1
|
Yuan L, Wang Y, Zong Y, Dong F, Zhang L, Wang G, Dong H, Wang Y. Response of genes related to iron and porphyrin transport in Porphyromonas gingivalis to blue light. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2023; 241:112670. [PMID: 36841175 DOI: 10.1016/j.jphotobiol.2023.112670] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/22/2023] [Accepted: 02/13/2023] [Indexed: 02/16/2023]
Abstract
BACKGROUND Antimicrobial blue light (aBL) kills a variety of bacteria, including Porphyromonas gingivalis. However, little is known about the transcriptomic response of P. gingivalis to aBL therapy. This study was designed to evaluate the selective cytotoxicity of aBL against P. gingivalis over human cells and to further investigate the genetic response of P. gingivalis to aBL at the transcriptome level. METHODS Colony forming unit (CFU) testing, confocal laser scanning microscopy (CLSM), and scanning electron microscopy (SEM) were used to investigate the antimicrobial effectiveness of blue light against P. gingivalis. The temperatures of the irradiated targets were measured to prevent overheating. Multiple fluorescent probes were used to quantify reactive oxygen species (ROS) generation after blue-light irradiation. RNA sequencing (RNA-seq) was used to investigate the changes in global gene expression. Following the screening of target genes, real-time quantitative polymerase chain reaction (RT-qPCR) was performed to confirm the regulation of gene expression. RESULTS A 405 nm aBL at 100 mW/cm2 significantly killed P. gingivalis within 5 min while sparing human gingival fibroblasts (HGFs). No obvious temperature changes were detected in the irradiated surface under our experimental conditions. RNA-seq showed that the transcription of multiple genes was regulated, and RT-qPCR revealed that the expression levels of the genes RgpA and RgpB, which may promote heme uptake, as well as the genes Ftn and FetB, which are related to iron homeostasis, were significantly upregulated. The expression levels of the FeoB-2 and HmuR genes, which are related to hydroxyl radical scavenging, were significantly downregulated. CONCLUSIONS aBL strengthens the heme uptake and iron export gene pathways while reducing the ROS scavenging pathways in P. gingivalis, thus improving the accumulation of endogenous photosensitizers and enhancing oxidative damage to P. gingivalis.
Collapse
Affiliation(s)
- Lintian Yuan
- Department of General Dentistry, Peking University School and Hospital of Stomatology, Beijing 100081, PR China; National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing 100081, PR China
| | - Yucheng Wang
- Department of Pharmacology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing 100005, China
| | - Yanni Zong
- Harvard medical school, Boston, MA02115, USA
| | - Fan Dong
- Center for Digital Dentistry, Peking University School and Hospital of Stomatology, Beijing 100081, PR China; National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing 100081, PR China
| | - Ludan Zhang
- First Clinical Division, Peking University School and Hospital of Stomatology, Beijing 100081, PR China; National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing 100081, PR China
| | - Guiyan Wang
- Department of Pediatric Dentistry, Peking University School and Hospital of Stomatology, Beijing 100081, PR China; National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing 100081, PR China
| | - Huihua Dong
- Center for Digital Dentistry, Peking University School and Hospital of Stomatology, Beijing 100081, PR China; National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing 100081, PR China
| | - Yuguang Wang
- Center for Digital Dentistry, Peking University School and Hospital of Stomatology, Beijing 100081, PR China; National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing 100081, PR China.
| |
Collapse
|
2
|
Chen WA, Dou Y, Fletcher HM, Boskovic DS. Local and Systemic Effects of Porphyromonas gingivalis Infection. Microorganisms 2023; 11:470. [PMID: 36838435 PMCID: PMC9963840 DOI: 10.3390/microorganisms11020470] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/31/2023] [Accepted: 02/02/2023] [Indexed: 02/16/2023] Open
Abstract
Porphyromonas gingivalis, a gram-negative anaerobe, is a leading etiological agent in periodontitis. This infectious pathogen can induce a dysbiotic, proinflammatory state within the oral cavity by disrupting commensal interactions between the host and oral microbiota. It is advantageous for P. gingivalis to avoid complete host immunosuppression, as inflammation-induced tissue damage provides essential nutrients necessary for robust bacterial proliferation. In this context, P. gingivalis can gain access to the systemic circulation, where it can promote a prothrombotic state. P. gingivalis expresses a number of virulence factors, which aid this pathogen toward infection of a variety of host cells, evasion of detection by the host immune system, subversion of the host immune responses, and activation of several humoral and cellular hemostatic factors.
Collapse
Affiliation(s)
- William A. Chen
- Division of Biochemistry, Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA 92350, USA
| | - Yuetan Dou
- Division of Microbiology and Molecular Genetics, Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA 92350, USA
| | - Hansel M. Fletcher
- Division of Microbiology and Molecular Genetics, Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA 92350, USA
| | - Danilo S. Boskovic
- Division of Biochemistry, Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA 92350, USA
| |
Collapse
|
3
|
Śmiga M, Ślęzak P, Wagner M, Olczak T. Interplay between Porphyromonas gingivalis Hemophore-Like Protein HmuY and Kgp/RgpA Gingipains Plays a Superior Role in Heme Supply. Microbiol Spectr 2023; 11:e0459322. [PMID: 36752645 PMCID: PMC10100897 DOI: 10.1128/spectrum.04593-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 01/19/2023] [Indexed: 02/09/2023] Open
Abstract
To acquire heme as a source of iron and protoporphyrin IX, Porphyromonas gingivalis uses gingipains, Hmu, and Hus systems. The aim of this study was to assess the correlation between the production and function of the most important virulence factors of P. gingivalis involved in heme supply, namely, hemophore-like proteins (HmuY and HusA) and gingipains. Respective mutant strains were used, and the expression of genes at the transcript and protein levels, as well as the importance of these genes' products for virulence potential, was examined. We found that HmuY and Kgp/RgpA gingipains are among the main P. gingivalis virulence factors synergistically engaged in heme supply. Their expression is related mainly when P. gingivalis grows in conditions rich in iron and heme sources, resembling those found in severe periodontitis. We confirmed that HmuY production is strictly dependent on the availability of heme and iron in the external environment, whereas we did not observe such dependence in the production of HusA. Moreover, we found that the HmuY protein can easily sequester heme from the HusA protein. The only correlation in the production of HmuY and HusA hemophore-like proteins could occur in P. gingivalis grown in conditions rich in iron and heme sources, mimicking an environment typical for severe periodontitis. Based on our observations, we suggest that HmuY is the major heme-binding protein produced by P. gingivalis, especially in iron- and heme-depleted conditions, typical for healthy periodontium and the initial stages of infection. The HusA protein could play a supporting role in P. gingivalis heme uptake. IMPORTANCE Altered or disturbed mutualism between oral microbiome members results in dysbiosis with local injuries and subsequently in systemic diseases. Periodontitis belongs to a group of multifactorial infectious diseases, characterized by inflammation and destruction of tooth-supporting tissues. Porphyromonas gingivalis is considered the main etiologic agent and keystone pathogen responsible for developing advanced periodontitis. As part of the infective process, P. gingivalis must acquire heme to survive and multiply at the infection site. Analysis of the mutual relationship between its main virulence factors showed that heme acquisition in P. gingivalis is a complex process in which mainly the Hmu system, with the leading role played by the HmuY hemophore-like protein, and Kgp and RgpA gingipains prefer cooperative interplay. It seems that the Hus system, including HusA hemophore-like protein, could be involved in another, so far uncharacterized, stage of iron and heme supply.
Collapse
Affiliation(s)
- Michał Śmiga
- Laboratory of Medical Biology, Faculty of Biotechnology, University of Wrocław, Wrocław, Poland
| | - Paulina Ślęzak
- Laboratory of Medical Biology, Faculty of Biotechnology, University of Wrocław, Wrocław, Poland
| | - Mateusz Wagner
- Laboratory of Medical Biology, Faculty of Biotechnology, University of Wrocław, Wrocław, Poland
| | - Teresa Olczak
- Laboratory of Medical Biology, Faculty of Biotechnology, University of Wrocław, Wrocław, Poland
| |
Collapse
|
4
|
Yang D, Jiang C, Ning B, Kong W, Shi Y. The PorX/PorY system is a virulence factor of Porphyromonas gingivalis and mediates the activation of the type IX secretion system. J Biol Chem 2021; 296:100574. [PMID: 33757767 PMCID: PMC8050853 DOI: 10.1016/j.jbc.2021.100574] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 03/13/2021] [Accepted: 03/19/2021] [Indexed: 12/13/2022] Open
Abstract
PorX/PorY is a two-component system (TCS) of Porphyromonas gingivalis that governs transcription of numerous genes including those encoding a type IX secretion system (T9SS) for gingipain secretion and heme accumulation. Here, an in vitro analysis showed that the response regulator PorX specifically bound to two regions in the promoter of porT, a known PorX-regulated T9SS gene, thus demonstrating that PorX/PorY can directly regulate specific target genes. A truncated PorX protein containing the N-terminal receiver and effector domains retained a wild-type ability in both transcription regulation and heme accumulation, ruling out the role of the C-terminal ALP domain in gene regulation. The PorX/PorY system was the only TCS essential for heme accumulation and concomitantly responded to hemin to stimulate transcription of several known PorX-dependent genes in a concentration-dependent manner. We found that PorX/PorY activated the sigH gene, which encodes a sigma factor known for P. gingivalis adaptation to hydrogen peroxide (H2O2). Consistently, both ΔporX and ΔsigH mutants were susceptible to H2O2, suggesting a PorX/PorY-σH regulatory cascade to confer resistance to oxidative stress. Furthermore, the ΔporX mutant became susceptible to high hemin levels that could induce oxidative stress. Therefore, a possible reason why hemin activates PorX/PorY is to confer resistance to hemin-induced oxidative stress. We also demonstrated that PorX/PorY was essential for P. gingivalis virulence because the ΔporX mutant was avirulent in a mouse model. Specifically, this TCS was required for the repression of proinflammatory cytokines secreted by dendritic cells and T cells in the P. gingivalis–infected mice.
Collapse
Affiliation(s)
- Dezhi Yang
- The School of Life Sciences, Arizona State University, Tempe, Arizona, USA; Biodesign Center for Immunotherapy, Vaccines and Virotherapy, Arizona State University, Tempe, Arizona, USA
| | - Chizhou Jiang
- The School of Life Sciences, Arizona State University, Tempe, Arizona, USA; Biodesign Center for Immunotherapy, Vaccines and Virotherapy, Arizona State University, Tempe, Arizona, USA
| | - Bo Ning
- The Center for Cellular and Molecular Diagnostics, Tulane University School of Medicine, New Orleans, Louisiana, USA
| | - Wei Kong
- Biodesign Center for Immunotherapy, Vaccines and Virotherapy, Arizona State University, Tempe, Arizona, USA.
| | - Yixin Shi
- The School of Life Sciences, Arizona State University, Tempe, Arizona, USA; Biodesign Center for Immunotherapy, Vaccines and Virotherapy, Arizona State University, Tempe, Arizona, USA.
| |
Collapse
|
5
|
Abstract
Porphyromonas gingivalis is a gram-negative, rod-shaped, nonmotile bacterium belonging to the phylum Bacteroidetes. It produces abundant amounts of proteases in both cell-associated and secretory forms, including a group of cysteine proteases referred to as gingipains, which have attracted much attention due to their high proteolytic activity associated with pathogenicity. Gingipains are grouped into arginine (R)-specific (RgpA and RgpB) and lysine (K)-specific (Kgp) types. Both Rgp (collective term for RgpA and RgpB) and Kgp gingipains play crucial roles in the virulence of P. gingivalis, including the degradation of host periodontal tissues, disruption of host defense mechanisms, and loss of viability in host cells, such as fibroblasts and endothelial cells. In addition to their function in virulence, gingipains are also essential for the growth and survival of P. gingivalis in periodontal pockets through the acquisition of amino acids and heme groups. Furthermore, Rgp and Kgp gingipains are critical in processing fimbriae and several bacterial proteins that contribute to hemagglutination, coaggregation, and hemoglobin binding. This chapter describes the methods used to analyze gingipains.
Collapse
|
6
|
Nagai N, Homma H, Sakurai A, Takahashi N, Shintani S. Microbiomes of colored dental biofilms in children with or without severe caries experience. Clin Exp Dent Res 2020; 6:659-668. [PMID: 32767520 PMCID: PMC7745070 DOI: 10.1002/cre2.317] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 06/04/2020] [Accepted: 06/11/2020] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Biofilm coloration can compromise maturation and increase the risk of oral disease in adulthood, though children with colored biofilm do not always demonstrate a poor oral health status. AIM The microbial compositions of colored and white biofilms in children were compared. DESIGN Thirty-two dental biofilm samples from 16 children (age < 13 years) were analyzed using 16S rRNA pyrosequencing, then the subjects were divided into severe caries and healthy (caries-free) groups. Correlations between microbiomes and oral health status were also examined. RESULTS Phylogenetic analysis revealed no distinctly different patterns between colored and white biofilms. In the severe caries group, genus Actinomyces, Cardiobacterium, Kingella, Lautropia, and Veillonella, and family Neisseriaceae were detected, though abundance was significantly different between colored and white biofilm specimens, in contrast to the healthy group. In addition, five colored biofilm samples from the severe caries group contained greater than 15% Actinomyces, which led us to consider that genus to be possibly associated with formation of colored biofilm in children. CONCLUSIONS Our findings indicate that differences in bacterial composition between colored and white biofilms are higher in individuals with severe caries. Additional research may reveal the significance of colored dental biofilm in children.
Collapse
Affiliation(s)
- Nobuko Nagai
- Department of Pediatric Dentistry, Tokyo Dental College, Tokyo, Japan
| | - Hiromi Homma
- Department of Pediatric Dentistry, Tokyo Dental College, Tokyo, Japan
| | - Atsuo Sakurai
- Department of Pediatric Dentistry, Tokyo Dental College, Tokyo, Japan
| | - Naoko Takahashi
- Department of Pediatric Dentistry, Tokyo Dental College, Tokyo, Japan
| | - Seikou Shintani
- Department of Pediatric Dentistry, Tokyo Dental College, Tokyo, Japan
| |
Collapse
|
7
|
Huang N, Shimomura E, Yin G, Tran C, Sato A, Steiner A, Heibeck T, Tam M, Fairman J, Gibson FC. Immunization with cell-free-generated vaccine protects from Porphyromonas gingivalis-induced alveolar bone loss. J Clin Periodontol 2019; 46:197-205. [PMID: 30578564 PMCID: PMC7891626 DOI: 10.1111/jcpe.13047] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 12/11/2018] [Accepted: 12/15/2018] [Indexed: 12/19/2022]
Abstract
Introduction Periodontal diseases (PD) are complex oral inflammatory diseases initiated by keystone bacteria such as Porphyromonas gingivalis. A vaccine for PD is desirable as clinical treatment involves protracted maintenance strategies aimed to retain dentition. Although prior immunization approaches targeting P. gingivalis have reported variable success in limiting facets of disease such as oral bone loss, it remains that a vaccine for this disease may be attainable. Aim To investigate cell‐free protein synthesis (CFPS) as a platform to produce vaccinable targets suitable for efficacy testing in a P. gingivalis‐induced murine oral bone loss model. Materials and Methods Recombinantly generated P. gingivalis minor fimbriae protein (Mfa1), RgpA gingipain hemagglutinin domain 1 (HA1), and RgpA gingipain hemagglutinin domain 2 (HA2) were combined in equivalent doses in adjuvants and injected intramuscularly to immunize mice. Serum levels of protein‐specific antibody were measured by ELISA, and oral bone levels were defined by morphometrics. Results Recombinantly generated P. gingivalis proteins possessed high fidelity to predicted size and elicited protein‐specific IgG following immunization. Importantly, immunization with the vaccine cocktail protected from P. gingivalis elicited oral bone loss. Conclusion These data verify the utility of the CFPS technology to synthesize proteins that have the capacity to serve as novel vaccines.
Collapse
Affiliation(s)
- Nasi Huang
- Department of Medicine, Section of Infectious Diseases, School of Medicine, Boston University, Boston, Massachusetts
| | | | - Gang Yin
- Sutro BioPharma, South San Francisco, California
| | - Cuong Tran
- Sutro BioPharma, South San Francisco, California
| | - Aaron Sato
- Sutro BioPharma, South San Francisco, California
| | - Alex Steiner
- Sutro BioPharma, South San Francisco, California
| | | | - Michelle Tam
- Sutro BioPharma, South San Francisco, California
| | | | - Frank C Gibson
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, Florida
| |
Collapse
|
8
|
Sato K, Kakuda S, Yukitake H, Kondo Y, Shoji M, Takebe K, Narita Y, Naito M, Nakane D, Abiko Y, Hiratsuka K, Suzuki M, Nakayama K. Immunoglobulin‐like domains of the cargo proteins are essential for protein stability during secretion by the type IX secretion system. Mol Microbiol 2018; 110:64-81. [DOI: 10.1111/mmi.14083] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/12/2018] [Indexed: 01/12/2023]
Affiliation(s)
- Keiko Sato
- Department of Microbiology and Oral Infection Nagasaki University Graduate School of Biomedical Sciences Nagasaki Nagasaki 852‐8588Japan
| | - Shinji Kakuda
- Institute for Protein Research Osaka University Yamadaoka, Suita Osaka 565‐0871Japan
| | - Hideharu Yukitake
- Department of Microbiology and Oral Infection Nagasaki University Graduate School of Biomedical Sciences Nagasaki Nagasaki 852‐8588Japan
| | - Yoshio Kondo
- Department of Pediatric Dentistry Nagasaki University Graduate School of Biomedical Sciences Nagasaki Nagasaki 852‐8588Japan
| | - Mikio Shoji
- Department of Microbiology and Oral Infection Nagasaki University Graduate School of Biomedical Sciences Nagasaki Nagasaki 852‐8588Japan
| | - Katsuki Takebe
- Institute for Protein Research Osaka University Yamadaoka, Suita Osaka 565‐0871Japan
| | - Yuka Narita
- Department of Functional Bioscience, Infection Biology Fukuoka Dental College Matsudo, Tamura, Sawara, Fukuoka 814‐0913Japan
| | - Mariko Naito
- Department of Microbiology and Oral Infection Nagasaki University Graduate School of Biomedical Sciences Nagasaki Nagasaki 852‐8588Japan
| | - Daisuke Nakane
- Department of Physics, Faculty of Science Gakushuin University Toshima‐ku, Tokyo 171‐8588Japan
| | - Yoshimitsu Abiko
- Department of Biochemistry and Molecular Biology Nihon University School of Dentistry at Matsudo Matsudo Chiba 271‐8587Japan
| | - Koichi Hiratsuka
- Department of Biochemistry and Molecular Biology Nihon University School of Dentistry at Matsudo Matsudo Chiba 271‐8587Japan
| | - Mamoru Suzuki
- Institute for Protein Research Osaka University Yamadaoka, Suita Osaka 565‐0871Japan
| | - Koji Nakayama
- Department of Microbiology and Oral Infection Nagasaki University Graduate School of Biomedical Sciences Nagasaki Nagasaki 852‐8588Japan
| |
Collapse
|
9
|
Nakayama M, Ohara N. Molecular mechanisms of Porphyromonas gingivalis-host cell interaction on periodontal diseases. JAPANESE DENTAL SCIENCE REVIEW 2017; 53:134-140. [PMID: 29201258 PMCID: PMC5703693 DOI: 10.1016/j.jdsr.2017.06.001] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Revised: 02/03/2017] [Accepted: 06/28/2017] [Indexed: 12/31/2022] Open
Abstract
Porphyromonas gingivalis (P. gingivalis) is a major oral pathogen and associated with periodontal diseases including periodontitis and alveolar bone loss. In this review, we indicate that two virulence factors, which are hemoglobin receptor protein (HbR) and cysteine proteases “gingipains”, expressed by P. gingivalis have novel functions on the pathogenicity of P. gingivalis. P. gingivalis produces three types of gingipains and concomitantly several adhesin domains. Among the adhesin domains, hemoglobin receptor protein (HbR), also called HGP15, has the function of induction of interleukin-8 (IL-8) expression in human gingival epithelial cells, indicating the possibility that HbR is associated with P. gingivalis-induced periodontal inflammation. On bacteria-host cells contact, P. gingivalis induces cellular signaling alteration in host cells. Phosphatidylinositol 3-kinase (PI3K) and Akt are well known to play a pivotal role in various cellular physiological functions including cell survival and glucose metabolism in mammalian cells. Recently, we demonstrated that gingipains attenuate the activity of PI3K and Akt, which might have a causal influence on periodontal diseases by chronic infection to the host cells from the speculation of molecular analysis. In this review, we discuss new molecular and biological characterization of the virulence factors from P. gingivalis.
Collapse
Affiliation(s)
- Masaaki Nakayama
- Department of Oral Microbiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan.,The Advanced Research Center for Oral and Craniofacial Sciences, Dental School, Okayama University, Okayama 700-8558, Japan
| | - Naoya Ohara
- Department of Oral Microbiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan.,The Advanced Research Center for Oral and Craniofacial Sciences, Dental School, Okayama University, Okayama 700-8558, Japan
| |
Collapse
|
10
|
Taniguchi M, Matsuhashi Y, Abe TK, Ishiyama Y, Saitoh E, Kato T, Ochiai A, Tanaka T. Contribution of cationic amino acids toward the inhibition of Arg-specific cysteine proteinase (Arg-gingipain) by the antimicrobial dodecapeptide, CL(14-25), from rice protein. Biopolymers 2016; 102:379-89. [PMID: 25046435 DOI: 10.1002/bip.22525] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Revised: 06/11/2014] [Accepted: 06/28/2014] [Indexed: 11/11/2022]
Abstract
CL(14-25), a dodecapeptide, exhibits antimicrobial activity against Porphyromonas gingivalis with the 50% growth-inhibitory concentration (IC50 ) value of 145 µM, and arginine-specific gingipain (Rgp)-inhibitory activity. Kinetic analysis revealed that CL(14-25) is a mixed-type inhibitor, with inhibition constants (Ki and Ki ' values) of 1.4 × 10(-6) M and 4.3 × 10(-6) M, respectively. To elucidate the contributions of four cationic amino acid residues at the N- and C-termini of CL(14-25) toward Rgp-inhibitory activity, we investigated the Rgp-inhibitory activities of truncated and alanine-substituted analogs of CL(14-25). Rgp-inhibitory activities significantly decreased by truncated analogs, CL(15-25) and CL(16-25), whereas those of CL(14-24) and CL(14-23) were almost as high as that of CL(14-25). Rgp-inhibitory activities of alanine-substituted analogs, CL(R14A) and CL(R14A, R15A) also significantly decreased, whereas those of CL(K25A) and CL(R24A, K25A) were higher than that of CL(14-25). These results suggest that the arginine residue at position 15 substantially contributes to the Rgp-inhibitory activity and that the arginine residue at position 14 plays important roles in exerting Rgp-inhibitory activity. In this study, we demonstrated that CL(K25A) was a potent, dual function, peptide inhibitor candidate, exhibiting Rgp-inhibitory activity with Ki and Ki ' of 9.6 × 10(-7) M and 1.9 × 10(-6) M, respectively, and antimicrobial activity against P. gingivalis with an IC50 value of 51 µM.
Collapse
Affiliation(s)
- Masayuki Taniguchi
- Department of Materials Science and Technology, Graduate School of Science and Technology, Niigata University, Niigata, 950-2181, Japan; Center for Transdisciplinary Research, Niigata University, Niigata, 950-2181, Japan
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Zhang R, Yang J, Wu J, Sun WB, Liu Y. Effect of deletion of the rgpA gene on selected virulence of Porphyromonas gingivalis. J Dent Sci 2016; 11:279-286. [PMID: 30894985 PMCID: PMC6395235 DOI: 10.1016/j.jds.2016.03.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Revised: 01/13/2016] [Indexed: 01/24/2023] Open
Abstract
Background/purpose The most potent virulence factors of the periodontal pathogen Porphyromonas gingivalis are gingipains, three cysteine proteases (RgpA, RgpB, and Kgp) that bind and cleave a wide range of host proteins. Considerable proof indicates that RgpA contributes to the entire virulence of the organism and increases the risk of periodontal disease by disrupting the host immune defense and destroying the host tissue. However, the functional significance of this proteinase is incompletely understood. It is important to analyze the effect of arginine-specific gingipain A gene (rgpA) on selected virulence and physiological properties of P. gingivalis. Materials and methods Electroporation and homologous recombination were used to construct an rgpA mutant of P. gingivalis ATCC33277. The mutant was verified by polymerase chain reaction and sodium dodecyl sulfate–polyacrylamide gel electrophoresis. Cell structures of the mutant were examined by transmission electron microscopy and homotypic biofilm formation was examined by confocal laser scanning microscopy. Results Gene analysis revealed that the rgpA gene was deleted and replaced by a drug resistance gene marker. The defect of the gene resulted in a complete loss of RgpA proteinase, a reduction of out membrane vesicles and hemagglutination, and an increase in homotypic biofilm formation. Conclusion Our data indicate that an rgpA gene deficient strain of P. gingivalis is successfully isolated. RgpA may have a variety of physiological and pathological roles in P. gingivalis.
Collapse
Affiliation(s)
- Rui Zhang
- Department of Periodontology, Hospital of Stomatology, Medical School of Nanjing University, Nanjing, China
| | - Jie Yang
- Department of Periodontology, Hospital of Stomatology, Medical School of Nanjing University, Nanjing, China
| | - Juan Wu
- Department of Periodontology, Hospital of Stomatology, Medical School of Nanjing University, Nanjing, China
| | - Wei-Bin Sun
- Department of Periodontology, Hospital of Stomatology, Medical School of Nanjing University, Nanjing, China
| | - Yu Liu
- Department of Periodontology, Hospital of Stomatology, Medical School of Nanjing University, Nanjing, China
| |
Collapse
|
12
|
Smalley JW, Olczak T. Heme acquisition mechanisms of Porphyromonas gingivalis - strategies used in a polymicrobial community in a heme-limited host environment. Mol Oral Microbiol 2016; 32:1-23. [PMID: 26662717 DOI: 10.1111/omi.12149] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/30/2015] [Indexed: 01/14/2023]
Abstract
Porphyromonas gingivalis, a main etiologic agent and key pathogen responsible for initiation and progression of chronic periodontitis requires heme as a source of iron and protoporphyrin IX for its survival and the ability to establish an infection. Porphyromonas gingivalis is able to accumulate a defensive cell-surface heme-containing pigment in the form of μ-oxo bisheme. The main sources of heme for P. gingivalis in vivo are hemoproteins present in saliva, gingival crevicular fluid, and erythrocytes. To acquire heme, P. gingivalis uses several mechanisms. Among them, the best characterized are those employing hemagglutinins, hemolysins, and gingipains (Kgp, RgpA, RgpB), TonB-dependent outer-membrane receptors (HmuR, HusB, IhtA), and hemophore-like proteins (HmuY, HusA). Proteins involved in intracellular heme transport, storage, and processing are less well characterized (e.g. PgDps). Importantly, P. gingivalis may also use the heme acquisition systems of other bacteria to fulfill its own heme requirements. Porphyromonas gingivalis displays a novel paradigm for heme acquisition from hemoglobin, whereby the Fe(II)-containing oxyhemoglobin molecule must first be oxidized to methemoglobin to facilitate heme release. This process not only involves P. gingivalis arginine- and lysine-specific gingipains, but other proteases (e.g. interpain A from Prevotella intermedia) or pyocyanin produced by Pseudomonas aeruginosa. Porphyromonas gingivalis is then able to fully proteolyze the more susceptible methemoglobin substrate to release free heme or to wrest heme from it directly through the use of the HmuY hemophore.
Collapse
Affiliation(s)
- J W Smalley
- School of Dentistry, University of Liverpool, Liverpool, UK
| | - T Olczak
- Laboratory of Biochemistry, Faculty of Biotechnology, University of Wrocław, Wrocław, Poland
| |
Collapse
|
13
|
Involvement of an Skp-Like Protein, PGN_0300, in the Type IX Secretion System of Porphyromonas gingivalis. Infect Immun 2015; 84:230-40. [PMID: 26502912 DOI: 10.1128/iai.01308-15] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 10/20/2015] [Indexed: 12/15/2022] Open
Abstract
The oral Gram-negative anaerobic bacterium Porphyromonas gingivalis is an important pathogen involved in chronic periodontitis. Among its virulence factors, the major extracellular proteinases, Arg-gingipain and Lys-gingipain, are of interest given their abilities to degrade host proteins and process other virulence factors. Gingipains possess C-terminal domains (CTDs) and are translocated to the cell surface or into the extracellular milieu by the type IX secretion system (T9SS). Gingipains contribute to the colonial pigmentation of the bacterium on blood agar. In this study, Omp17, the PGN_0300 gene product, was found in the outer membrane fraction. A mutant lacking Omp17 did not show pigmentation on blood agar and showed reduced proteolytic activity of the gingipains. CTD-containing proteins were released from bacterial cells without cleavage of the CTDs in the omp17 mutant. Although synthesis of the anionic polysaccharide (A-LPS) was not affected in the omp17 mutant, the processing of and A-LPS modification of CTD-containing proteins was defective. PorU, a C-terminal signal peptidase that cleaves the CTDs of other CTD-containing proteins, was not detected in any membrane fraction of the omp17 mutant, suggesting that the defective maturation of CTD-containing proteins by impairment of Omp17 is partly due to loss of function of PorU. In the mouse subcutaneous infection experiment, the omp17 mutant was less virulent than the wild type. These results suggested that Omp17 is involved in P. gingivalis virulence.
Collapse
|
14
|
Yang Q, Yu F, Sun L, Zhang Q, Lin M, Geng X, Sun X, Li J, Liu Y. Identification of amino acid residues involved in hemin binding inPorphyromonas gingivalishemagglutinin 2. Mol Oral Microbiol 2015; 30:337-46. [PMID: 25833325 DOI: 10.1111/omi.12097] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/06/2015] [Indexed: 12/01/2022]
Affiliation(s)
- Q.B. Yang
- Beijing Institute for Dental Research; Beijing Stomatological Hospital and School of Stomatology; Capital Medical University; Beijing China
| | - F.Y. Yu
- Beijing Institute for Dental Research; Beijing Stomatological Hospital and School of Stomatology; Capital Medical University; Beijing China
| | - L. Sun
- Beijing Institute for Dental Research; Beijing Stomatological Hospital and School of Stomatology; Capital Medical University; Beijing China
| | - Q.X. Zhang
- Beijing Institute for Dental Research; Beijing Stomatological Hospital and School of Stomatology; Capital Medical University; Beijing China
| | - M. Lin
- Beijing Institute for Dental Research; Beijing Stomatological Hospital and School of Stomatology; Capital Medical University; Beijing China
| | - X.Y. Geng
- Beijing Institute for Dental Research; Beijing Stomatological Hospital and School of Stomatology; Capital Medical University; Beijing China
| | - X.N. Sun
- Beijing Institute for Dental Research; Beijing Stomatological Hospital and School of Stomatology; Capital Medical University; Beijing China
| | - J.L. Li
- Beijing Institute for Dental Research; Beijing Stomatological Hospital and School of Stomatology; Capital Medical University; Beijing China
| | - Y. Liu
- Beijing Institute for Dental Research; Beijing Stomatological Hospital and School of Stomatology; Capital Medical University; Beijing China
| |
Collapse
|
15
|
Ruan Y, Shen L, Zou Y, Qi Z, Yin J, Jiang J, Guo L, He L, Chen Z, Tang Z, Qin S. Comparative genome analysis of Prevotella intermedia strain isolated from infected root canal reveals features related to pathogenicity and adaptation. BMC Genomics 2015; 16:122. [PMID: 25765460 PMCID: PMC4349605 DOI: 10.1186/s12864-015-1272-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2014] [Accepted: 01/22/2015] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Many species of the genus Prevotella are pathogens that cause oral diseases. Prevotella intermedia is known to cause various oral disorders e.g. periodontal disease, periapical periodontitis and noma as well as colonize in the respiratory tract and be associated with cystic fibrosis and chronic bronchitis. It is of clinical significance to identify the main drive of its various adaptation and pathogenicity. In order to explore the intra-species genetic differences among strains of Prevotella intermedia of different niches, we isolated a strain Prevotella intermedia ZT from the infected root canal of a Chinese patient with periapical periodontitis and gained a draft genome sequence. We annotated the genome and compared it with the genomes of other taxa in the genus Prevotella. RESULTS The raw data set, consisting of approximately 65X-coverage reads, was trimmed and assembled into contigs from which 2165 ORFs were predicted. The comparison of the Prevotella intermedia ZT genome sequence with the published genome sequence of Prevotella intermedia 17 and Prevotella intermedia ATCC25611 revealed that ~14% of the genes were strain-specific. The Preveotella intermedia strains share a set of conserved genes contributing to its adaptation and pathogenic and possess strain-specific genes especially those involved in adhesion and secreting bacteriocin. The Prevotella intermedia ZT shares similar gene content with other taxa of genus Prevotella. The genomes of the genus Prevotella is highly dynamic with relative conserved parts: on average, about half of the genes in one Prevotella genome were not included in another genome of the different Prevotella species. The degree of conservation varied with different pathways: the ability of amino acid biosynthesis varied greatly with species but the pathway of cell wall components biosynthesis were nearly constant. Phylogenetic tree shows that the taxa from different niches are scarcely distributed among clades. CONCLUSIONS Prevotella intermedia ZT belongs to a genus marked with highly dynamic genomes. The specific genes of Prevotella intermedia indicate that adhesion, competing with surrounding microbes and horizontal gene transfer are the main drive of the evolution of Prevotella intermedia.
Collapse
Affiliation(s)
- Yunfeng Ruan
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders(Ministry of Education, Shanghai Jiao Tong University, 1954 Huashang Road, Shanghai, 200030, China.
- Shanghai Institutes of Pilot Genomics and Human Health, Shanghai, 200030, China.
| | - Lu Shen
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders(Ministry of Education, Shanghai Jiao Tong University, 1954 Huashang Road, Shanghai, 200030, China.
- Shanghai Institutes of Pilot Genomics and Human Health, Shanghai, 200030, China.
| | - Yan Zou
- Department of Endodontics, 9th People's Hospital, Shanghai JiaoTong University, School of Medicine, Shanghai Key Laboratory of Stomatology, Shanghai, 200011, China.
| | - Zhengnan Qi
- Department of Endodontics, 9th People's Hospital, Shanghai JiaoTong University, School of Medicine, Shanghai Key Laboratory of Stomatology, Shanghai, 200011, China.
| | - Jun Yin
- Department of Endodontics, 9th People's Hospital, Shanghai JiaoTong University, School of Medicine, Shanghai Key Laboratory of Stomatology, Shanghai, 200011, China.
| | - Jie Jiang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders(Ministry of Education, Shanghai Jiao Tong University, 1954 Huashang Road, Shanghai, 200030, China.
| | - Liang Guo
- The Fourth Hospital of Jinan City; Taishan Medical College, Jinan, 250031, China.
| | - Lin He
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders(Ministry of Education, Shanghai Jiao Tong University, 1954 Huashang Road, Shanghai, 200030, China.
- Shanghai Institutes of Pilot Genomics and Human Health, Shanghai, 200030, China.
| | - Zijiang Chen
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders(Ministry of Education, Shanghai Jiao Tong University, 1954 Huashang Road, Shanghai, 200030, China.
- Center for Reproductive Medicine, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China.
| | - Zisheng Tang
- Department of Endodontics, 9th People's Hospital, Shanghai JiaoTong University, School of Medicine, Shanghai Key Laboratory of Stomatology, Shanghai, 200011, China.
| | - Shengying Qin
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders(Ministry of Education, Shanghai Jiao Tong University, 1954 Huashang Road, Shanghai, 200030, China.
- Shanghai Institutes of Pilot Genomics and Human Health, Shanghai, 200030, China.
| |
Collapse
|
16
|
Li N, Collyer CA. Gingipains from Porphyromonas gingivalis - Complex domain structures confer diverse functions. Eur J Microbiol Immunol (Bp) 2014; 1:41-58. [PMID: 24466435 DOI: 10.1556/eujmi.1.2011.1.7] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Gingipains, a group of arginine or lysine specific cysteine proteinases (also known as RgpA, RgpB and Kgp), have been recognized as major virulence factors in Porphyromonas gingivalis. This bacterium is one of a handful of pathogens that cause chronic periodontitis. Gingipains are involved in adherence to and colonization of epithelial cells, haemagglutination and haemolysis of erythrocytes, disruption and manipulation of the inflammatory response, and the degradation of host proteins and tissues. RgpA and Kgp are multi-domain proteins composed of catalytic domains and haemagglutinin/adhesin (HA) regions. The structure of the HA regions have previously been defined by a gingipain domain structure hypothesis which is a set of putative domain boundaries derived from the sequences of fragments of these proteins extracted from the cell surface. However, multiple sequence alignments and hidden Markov models predict an alternative domain architecture for the HA regions of gingipains. In this alternate model, two or three repeats of the so-called "cleaved adhesin" domains (and one other undefined domain in some strains) are the modules which constitute the substructure of the HA regions. Recombinant forms of these putative cleaved adhesin domains are indeed stable folded protein modules and recently determined crystal structures support the hypothesis of a modular organisation of the HA region. Based on the observed K2 and K3 structures as well as multiple sequence alignments, it is proposed that all the cleaved adhesin domains in gingipains will share the same β-sandwich jelly roll fold. The new domain model of the structure for gingipains and the haemagglutinin (HagA) proteins of P. gingivalis will guide future functional studies of these virulence factors.
Collapse
Affiliation(s)
- N Li
- School of Molecular Bioscience, University of Sydney NSW Australia
| | - C A Collyer
- School of Molecular Bioscience, University of Sydney NSW Australia
| |
Collapse
|
17
|
Belibasakis G, Thurnheer T, Bostanci N. Porphyromonas gingivalis: a heartful oral pathogen? Virulence 2014; 5:463-4. [PMID: 24759693 PMCID: PMC4063808 DOI: 10.4161/viru.28930] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Accepted: 04/16/2014] [Indexed: 12/17/2022] Open
Affiliation(s)
- Georgios Belibasakis
- Oral Microbiology and Immunology; Institute of Oral Biology; Center of Dental Medicine; University of Zürich; Zürich, Switzerland
| | - Thomas Thurnheer
- Oral Microbiology and Immunology; Institute of Oral Biology; Center of Dental Medicine; University of Zürich; Zürich, Switzerland
| | - Nagihan Bostanci
- Oral Translational Research; Institute of Oral Biology; Center of Dental Medicine; University of Zürich; Zürich, Switzerland
| |
Collapse
|
18
|
Kataoka S, Baba A, Suda Y, Takii R, Hashimoto M, Kawakubo T, Asao T, Kadowaki T, Yamamoto K. A novel, potent dual inhibitor of Arg‐gingipains and Lys‐gingipain as a promising agent for periodontal disease therapy. FASEB J 2014; 28:3564-78. [DOI: 10.1096/fj.14-252130] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
| | - Atsuyo Baba
- Department of PharmacologyGraduate School of Dental Science, Kyushu UniversityFukuokaJapan
| | - Yoshimitsu Suda
- Taiho Pharmaceutical CorporationTokushima Research PlanningTokushimaJapan
| | - Ryosuke Takii
- Department of PharmacologyGraduate School of Dental Science, Kyushu UniversityFukuokaJapan
| | - Munetaka Hashimoto
- Department of PharmacologyGraduate School of Dental Science, Kyushu UniversityFukuokaJapan
| | - Tomoyo Kawakubo
- Proteolysis Research LaboratoryGraduate School of Pharmaceutical Sciences, Kyushu UniversityFukuokaJapan
| | - Tetsuji Asao
- Taiho Pharmaceutical CorporationTokushima Research PlanningTokushimaJapan
| | - Tomoko Kadowaki
- Department of PharmacologyGraduate School of Dental Science, Kyushu UniversityFukuokaJapan
| | - Kenji Yamamoto
- Department of PharmacologyGraduate School of Dental Science, Kyushu UniversityFukuokaJapan
- Proteolysis Research LaboratoryGraduate School of Pharmaceutical Sciences, Kyushu UniversityFukuokaJapan
| |
Collapse
|
19
|
Kamaguchi A, Nakano M, Shoji M, Nakamura R, Sagane Y, Okamoto M, Watanabe T, Ohyama T, Ohta M, Nakayama K. Autolysis ofPorphyromonas gingivalisIs Accompanied by an Increase in Several Periodontal Pathogenic Factors in the Supernatant. Microbiol Immunol 2013; 48:541-5. [PMID: 15272200 DOI: 10.1111/j.1348-0421.2004.tb03550.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Porphyromonas gingivalis autolyzes in the culture media. To examine in more detail the molecular components of the autolysate, two-dimensional gel electrophoresis was performed. Many protein spots varied both in number and volume. One of these spots included Arg-gingipain (Rgp) as determined by N-terminal amino acid sequencing. Corresponding to the increase in spot volume, Rgp activity also increased during autolysis. The results of this study suggested that Rgp and other proteins in the P. gingivalis autolysate may be involved with the prolongation of periodontal disease, even after the death of P. gingivalis cells.
Collapse
Affiliation(s)
- Arihide Kamaguchi
- Department of Oral Microbiology, School of Dentistry, Health Sciences University of Hokkaido, Hokkaido 061-0293, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Hemoglobin receptor protein from Porphyromonas gingivalis induces interleukin-8 production in human gingival epithelial cells through stimulation of the mitogen-activated protein kinase and NF-κB signal transduction pathways. Infect Immun 2013; 82:202-11. [PMID: 24126532 DOI: 10.1128/iai.01140-12] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Periodontitis is an inflammatory disease of polymicrobial origin affecting the tissues supporting the tooth. The oral anaerobic bacterium Porphyromonas gingivalis, which is implicated as an important pathogen for chronic periodontitis, triggers a series of host inflammatory responses that promote the destruction of periodontal tissues. Among the virulence factors of P. gingivalis, hemoglobin receptor protein (HbR) is a major protein found in culture supernatants. In this study, we investigated the roles of HbR in the production of inflammatory mediators. We found that HbR induced interleukin-8 (IL-8) production in the human gingival epithelial cell line Ca9-22. p38 mitogen-activated protein kinase (MAPK) and extracellular signal-related kinase 1/2 (Erk1/2) were activated in HbR-stimulated Ca9-22 cells. Inhibitors of p38 MAPK (SB203580) and Erk1/2 (PD98059) blocked HbR-induced IL-8 production. Additionally, HbR stimulated the translocation of NF-κB-p65 to the nucleus, consistent with enhancement of IL-8 expression by activation of the NF-κB pathway. In addition, small interfering RNA (siRNA) targeting activating transcription factor 2 (ATF-2) or cyclic AMP-response element-binding protein (CREB) inhibited HbR-induced IL-8 production. Moreover, pretreatment with SB203580 and PD98059 reduced HbR-induced phosphorylation of CREB and ATF-2, respectively. Combined pretreatment with an inhibitor of NF-κB (BAY11-7082) and SB203580 was more efficient in inhibiting the ability of HbR to induce IL-8 production than pretreatment with either BAY11-7082 or SB203580 alone. Thus, in Ca9-22 cells, the direct activation of p38 MAPK and Erk1/2 by HbR caused the activation of the transcription factors ATF-2, CREB, and NF-κB, thus resulting in the induction of IL-8 production.
Collapse
|
21
|
Scott JC, Klein BA, Duran-Pinedo A, Hu L, Duncan MJ. A two-component system regulates hemin acquisition in Porphyromonas gingivalis. PLoS One 2013; 8:e73351. [PMID: 24039921 PMCID: PMC3764172 DOI: 10.1371/journal.pone.0073351] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Accepted: 07/17/2013] [Indexed: 01/19/2023] Open
Abstract
Porphyromonas gingivalis is a Gram-negative oral anaerobe associated with infection of the periodontia. The organism has a small number of two-component signal transduction systems, and after comparing genome sequences of strains W83 and ATCC 33277 we discovered that the latter was mutant in histidine kinase (PGN_0752), while the cognate response regulator (PGN_0753) remained intact. Microarray-based transcriptional profiling and ChIP-seq assays were carried out with an ATCC 33277 transconjugant containing the functional histidine kinase from strain W83 (PG0719). The data showed that the regulon of this signal transduction system contained genes that were involved in hemin acquisition, including gingipains, at least three transport systems, as well as being self-regulated. Direct regulation by the response regulator was confirmed by electrophoretic mobility shift assays. In addition, the system appears to be activated by hemin and the regulator acts as both an activator and repressor.
Collapse
Affiliation(s)
- Jodie C. Scott
- Department of Microbiology, The Forsyth Institute, Cambridge, Massachusetts, United States of America
| | - Brian A. Klein
- Department of Molecular Biology and Microbiology, Tufts University Sackler School of Biomedical Sciences, Boston, Massachusetts, United States of America
| | - Ana Duran-Pinedo
- Department of Microbiology, The Forsyth Institute, Cambridge, Massachusetts, United States of America
| | - Linden Hu
- Division of Geographic Medicine and Infectious Disease, Tufts Medical Center, Boston, Massachusetts, United States of America
| | - Margaret J. Duncan
- Department of Microbiology, The Forsyth Institute, Cambridge, Massachusetts, United States of America
| |
Collapse
|
22
|
Hunter N, Nguyen KA, McDonald JA, Quinn MJ, Langley DB, Crossley MJ, Collyer CA. Structural requirements for recognition of essential porphyrin byPorphyromonas gingivalis. J PORPHYR PHTHALOCYA 2012. [DOI: 10.1142/s1088424602000890] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Porphyromonas gingivalis is an anaerobic Gram negative bacterium implicated in destructive infection of the tissues that support the teeth. This organism is unusual in that it cannot synthesize the porphyrin macrocycle and is therefore dependent on exogenous porphyrin for growth. Accordingly, in addition to physiologically relevant sources of heme, growth is stimulated by a number of iron-free porphyrins. Without exception, the capacity of porphyrins to support normal growth of P. gingivalis was associated with recognition by a sub-domain protein HA2 which is located within three outer-membrane proteins and which recognizes the porphyrin macrocycle in an iron-independent manner. Previous analysis in our laboratories indicated that recognition of the propanoate face of porphyrin was a distinguishing feature of the HA2 receptor. More detailed analysis indicated that derivatization of the two propionic acid substituents as their methyl esters or taurine derived N-(ethyl-2-sulfonic acid)amides abolished recognition by HA2 whereas the ethylenediamine derived N-(2-aminoethyl)amides did not affect binding by HA2 . The importance of the 2- and 4-vinyl groups of protoporphyrin IX for transport and growth was evaluated by testing compounds with hydrogen, sulfonic acid and glycol substituents at the 2- and 4-positions. While these derivatives bound HA2 with high affinity, study of protoporphyrin isomers indicated that the distribution of vinyl group substitution was important in regulating recognition by HA2 . In this report, the behaviour of mesoporphyrin IX in which the vinyl groups are replaced by ethyl groups and of chlorin E4 which contains only one propionic acid sidechain, were investigated to further define the structural requirements for recognition by HA2 . Both porphyrins were recognized by low affinity interactions. Based on these findings, a model for binding is proposed. The apparently unique mode of recognition of porphyrins by the receptor presents opportunities for specific targeting of this pathogenic organism.
Collapse
Affiliation(s)
- Neil Hunter
- Institute of Dental Research, Westmead Hospital, Westmead, NSW 2145, Australia
| | - Ky-Anh Nguyen
- Institute of Dental Research, Westmead Hospital, Westmead, NSW 2145, Australia
| | | | - Melissa J. Quinn
- School of Chemistry, The University of Sydney, NSW 2006, Australia
| | - David B. Langley
- School of Chemistry and School of Molecular and Microbial Biosciences, The University of Sydney, NSW 2006, Australia
| | | | - Charles A. Collyer
- School of Chemistry and School of Molecular and Microbial Biosciences, The University of Sydney, NSW 2006, Australia
| |
Collapse
|
23
|
Li N, Yun P, Jeffries CM, Langley D, Gamsjaeger R, Church WB, Hunter N, Collyer CA. The modular structure of haemagglutinin/adhesin regions in gingipains of Porphyromonas gingivalis. Mol Microbiol 2011; 81:1358-73. [DOI: 10.1111/j.1365-2958.2011.07768.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
24
|
|
25
|
Guo Y, Nguyen KA, Potempa J. Dichotomy of gingipains action as virulence factors: from cleaving substrates with the precision of a surgeon's knife to a meat chopper-like brutal degradation of proteins. Periodontol 2000 2010; 54:15-44. [PMID: 20712631 DOI: 10.1111/j.1600-0757.2010.00377.x] [Citation(s) in RCA: 257] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
26
|
A Porphyromonas gingivalis mutant defective in a putative glycosyltransferase exhibits defective biosynthesis of the polysaccharide portions of lipopolysaccharide, decreased gingipain activities, strong autoaggregation, and increased biofilm formation. Infect Immun 2010; 78:3801-12. [PMID: 20624909 DOI: 10.1128/iai.00071-10] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Gram-negative anaerobic bacterium Porphyromonas gingivalis is a major pathogen in periodontal disease, one of the biofilm-caused infectious diseases. The bacterium possesses potential virulence factors, including fimbriae, proteinases, hemagglutinin, lipopolysaccharide (LPS), and outer membrane vesicles, and some of these factors are associated with biofilm formation; however, the precise mechanism of biofilm formation is still unknown. Colonial pigmentation of the bacterium on blood agar plates is related to its virulence. In this study, we isolated a nonpigmented mutant that had an insertion mutation within the new gene PGN_1251 (gtfB) by screening a transposon insertion library. The gene shares homology with genes encoding glycosyltransferase 1 of several bacteria. The gtfB mutant was defective in biosynthesis of both LPSs containing O side chain polysaccharide (O-LPS) and anionic polysaccharide (A-LPS). The defect in the gene resulted in a complete loss of surface-associated gingipain proteinases, strong autoaggregation, and a marked increase in biofilm formation, suggesting that polysaccharide portions of LPSs influence attachment of gingipain proteinases to the cell surface, autoaggregation, and biofilm formation of P. gingivalis.
Collapse
|
27
|
Lewis JP. Metal uptake in host-pathogen interactions: role of iron in Porphyromonas gingivalis interactions with host organisms. Periodontol 2000 2010; 52:94-116. [PMID: 20017798 DOI: 10.1111/j.1600-0757.2009.00329.x] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
28
|
|
29
|
Li N, Yun P, Nadkarni MA, Ghadikolaee NB, Nguyen KA, Lee M, Hunter N, Collyer CA. Structure determination and analysis of a haemolytic gingipain adhesin domain from Porphyromonas gingivalis. Mol Microbiol 2010; 76:861-73. [DOI: 10.1111/j.1365-2958.2010.07123.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
30
|
Kikuchi Y, Ohara N, Ueda O, Hirai K, Shibata Y, Nakayama K, Fujimura S. Porphyromonas gingivalis mutant defective in a putative extracytoplasmic function sigma factor shows a mutator phenotype. ACTA ACUST UNITED AC 2009; 24:377-83. [PMID: 19702950 DOI: 10.1111/j.1399-302x.2009.00526.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
INTRODUCTION Porphyromonas gingivalis is implicated as a major pathogen in the development and progression of chronic periodontitis. P. gingivalis must possess the ability to tolerate stress signals outside the cytoplasmic membrane by transcriptional activation of genes encoding proteins involved in defense or repair processes. Some bacteria utilize a distinct subfamily of sigma factors to regulate extracytoplasmic function (hence termed the ECF subfamily). METHODS To elucidate their role in P. gingivalis, a chromosomal mutant carrying a disruption of an ECF sigma factor PG1318-encoding gene was constructed. Hemagglutination and proteolytic activities were measured in the PG1318-defective mutant. Reverse transcription-polymerase chain reaction (RT-PCR) analysis and southern blot analysis were used to assess transcription of kgp in the PG1318-defective mutant. Frequency of spontaneous mutation that conferred resistance to l-trifluoromethionine was measured in the PG1318-defective mutant. RESULTS The PG1318-defective mutant formed non-pigmented colonies on blood agar plates at a relatively high frequency. Arginine-specific and lysine-specific proteinase activities of the non-pigmented variants were remarkably decreased compared with those of the parent strain and the pigmented variants. RT-PCR analysis showed that kgp was not transcribed in some non-pigmented variants and southern blot analysis revealed that there was a deletion in their kgp region. Frequency of mutation conferring resistance to l-trifluoromethionine was significantly higher in the PG1318-defective mutant than in the wild-type. CONCLUSION These results suggest that PG1318 plays a role in the regulation of mutation frequency in the bacterium.
Collapse
Affiliation(s)
- Y Kikuchi
- Department of Oral Microbiology, Matsumoto Dental University, Shiojiri, Japan
| | | | | | | | | | | | | |
Collapse
|
31
|
Nhien NTT, Huy NT, Naito M, Oida T, Uyen DT, Huang M, Kikuchi M, Harada S, Nakayama K, Hirayama K, Kamei K. Neutralization of toxic haem by Porphyromonas gingivalis haemoglobin receptor. J Biochem 2009; 147:317-25. [PMID: 19861401 DOI: 10.1093/jb/mvp164] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Free haem is known to be toxic to organs, tissues and cells. It enhances permeability by binding to a cell membrane, which leads to cell death, and damages lipids, proteins and DNA through the generation of reactive oxygen species. Lysine- and arginine-specific gingipains (Kgp and RgpA/B) are major proteinases that play an important role in the pathogenicity of a black-pigmented periodontopathogen named Porphyromonas gingivalis. One of the adhesin domains of gingipain, HbR could bind haem as an iron nutrient source for P. gingivalis. Using erythrocyte and its membrane as a model, results from the present study demonstrate that recombinant HbR expressed in Escherichia coli could inhibit haem-induced haemolysis, probably through removing haem from the haem-membrane complex and lowering free haem toxicity by mediating dimerization of haem molecules. The ability to protect a cell membrane from haem toxicity is a new function for HbR.
Collapse
Affiliation(s)
- Nguyen Thanh Thuy Nhien
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Identification of a gingipain-sensitive surface ligand of Porphyromonas gingivalis that induces Toll-like receptor 2- and 4-independent NF-kappaB activation in CHO cells. Infect Immun 2009; 77:4414-20. [PMID: 19667049 DOI: 10.1128/iai.00140-09] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Porphyromonas gingivalis is a major periodontal pathogen that has the pathogenic proteinases Arg-specific gingipain and Lys-specific gingipain. We previously found that a cell surface component on P. gingivalis is able to induce Toll-like receptor 2 (TLR2)- and TLR4-independent signaling in 7.19 cells and that this component can be degraded by gingipains. In this study, we purified this component from the P. gingivalis gingipain-null mutant KDP136 and obtained two candidate proteins. Matrix-assisted laser desorption ionization-time-of-flight mass spectrometry analysis showed that the proteins, with molecular masses of 123 and 43 kDa, were encoded by PGN_0748 and PGN_0728 (pgm6), respectively, in the P. gingivalis ATCC 33277 genome sequence. The PGN_0748-encoded protein, which we refer to as gingipain-sensitive ligand A (GslA), reacted with antiserum that could effectively inhibit the activity of KDP136 to induce NF-kappaB activation in 7.19 cells, but Pgm6 did not. To further determine what protein is responsible for the NF-kappaB activation, we constructed gslA, pgm6, and pgm6 pgm7 deletion mutants from KDP136. When 7.19 cells were exposed to those mutants, the gslA deletion mutant did not induce NF-kappaB activation, whereas the pgm6 and pgm6 pgm7 deletion mutants did. Furthermore, NF-kappaB activation in 7.19 cells induced by KDP136 was partially inhibited by antiserum against a recombinant protein expressed from the 5'-terminal third of gslA. These results indicate that GslA is one of the factors that induce NF-kappaB activation in 7.19 cells. Interestingly, the gslA gene was present in four of seven P. gingivalis strains tested. This restricted distribution might be associated with the virulence potential of each strain.
Collapse
|
33
|
Fitzpatrick RE, Wijeyewickrema LC, Pike RN. The gingipains: scissors and glue of the periodontal pathogen, Porphyromonas gingivalis. Future Microbiol 2009; 4:471-87. [PMID: 19416015 DOI: 10.2217/fmb.09.18] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The anaerobic bacterium, Porphyromonas gingivalis, is associated with chronic periodontal disease (periodontitis or gum disease). The disease is not only the leading cause of tooth loss in the developed world, but is associated with a number of systemic diseases, such as cardiovascular disease and diabetes. The most potent virulence factors of this bacterium are the gingipains, three cysteine proteases that bind and cleave a wide range of host proteins. This article summarizes current knowledge of the structure and function of the enzymes, with a particular focus on what remains to be elucidated regarding the structure and function of the nonenzymatic adhesin domains of the high-molecular-weight forms of the proteases.
Collapse
Affiliation(s)
- Rebecca E Fitzpatrick
- Cooperative Research Centre for Oral Health Sciences & Department of Biochemistry & Molecular Biology, Monash University, Clayton, Victoria 3800, Australia.
| | | | | |
Collapse
|
34
|
Sato K, Kido N, Murakami Y, Hoover CI, Nakayama K, Yoshimura F. Lipopolysaccharide biosynthesis-related genes are required for colony pigmentation of Porphyromonas gingivalis. MICROBIOLOGY-SGM 2009; 155:1282-1293. [PMID: 19332829 DOI: 10.1099/mic.0.025163-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The periodontopathic bacterium Porphyromonas gingivalis forms pigmented colonies when incubated on blood agar plates as a result of accumulation of mu-oxo haem dimer on the cell surface. Gingipain-adhesin complexes are responsible for production of mu-oxo haem dimer from haemoglobin. Non-pigmented mutants (Tn6-5, Tn7-1, Tn7-3 and Tn10-4) were isolated from P. gingivalis by Tn4351 transposon mutagenesis [Hoover & Yoshimura (1994), FEMS Microbiol Lett 124, 43-48]. In this study, we found that the Tn6-5, Tn7-1 and Tn7-3 mutants carried Tn4351 DNA in a gene homologous to the ugdA gene encoding UDP-glucose 6-dehydrogenase, a gene encoding a putative group 1 family glycosyltransferase and a gene homologous to the rfa gene encoding ADP heptose-LPS heptosyltransferase, respectively. The Tn10-4 mutant carried Tn4351 DNA at the same position as that for Tn7-1. Gingipain activities associated with cells of the Tn7-3 mutant (rfa) were very weak, whereas gingipain activities were detected in the culture supernatants. Immunoblot and mass spectrometry analyses also revealed that gingipains, including their precursor forms, were present in the culture supernatants. A lipopolysaccharide (LPS) fraction of the rfa deletion mutant did not show the ladder pattern that was usually seen for the LPS of the wild-type P. gingivalis. A recombinant chimera gingipain was able to bind to an LPS fraction of the wild-type P. gingivalis in a dose-dependent manner. These results suggest that the rfa gene product is associated with biosynthesis of LPS and/or cell-surface polysaccharides that can function as an anchorage for gingipain-adhesin complexes.
Collapse
Affiliation(s)
- Keiko Sato
- Department of Microbiology, School of Dentistry, Aichi-Gakuin University, 1-100 Kusumoto-cho, Chikusa-ku, Nagoya, Aichi 464-8650, Japan
| | - Nobuo Kido
- Division of Plant Growth Physiology, Nagoya University Graduate School of Biological Sciences, Furou-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan
| | - Yukitaka Murakami
- Department of Microbiology, School of Dentistry, Aichi-Gakuin University, 1-100 Kusumoto-cho, Chikusa-ku, Nagoya, Aichi 464-8650, Japan
| | - Charles I Hoover
- University of California, San Francisco, CA 94143-0512, USA.,Department of Microbiology, School of Dentistry, Aichi-Gakuin University, 1-100 Kusumoto-cho, Chikusa-ku, Nagoya, Aichi 464-8650, Japan
| | - Koji Nakayama
- Division of Microbiology and Oral Infection, Department of Molecular Microbiology and Immunology, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, Nagasaki 852-8588, Japan
| | - Fuminobu Yoshimura
- Department of Microbiology, School of Dentistry, Aichi-Gakuin University, 1-100 Kusumoto-cho, Chikusa-ku, Nagoya, Aichi 464-8650, Japan
| |
Collapse
|
35
|
Meuric V, Gracieux P, Tamanai-Shacoori Z, Perez-Chaparro J, Bonnaure-Mallet M. Expression patterns of genes induced by oxidative stress in Porphyromonas gingivalis. ACTA ACUST UNITED AC 2008; 23:308-14. [PMID: 18582330 DOI: 10.1111/j.1399-302x.2007.00429.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
INTRODUCTION Porphyromonas gingivalis, a gram-negative anaerobic bacterium, is a major periopathogen whose transmission from host to host involves exposure to atmospheric oxygen. P. gingivalis contains genetic factors that function in an oxidative stress response, but their expression has not been analyzed during exposure to atmospheric oxygen. The aim of this study was to obtain a better understanding of atmospheric adaptation of P. gingivalis. METHODS The aerotolerance of wild-type and oxyR mutant P. gingivalis strains were determined, and quantitative polymerase chain reaction was performed to analyze gene expression patterns in response to exposure to atmospheric oxygen. The analyzed P. gingivalis genes encoded proteins involved in oxidative response (oxyR, ahpC-F, batA, dps, ftn, tpx) as well as several major virulence factors (hagA, hagB, hagE, rgpA, rgpB, hem). RESULTS Our results demonstrated a critical role for the oxyR gene in the aerotolerance of P. gingivalis. The ahpC-F, batA, and hem genes were slightly overexpressed (between 1.65-fold and 2-fold) after exposure to atmospheric oxygen compared to anaerobic conditions. The level of transcription of dps, ftn, tpx, and rgpA genes increased more than 2.5-fold, and the expression of ahpC-F, dps, ftn, and tpx was partially or completely OxyR-dependent. CONCLUSION A different transcription pattern of P. gingivalis genes was observed, depending on the stimulus of oxidative stress. We present new evidence that the expression of tpx, encoding a thiol peroxidase, is partially OxyR-dependent and is induced after atmospheric oxygen exposure.
Collapse
Affiliation(s)
- V Meuric
- Université Européenne de Bretagne, Rennes Cedex, France
| | | | | | | | | |
Collapse
|
36
|
Uehara A, Naito M, Imamura T, Potempa J, Travis J, Nakayama K, Takada H. Dual regulation of interleukin-8 production in human oral epithelial cells upon stimulation with gingipains from Porphyromonas gingivalis. J Med Microbiol 2008; 57:500-507. [PMID: 18349372 DOI: 10.1099/jmm.0.47679-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Cysteine proteinases from Porphyromonas gingivalis, or gingipains, are considered to be key virulence factors of the bacterium in relation to periodontal diseases. Incubation of human oral epithelial cells with lysine-specific gingipain (Kgp) and high-molecular-mass arginine-specific gingipain (HRgpA) resulted in a decrease in the production of interleukin (IL)-8, but not in the production of other pro-inflammatory cytokines. In contrast, arginine-specific gingipain 2 (RgpB) increased IL-8 production. RNA interference assays demonstrated that Kgp- and HRgpA-mediated downregulation and RgpB-mediated upregulation occurred through protease-activated receptor (PAR)-1 and PAR-2 signalling. Although the RgpB-mediated upregulation of IL-8 production occurred through nuclear factor-kappa B (NF-kappaB), the Kgp- and HRgpA-mediated downregulation was not negated in NF-kappaB-silenced cells. Both the haemagglutinin and the enzymic domains are required for Kgp and HRgpA to downregulate the production of IL-8 in human oral epithelial cells, and the two domains are thought to co-exist. These results suggest that gingipains preferentially suppress IL-8, resulting in attenuation of the cellular recognition of bacteria, and as a consequence, sustain chronic inflammation.
Collapse
Affiliation(s)
- Akiko Uehara
- Department of Microbiology and Immunology, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Mariko Naito
- Division of Microbiology and Oral Infection, Department of Molecular Microbiology and Immunology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Takahisa Imamura
- Division of Molecular Pathology, Graduate School of Medical and Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Jan Potempa
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, USA.,Department of Microbiology, Faculty of Biotechnology, Jagiellonian University, Kraków, Poland
| | - James Travis
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, USA
| | - Koji Nakayama
- Division of Microbiology and Oral Infection, Department of Molecular Microbiology and Immunology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Haruhiko Takada
- Department of Microbiology and Immunology, Tohoku University Graduate School of Dentistry, Sendai, Japan
| |
Collapse
|
37
|
Ishida Y, Hu J, Sakai E, Kadowaki T, Yamamoto K, Tsukuba T, Kato Y, Nakayama K, Okamoto K. Determination of active site of lysine-specific cysteine proteinase (Lys-gingipain) by use of a Porphyromonas gingivalis plasmid system. Arch Oral Biol 2008; 53:538-44. [PMID: 18295742 DOI: 10.1016/j.archoralbio.2008.01.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2007] [Revised: 12/27/2007] [Accepted: 01/09/2008] [Indexed: 11/16/2022]
Abstract
Porphyromonas gingivalis, a major etiological bacterium of periodontal diseases, produces a unique lysine-specific cysteine proteinase (Lys-gingipain, Kgp) implicated in the virulence of this organism. Our observations show the expression of a catalytically active recombinant Kgp in a P. gingivalis Kgp-null mutant and the restoration of its functions by the use of a shuttle plasmid vector stable in P. gingivalis. The Kgp-expressing mutant exhibited a similar catalytic activity to that of the wild-type strain. This mutant also restored the ability to form black-pigmented colonies on blood agar plates and to generate a 19-kDa haemoglobin receptor protein responsible for haemoglobin binding. In order to establish the importance of the active-site Cys residue and elucidate its role in bacterial black pigmentation we constructed three Kgp mutants with changed potential active-site Cys residues. The cells expressing a single mutation (C476A) showed the high Kgp activity and the black pigmentation. In contrast, the cells expressing the single mutant (C477A) and the double mutant (C476A/C477A) exhibited neither Kgp activity nor black pigmentation. These results indicate that the 477th Cys residue is essential for both the Kgp activity and the black pigmentation of P. gingivalis.
Collapse
Affiliation(s)
- Yutaka Ishida
- Department of Oral Pathopharmacology, Unit of Basic Medical Sciences, Medical and Dental Sciences, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8588, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Sakai E, Naito M, Sato K, Hotokezaka H, Kadowaki T, Kamaguchi A, Yamamoto K, Okamoto K, Nakayama K. Construction of recombinant hemagglutinin derived from the gingipain-encoding gene of Porphyromonas gingivalis, identification of its target protein on erythrocytes, and inhibition of hemagglutination by an interdomain regional peptide. J Bacteriol 2007; 189:3977-86. [PMID: 17384191 PMCID: PMC1913415 DOI: 10.1128/jb.01691-06] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Porphyromonas gingivalis, an anaerobic gram-negative bacterium associated with chronic periodontitis, can agglutinate human erythrocytes. In general, hemagglutination can be considered the ability to adhere to host cells; however, P. gingivalis-mediated hemagglutination has special significance because heme markedly accelerates growth of this bacterium. Although a number of studies have indicated that a major hemagglutinin of P. gingivalis is intragenically encoded by rgpA, kgp, and hagA, direct evidence has not been obtained. We demonstrated in this study that recombinant HGP44(720-1081), a fully processed HGP44 domain protein, had hemagglutinating activity but that an unprocessed form, HGP44(720-1138), did not. A peptide corresponding to residues 1083 to 1102, which was included in HGP44(720-1138) but not in HGP44(720-1081), could bind HGP44(720-1081) in a dose-dependent manner and effectively inhibited HGP44(720-1081)-mediated hemagglutination, indicating that the interdomain regional amino acid sequence may function as an intramolecular suppressor of hemagglutinating activity. Analyses by solid-phase binding and chemical cross-linking suggested that HGP44 interacted with glycophorin A on the erythrocyte membrane. Glycophorin A and, more effectively, asialoglycophorin, which were added exogenously, inhibited HGP44(720-1081)-mediated hemagglutination. Treatment of erythrocytes with RgpB proteinase resulted in degradation of glycophorin A on the membrane and a decrease in HGP44(720-1081)-mediated hemagglutination. Surface plasmon resonance detection analysis revealed that HGP44(720-1081) could bind to asialoglycophorin with a dissociation constant of 3.0 x 10(-7) M. These results indicate that the target of HGP44 on the erythrocyte membrane appears to be glycophorin A.
Collapse
Affiliation(s)
- Eiko Sakai
- Department of Developmental and Reconstructive Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Sakamoto 1-7-1, Nagasaki 852-8588, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Nagata H, Inagaki Y, Yamamoto Y, Maeda K, Kataoka K, Osawa K, Shizukuishi S. Inhibitory effects of macrocarpals on the biological activity of Porphyromonas gingivalis and other periodontopathic bacteria. ACTA ACUST UNITED AC 2006; 21:159-63. [PMID: 16626372 DOI: 10.1111/j.1399-302x.2006.00269.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND/AIMS Macrocarpals, which are phloroglucinol derivatives contained in eucalyptus leaves, exhibit antimicrobial activity against a variety of bacteria including oral bacteria. This study examined effects of macrocarpals A, B, and C on periodontopathic bacteria, especially Porphyromonas gingivalis. METHODS Macrocarpals A, B, and C were purified from a 60% ethanol-extract of Eucalyptus globules leaves. To investigate antibacterial activity, representative periodontopathic bacteria were cultured in media with or without various amounts of macrocarpals; subsequently, the optical density at 660 nm was measured. Macrocarpal inhibition of P. gingivalis Arg- and Lys-specific proteinases was assessed by spectrofluorophotometric assay and sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis. The effect of macrocarpals on P. gingivalis binding to saliva-coated hydroxyapatite beads was examined with (3)H-labeled P. gingivalis. RESULTS Growth of P. gingivalis was inhibited more strongly than growth of Prevotella intermedia or Prevotella nigrescens and Treponema denticola by macrocarpals, however, Actinobacillus actinomycetemcomitans and Fusobacterium nucleatum were much more resistant. Macrocarpals inhibited P. gingivalis Arg- and Lys-specific proteinases in a dose-dependent manner. The enzyme-inhibitory effect of macrocarpals was confirmed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis in which hemoglobin degradation by P. gingivalis proteinase was inhibited by macrocarpals. P. gingivalis binding to saliva-coated hydroxyapatite beads was also strongly attenuated by macrocarpals. CONCLUSIONS Macrocarpals A, B and C demonstrated antibacterial activity against periodontopathic bacteria. Among tested bacteria, P. gingivalis displayed the greatest sensitivity to macrocarpals; additionally, its trypsin-like proteinase activity and binding to saliva-coated hydroxyapatite beads were inhibited by macrocarpals. These results indicate that eucalyptus leaf extracts may be useful as a potent preventative of periodontal disease.
Collapse
Affiliation(s)
- H Nagata
- Department of Preventive Dentistry, Osaka University Graduate School of Dentistry, Osaka, Japan.
| | | | | | | | | | | | | |
Collapse
|
40
|
Smalley JW, Birss AJ, Szmigielski B, Potempa J. The HA2 haemagglutinin domain of the lysine-specific gingipain (Kgp) of Porphyromonas gingivalis promotes μ-oxo bishaem formation from monomeric iron(III) protoporphyrin IX. Microbiology (Reading) 2006; 152:1839-1845. [PMID: 16735746 DOI: 10.1099/mic.0.28835-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The lysine- and arginine-specific gingipains (Kgp, and RgpA and RgpB) are the major proteinases produced by the black-pigmented periodontopathogenPorphyromonas gingivalis. They play a role in degrading host proteins, including haemoglobin, from which is formed the μ-oxo bishaem complex of iron(III) protoporphyrin IX, [Fe(III)PPIX]2O, the major haem component of the black pigment. Kgp and RgpA bind haem and haemoglobin via the haemagglutinin-adhesin 2 (HA2) domain, but the role of this domain in the formation of μ-oxo bishaem-containing pigment is not known. UV-visible spectroscopy was used to examine the interaction of iron(III) protoporphyrin IX monomers [Fe(III)PPIX.OH] with recombinant HA2 and purified HRgpA, Kgp and RgpB gingipains. The HA2 domain reacted with Fe(III)PPIX.OH to form μ-oxo bishaem, the presence of which was confirmed by Fourier transform infrared spectroscopy. Both HRgpA and Kgp, but not RgpB, also mediated μ-oxo bishaem formation and aggregation. It is concluded that the Arg- and Lys-gingipains with HA2 haemagglutinin domains may play a crucial role in haem-pigment formation by converting Fe(III)PPIX.OH monomers into [Fe(III)PPIX]2O and promoting their aggregation.
Collapse
Affiliation(s)
- J W Smalley
- The University of Liverpool, Oral Microbiology Group, Department of Clinical Dental Sciences, The Edwards Building, Daulby Street, Liverpool L69 3GN, UK
| | - A J Birss
- The University of Liverpool, Oral Microbiology Group, Department of Clinical Dental Sciences, The Edwards Building, Daulby Street, Liverpool L69 3GN, UK
| | - B Szmigielski
- Department of Microbiology, Faculty of Biotechnology, Jagiellonian University, ul. Gronostajowa 7, 30-387 Krakow, Poland
| | - J Potempa
- Department of Biochemistry and Molecular Biology, Life Science Building, University of Georgia, Athens, GA 30602, USA
- Department of Microbiology, Faculty of Biotechnology, Jagiellonian University, ul. Gronostajowa 7, 30-387 Krakow, Poland
| |
Collapse
|
41
|
Fujimura Y, Hotokezaka H, Ohara N, Naito M, Sakai E, Yoshimura M, Narita Y, Kitaura H, Yoshida N, Nakayama K. The hemoglobin receptor protein of porphyromonas gingivalis inhibits receptor activator NF-kappaB ligand-induced osteoclastogenesis from bone marrow macrophages. Infect Immun 2006; 74:2544-51. [PMID: 16622189 PMCID: PMC1459701 DOI: 10.1128/iai.74.5.2544-2551.2006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Extracellular proteinaceous factors of Porphyromonas gingivalis, a periodontal pathogen, that influence receptor activator of nuclear factor-kappaB (NF-kappaB) ligand (RANKL)-induced osteoclastogenesis from bone marrow macrophages were investigated. The culture supernatant of P. gingivalis had the ability to inhibit RANKL-induced in vitro osteoclastogenesis. A major protein of the culture supernatant, hemoglobin receptor protein (HbR), suppressed RANKL-induced osteoclastogenesis in a dose-dependent fashion. HbR markedly inhibited RANKL-induced osteoclastogenesis when present in the culture for the first 24 h after addition of RANKL, whereas no significant inhibition was observed when HbR was added after 24 h or later, implying that HbR might interfere with only the initial stage of RANKL-mediated differentiation. HbR tightly bound to bone marrow macrophages and had the ability to induce phosphorylation of ERK, p38, NF-kappaB, and Akt. RANKL-induced phosphorylation of ERK, p38, and NF-kappaB was not suppressed by HbR, but that of Akt was markedly suppressed. HbR inhibited RANKL-mediated induction of c-Fos and NFATc1. HbR could induce beta interferon (IFN-beta) from bone marrow macrophages, but the induction level of IFN-beta might not be sufficient to suppress RANKL-mediated osteoclastogenesis, implying presence of an IFN-beta-independent pathway in HbR-mediated inhibition of osteoclastogenesis. Since rapid and extensive destruction of the alveolar bone causes tooth loss, resulting in loss of the gingival crevice that is an anatomical niche for periodontal pathogens such as P. gingivalis, the suppressive effect of HbR on osteoclastogenesis may help the microorganism exist long in the niche.
Collapse
Affiliation(s)
- Yuji Fujimura
- Division of Microbiology and Oral Infection, Department of Developmental and Reconstructive Medicine, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki 852-8588, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Lee JH, Shim JS, Lee JS, Kim MK, Chung MS, Kim KH. Pectin-like acidic polysaccharide from Panax ginseng with selective antiadhesive activity against pathogenic bacteria. Carbohydr Res 2006; 341:1154-63. [PMID: 16643869 DOI: 10.1016/j.carres.2006.03.032] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2006] [Revised: 03/17/2006] [Accepted: 03/23/2006] [Indexed: 12/13/2022]
Abstract
Previous studies have revealed the inhibitory effects of an acidic polysaccharide purified from the root of Panax ginseng against the adhesion of Helicobacter pylori to gastric epithelial cells and the ability of Porphyromonas gingivalis to agglutinate erythrocytes. In this study, this acidic polysaccharide from P. ginseng, PG-F2, was investigated further, in order to characterize its antiadhesive effects against Actinobacillus actinomycetemcomitans, Propionibacterium acnes, and Staphylococcus aureus. The minimum inhibitory concentrations (MIC) were found to be in a range of 0.25-0.5mg/mL. However, results showed no inhibitory effects of PG-F2 against Lactobacillus acidophilus, Escherichia coli, or Staphylococcus epidermidis. PG-F2 is a pectin-type polysaccharide with a mean MW of 1.2 x 10(4) Da, and consists primarily of galacturonic and glucuronic acids along with rhamnose, arabinose, and galactose as minor components. The complete hydrolysis of PG-F2 via chemical or carbohydrolase enzyme treatment resulted in the abrogation of its antiadhesive activity, but limited hydrolysis via treatment with pectinase (EC. 3.2.1.15) yielded an oligosaccharide fraction, with activity comparable to the precursor PG-F2 (the MIC of ca. 0.01 mg/mL against H. pylori and P. gingivalis). Our results suggest that PG-F2 may exert a selective antiadhesive effect against pathogenic bacteria, while having no effects on beneficial and commensal bacteria.
Collapse
Affiliation(s)
- Ji-Hye Lee
- Department of Food Technology, School of Life Sciences and Biotechnology, Korea University, Seoul 136-701, Republic of Korea
| | | | | | | | | | | |
Collapse
|
43
|
Białas A, Grembecka J, Krowarsch D, Otlewski J, Potempa J, Mucha A. Exploring the Sn binding pockets in gingipains by newly developed inhibitors: structure-based design, chemistry, and activity. J Med Chem 2006; 49:1744-53. [PMID: 16509589 DOI: 10.1021/jm0600141] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Arg-gingipains (Rgps) and Lys-gingipain (Kgp) are cysteine proteinases secreted by Porphyromonas gingivalis, the major pathogen implicated in periodontal disease. Gingipains are essential to the bacterium for its virulence and survival, and development of inhibitors targeting these proteins provides an approach to treat periodontal diseases. Here, we present the first example of structure-based design of gingipains inhibitors, with the use of the crystal structure of RgpB and the homology model of Kgp. Chloromethyl ketones were selected as suitable compounds to explore the specificity of the Sn binding region of both enzymes. Three series of inhibitors bearing Arg or Lys at P1 and different substituents at P2 and P3 were designed, synthesized, and tested. High potency (k(obs)/[I] approximately 10(7) M(-1) s(-1)) was achieved for small ligands, such as the dipeptide analogues. The detailed analysis of Sn binding pockets revealed the molecular basis of inhibitory affinity and provided insight into the structure-activity relationship.
Collapse
Affiliation(s)
- Arkadiusz Białas
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wrocław University of Technology, Wybrzeze Wyspiańskiego 27, 50-370 Wrocław, Poland
| | | | | | | | | | | |
Collapse
|
44
|
Naito M, Sakai E, Shi Y, Ideguchi H, Shoji M, Ohara N, Yamamoto K, Nakayama K. Porphyromonas gingivalis-induced platelet aggregation in plasma depends on Hgp44 adhesin but not Rgp proteinase. Mol Microbiol 2006; 59:152-67. [PMID: 16359325 DOI: 10.1111/j.1365-2958.2005.04942.x] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Evidence from recent epidemiological studies suggests a link between periodontal infections and increased risk of atherosclerosis and related cardiovascular and cerebrovascular events in human subjects. One of the major pathogens of periodontitis, Porphyromonas gingivalis, has the ability to aggregate human platelets in platelet-rich plasma (PRP). Mechanism of P. gingivalis-induced platelet aggregation in PRP was investigated. Proteinase inhibitors toward Arg-gingipain (Rgp) and Lys-gingipain (Kgp) did not suppress P. gingivalis-induced platelet aggregation in PRP, whereas the Rgp inhibitor markedly inhibited P. gingivalis-induced platelet aggregation using washed platelets. Mutant analysis revealed that P. gingivalis-induced platelet aggregation in PRP depended on Rgp-, Kgp- and haemagglutinin A (HagA)-encoding genes that intragenically coded for adhesins such as Hgp44. Hgp44 adhesin on the bacterial cell surface, which was processed by Rgp and Kgp proteinases, was essential for P. gingivalis-induced platelet aggregation in PRP. P. gingivalis cell-reactive IgG in plasma, and FcgammaRIIa receptor and to a lesser extent GPIbalpha receptor on platelets were found to be a prerequisite for P. gingivalis-induced platelet aggregation in PRP. These results reveal a novel mechanism of platelet aggregation by P. gingivalis.
Collapse
Affiliation(s)
- Mariko Naito
- Division of Microbiology and Oral Infection, Department of Developmental and Reconstructive Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Kobayashi H, Yoshida R, Kanada Y, Fukuda Y, Yagyu T, Inagaki K, Kondo T, Kurita N, Suzuki M, Kanayama N, Terao T. Suppression of lipopolysaccharide-induced cytokine production of gingival fibroblasts by a soybean, Kunitz trypsin inhibitor. J Periodontal Res 2005; 40:461-8. [PMID: 16302924 DOI: 10.1111/j.1600-0765.2005.00824.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND Human bikunin, a Kunitz-type trypsin inhibitor, inhibits inflammation by down-regulating the expression of proinflammatory cytokines such as tumor necrosis factor-alpha (TNF-alpha) in tumor cells and inflammatory cells. OBJECTIVES We analyzed the effect of a soybean-derived Kunitz trypsin inhibitor (KTI) on TNF-alpha production in human gingival fibroblasts stimulated by lipopolysaccharide (LPS), an inflammatory inducer. MATERIAL AND METHODS Mitogen-activated protein kinase (MAPK) activation and cytokine levels were monitored using western blot and a specific enzyme-linked immunosorbent assay (ELISA). RESULTS Here, we show (i) a soybean KTI abrogates LPS-induced up-regulation of TNF-alpha mRNA and protein expression in a dose-dependent manner in gingival fibroblasts, (ii) KTI also blocks the induction of TNF-alpha target molecules interleukin-1beta (IL-1beta) and IL-6 proteins, (iii) inhibition by KTI of TNF-alpha induction correlates with the suppressive capacity of extracellular signal-regulated kinase 1/2 (ERK1/2) and p38 signaling pathways, implicating repressed ERK1/2 and p38 signalings in the inhibition, and (iv) pretreatment of cells with KTI blocked LPS-induced nuclear factor kappaB (NFkappaB) activation. CONCLUSION Our results indicate that KTI inhibits LPS-induced up-regulation of cytokine expression possibly through suppression of ERK1/2 and p38 kinase-mediated NFkappaB activation. These findings may identify anti-inflammatory properties of KTI at the level of gingival fibroblasts and may be relevant to the use of KTI in modulating inflammation, including periodontal disease.
Collapse
Affiliation(s)
- Hiroshi Kobayashi
- Department of Obstetrics and Gynecology, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
He W, Ohashi K, Sugimoto C, Onuma M. Theileria orientalis: cloning a cDNA encoding a protein similar to thiol protease with haemoglobin-binding activity. Exp Parasitol 2005; 111:143-53. [PMID: 16139835 DOI: 10.1016/j.exppara.2005.06.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2005] [Revised: 05/31/2005] [Accepted: 06/07/2005] [Indexed: 11/17/2022]
Abstract
A gene encoding a protein (Tocp1) from Theileria orientalis was isolated from a cDNA library and the deduced amino acid sequence of Tocp1 has 476 amino acids. The primary structure of Tocp1 is similar to eukaryotic thiol proteases (EC 3.4.22.-), but no enzymatic activity was observed with the substitution of essential cysteine at the cysteine active site for glycine. Southern blot analysis showed that multiple genes similar to Tocp1 were present in the parasite genome. Sequence analysis of the genome of the parasite showed that there are at least five different genes similar to Tocp1. Tocp1 transcripts were detected in the T. orientalis piroplasma by Northern blot analysis. Western blot analysis showed that Tocp1 was expressed in the piroplasm of T. orientalis. To address the role of Tocp1 in the life cycle of T. orientalis, Tocp1 was expressed using pET32 expression system. Binding affinity to haemoglobin was demonstrated by enzyme-linked immunosorbent assay.
Collapse
Affiliation(s)
- Weiyong He
- Laboratory of Infectious Diseases, Department of Disease Control, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan.
| | | | | | | |
Collapse
|
47
|
Holt SC, Ebersole JL. Porphyromonas gingivalis, Treponema denticola, and Tannerella forsythia: the "red complex", a prototype polybacterial pathogenic consortium in periodontitis. Periodontol 2000 2005; 38:72-122. [PMID: 15853938 DOI: 10.1111/j.1600-0757.2005.00113.x] [Citation(s) in RCA: 650] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Stanley C Holt
- Department of Periodontology, The Forsyth Institute, Boston, MA, USA
| | | |
Collapse
|
48
|
Abe N, Baba A, Takii R, Nakayama K, Kamaguchi A, Shibata Y, Abiko Y, Okamoto K, Kadowaki T, Yamamoto K. Roles of Arg- and Lys-gingipains in coaggregation of Porphyromonas gingivalis: identification of its responsible molecules in translation products of rgpA, kgp, and hagA genes. Biol Chem 2005; 385:1041-7. [PMID: 15576324 DOI: 10.1515/bc.2004.135] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Arg- (Rgp) and Lys-gingipains (Kgp) are two individual cysteine proteinases produced by Porphyromonas gingivalis , an oral anaerobic bacterium, and are implicated as major virulence factors in a wide range of pathologies of adult periodontitis. Coaggregation of this bacterium with other oral bacteria is an initial and critical step in infectious processes, yet the factors and mechanisms responsible for this process remain elusive. Here we show that the initial translation products of the rgpA , kgp and hemagglutinin hagA genes are responsible for coaggregation of P. gingivalis and that the proteolytic activity of Rgp and Kgp is indispensable in this process. The rgpA rgpB kgp- and rgpA kgp hagA -deficient triple mutants exhibited no coaggregation activity with Actinomyces viscosus , whereas the kgp -null and rgpA rgpB -deficient double mutants significantly retained this activity. Consistently, the combined action of Rgp- and Kgp-specific inhibitors strongly inhibited the coaggregation activity of the bacterium, although single use of Rgp- or Kgp-specific inhibitor significantly retained this activity. We also demonstrate that the 47- and 43-kDa proteins produced from the translation products of the rgpA , kgp , and hagA genes by proteolytic activity of both Rgp and Kgp are responsible for the coaggregation of P. gingivalis.
Collapse
Affiliation(s)
- Naoko Abe
- Department of Pharmacology, Graduate School of Dental Science, Kyushu University, Higashi-ku, Fukuoka 812-8582, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Sztukowska M, Sroka A, Bugno M, Banbula A, Takahashi Y, Pike RN, Genco CA, Travis J, Potempa J. The C-terminal domains of the gingipain K polyprotein are necessary for assembly of the active enzyme and expression of associated activities. Mol Microbiol 2005; 54:1393-408. [PMID: 15554977 DOI: 10.1111/j.1365-2958.2004.04357.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The Porphyromonas gingivalis lysine-specific cysteine protease (gingipain K, Kgp) is expressed as a large precursor protein consisting of a leader sequence, a pro-fragment, a catalytic domain with a C-terminal IgG-like subdomain (IgSF) and a large haemagglutinin/adhesion (HA) domain. In order to directly study the role of these non-catalytic domains in pro-Kgp processing and maturation in P. gingivalis, the wild-type form of the gene was replaced with deletion variants encoding C-terminally truncated proteins, including KgpDeltaHA3/4 (Delta1292-1732 aa), KgpDeltaHA2-4 (Delta1157-1732 aa), KgpDeltaHA1-4 (Delta738-1732 aa), KgpDeltaC-term/HA (Delta681-1732 aa) and KgpDeltaIg/C-term/HA (602-1732 aa). Northern blot and reverse transcription polymerase chain reaction (RT-PCR) analysis revealed that all truncated variants of the kgp gene were transcribed in P. gingivalis. Despite high levels of kgpDeltaC-term/HA and kgpDeltaIg/C-term/HA transcripts, no Kgp-specific antigen was detected in cultures of these mutants as determined by Western blot analysis with monoclonal antibodies specific for the Kgp catalytic domain. Furthermore, only barely measurable amounts of Kgp-specific activity were detected in these two mutants. The remaining mutants expressed significant Kgp activity, however, at lower levels when compared with the parental strain. The decreased activity most probably resulted from altered folding and/or hindered secretion of the protein. The kgp gene truncation was also demonstrated to alter the distribution of the gingipain protein between membrane-associated and -secreted forms. While both gingipain K activity and the protein were cell membrane-associated in the parental strain, the mutants released significant amounts of both protein and activity into the media. Taken together, these results suggest that the C-terminal HA domains of Kgp are not only essential for full expression of gingipain activity, but also for proper processing of the multiprotein complex assembly on the P. gingivalis outer membrane. Moreover, our results indicate that the immunoglobulin-like subdomain is indispensable for proper folding and expression of the gingipains.
Collapse
Affiliation(s)
- Maryta Sztukowska
- Department of Microbiology, Faculty of Biotechnology, Jagiellonian University, Kraków, Poland
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Olczak T, Simpson W, Liu X, Genco CA. Iron and heme utilization in Porphyromonas gingivalis. FEMS Microbiol Rev 2005; 29:119-44. [PMID: 15652979 DOI: 10.1016/j.femsre.2004.09.001] [Citation(s) in RCA: 141] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2004] [Revised: 06/18/2004] [Accepted: 09/02/2004] [Indexed: 11/26/2022] Open
Abstract
Porphyromonas gingivalis is a Gram-negative anaerobic bacterium associated with the initiation and progression of adult periodontal disease. Iron is utilized by this pathogen in the form of heme and has been shown to play an essential role in its growth and virulence. Recently, considerable attention has been given to the characterization of various secreted and surface-associated proteins of P. gingivalis and their contribution to virulence. In particular, the properties of proteins involved in the uptake of iron and heme have been extensively studied. Unlike other Gram-negative bacteria, P. gingivalis does not produce siderophores. Instead it employs specific outer membrane receptors, proteases (particularly gingipains), and lipoproteins to acquire iron/heme. In this review, we will focus on the diverse mechanisms of iron and heme acquisition in P. gingivalis. Specific proteins involved in iron and heme capture will be described. In addition, we will discuss new genes for iron/heme utilization identified by nucleotide sequencing of the P. gingivalis W83 genome. Putative iron- and heme-responsive gene regulation in P. gingivalis will be discussed. We will also examine the significance of heme/hemoglobin acquisition for the virulence of this pathogen.
Collapse
Affiliation(s)
- Teresa Olczak
- Institute of Biochemistry and Molecular Biology, Laboratory of Biochemistry, Wroclaw University, Tamka 2, 50-137 Wroclaw, Poland.
| | | | | | | |
Collapse
|