotypes reveal variable levels of diversity and population structure of Plasmodium falciparum in Papua New Guinea, a region of intense perennial transmission. Malar J 2010; 9:336. [PMID: 21092231 PMCID: PMC3002378 DOI: 10.1186/1475-2875-9-336] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2010] [Accepted: 11/23/2010] [Indexed: 11/10/2022] Open
Abstract
Background The South West Pacific nation of Papua New Guinea has intense year round transmission of Plasmodium falciparum on the coast and in the low-lying inland areas. Local heterogeneity in the epidemiology of malaria suggests that parasites from multiple locations will need to be surveyed to define the population biology of P. falciparum in the region. This study describes the population genetics of P. falciparum in thirteen villages spread over four distinct catchment areas of Papua New Guinea. Methods Ten microsatellite loci were genotyped in 318 P. falciparum isolates from the parasite populations of two inland catchment areas, namely Wosera (number of villages (n) = 7) and Utu (n = 1) and; and two coastal catchments, Malala (n = 3) and Mugil (n = 3). Analysis of the resultant multilocus haplotypes was done at different spatial scales (2-336 km) to define the genetic diversity (allelic richness and expected heterozygosity), linkage disequilibrium and population structure throughout the study area. Results Although genetic diversity was high in all parasite populations, it was also variable with a lower allelic richness and expected heterozygosity for inland populations compared to those from the more accessible coast. This variability was not correlated with two proxy measures of transmission intensity, the infection prevalence and the proportion multiple infections. Random associations among the microsatellite loci were observed in all four catchments showing that a substantial degree of out-crossing occurs in the region. Moderate to very high levels of population structure were found but the amount of genetic differentiation (FST) did not correlate with geographic distance suggesting that parasite populations are fragmented. Population structure was also identified between villages within the Malala area, with the haplotypes of one parasite population clustering with the neighbouring catchment of Mugil. Conclusion The observed population genetics of P. falciparum in this region is likely to be a consequence of the high transmission intensity combined with the isolation of human and vector populations, especially those located inland and migration of parasites via human movement into coastal populations. The variable genetic diversity and population structure of P. falciparum has important implications for malaria control strategies and warrants further fine scale sampling throughout Papua New Guinea.
Collapse
Affiliation(s)
- Lee Schultz
- Centre for Population Health, Burnet Institute, Melbourne, Australia
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Tan JC, Tan A, Checkley L, Honsa CM, Ferdig MT. Variable numbers of tandem repeats in Plasmodium falciparum genes. J Mol Evol 2010; 71:268-78. [PMID: 20730584 DOI: 10.1007/s00239-010-9381-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2009] [Accepted: 08/09/2010] [Indexed: 11/29/2022]
Abstract
Genome variation studies in Plasmodium falciparum have focused on SNPs and, more recently, large-scale copy number polymorphisms and ectopic rearrangements. Here, we examine another source of variation: variable number tandem repeats (VNTRs). Interspersed low complexity features, including the well-studied P. falciparum microsatellite sequences, are commonly classified as VNTRs; however, this study is focused on longer coding VNTR polymorphisms, a small class of copy number variations. Selection against frameshift mutation is a main constraint on tandem repeats (TRs) in coding regions, while limited propagation of TRs longer than 975 nt total length is a minor restriction in coding regions. Comparative analysis of three P. falciparum genomes reveals that more than 9% of all P. falciparum ORFs harbor VNTRs, much more than has been reported for any other species. Moreover, genotyping of VNTR loci in a drug-selected line, progeny of a genetic cross, and 334 field isolates demonstrates broad variability in these sequences. Functional enrichment analysis of ORFs harboring VNTRs identifies stress and DNA damage responses along with chromatin modification activities, suggesting an influence on genome mutability and functional variation. Analysis of the repeat units and their flanking regions in both P. falciparum and Plasmodium reichenowi sequences implicates a replication slippage mechanism in the generation of TRs from an initially unrepeated sequence. VNTRs can contribute to rapid adaptation by localized sequence duplication. They also can confound SNP-typing microarrays or mapping short-sequence reads and therefore must be accounted for in such analyses.
Collapse
Affiliation(s)
- John C Tan
- The Eck Institute for Global Health, University of Notre Dame, 100 Galvin Life Sciences, Notre Dame, IN, 46556, USA.
| | | | | | | | | |
Collapse
|
23
|
Consequences of genotyping errors for estimation of clonality: a case study on Populus euphratica Oliv. (Salicaceae). Evol Ecol 2010. [DOI: 10.1007/s10682-010-9389-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
24
|
Su XZ, Jiang H, Yi M, Mu J, Stephens RM. Large-scale genotyping and genetic mapping in Plasmodium parasites. THE KOREAN JOURNAL OF PARASITOLOGY 2009; 47:83-91. [PMID: 19488413 DOI: 10.3347/kjp.2009.47.2.83] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2008] [Accepted: 04/03/2009] [Indexed: 11/23/2022]
Abstract
The completion of many malaria parasite genomes provides great opportunities for genomewide characterization of gene expression and high-throughput genotyping. Substantial progress in malaria genomics and genotyping has been made recently, particularly the development of various microarray platforms for large-scale characterization of the Plasmodium falciparum genome. Microarray has been used for gene expression analysis, detection of single nucleotide polymorphism (SNP) and copy number variation (CNV), characterization of chromatin modifications, and other applications. Here we discuss some recent advances in genetic mapping and genomic studies of malaria parasites, focusing on the use of high-throughput arrays for the detection of SNP and CNV in the P. falciparum genome. Strategies for genetic mapping of malaria traits are also discussed.
Collapse
Affiliation(s)
- Xin-Zhuan Su
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, USA.
| | | | | | | | | |
Collapse
|
25
|
Hayton K, Su XZ. Drug resistance and genetic mapping in Plasmodium falciparum. Curr Genet 2008; 54:223-39. [PMID: 18802698 DOI: 10.1007/s00294-008-0214-x] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2008] [Revised: 08/27/2008] [Accepted: 08/28/2008] [Indexed: 11/30/2022]
Abstract
Drug resistance in malaria parasites is a serious public health burden, and resistance to most of the antimalarial drugs currently in use has been reported. A better understanding of the molecular mechanisms of drug resistance is urgently needed to slow or circumvent the spread of resistance, to allow local treatments to be deployed more effectively to prolong the life span of the current drugs, and to develop new drugs. Although mutations in genes determining resistance to drugs such as chloroquine and the antifolates have been identified, we still do not have a full understanding of the resistance mechanisms, and genes that contribute to resistance to many other drugs remain to be discovered. Genetic mapping is a powerful tool for the identification of mutations conferring drug resistance in malaria parasites because most drug-resistant phenotypes were selected within the past 60 years. High-throughput methods for genotyping large numbers of single nucleotide polymorphisms (SNPs) and microsatellites (MSs) are now available or are being developed, and genome-wide association studies for malaria traits will soon become a reality. Here we discuss strategies and issues related to mapping genes contributing to drug resistance in the human malaria parasite Plasmodium falciparum.
Collapse
Affiliation(s)
- Karen Hayton
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892, USA.
| | | |
Collapse
|
26
|
Certain LK, Briceño M, Kiara SM, Nzila AM, Watkins WM, Sibley CH. Characteristics of Plasmodium falciparum dhfr haplotypes that confer pyrimethamine resistance, Kilifi, Kenya, 1987--2006. J Infect Dis 2008; 197:1743-51. [PMID: 18513156 DOI: 10.1086/588198] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Resistance to the antimalarial drug sulfadoxine-pyrimethamine (SP) emerged in Plasmodium falciparum from Asia in the 1960s and subsequently spread to Africa. It is not known whether alleles that confer SP resistance also arose independently in Africa. We defined the coding region and microsatellite haplotypes of dhfr alleles in P. falciparum collected in Kilifi, Kenya, during 1987--2006, which spans the period when SP was first introduced. Isolates that carried a double-mutant or triple-mutant dhfr allele were detected at a low frequency, even during 1987--1988. Each of 2 double mutants carried a unique haplotype, and both were related to wild-type haplotypes from the same population. The number of isolates that carried a triple-mutant dhfr allele increased rapidly after introduction of SP and shared the haplotype of the triple mutant derived form Asia. We observed no triple-mutant alleles with haplotypes related to those of the Africa-derived wild-type and double-mutant alleles.
Collapse
Affiliation(s)
- Laura K Certain
- Department of Genome Sciences, University of Washington, Seattle, Washington 98105-5065, USA
| | | | | | | | | | | |
Collapse
|
27
|
Microsatellite evolution: Mutations, sequence variation, and homoplasy in the hypervariable avian microsatellite locus HrU10. BMC Evol Biol 2008; 8:138. [PMID: 18471288 PMCID: PMC2396632 DOI: 10.1186/1471-2148-8-138] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2008] [Accepted: 05/09/2008] [Indexed: 02/01/2023] Open
Abstract
Background Microsatellites are frequently used genetic markers in a wide range of applications, primarily due to their high length polymorphism levels that can easily be genotyped by fragment length analysis. However, the mode of microsatellite evolution is yet not fully understood, and the role of interrupting motifs for the stability of microsatellites remains to be explored in more detail. Here we present a sequence analysis of mutation events and a description of the structure of repeated regions in the hypervariable, pentanucleotide microsatellite locus HrU10 in barn swallows (Hirundo rustica) and tree swallows (Tachycineta bicolor). Results In a large-scale parentage analysis in barn swallows and tree swallows, broods were screened for mutations at the HrU10 locus. In 41 cases in the barn swallows and 15 cases in the tree swallows, mutations corresponding to the loss or gain of one or two repeat units were detected. The parent and mutant offspring alleles were sequenced for 33 of these instances (26 in barn swallows and 7 in tree swallows). Replication slippage was considered the most likely mutational process. We tested the hypothesis that HrU10, a microsatellite with a wide allele size range, has an increased probability of introductions of interruptive motifs (IMs) with increasing length of the repeated region. Indeed, the number and length of the IMs was strongly positively correlated with the total length of the microsatellite. However, there was no significant correlation with the length of the longest stretch of perfectly repeated units, indicating a threshold level for the maximum length of perfectly repeated pentanucleotide motifs in stable HrU10 alleles. The combination of sequence and pedigree data revealed that 15 barn swallow mutations (58%) produced alleles that were size homoplasic to other alleles in the data set. Conclusion Our results give further insights into the mode of microsatellite evolution, and support the assumption of increased slippage rate with increased microsatellite length and a stabilizing effect of interrupting motifs for microsatellite regions consisting of perfect repeats. In addition, the observed extent of size homoplasy may impose a general caution against using hypervariable microsatellites in genetic diversity measures when alleles are identified by fragment length analysis only.
Collapse
|
28
|
Discordant patterns of genetic variation at two chloroquine resistance loci in worldwide populations of the malaria parasite Plasmodium falciparum. Antimicrob Agents Chemother 2008; 52:2212-22. [PMID: 18411325 DOI: 10.1128/aac.00089-08] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mutations in the chloroquine resistance (CQR) transporter gene of Plasmodium falciparum (Pfcrt; chromosome 7) play a key role in CQR, while mutations in the multidrug resistance gene (Pfmdr1; chromosome 5) play a significant role in the parasite's resistance to a variety of antimalarials and also modulate CQR. To compare patterns of genetic variation at Pfcrt and Pfmdr1 loci, we investigated 460 blood samples from P. falciparum-infected patients from four Asian, three African, and three South American countries, analyzing microsatellite (MS) loci flanking Pfcrt (five loci [approximately 40 kb]) and Pfmdr1 (either two loci [approximately 5 kb] or four loci [approximately 10 kb]). CQR Pfmdr1 allele-associated MS haplotypes showed considerably higher genetic diversity and higher levels of subdivision than CQR Pfcrt allele-associated MS haplotypes in both Asian and African parasite populations. However, both Pfcrt and Pfmdr1 MS haplotypes showed similar levels of low diversity in South American parasite populations. Median-joining network analyses showed that the Pfcrt MS haplotypes correlated well with geography and CQR Pfcrt alleles, whereas there was no distinct Pfmdr1 MS haplotype that correlated with geography and/or CQR Pfmdr1 alleles. Furthermore, multiple independent origins of CQR Pfmdr1 alleles in Asia and Africa were inferred. These results suggest that variation at Pfcrt and Pfmdr1 loci in both Asian and African parasite populations is generated and/or maintained via substantially different mechanisms. Since Pfmdr1 mutations may be associated with resistance to artemisinin combination therapies that are replacing CQ, particularly in Africa, it is important to determine if, and how, the genetic characteristics of this locus change over time.
Collapse
|
29
|
Lia VV, Bracco M, Gottlieb AM, Poggio L, Confalonieri VA. Complex mutational patterns and size homoplasy at maize microsatellite loci. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2007; 115:981-91. [PMID: 17712542 DOI: 10.1007/s00122-007-0625-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2006] [Accepted: 07/31/2007] [Indexed: 05/16/2023]
Abstract
Microsatellite markers have become one of the most popular tools for germplasm characterization, population genetics and evolutionary studies. To investigate the mutational mechanisms of maize microsatellites, nucleotide sequence information was obtained for ten loci. In addition, Single-Strand Conformation Polymorphism (SSCP) analysis was conducted to assess the occurrence of size homoplasy. Sequence analysis of 54 alleles revealed a complex pattern of mutation at 8/10 loci, with only 2 loci showing allele variation strictly consistent with stepwise mutations. The overall allelic diversity resulted from changes in the number of repeat units, base substitutions, and indels within repetitive and non-repetitive segments. Thirty-one electromorphs sampled from six maize landraces were considered for SSCP analysis. The number of conformers per electromorph ranged from 1 to 7, with 74.2% of the electromorphs showing more than one conformer. Size homoplasy was apparent within landraces and populations. Variation in the amount of size homoplasy was observed within and between loci, although no differences were detected among populations. The results of the present study provide useful information on the interpretation of genetic data derived from microsatellite markers. Further efforts are still needed to determine the impact of these findings on the estimation of population parameters and on the inference of phylogenetic relationships in maize investigations.
Collapse
Affiliation(s)
- V V Lia
- Laboratorio de Genética, Departamento de Ecología, Genética y Evolución, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina.
| | | | | | | | | |
Collapse
|
30
|
Extensive genetic diversity in the Plasmodium falciparum Na+/H+ exchanger 1 transporter protein implicated in quinine resistance. Antimicrob Agents Chemother 2007; 51:4508-11. [PMID: 17923493 DOI: 10.1128/aac.00317-07] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Plasmodium falciparum Na(+)/H(+) exchanger (Pfnhe-1) locus at chromosome 13 and another locus at chromosome 9 have recently been proposed to influence quinine resistance. Here, we sequenced the ms4760 locus of the Pfnhe-1 gene from 244 P. falciparum isolates collected from five different regions of India. A total of 16 different ms4760 alleles (with one to five DNNND repeats) were observed among these isolates. Interestingly, areas with a high prevalence of chloroquine and sulfadoxine-pyrimethamine resistance showed more Pfnhe-1 DNNND repeats compared to low drug resistance areas. The extent of genetic diversity at the ms4760 locus also varied from one region to another, with expected heterozygosity values ranging from 0.47 to 0.88.
Collapse
|
31
|
Microsatellite polymorphism within pfcrt provides evidence of continuing evolution of chloroquine-resistant alleles in Papua New Guinea. Malar J 2007; 6:34. [PMID: 17376240 PMCID: PMC1838424 DOI: 10.1186/1475-2875-6-34] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2006] [Accepted: 03/21/2007] [Indexed: 11/21/2022] Open
Abstract
Background Polymorphism in the pfcrt gene underlies Plasmodium falciparum chloroquine resistance (CQR), as sensitive strains consistently carry lysine (K), while CQR strains carry threonine (T) at the codon 76. Previous studies have shown that microsatellite (MS) haplotype variation can be used to study the evolution of CQR polymorphism and to characterize intra- and inter-population dispersal of CQR in Papua New Guinea (PNG). Methods Here, following identification of new polymorphic MS in introns 2 and 3 within the pfcrt gene (msint2 and msint3, respectively), locus-by-locus and haplotype heterozygosity (H) analyses were performed to determine the distribution of this intronic polymorphism among pfcrt chloroquine-sensitive and CQR alleles. Results For MS flanking the pfcrt CQR allele, H ranged from 0.07 (B5M77, -18 kb) to 0.094 (9B12, +2 kb) suggesting that CQ selection pressure was responsible for strong homogenisation of this gene locus. In a survey of 206 pfcrt-SVMNT allele-containing field samples from malaria-endemic regions of PNG, H for msint2 was 0.201. This observation suggests that pfcrt msint2 exhibits a higher level of diversity than what is expected from the analyses of pfcrt flanking MS. Further analyses showed that one of the three haplotypes present in the early 1980's samples has become the predominant haplotype (frequency = 0.901) in CQR parasite populations collected after 1995 from three PNG sites, when CQR had spread throughout malaria-endemic regions of PNG. Apparent localized diversification of pfcrt haplotypes at each site was also observed among samples collected after 1995, where minor CQR-associated haplotypes were found to be unique to each site. Conclusion In this study, a higher level of diversity at MS loci within the pfcrt gene was observed when compared with the level of diversity at pfcrt flanking MS. While pfcrt (K76T) and its immediate flanking region indicate homogenisation in PNG CQR parasite populations, pfcrt intronic MS variation provides evidence that the locus is still evolving. Further studies are needed to determine whether these intronic MS introduce the underlying genetic mechanisms that may generate pfcrt allelic diversity.
Collapse
|
32
|
KARUNAWEERA ND, FERREIRA MU, HARTL DL, WIRTH DF. Fourteen polymorphic microsatellite DNA markers for the human malaria parasite Plasmodium vivax. ACTA ACUST UNITED AC 2006. [DOI: 10.1111/j.1471-8286.2006.01534.x] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
33
|
Buschiazzo E, Gemmell NJ. The rise, fall and renaissance of microsatellites in eukaryotic genomes. Bioessays 2006; 28:1040-50. [PMID: 16998838 DOI: 10.1002/bies.20470] [Citation(s) in RCA: 172] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Microsatellites are among the most versatile of genetic markers, being used in an impressive number of biological applications. However, the evolutionary dynamics of these markers remain a source of contention. Almost 20 years after the discovery of these ubiquitous simple sequences, new genomic data are clarifying our understanding of the structure, distribution and variability of microsatellites in genomes, especially for the eukaryotes. While these new data provide a great deal of descriptive information about the nature and abundance of microsatellite sequences within eukaryotic genomes, there have been few attempts to synthesise this information to develop a global concept of evolution. This review provides an up-to-date account of the mutational processes, biases and constraints believed to be involved in the evolution of microsatellites, particularly with respect to the creation and degeneration of microsatellites, which we assert may be broadly viewed as a life cycle. In addition, we identify areas of contention that require further research and propose some possible directions for future investigation.
Collapse
Affiliation(s)
- Emmanuel Buschiazzo
- School of Biological Sciences, University of Canterbury, Christchurch, New Zealand.
| | | |
Collapse
|
34
|
Ndiaye D, Daily J, Sarr O, Ndir O, Gaye O, Mboup S, Roper C, Wirth D. Defining the origin of Plasmodium falciparum resistant dhfr isolates in Senegal. Acta Trop 2006; 99:106-11. [PMID: 16905111 PMCID: PMC2582374 DOI: 10.1016/j.actatropica.2006.07.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2006] [Revised: 06/23/2006] [Accepted: 07/04/2006] [Indexed: 11/23/2022]
Abstract
We previously reported a high baseline prevalence of mutations in the dhfr and dhps genes of Plasmodium falciparum throughout Senegal. The highest prevalence of the triple dhfr pyrimethamine associated mutations were found in isolates obtained in the western part of the country near the capital city of Dakar. In this study, we sought out to determine the relatedness of dhfr wild type and mutated strains by analyzing three microsatellite regions upstream of the dhfr locus. Twenty-six of the 31 wild type strains had a unique microsatellite pattern. In contrast, of the 17 isolates containing the triple mutation in dhfr, 11 had an identical microsatellite pattern. Diverse geographical isolates in Senegal containing the triple dhfr mutation have arisen from a limited number of ancestral strains. In addition, we demonstrate that these isolates have shared ancestry with the previously reported triple mutation haplotype found in Tanzania, South Africa, and southeast Asia. This common ancestry may have implications for the malaria control strategy for reducing the spread of sulfadoxine-pyrimethamine resistance in Senegal and elsewhere in Africa.
Collapse
Affiliation(s)
- D. Ndiaye
- Department of Parasitology and Mycology, Dantec Hospital, Cheikh Anta Diop University, Dakar, Senegal
| | - J.P. Daily
- Harvard School of Public Health, Department of Immunology and Infectious Disease, 655 Huntington Avenue, Boston, MA 02115, USA
- Corresponding author. Tel.: +1 617 432 5321; fax: +1 617 432 4766. E-mail address: (J.P. Daily)
| | - O. Sarr
- Laboratory of Bacteriology and Virology, Dantec Hospital, Dakar, Senegal
| | - O. Ndir
- Department of Parasitology and Mycology, Dantec Hospital, Cheikh Anta Diop University, Dakar, Senegal
| | - O. Gaye
- Department of Parasitology and Mycology, Dantec Hospital, Cheikh Anta Diop University, Dakar, Senegal
| | - S. Mboup
- Laboratory of Bacteriology and Virology, Dantec Hospital, Dakar, Senegal
| | - C. Roper
- Department of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, United Kingdom
| | - D.F. Wirth
- Harvard School of Public Health, Department of Immunology and Infectious Disease, 655 Huntington Avenue, Boston, MA 02115, USA
| |
Collapse
|
35
|
Kidgell C, Volkman SK, Daily J, Borevitz JO, Plouffe D, Zhou Y, Johnson JR, Le Roch KG, Sarr O, Ndir O, Mboup S, Batalov S, Wirth DF, Winzeler EA. A systematic map of genetic variation in Plasmodium falciparum. PLoS Pathog 2006; 2:e57. [PMID: 16789840 PMCID: PMC1480597 DOI: 10.1371/journal.ppat.0020057] [Citation(s) in RCA: 158] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2006] [Accepted: 04/28/2006] [Indexed: 11/25/2022] Open
Abstract
Discovering novel genes involved in immune evasion and drug resistance in the human malaria parasite, Plasmodium falciparum, is of critical importance to global health. Such knowledge may assist in the development of new effective vaccines and in the appropriate use of antimalarial drugs. By performing a full-genome scan of allelic variability in 14 field and laboratory strains of P. falciparum, we comprehensively identified ≈500 genes evolving at higher than neutral rates. The majority of the most variable genes have paralogs within the P. falciparum genome and may be subject to a different evolutionary clock than those without. The group of 211 variable genes without paralogs contains most known immunogens and a few drug targets, consistent with the idea that the human immune system and drug use is driving parasite evolution. We also reveal gene-amplification events including one surrounding pfmdr1, the P. falciparum multidrug-resistance gene, and a previously uncharacterized amplification centered around the P. falciparum GTP cyclohydrolase gene, the first enzyme in the folate biosynthesis pathway. Although GTP cyclohydrolase is not the known target of any current drugs, downstream members of the pathway are targeted by several widely used antimalarials. We speculate that an amplification of the GTP cyclohydrolase enzyme in the folate biosynthesis pathway may increase flux through this pathway and facilitate parasite resistance to antifolate drugs. Variability in the genome of the human malaria parasite, Plasmodium falciparum, is key to the parasite's ability to cause disease and overcome therapeutic interventions such as drugs and vaccines. Elucidating the extent of genetic variation in the malaria parasite will therefore be central to decreasing the malaria disease burden. The authors performed a full-genome scan of variability in different strains of P. falciparum and observed a nonrandom distribution of variation. In particular, those genes that are predicted to have roles in evading the host immune response or antimalarial drugs show significantly higher levels of variation. In addition, the authors speculate that a previously unreported genome amplification in the folate biosynthesis pathway correlates with resistance to the antimalarial drug sulfadoxine. Such data enable hypotheses to be made about the function of many of the unknown elements in the parasite's genome, which may permit the identification of new targets that can be investigated for incorporation into a malaria vaccine and may aid in the understanding of how the parasite withstands drug pressure.
Collapse
Affiliation(s)
- Claire Kidgell
- Department of Cell Biology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Sarah K Volkman
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, Massachusetts, United States of America
| | - Johanna Daily
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, Massachusetts, United States of America
| | - Justin O Borevitz
- Plant Biology Laboratory, Salk Institute for Biological Studies, La Jolla, California, United States of America
| | - David Plouffe
- Genomics Institute of the Novartis Research Foundation, San Diego, California, United States of America
| | - Yingyao Zhou
- Genomics Institute of the Novartis Research Foundation, San Diego, California, United States of America
| | - Jeffrey R Johnson
- Department of Cell Biology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Karine G. Le Roch
- Genomics Institute of the Novartis Research Foundation, San Diego, California, United States of America
| | - Ousmane Sarr
- Faculty of Medicine and Pharmacy, Cheikh Anta Diop University, Dakar, Senegal
| | - Omar Ndir
- Faculty of Medicine and Pharmacy, Cheikh Anta Diop University, Dakar, Senegal
| | - Soulyemane Mboup
- Faculty of Medicine and Pharmacy, Cheikh Anta Diop University, Dakar, Senegal
| | - Serge Batalov
- Genomics Institute of the Novartis Research Foundation, San Diego, California, United States of America
| | - Dyann F Wirth
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, Massachusetts, United States of America
| | - Elizabeth A Winzeler
- Department of Cell Biology, The Scripps Research Institute, La Jolla, California, United States of America
- Genomics Institute of the Novartis Research Foundation, San Diego, California, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
36
|
Mwangi JM, Omar SA, Ranford-Cartwright LC. Comparison of microsatellite and antigen-coding loci for differentiating recrudescing Plasmodium falciparum infections from reinfections in Kenya. Int J Parasitol 2006; 36:329-36. [PMID: 16442537 DOI: 10.1016/j.ijpara.2005.10.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2005] [Revised: 10/25/2005] [Accepted: 10/28/2005] [Indexed: 10/25/2022]
Abstract
We have compared the ability of five Plasmodium falciparum microsatellites and three antigen-coding loci to differentiate recrudescence from reinfection. We used 133 pairs of P. falciparum-infected blood samples collected during in vivo drug efficacy trials from three sites in Kenya with different malaria endemicities. There were no significant differences between the marker subsets in their ability to discriminate recrudescences from new infections across the three sites. Overall, microsatellite loci revealed significantly higher expected heterozygosity and multiplicity of infection levels than antigen-coding loci. The mean expected heterozygosity across all loci in the three populations was significantly higher with microsatellites (0.70, 0.78 and 0.79) than antigen-coding loci (0.53, 0.60 and 0.62) for Mwea, Tiwi and Bondo areas, respectively. These observations can be explained by three non-exclusive hypotheses: (i) microsatellites are more polymorphic than antigenic loci; (ii) partially immune hosts remove certain parasites from infections on the basis of their antigenic alleles; and/or (iii) recombination occurs in vitro or in vivo with microsatellites.
Collapse
Affiliation(s)
- Jonathan M Mwangi
- Kenya Medical Research Institute, Centre for Biotechnology Research and Development, Mbagathi Road, P.O. Box 54840-00200, Nairobi. Kenya
| | | | | |
Collapse
|
37
|
Hypsa V. Parasite histories and novel phylogenetic tools: Alternative approaches to inferring parasite evolution from molecular markers. Int J Parasitol 2006; 36:141-55. [PMID: 16387305 DOI: 10.1016/j.ijpara.2005.10.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2005] [Revised: 10/19/2005] [Accepted: 10/28/2005] [Indexed: 10/25/2022]
Abstract
Parasitological research is often contingent on the knowledge of the phylogeny/genealogy of the studied group. Although molecular phylogenetics has proved to be a powerful tool in such investigations, its application in the traditional fashion, based on a tree inference from the primary nucleotide sequences may, in many cases, be insufficient or even improper. These limitations are due to a number of factors, such as a scarcity/ambiguity of phylogenetic information in the sequences, an intricacy of gene relationships at low phylogenetic levels, or a lack of criteria when deciding among several competing coevolutionary scenarios. With respect to the importance of a precise and reliable phylogenetic background in many biological studies, attempts are being made to extend molecular phylogenetics with a variety of new data sources and methodologies. In this review, selected approaches potentially applicable to parasitological research are presented and their advantages as well as drawbacks are discussed. These issues include the usage of idiosyncratic markers (unique features with presumably low probability of homoplasy), such as insertion of mobile elements, gene rearrangements and secondary structure features; the problem of ancestral polymorphism and reticulate relationships at low phylogenetic levels; and the utility of a molecular clock to facilitate discrimination among alternative scenarios in host-parasite coevolution.
Collapse
Affiliation(s)
- Václav Hypsa
- Faculty of Biological Sciences, University of South Bohemia, and Institute of Parasitology, Academy of Sciences of the Czech Republic, Branisovská 31, 37005 Ceské Budejovice, Czech Republic.
| |
Collapse
|
38
|
Pearce R, Malisa A, Kachur SP, Barnes K, Sharp B, Roper C. Reduced Variation Around Drug-Resistant dhfr Alleles in African Plasmodium falciparum. Mol Biol Evol 2005; 22:1834-44. [PMID: 15917494 DOI: 10.1093/molbev/msi177] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
We have measured microsatellite diversity at 26 markers around the dhfr gene in pyrimethamine-sensitive and -resistant parasites collected in southeast Africa. Through direct comparison with diversity on sensitive chromosomes we have found significant loss of diversity across a region of 70 kb around the most highly resistant allele which is evidence of a selective sweep attributable to selection through widespread use of pyrimethamine (in combination with sulfadoxine) as treatment for malaria. Retrospective analysis through four years of direct and continuous selection from use of sulfadoxine-pyrimethamine as first-line malaria treatment on a Plasmodium falciparum population in KwaZulu Natal, South Africa, has revealed how recombination significantly narrowed the margins of the selective sweep over time. A deterministic model incorporating selection coefficients measured during the same interval indicates that the transition was toward a state of recombination-selection equilibrium. We compared loss of diversity around the same resistance allele in two populations at either extreme of the range of entomological inoculation rates (EIRs), namely, under one infective bite per year in Mpumalanga, South Africa, and more than one per day in southern Tanzania. EIRs determine effective recombination rates and are expected to profoundly influence the dimensions of the selective sweep. Surprisingly, the dimensions were broadly consistent across both populations. We conclude that despite different recombination rates and contrasting drug selection histories in neighboring countries, the region-wide movement of resistant parasites has played a key role in the establishment of resistance in these populations and the dimensions of the selective sweep are dominated by the influence of high initial starting frequencies.
Collapse
Affiliation(s)
- Richard Pearce
- London School of Hygiene and Tropical Medicine, Pathogen Molecular Biology Unit, Department of Infectious Tropical Diseases, London, United Kingdom.
| | | | | | | | | | | |
Collapse
|
39
|
Arnaud-Haond S, Alberto F, Teixeira S, Procaccini G, Serrão EA, Duarte CM. Assessing Genetic Diversity in Clonal Organisms: Low Diversity or Low Resolution? Combining Power and Cost Efficiency in Selecting Markers. J Hered 2005; 96:434-40. [PMID: 15743902 DOI: 10.1093/jhered/esi043] [Citation(s) in RCA: 139] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The increasing use of molecular tools to study populations of clonal organisms leads us to question whether the low polymorphism found in many studies reflects limited genetic diversity in populations or the limitations of the markers used. Here we used microsatellite datasets for two sea grass species to provide a combinatory statistic, combined with a likelihood approach to estimate the probability of identical multilocus genotypes (MLGs) to be shared by distinct individuals, in order to ascertain the efficiency of the markers used and to optimize cost-efficiently the choice of markers to use for deriving unbiased estimates of genetic diversity. These results strongly indicate that conclusions from studies on clonal organisms derived using markers showing low polymorphism, including microsatellites, should be reassessed using appropriate polymorphic markers.
Collapse
Affiliation(s)
- S Arnaud-Haond
- CCMAR, CIMAR-Laboratório Associado, FCMA- Univ. Algarve, Gambelas, P-8005-139 Faro, Portugal.
| | | | | | | | | | | |
Collapse
|
40
|
Walton SF, Dougall A, Pizzutto S, Holt D, Taplin D, Arlian LG, Morgan M, Currie BJ, Kemp DJ. Genetic epidemiology of Sarcoptes scabiei (Acari: Sarcoptidae) in northern Australia. Int J Parasitol 2004; 34:839-49. [PMID: 15157767 DOI: 10.1016/j.ijpara.2004.04.002] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2004] [Revised: 03/31/2004] [Accepted: 04/01/2004] [Indexed: 11/20/2022]
Abstract
Utilising three hypervariable microsatellite markers we have previously shown that scabies mites on people are genetically distinct from those on dogs in sympatric populations in northern Australia. This had important ramifications on the formulation of public health control policies. In contrast phylogenetic analyses using mitochondrial markers on scabies mites infecting multiple animal hosts elsewhere in the world could not differentiate any genetic variation between mite haplotype and host species. Here we further analyse the intra-specific relationship of Sarcoptes scabiei var. hominis with S. scabiei var. canis by using both mitochondrial DNA and an expanded nuclear microsatellite marker system. Phylogenetic studies using sequences from the mitochondrial genes coding for 16S rRNA and Cytochrome Oxidase subunit I demonstrated significant relationships between S. scabiei MtDNA haplotypes, host species and geographical location. Multi-locus genotyping using 15 microsatellite markers substantiated previous data that gene flow between scabies mite populations on human and dog hosts is extremely rare in northern Australia. These data clearly support our previous contention that control programs for human scabies in endemic areas with sympatric S. scabiei var. hominis and var. canis populations must focus on human-to-human transmission. The genetic division of dog and human derived scabies mites also has important implications in vaccine and diagnostic test development as well as the emergence and monitoring of drug resistance in S. scabiei in northern Australia.
Collapse
Affiliation(s)
- S F Walton
- Queensland Institute of Medical Research, Brisbane, Qld, Australia.
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Abstract
Over the past 35 years, the incidence of malaria has increased 2-3-fold. At present, it affects 300-500 million people and causes about 1 million deaths, primarily in Africa. The continuing upsurge has come from a coincidence of drug-resistant parasites, insecticide-resistant mosquitoes, global climate change and continuing poverty and political instability. An analogous rapid increase in malaria might have taken place about 10,000 years ago. Patterns of genetic variation in mitochondrial DNA support this model, but variation in nuclear genes gives an ambiguous message. Resolving these discrepancies has implications for the evolution of drug resistance and vaccine evasion.
Collapse
Affiliation(s)
- Daniel L Hartl
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts 02138, USA.
| |
Collapse
|
42
|
Lian C, Oishi R, Miyashita N, Hogetsu T. High somatic instability of a microsatellite locus in a clonal tree, Robinia pseudoacacia. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2004; 108:836-841. [PMID: 14625672 DOI: 10.1007/s00122-003-1500-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2003] [Accepted: 10/09/2003] [Indexed: 05/24/2023]
Abstract
Robinia pseudoacacia L. is a clonal tree species. To investigate a mutation within eight microsatellite loci of R. pseudoacacia, we analyzed DNA samples obtained from different leaf samples within each ramet, leaves from ramets within the genet, and seeds. Of the eight loci, locus Rops15 (AG motif) displayed hypermutability. The mutation rates of Rops15 within each ramet, among ramets within the genet, and offspring were 6.27% (ranging from 0 to 31.1%), 6.11% (from 0 to 25.0%) and 3.78% (from 0 to 10.9%), respectively. The mutation rate increased with allele size (13-71 repeat units). The mutation patterns observed in Rops15 were distinctive in two ways. First, there was a significant bias toward additions over deletions, and both addition and deletion of single repeats were dominant at alleles with lengths less than 232 bp (63 repeats). Second, for the longest allele of 248 bp (71 repeats), the number of losses was higher than the number of gains. These observations suggest that the mutation patterns of microsatellites in R. pseudoacacia may follow a generalized stepwise mutation model, and that the tendency of long alleles to mutate to shorter lengths acts to prevent infinite growth. Finally, the observation of somatic hypermutability at locus Rops15 highlights the need for caution when using highly polymorphic microsatellites for population genetic structure and paternity analysis in tree species.
Collapse
Affiliation(s)
- Chunlan Lian
- Asian Natural Environmental Science Center, The University of Tokyo, Midori-cho 1-1-8, Nishitokyo-shi, 188-0002, Tokyo, Japan.
| | | | | | | |
Collapse
|
43
|
Beck NR, Double MC, Cockburn A. Microsatellite evolution at two hypervariable loci revealed by extensive avian pedigrees. Mol Biol Evol 2003; 20:54-61. [PMID: 12519906 DOI: 10.1093/molbev/msg005] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Genealogies generated through a long-term study of superb fairy-wrens (Malurus cyaneus) were used to investigate mutation within two hypervariable microsatellite loci. Of 3,230 meioses examined at the tetranucleotide locus (Mcy micro 8), 45 mutations were identified, giving a mutation rate of 1.4%. At the dinucleotide locus (Mcy micro 4) 30 mutations were recorded from 2,750 meioses giving a mutation rate of 1.1%. Mutations at both loci primarily (80%; 60/75) involved the loss or gain of a single repeat unit. Unlike previous studies, there was no significant bias toward additions over deletions. The mutation rate at Mcy micro 8 increased with allele size, and very long alleles (>70 repeats) mutated at a rate of almost 20%. The length of the mutating allele and allele span, however, were strongly correlated so it was not possible to isolate the causative factor. Allele size did not appear to affect mutation rate at Mcy micro 4, but the repeat number was considerably lower at this locus. The gender of the mutating parent was significant only at Mcy micro 8, where mutations occurred more frequently in maternal alleles. However, at both loci we found that alleles inherited from the mother were on average larger than those from the father, and this in part drove the higher mutation rate among maternally inherited alleles at Mcy micro 8.
Collapse
Affiliation(s)
- Nadeena R Beck
- Evolutionary Ecology Group, School of Botany and Zoology, Australian National University, Canberra, Australia
| | | | | |
Collapse
|
44
|
Martin AP, Pardini AT, Noble LR, Jones CS. Conservation of a dinucleotide simple sequence repeat locus in sharks. Mol Phylogenet Evol 2002; 23:205-13. [PMID: 12069551 DOI: 10.1016/s1055-7903(02)00001-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Recent studies indicate that the flanking region and repeat motif structure of conserved microsatellite loci are useful for phylogenetic inference. Most comparative studies of microsatellite loci involve relatively closely related species, however, primarily because primers developed for one species often amplify only related species. We describe an analysis of a microsatellite locus in lamniform sharks that we estimate has been conserved for a billion years. Combined analysis of the flanking sequence and repeat motif structure resulted in a gene tree comparable to those reported from similar analyses of other genes. The conservation of the simple sequence repeat (SSR), and of the sequence flanking the SSR, is explained by a low substitution rate in sharks coupled with the possibility that mutations which interrupt perfect repeats are lost by replication slippage.
Collapse
Affiliation(s)
- Andrew P Martin
- Department of Environmental, Population, and Organismic Biology, University of Colorado, Boulder, CO 80309, USA.
| | | | | | | |
Collapse
|
45
|
Meyer CG, May J, Arez AP, Gil JP, Do Rosario V. Genetic diversity of Plasmodium falciparum: asexual stages. Trop Med Int Health 2002; 7:395-408. [PMID: 12000649 DOI: 10.1046/j.1365-3156.2002.00875.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Christian G Meyer
- Department of Molecular Medicine, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany.
| | | | | | | | | |
Collapse
|
46
|
Abstract
Microsatellite markers are routinely used to investigate the genetic structuring of natural populations. The knowledge of how genetic variation is partitioned among populations may have important implications not only in evolutionary biology and ecology, but also in conservation biology. Hence, reliable estimates of population differentiation are crucial to understand the connectivity among populations and represent important tools to develop conservation strategies. The estimation of differentiation is c from Wright's FST and/or Slatkin's RST, an FST -analogue assuming a stepwise mutation model. Both these statistics have their drawbacks. Furthermore, there is no clear consensus over their relative accuracy. In this review, we first discuss the consequences of different temporal and spatial sampling strategies on differentiation estimation. Then, we move to statistical problems directly associated with the estimation of population structuring itself, with particular emphasis on the effects of high mutation rates and mutation patterns of microsatellite loci. Finally, we discuss the biological interpretation of population structuring estimates.
Collapse
Affiliation(s)
- François Balloux
- Zoologisches Institut, Universität Bern, CH-3032 Hinterkappelen-Bern, Switzerland.
| | | |
Collapse
|
47
|
Blackston CR, Dubey JP, Dotson E, Su C, Thulliez P, Sibley D, Lehmann T. High-resolution typing of Toxoplasma gondii using microsatellite loci. J Parasitol 2001; 87:1472-5. [PMID: 11780841 DOI: 10.1645/0022-3395(2001)087[1472:hrtotg]2.0.co;2] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
High-resolution typing of Toxoplasma gondii is essential to understand the effect of genetic differences among strains on the variation in disease manifestation and transmission patterns. Current typing methods discern 3 lineages with minimal within-lineage variation. Described here are 6 new variable loci. These loci, including a minisatellite and 5 microsatellites, were more polymorphic than allozymes, restriction fragment length polymorphisms, and sequence variation in introns. Most importantly, these loci revealed, for the first time, substantial within-lineage variation that was over 6-fold higher than that detected by other markers. Genotyping at these loci facilitates classification of isolates beyond the lineage level.
Collapse
Affiliation(s)
- C R Blackston
- Division of Parasitic Diseases, Centers for Disease Control and Prevention, Chamblee, Georgia 30341, USA
| | | | | | | | | | | | | |
Collapse
|
48
|
Anderson TJ, Haubold B, Williams JT, Estrada-Franco JG, Richardson L, Mollinedo R, Bockarie M, Mokili J, Mharakurwa S, French N, Whitworth J, Velez ID, Brockman AH, Nosten F, Ferreira MU, Day KP. Microsatellite markers reveal a spectrum of population structures in the malaria parasite Plasmodium falciparum. Mol Biol Evol 2000; 17:1467-82. [PMID: 11018154 DOI: 10.1093/oxfordjournals.molbev.a026247] [Citation(s) in RCA: 592] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Multilocus genotyping of microbial pathogens has revealed a range of population structures, with some bacteria showing extensive recombination and others showing almost complete clonality. The population structure of the protozoan parasite Plasmodium falciparum has been harder to evaluate, since most studies have used a limited number of antigen-encoding loci that are known to be under strong selection. We describe length variation at 12 microsatellite loci in 465 infections collected from 9 locations worldwide. These data reveal dramatic differences in parasite population structure in different locations. Strong linkage disequilibrium (LD) was observed in six of nine populations. Significant LD occurred in all locations with prevalence <1% and in only two of five of the populations from regions with higher transmission intensities. Where present, LD results largely from the presence of identical multilocus genotypes within populations, suggesting high levels of self-fertilization in populations with low levels of transmission. We also observed dramatic variation in diversity and geographical differentiation in different regions. Mean heterozygosities in South American countries (0.3-0.4) were less than half those observed in African locations (0. 76-0.8), with intermediate heterozygosities in the Southeast Asia/Pacific samples (0.51-0.65). Furthermore, variation was distributed among locations in South America (F:(ST) = 0.364) and within locations in Africa (F:(ST) = 0.007). The intraspecific patterns of diversity and genetic differentiation observed in P. falciparum are strikingly similar to those seen in interspecific comparisons of plants and animals with differing levels of outcrossing, suggesting that similar processes may be involved. The differences observed may also reflect the recent colonization of non-African populations from an African source, and the relative influences of epidemiology and population history are difficult to disentangle. These data reveal a range of population structures within a single pathogen species and suggest intimate links between patterns of epidemiology and genetic structure in this organism.
Collapse
Affiliation(s)
- T J Anderson
- Wellcome Trust Centre for the Epidemiology of Infectious Disease, Department of Zoology, University of Oxford, Oxford, England.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|