1
|
Zhu Q, Bai X, Li Q, Zhang M, Hu G, Pan K, Liu H, Ke Z, Hong Q, Qiu J. PcaR, a GntR/FadR Family Transcriptional Repressor Controls the Transcription of Phenazine-1-Carboxylic Acid 1,2-Dioxygenase Gene Cluster in Sphingomonas histidinilytica DS-9. Appl Environ Microbiol 2023; 89:e0212122. [PMID: 37191535 PMCID: PMC10304782 DOI: 10.1128/aem.02121-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 04/29/2023] [Indexed: 05/17/2023] Open
Abstract
In our previous study, the phenazine-1-carboxylic acid (PCA) 1,2-dioxygenase gene cluster (pcaA1A2A3A4 cluster) in Sphingomonas histidinilytica DS-9 was identified to be responsible for the conversion of PCA to 1,2-dihydroxyphenazine (Ren Y, Zhang M, Gao S, Zhu Q, et al. 2022. Appl Environ Microbiol 88:e00543-22). However, the regulatory mechanism of the pcaA1A2A3A4 cluster has not been elucidated yet. In this study, the pcaA1A2A3A4 cluster was found to be transcribed as two divergent operons: pcaA3-ORF5205 (named A3-5205 operon) and pcaA1A2-ORF5208-pcaA4-ORF5210 (named A1-5210 operon). The promoter regions of the two operons were overlapped. PcaR acts as a transcriptional repressor of the pcaA1A2A3A4 cluster, and it belongs to GntR/FadR family transcriptional regulator. Gene disruption of pcaR can shorten the lag phase of PCA degradation. The results of electrophoretic mobility shift assay and DNase I footprinting showed that PcaR binds to a 25-bp motif in the ORF5205-pcaA1 intergenic promoter region to regulate the expression of two operons. The 25-bp motif covers the -10 region of the promoter of A3-5205 operon and the -35 region and -10 region of the promoter of A1-5210 operon. The TNGT/ANCNA box within the motif was essential for PcaR binding to the two promoters. PCA acted as an effector of PcaR, preventing it from binding to the promoter region and repressing the transcription of the pcaA1A2A3A4 cluster. In addition, PcaR represses its own transcription, and this repression can be relieved by PCA. This study reveals the regulatory mechanism of PCA degradation in strain DS-9, and the identification of PcaR increases the variety of regulatory model of the GntR/FadR-type regulator. IMPORTANCE Sphingomonas histidinilytica DS-9 is a phenazine-1-carboxylic acid (PCA)-degrading strain. The 1,2-dioxygenase gene cluster (pcaA1A2A3A4 cluster, encoding dioxygenase PcaA1A2, reductase PcaA3, and ferredoxin PcaA4) is responsible for the initial degradation step of PCA and widely distributed in Sphingomonads, but its regulatory mechanism has not been investigated yet. In this study, a GntR/FadR-type transcriptional regulator PcaR repressing the transcription of pcaA1A2A3A4 cluster and pcaR gene was identified and characterized. The binding site of PcaR in ORF5205-pcaA1 intergenic promoter region contains a TNGT/ANCNA box, which is important for the binding. These findings enhance our understanding of the molecular mechanism of PCA degradation.
Collapse
Affiliation(s)
- Qian Zhu
- Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, People’s Republic of China
| | - Xuekun Bai
- Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, People’s Republic of China
| | - Qian Li
- Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, People’s Republic of China
| | - Mingliang Zhang
- Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, People’s Republic of China
| | - Gang Hu
- Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, People’s Republic of China
| | - Kaihua Pan
- Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, People’s Republic of China
| | - Hongfei Liu
- Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, People’s Republic of China
| | - Zhijian Ke
- School of Biological and Chemical Engineering, Ningbo Tech University, Ningbo, Zhejiang, People’s Republic of China
| | - Qing Hong
- Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, People’s Republic of China
| | - Jiguo Qiu
- Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, People’s Republic of China
| |
Collapse
|
2
|
Cai X, Li J, Guan F, Luo X, Yu Z, Yuan Y. Complete pentachlorophenol biodegradation in a dual-working electrode bioelectrochemical system: Performance and functional microorganism identification. WATER RESEARCH 2023; 230:119529. [PMID: 36580804 DOI: 10.1016/j.watres.2022.119529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 11/19/2022] [Accepted: 12/22/2022] [Indexed: 06/17/2023]
Abstract
Bioelectrochemical system (BES) can effectively promote the reductive dechlorination of chlorophenols (CPs). However, the complete degradation of CPs with sequential dechlorination and mineralization processes has rarely achieved from the BES. Here, a dual-working electrode BES was constructed and applied for the complete degradation of pentachlorophenol (PCP). Combined with DNA-stable isotope probing (DNA-SIP), the biofilms attached on the anodic and cathodic electrode in the BES were analyzed to explore the dechlorinating and mineralizing microorganisms. Results showed that PCP removal efficiency in the dual-working BES (84% for 21 days) was 4.1 and 4.7 times higher than those of conventional BESs with a single anodic or cathodic working electrode, respectively. Based on DNA-SIP and high-throughput sequencing analysis, the cathodic working electrode harbored the potential dechlorinators (Comamonas, Pseudomonas, Methylobacillus, and Dechlorosoma), and the anodic working enriched the potential intermediate mineralizing bacteria (Comamonas, Stenotrophomonas, and Geobacter), indicating that PCP could be completely degraded under the synergetic effect of these functional microorganisms. Besides, the potential autotrophic functional bacteria that might be involved in the PCP dechlorination were also identified by SIP labeled with 13C-NaHCO3. Our results proved that the dual-working BES could accelerate the complete degradation of PCP and enrich separately the functional microbial consortium for the PCP dechlorination and mineralization, which has broad potential for bioelectrochemical techniques in the treatment of wastewater contaminated with CPs or other halogenated organic compounds.
Collapse
Affiliation(s)
- Xixi Cai
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Jibing Li
- State Key Laboratory of Organic Geochemistry and Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Chinese Academy of Sciences, Guangzhou Institute of Geochemistry, Guangzhou 510640, China
| | - Fengyi Guan
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Xiaoshan Luo
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Zhen Yu
- Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Guangdong Academy of Sciences, Institute of Eco-environmental and Soil Sciences, Guangzhou 510650, China
| | - Yong Yuan
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China.
| |
Collapse
|
3
|
Metabolic Pathway of Phenol Degradation of a Cold-Adapted Antarctic Bacteria, Arthrobacter sp. Catalysts 2022. [DOI: 10.3390/catal12111422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Phenol is an important pollutant widely discharged as a component of hydrocarbon fuels, but its degradation in cold regions is challenging due to the harsh environmental conditions. To date, there is little information available concerning the capability for phenol biodegradation by indigenous Antarctic bacteria. In this study, enzyme activities and genes encoding phenol degradative enzymes identified using whole genome sequencing (WGS) were investigated to determine the pathway(s) of phenol degradation of Arthrobacter sp. strains AQ5-05 and AQ5-06, originally isolated from Antarctica. Complete phenol degradative genes involved only in the ortho-cleavage were detected in both strains. This was validated using assays of the enzymes catechol 1,2-dioxygenase and catechol 2,3-dioxygenase, which indicated the activity of only catechol 1,2-dioxygenase in both strains, in agreement with the results from the WGS. Both strains were psychrotolerant with the optimum temperature for phenol degradation, being between 10 and 15 °C. This study suggests the potential use of cold-adapted bacteria in the bioremediation of phenol pollution in cold environments.
Collapse
|
4
|
Draft Genome Sequence of Comamonas testosteroni TA441, a Bacterium That Has a Cryptic Phenol Degradation Gene Cluster. Microbiol Resour Announc 2019; 8:8/39/e00946-19. [PMID: 31558634 PMCID: PMC6763649 DOI: 10.1128/mra.00946-19] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Comamonas testosteroni TA441 has a complete phenol degradation gene cluster but does not degrade phenol because the cluster is tightly repressed. However, mutant strains that can degrade phenol arise by spontaneous mutations of a repressor gene during incubation with phenol. Here, we report the draft genome sequence of strain TA441. Comamonas testosteroni TA441 has a complete phenol degradation gene cluster but does not degrade phenol because the cluster is tightly repressed. However, mutant strains that can degrade phenol arise by spontaneous mutations of a repressor gene during incubation with phenol. Here, we report the draft genome sequence of strain TA441.
Collapse
|
5
|
Suvorova IA, Gelfand MS. Comparative Genomic Analysis of the Regulation of Aromatic Metabolism in Betaproteobacteria. Front Microbiol 2019; 10:642. [PMID: 30984152 PMCID: PMC6449761 DOI: 10.3389/fmicb.2019.00642] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 03/14/2019] [Indexed: 01/23/2023] Open
Abstract
Aromatic compounds are a common carbon and energy source for many microorganisms, some of which can even degrade toxic chloroaromatic xenobiotics. This comparative study of aromatic metabolism in 32 Betaproteobacteria species describes the links between several transcription factors (TFs) that control benzoate (BenR, BenM, BoxR, BzdR), catechol (CatR, CatM, BenM), chlorocatechol (ClcR), methylcatechol (MmlR), 2,4-dichlorophenoxyacetate (TfdR, TfdS), phenol (AphS, AphR, AphT), biphenyl (BphS), and toluene (TbuT) metabolism. We characterize the complexity and variability in the organization of aromatic metabolism operons and the structure of regulatory networks that may differ even between closely related species. Generally, the upper parts of pathways, rare pathway variants, and degradative pathways of exotic and complex, in particular, xenobiotic compounds are often controlled by a single TF, while the regulation of more common and/or central parts of the aromatic metabolism may vary widely and often involves several TFs with shared and/or dual, or cascade regulation. The most frequent and at the same time variable connections exist between AphS, AphR, AphT, and BenR. We have identified a novel LysR-family TF that regulates the metabolism of catechol (or some catechol derivative) and either substitutes CatR(M)/BenM, or shares functions with it. We have also predicted several new members of aromatic metabolism regulons, in particular, some COGs regulated by several different TFs.
Collapse
Affiliation(s)
- Inna A Suvorova
- Institute for Information Transmission Problems RAS (The Kharkevich Institute), Moscow, Russia
| | - Mikhail S Gelfand
- Institute for Information Transmission Problems RAS (The Kharkevich Institute), Moscow, Russia.,Faculty of Computer Science, Higher School of Economics, Moscow, Russia.,Center of Life Sciences, Skolkovo Institute of Science and Technology, Moscow, Russia
| |
Collapse
|
6
|
Molecular and Functional Insights into the Regulation of d-Galactonate Metabolism by the Transcriptional Regulator DgoR in Escherichia coli. J Bacteriol 2019; 201:JB.00281-18. [PMID: 30455279 DOI: 10.1128/jb.00281-18] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Accepted: 11/07/2018] [Indexed: 12/11/2022] Open
Abstract
d-Galactonate, an aldonic sugar acid, is used as a carbon source by Escherichia coli, and the structural dgo genes involved in its metabolism have previously been investigated. Here, using genetic, biochemical and bioinformatics approaches, we present the first detailed molecular and functional insights into the regulation of d-galactonate metabolism in E. coli K-12 by the transcriptional regulator DgoR. We found that dgoR deletion accelerates the growth of E. coli in d-galactonate concomitant with the strong constitutive expression of dgo genes. In the dgo locus, sequence upstream of dgoR alone harbors the d-galactonate-inducible promoter that likely drives the expression of all dgo genes. DgoR exerts repression on the dgo operon by binding two inverted repeats overlapping the dgo promoter. Binding of d-galactonate induces a conformational change in DgoR to derepress the dgo operon. The findings from our work firmly place DgoR in the GntR family of transcriptional regulators: DgoR binds an operator sequence [5'-TTGTA(G/C)TACA(A/T)-3'] matching the signature of GntR family members that recognize inverted repeats [5'-(N) y GT(N) x AC(N) y -3', where x and y indicate the number of nucleotides, which varies], and it shares critical protein-DNA contacts. We also identified features in DgoR that are otherwise less conserved in the GntR family. Recently, missense mutations in dgoR were recovered in a natural E. coli isolate adapted to the mammalian gut. Our results show these mutants to be DNA binding defective, emphasizing that mutations in the dgo-regulatory elements are selected in the host to allow simultaneous induction of dgo genes. The present study sets the basis to explore the regulation of dgo genes in additional enterobacterial strains where they have been implicated in host-bacterium interactions.IMPORTANCE d-Galactonate is a widely prevalent aldonic sugar acid. Despite the proposed significance of the d-galactonate metabolic pathway in the interaction of enteric bacteria with their hosts, there are no details on its regulation even in Escherichia coli, which has been known to utilize d-galactonate since the 1970s. Here, using multiple methodologies, we identified the promoter, operator, and effector of DgoR, the transcriptional repressor of d-galactonate metabolism in E. coli We establish DgoR as a GntR family transcriptional regulator. Recently, a human urinary tract isolate of E. coli introduced in the mouse gut was found to accumulate missense mutations in dgoR Our results show these mutants to be DNA binding defective, hence emphasizing the role of the d-galactonate metabolic pathway in bacterial colonization of the mammalian gut.
Collapse
|
7
|
Ito K, Takagi K, Matsushima Y, Iwasaki A, Tanaka N, Kanesaki Y, Martin-Laurent Martin-Laurent FF, Igimi S. Identification of the novel hcbB operon catalyzing the dechlorination of pentachlorophenol in the Gram-positive bacterium Nocardioides sp. strain PD653. JOURNAL OF PESTICIDE SCIENCE 2018; 43:124-131. [PMID: 30363388 PMCID: PMC6173144 DOI: 10.1584/jpestics.d17-089] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
While pcp genes are well known in Gram-negative bacteria to code for the enzymes responsible for pentachlorophenol (C6HCl5O; PCP) degradation, little is known about PCP-degrading genes in Gram-positive bacteria. Here we describe a novel gene operon possibly responsible for catalyzing the degradation of PCP in the Gram-positive bacterium Nocardioides sp. strain PD653, which is capable of mineralizing hexachlorobenzene (C6Cl6; HCB) via PCP. Transcriptome analysis based on RNA-Seq revealed overexpressed genes in strain PD653 following exposure to HCB. Based on in silico annotation, three open reading frames (ORFs) were selected as biodegrading enzyme candidates. Recombinant E. coli cells expressing candidate genes degraded approximately 9.4 µmol L-1 PCP in 2 hr. Therefore, we designated these genes as hcbB1, hcbB2, and hcbB3. Interestingly, PCP-degrading activity was recorded when hcbB3 was coexpressed with hcbB1 or hcbB2, and the function of HcbB3 was expected to be similar to chlorophenol 4-monooxygenase (TftD).
Collapse
Affiliation(s)
- Koji Ito
- Department of Agricultural Chemistry, Tokyo University of Agriculture
- Hazardous Chemicals Division, Institute for Agro-Environmental Sciences, NARO
| | - Kazuhiro Takagi
- Department of Agricultural Chemistry, Tokyo University of Agriculture
- Hazardous Chemicals Division, Institute for Agro-Environmental Sciences, NARO
- To whom correspondence should be addressed. E-mail:
| | | | - Akio Iwasaki
- Juntendo Medical Technology Innovation Center, Juntendo University
| | - Naoto Tanaka
- Department of Molecular Microbiology, Tokyo University of Agriculture
| | - Yu Kanesaki
- Genome Research Center, NODAI Research Institute, Tokyo University of Agriculture
| | | | - Shizunobu Igimi
- Department of Agricultural Chemistry, Tokyo University of Agriculture
| |
Collapse
|
8
|
Transcriptional control of the phenol hydroxylase gene phe of Corynebacterium glutamicum by the AraC-type regulator PheR. Microbiol Res 2018; 209:14-20. [DOI: 10.1016/j.micres.2018.02.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 01/23/2018] [Accepted: 02/03/2018] [Indexed: 11/20/2022]
|
9
|
Draft Genome Sequence of Comamonas testosteroni R2, Consisting of Aromatic Compound Degradation Genes for Phenol Hydroxylase. GENOME ANNOUNCEMENTS 2017; 5:5/36/e00875-17. [PMID: 28883136 PMCID: PMC5589530 DOI: 10.1128/genomea.00875-17] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Comamonas testosteroni strain R2 was isolated from a continuous culture enriched by a low concentration of phenol-oxygenating activities with low Ks values (below 1 μM). The draft genome sequence of C. testosteroni strain R2 reported here may contribute to determining the phenol degradation gene cluster.
Collapse
|
10
|
Zhou W, Guo W, Zhou H, Chen X. Phenol degradation by Sulfobacillus acidophilus TPY via the meta -pathway. Microbiol Res 2016; 190:37-45. [DOI: 10.1016/j.micres.2016.05.005] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 05/11/2016] [Accepted: 05/13/2016] [Indexed: 11/30/2022]
|
11
|
George KW, Hay AG. Bacterial strategies for growth on aromatic compounds. ADVANCES IN APPLIED MICROBIOLOGY 2016; 74:1-33. [PMID: 21459192 DOI: 10.1016/b978-0-12-387022-3.00005-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Although the biodegradation of aromatic compounds has been studied for over 40 years, there is still much to learn about the strategies bacteria employ for growth on novel substrates. Elucidation of these strategies is crucial for predicting the environmental fate of aromatic pollutants and will provide a framework for the development of engineered bacteria and degradation pathways. In this chapter, we provide an overview of studies that have advanced our knowledge of bacterial adaptation to aromatic compounds. We have divided these strategies into three broad categories: (1) recruitment of catabolic genes, (2) expression of "repair" or detoxification proteins, and (3) direct alteration of enzymatic properties. Specific examples from the literature are discussed, with an eye toward the molecular mechanisms that underlie each strategy.
Collapse
Affiliation(s)
- Kevin W George
- Field of Environmental Toxicology, Cornell University Ithaca, New York, USA; Department of Microbiology, Wing Hall, Cornell University Ithaca, New York, USA
| | | |
Collapse
|
12
|
Comparison of Four Comamonas Catabolic Plasmids Reveals the Evolution of pBHB To Catabolize Haloaromatics. Appl Environ Microbiol 2015; 82:1401-1411. [PMID: 26682859 DOI: 10.1128/aem.02930-15] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 12/08/2015] [Indexed: 11/20/2022] Open
Abstract
Comamonas plasmids play important roles in shaping the phenotypes of their hosts and the adaptation of these hosts to changing environments, and understanding the evolutionary strategy of these plasmids is thus of great concern. In this study, the sequence of the 119-kb 3,5-dibromo-4-hydroxybenzonitrile-catabolizing plasmid pBHB from Comamonas sp. strain 7D-2 was studied and compared with those of three other Comamonas haloaromatic catabolic plasmids. Incompatibility group determination based on a phylogenetic analysis of 24 backbone gene proteins, as well as TrfA, revealed that these four plasmids all belong to the IncP-1β subgroup. Comparison of the four plasmids revealed a conserved backbone region and diverse genetic-load regions. The four plasmids share a core genome consisting of 40 genes (>50% similarities) and contain 12 to 50 unique genes each, most of which are xenobiotic-catabolic genes. Two functional reductive dehalogenase gene clusters are specifically located on pBHB, showing distinctive evolution of pBHB for haloaromatics. The higher catabolic ability of the bhbA2B2 cluster than the bhbAB cluster may be due to the transcription levels and the character of the dehalogenase gene itself rather than that of its extracytoplasmic binding receptor gene. The plasmid pBHB is riddled with transposons and insertion sequence (IS) elements, and ISs play important roles in the evolution of pBHB. The analysis of the origin of the bhb genes on pBHB suggested that these accessory genes evolved independently. Our work provides insights into the evolutionary strategies of Comamonas plasmids, especially into the adaptation mechanism employed by pBHB for haloaromatics.
Collapse
|
13
|
Leprohon P, Gingras H, Ouennane S, Moineau S, Ouellette M. A genomic approach to understand interactions between Streptococcus pneumoniae and its bacteriophages. BMC Genomics 2015; 16:972. [PMID: 26582495 PMCID: PMC4652380 DOI: 10.1186/s12864-015-2134-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 10/23/2015] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Bacteriophage replication depends on bacterial proteins and inactivation of genes coding for such host factors should interfere with phage infection. To gain further insights into the interactions between S. pneumoniae and its pneumophages, we characterized S. pneumoniae mutants selected for resistance to the virulent phages SOCP or Dp-1. RESULTS S. pneumoniae R6-SOCP(R) and R6-DP1(R) were highly resistant to the phage used for their selection and no cross-resistance between the two phages was detected. Adsorption of SOCP to R6-SOCP(R) was partly reduced whereas no difference in Dp-1 adsorption was noted on R6-DP1(R). The replication of SOCP was completely inhibited in R6-SOCP(R) while Dp-1 was severely impaired in R6-DP1(R). Genome sequencing identified 8 and 2 genes mutated in R6-SOCP(R) and R6-DP1(R), respectively. Resistance reconstruction in phage-sensitive S. pneumoniae confirmed that mutations in a GntR-type regulator, in a glycerophosphoryl phosphodiesterase and in a Mur ligase were responsible for resistance to SOCP. The three mutations were additive to increase resistance to SOCP. In contrast, resistance to Dp-1 in R6-DP1(R) resulted from mutations in a unique gene coding for a type IV restriction endonuclease. CONCLUSION The characterization of mutations conferring resistance to pneumophages highlighted that diverse host genes are involved in the replication of phages from different families.
Collapse
Affiliation(s)
- Philippe Leprohon
- Centre de recherche en Infectiologie du Centre de Recherche du CHU de Québec, Université Laval, 2705 Boul. Laurier, Québec, QC, Canada, , G1V 4G2. .,Département de Microbiologie, Infectiologie et Immunologie, Faculté de Médecine, Université Laval, 1050, avenue de la Médecine, Québec, QC, Canada, , G1V 0A6.
| | - Hélène Gingras
- Centre de recherche en Infectiologie du Centre de Recherche du CHU de Québec, Université Laval, 2705 Boul. Laurier, Québec, QC, Canada, , G1V 4G2. .,Département de Microbiologie, Infectiologie et Immunologie, Faculté de Médecine, Université Laval, 1050, avenue de la Médecine, Québec, QC, Canada, , G1V 0A6.
| | - Siham Ouennane
- Département de Biochimie, Microbiologie et Bio-informatique and PROTEO, Faculté des Sciences et Génie, Université Laval, Québec, QC, Canada. .,Félix d'Hérelle Reference Center for Bacterial Viruses and GREB, Faculté de Médecine Dentaire, Université Laval, Québec, QC, Canada.
| | - Sylvain Moineau
- Département de Biochimie, Microbiologie et Bio-informatique and PROTEO, Faculté des Sciences et Génie, Université Laval, Québec, QC, Canada. .,Félix d'Hérelle Reference Center for Bacterial Viruses and GREB, Faculté de Médecine Dentaire, Université Laval, Québec, QC, Canada.
| | - Marc Ouellette
- Centre de recherche en Infectiologie du Centre de Recherche du CHU de Québec, Université Laval, 2705 Boul. Laurier, Québec, QC, Canada, , G1V 4G2. .,Département de Microbiologie, Infectiologie et Immunologie, Faculté de Médecine, Université Laval, 1050, avenue de la Médecine, Québec, QC, Canada, , G1V 0A6.
| |
Collapse
|
14
|
Nešvera J, Rucká L, Pátek M. Catabolism of Phenol and Its Derivatives in Bacteria: Genes, Their Regulation, and Use in the Biodegradation of Toxic Pollutants. ADVANCES IN APPLIED MICROBIOLOGY 2015; 93:107-60. [PMID: 26505690 DOI: 10.1016/bs.aambs.2015.06.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Phenol and its derivatives (alkylphenols, halogenated phenols, nitrophenols) are natural or man-made aromatic compounds that are ubiquitous in nature and in human-polluted environments. Many of these substances are toxic and/or suspected of mutagenic, carcinogenic, and teratogenic effects. Bioremediation of the polluted soil and water using various bacteria has proved to be a promising option for the removal of these compounds. In this review, we describe a number of peripheral pathways of aerobic and anaerobic catabolism of various natural and xenobiotic phenolic compounds, which funnel these substances into a smaller number of central catabolic pathways. Finally, the metabolites are used as carbon and energy sources in the citric acid cycle. We provide here the characteristics of the enzymes that convert the phenolic compounds and their catabolites, show their genes, and describe regulatory features. The genes, which encode these enzymes, are organized on chromosomes and plasmids of the natural bacterial degraders in various patterns. The accumulated data on similarities and the differences of the genes, their varied organization, and particularly, an astonishingly broad range of intricate regulatory mechanism may be read as an exciting adventurous book on divergent evolutionary processes and horizontal gene transfer events inscribed in the bacterial genomes. In the end, the use of this wealth of bacterial biodegradation potential and the manipulation of its genetic basis for purposes of bioremediation is exemplified. It is envisioned that the integrated high-throughput techniques and genome-level approaches will enable us to manipulate systems rather than separated genes, which will give birth to systems biotechnology.
Collapse
Affiliation(s)
- Jan Nešvera
- Institute of Microbiology CAS, v. v. i., Prague, Czech Republic
| | - Lenka Rucká
- Institute of Microbiology CAS, v. v. i., Prague, Czech Republic
| | - Miroslav Pátek
- Institute of Microbiology CAS, v. v. i., Prague, Czech Republic
| |
Collapse
|
15
|
Pérez-Pantoja D, Kim J, Silva-Rocha R, de Lorenzo V. The differential response of thePbenpromoter ofPseudomonas putida mt-2 to BenR and XylS prevents metabolic conflicts inm-xylene biodegradation. Environ Microbiol 2014; 17:64-75. [DOI: 10.1111/1462-2920.12443] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Revised: 02/13/2014] [Accepted: 02/21/2014] [Indexed: 11/30/2022]
Affiliation(s)
- Danilo Pérez-Pantoja
- Systems and Synthetic Biology Program; Centro Nacional de Biotecnologia; Madrid Spain
| | - Juhyun Kim
- Systems and Synthetic Biology Program; Centro Nacional de Biotecnologia; Madrid Spain
| | - Rafael Silva-Rocha
- Systems and Synthetic Biology Program; Centro Nacional de Biotecnologia; Madrid Spain
| | - Víctor de Lorenzo
- Systems and Synthetic Biology Program; Centro Nacional de Biotecnologia; Madrid Spain
| |
Collapse
|
16
|
Chen K, Liu Y, Mao DM, Liu XM, Li SP, Jiang JD. An essential esterase (BroH) for the mineralization of bromoxynil octanoate by a natural consortium of Sphingopyxis sp. strain OB-3 and Comamonas sp. strain 7D-2. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2013; 61:11550-11559. [PMID: 24224769 DOI: 10.1021/jf4037062] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
A natural consortium of two bacterial strains ( Sphingopyxis sp. OB-3 and Comamonas sp. 7D-2) was capable of utilizing bromoxynil octanoate as the sole source of carbon for its growth. Strain OB-3 was able to convert bromoxynil octanoate to bromoxynil but could not use the eight-carbon side chain as its sole carbon source. Strain 7D-2 could not degrade bromoxynil octanoate, although it was able to mineralize bromoxynil. An esterase (BroH) that is involved in the conversion of bromoxynil octanoate into bromoxynil and is essential for the mineralization of bromoxynil octanoate by the consortium was isolated from strain OB-3 and molecularly characterized. BroH encodes 304 amino acids and resembles α/β-hydrolase fold proteins. Recombinant BroH was overexpressed in Escherichia coli BL21 (DE3) and purified by Ni-NTA affinity chromatography. BroH was able to transform p-nitrophenyl esters (C2-C14) and showed the highest activity toward p-nitrophenyl caproate (C6) on the basis of the catalytic efficiency value (Vmax/Km). Additionally, BroH activity decreased when the aliphatic chain length increased. The optimal temperature and pH for BroH activity was found to be 35 °C and 7.5, respectively. On the basis of a phylogenetic analysis, BroH belongs to subfamily V of bacterial lipolytic enzymes.
Collapse
Affiliation(s)
- Kai Chen
- Department of Microbiology, Key Lab of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University , 210095 Nanjing, People's Republic of China
| | | | | | | | | | | |
Collapse
|
17
|
The PaaX-type repressor MeqR2 of Arthrobacter sp. strain Rue61a, involved in the regulation of quinaldine catabolism, binds to its own promoter and to catabolic promoters and specifically responds to anthraniloyl coenzyme A. J Bacteriol 2012; 195:1068-80. [PMID: 23275246 DOI: 10.1128/jb.01547-12] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The genes coding for quinaldine catabolism in Arthrobacter sp. strain Rue61a are clustered on the linear plasmid pAL1 in two upper pathway operons (meqABC and meqDEF) coding for quinaldine conversion to anthranilate and a lower pathway operon encoding anthranilate degradation via coenzyme A (CoA) thioester intermediates. The meqR2 gene, located immediately downstream of the catabolic genes, codes for a PaaX-type transcriptional repressor. MeqR2, purified as recombinant fusion protein, forms a dimer in solution and shows specific and cooperative binding to promoter DNA in vitro. DNA fragments recognized by MeqR2 contained a highly conserved palindromic motif, 5'-TGACGNNCGTcA-3', which is located at positions -35 to -24 of the two promoters that control the upper pathway operons, at positions +4 to +15 of the promoter of the lower pathway genes and at positions +53 to +64 of the meqR2 promoter. Disruption of the palindrome abolished MeqR2 binding. The dissociation constants (K(D)) of MeqR2-DNA complexes as deduced from electrophoretic mobility shift assays were very similar for the four promoters tested (23 nM to 28 nM). Anthraniloyl-CoA was identified as the specific effector of MeqR2, which impairs MeqR2-DNA complex formation in vitro. A binding stoichiometry of one effector molecule per MeqR2 monomer and a K(D) of 22 nM were determined for the effector-protein complex by isothermal titration calorimetry (ITC). Quantitative reverse transcriptase PCR analyses suggested that MeqR2 is a potent regulator of the meqDEF operon; however, additional regulatory systems have a major impact on transcriptional control of the catabolic operons and of meqR2.
Collapse
|
18
|
Yu H, Peng Z, Zhan Y, Wang J, Yan Y, Chen M, Lu W, Ping S, Zhang W, Zhao Z, Li S, Takeo M, Lin M. Novel regulator MphX represses activation of phenol hydroxylase genes caused by a XylR/DmpR-type regulator MphR in Acinetobacter calcoaceticus. PLoS One 2011; 6:e17350. [PMID: 21455294 PMCID: PMC3063778 DOI: 10.1371/journal.pone.0017350] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2010] [Accepted: 01/31/2011] [Indexed: 11/18/2022] Open
Abstract
Acinetobacter calcoaceticus PHEA-2 utilizes phenol as its sole carbon and energy source and has a multi-component phenol hydroxylase-encoding gene operon (mphKLMNOP) for phenol degradation. Two additional genes, mphR and mphX, were found upstream and downstream of mphKLMNOP, respectively. The mphR gene encodes a XylR/DmpR-type regulator-like protein and is transcribed in the opposite direction to mphKLMNOP. The mphX gene is transcribed in the same direction as mphKLMNOP and encodes a protein with 293 amino acid residues showing weak identity with some unknown proteins encoded in the meta-cleavage pathway gene clusters for aromatic compound degradation. Disruption of mphR by homologous recombination resulted in the loss of phenol degradation while disruption of mphX caused significantly faster phenol degradation than in the wild type strain. Transcriptional assays for mphK, mphR, and mphX revealed that mphR activated mphKLMNOP transcription in the presence of phenol, but mphX partially repressed this activation. Gel mobility-shift assay demonstrated a direct interaction of MphR with the mphK promoter region. These results indicate the involvement of a novel repressor protein MphX in transcriptional regulation of phenol hydroxylase genes caused by a XylR/DmpR-type regulator MphR.
Collapse
Affiliation(s)
- Haiying Yu
- College of Biological Sciences, China Agricultural University, Beijing, China
- Key Laboratory of Crop Biotechnology, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Ministry of Agriculture, Beijing, China
| | - Zixin Peng
- Key Laboratory of Crop Biotechnology, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Ministry of Agriculture, Beijing, China
- Department of Materials Science and Chemistry, Graduate School of Engineering, University of Hyogo, Himeji, Hyogo, Japan
| | - Yuhua Zhan
- Key Laboratory of Crop Biotechnology, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Ministry of Agriculture, Beijing, China
| | - Jin Wang
- Key Laboratory of Crop Biotechnology, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Ministry of Agriculture, Beijing, China
| | - Yongliang Yan
- Key Laboratory of Crop Biotechnology, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Ministry of Agriculture, Beijing, China
- National Centre for Plant Gene Research, Beijing, China
| | - Ming Chen
- Key Laboratory of Crop Biotechnology, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Ministry of Agriculture, Beijing, China
| | - Wei Lu
- Key Laboratory of Crop Biotechnology, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Ministry of Agriculture, Beijing, China
| | - Shuzhen Ping
- Key Laboratory of Crop Biotechnology, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Ministry of Agriculture, Beijing, China
| | - Wei Zhang
- Key Laboratory of Crop Biotechnology, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Ministry of Agriculture, Beijing, China
- National Centre for Plant Gene Research, Beijing, China
| | - Zhonglin Zhao
- Key Laboratory of Crop Biotechnology, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Ministry of Agriculture, Beijing, China
| | - Shuying Li
- Key Laboratory of Crop Biotechnology, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Ministry of Agriculture, Beijing, China
| | - Masahiro Takeo
- Department of Materials Science and Chemistry, Graduate School of Engineering, University of Hyogo, Himeji, Hyogo, Japan
- * E-mail: (MT); (ML)
| | - Min Lin
- College of Biological Sciences, China Agricultural University, Beijing, China
- Key Laboratory of Crop Biotechnology, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Ministry of Agriculture, Beijing, China
- * E-mail: (MT); (ML)
| |
Collapse
|
19
|
Hoskisson PA, Rigali S. Chapter 1 Variation in Form and Function. ADVANCES IN APPLIED MICROBIOLOGY 2009; 69:1-22. [DOI: 10.1016/s0065-2164(09)69001-8] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
20
|
Pérez-Pantoja D, De la Iglesia R, Pieper DH, González B. Metabolic reconstruction of aromatic compounds degradation from the genome of the amazing pollutant-degrading bacteriumCupriavidus necatorJMP134. FEMS Microbiol Rev 2008; 32:736-94. [DOI: 10.1111/j.1574-6976.2008.00122.x] [Citation(s) in RCA: 178] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
21
|
Kulakov LA, Chen S, Allen CCR, Larkin MJ. Web-type evolution of rhodococcus gene clusters associated with utilization of naphthalene. Appl Environ Microbiol 2005; 71:1754-64. [PMID: 15811998 PMCID: PMC1082552 DOI: 10.1128/aem.71.4.1754-1764.2005] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Clusters of genes which include determinants for the catalytic subunits of naphthalene dioxygenase (narAa and narAb) were analyzed in naphthalene-degrading Rhodococcus strains. We demonstrated (i) that in the region analyzed homologous gene clusters are separated from each other by nonhomologous DNA, (ii) that there are various degrees of homology between related genes, and (iii) that nar genes are located on plasmids in strains NCIMB12038 and P400 and on a chromosome in P200. These observations suggest that genetic exchange and reshuffling of genetic modules, as well as vertical descent of the genetic information, were the main routes in the evolution of naphthalene degradation in Rhodococcus. These conclusions were supported by studies of transcription patterns in the region analyzed. It was found that the nar region is not organized into a single operon but there are several transcription units which differ in the strains investigated. The narA and narB genes were found to be transcribed as a single unit in all strains analyzed, and their transcription was induced by naphthalene. The putative aldolase gene (narC) was found on the same transcript only in strains P200 and P400. In NCIMB12038 transcription of two more gene clusters was induced by growth on naphthalene. Transcription start sites for narA and narB were found to be different in all of the strains studied. Putative regulatory genes (narR1 and narR2) were transcribed as a single mRNA in naphthalene-induced cells. At the same time, a number of the genes known to be essential for naphthalene catabolism in gram-negative bacteria were not found in the region analyzed.
Collapse
Affiliation(s)
- Leonid A Kulakov
- The Questor Centre and School of Biology and Biochemistry, The Queen's University of Belfast, Belfast, United Kingdom.
| | | | | | | |
Collapse
|
22
|
Tropel D, van der Meer JR. Bacterial transcriptional regulators for degradation pathways of aromatic compounds. Microbiol Mol Biol Rev 2004; 68:474-500, table of contents. [PMID: 15353566 PMCID: PMC515250 DOI: 10.1128/mmbr.68.3.474-500.2004] [Citation(s) in RCA: 292] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human activities have resulted in the release and introduction into the environment of a plethora of aromatic chemicals. The interest in discovering how bacteria are dealing with hazardous environmental pollutants has driven a large research community and has resulted in important biochemical, genetic, and physiological knowledge about the degradation capacities of microorganisms and their application in bioremediation, green chemistry, or production of pharmacy synthons. In addition, regulation of catabolic pathway expression has attracted the interest of numerous different groups, and several catabolic pathway regulators have been exemplary for understanding transcription control mechanisms. More recently, information about regulatory systems has been used to construct whole-cell living bioreporters that are used to measure the quality of the aqueous, soil, and air environment. The topic of biodegradation is relatively coherent, and this review presents a coherent overview of the regulatory systems involved in the transcriptional control of catabolic pathways. This review summarizes the different regulatory systems involved in biodegradation pathways of aromatic compounds linking them to other known protein families. Specific attention has been paid to describing the genetic organization of the regulatory genes, promoters, and target operon(s) and to discussing present knowledge about signaling molecules, DNA binding properties, and operator characteristics, and evidence from regulatory mutants. For each regulator family, this information is combined with recently obtained protein structural information to arrive at a possible mechanism of transcription activation. This demonstrates the diversity of control mechanisms existing in catabolic pathways.
Collapse
Affiliation(s)
- David Tropel
- Swiss Federal Institute for Environmental Science and Technology (EAWAG), Dübendorf, Switzerland
| | | |
Collapse
|
23
|
Galán B, Kolb A, Sanz JM, García JL, Prieto MA. Molecular determinants of the hpa regulatory system of Escherichia coli: the HpaR repressor. Nucleic Acids Res 2004; 31:6598-609. [PMID: 14602920 PMCID: PMC275547 DOI: 10.1093/nar/gkg851] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The HpaR-mediated regulation of the hpa-meta operon (Pg promoter) of the 4-hydroxyphenylacetic acid catabolic pathway of Escherichia coli has been studied. The HpaR regulator was purified to homogeneity showing that it is able to bind selectively to 4-hydroxyphenylacetic, 3-hydroxyphenylacetic and 3,4-dihydroxyphenylacetic acids, which act as inducers of the system. The role of HpaR as a repressor and the requirement for cAMP receptor protein for maximal activity have been confirmed by in vitro transcription analyses. Two DNA operators, OPR1 and OPR2, have been identified in the intergenic region located between the hpa-meta operon and the hpaR gene. The OPR1 operator contains a perfect palindromic sequence overlapping the transcriptional +1 start site of the Pg promoter. The OPR2 operator shows a similar but imperfect palindromic sequence and is located far downstream of the +1 start site of the Pr promoter. The binding of HpaR to OPR2 displays a clear cooperativity with OPR1 binding. Based on the above observations and the results of permanganate footprinting experiments, a repression mechanism for HpaR is postulated. A 3-dimensional model of HpaR, generated by comparison with the crystal structures of the homologous regulators, MarR and MexR, suggests that HpaR is a dimer that contains a typical winged-helix DNA binding motif in each subunit.
Collapse
Affiliation(s)
- Beatriz Galán
- Department of Molecular Microbiology, Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain
| | | | | | | | | |
Collapse
|
24
|
Pruneda-Paz JL, Linares M, Cabrera JE, Genti-Raimondi S. TeiR, a LuxR-type transcription factor required for testosterone degradation in Comamonas testosteroni. J Bacteriol 2004; 186:1430-7. [PMID: 14973025 PMCID: PMC344414 DOI: 10.1128/jb.186.5.1430-1437.2004] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have identified a new steroid-inducible gene (designated teiR [testosterone-inducible regulator]) in Comamonas testosteroni that is required for testosterone degradation. Nucleotide sequence analysis of teiR predicts a 391-amino-acid protein which shows homology between residues 327 and 380 (C-terminal domain) to the LuxR helix-turn-helix DNA binding domain and between residues 192 and 227 to the PAS sensor domain. This domain distribution resembles that described for TraR, a specific transcriptional regulator involved in quorum sensing in Agrobacterium tumefaciens. Analysis of the gene expression indicated that teiR is tightly controlled at the transcriptional level by the presence of testosterone in the culture medium. A teiR-disrupted mutant strain was completely unable to use testosterone as the sole carbon and energy source. In addition, the expression of several steroid-inducible genes was abolished in this mutant. Northern blot assays revealed that teiR is required for full expression of sip48-beta-HSD gene mRNA (encoding a steroid-inducible protein of 48 kDa and 3beta-17beta-hydroxysteroid dehydrogenase) and also of other steroid degradation genes, including those encoding 3alpha-hydroxysteroid dehydrogenase, Delta(5)-3-ketoisomerase, 3-oxo-steroid Delta(1)-dehydrogenase, and 3-oxo-steroid Delta(4)-(5alpha)-dehydrogenase enzymes. Moreover, when teiR was provided to the teiR-disrupted strain in trans, the transcription level of these genes was restored. These results indicate that TeiR positively regulates the transcription of genes involved in the initial enzymatic steps of steroid degradation in C. testosteroni.
Collapse
Affiliation(s)
- José Luis Pruneda-Paz
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, 5000 Córdoba, Argentina
| | | | | | | |
Collapse
|
25
|
Jeong JJ, Kim JH, Kim CK, Hwang I, Lee K. 3- and 4-alkylphenol degradation pathway in Pseudomonas sp. strain KL28: genetic organization of the lap gene cluster and substrate specificities of phenol hydroxylase and catechol 2,3-dioxygenase. MICROBIOLOGY-SGM 2004; 149:3265-3277. [PMID: 14600239 DOI: 10.1099/mic.0.26628-0] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The enzymes and genes responsible for the catabolism of higher alkylphenols have not been characterized in aerobic bacteria. Pseudomonas sp. strain KL28 can utilize a wide range of alkylphenols, which include the 4-n-alkylphenols (C(1)-C(5)). The genes, designated as lap (for long-chain alkylphenols), encoding enzymes for the catabolic pathway were cloned from chromosomal DNA and sequenced. The lap genes are located in a 13.2 kb region with 14 ORFs in the order lapRBKLMNOPCEHIFG and with the same transcriptional orientation. The lapR gene is transcribed independently and encodes a member of the XylR/DmpR positive transcriptional regulators. lapB, the first gene in the lap operon, encodes catechol 2,3-dioxygenase (C23O). The lapKLMNOP and lapCEHIFG genes encode a multicomponent phenol hydroxylase (mPH) and enzymes that degrade derivatives of 2-hydroxymuconic semialdehyde (HMS) to TCA cycle intermediates, respectively. The P(lapB) promoter contains motifs at positions -24(GG) and -12(GC) which are typically found in sigma(54)-dependent promoters. A promoter assay using a P(lapB) : : gfp transcriptional fusion plasmid showed that lapB promoter activity is inducible and that it responds to a wide range of (alkyl)phenols. The structural genes encoding enzymes required for this catabolism are similar (42-69 %) to those encoded on a catabolic pVI150 plasmid from an archetypal phenol degrader, Pseudomonas sp. CF600. However, the lap locus does not include genes encoding HMS hydrolase and ferredoxin. The latter is known to be functionally associated with C23O for use of 4-alkylcatechols as substrates. The arrangement of the lap catabolic genes is not commonly found in other meta-cleavage operons. Substrate specificity studies show that mPH preferentially oxidizes 3- and 4-alkylphenols to 4-alkylcatechols. C23O preferentially oxidizes 4-alkylcatechols via proximal (2,3) cleavage. This indicates that these two key enzymes have unique substrate preferences and lead to the establishment of the initial steps of the lap pathway in strain KL28.
Collapse
Affiliation(s)
- Jae Jun Jeong
- Department of Microbiology, Changwon National University, Kyongnam 641-773, Korea
| | - Ji Hyun Kim
- Department of Microbiology, Changwon National University, Kyongnam 641-773, Korea
| | - Chi-Kyung Kim
- Department of Microbiology, Chungbuk National University, Cheongju 361-736, Korea
| | - Ingyu Hwang
- School of Agricultural Biotechnology, Seoul National University, Seoul 151-742, Korea
| | - Kyoung Lee
- Department of Microbiology, Changwon National University, Kyongnam 641-773, Korea
| |
Collapse
|
26
|
Walia S, Shi L, Khan AA, Joshi B, Chaudry GR. Sequence analysis and molecular characterization of a nitrocatechol dioxygenase gene from Pseudomonas putida. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2002; 37:379-391. [PMID: 12081029 DOI: 10.1081/pfc-120004478] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
A Pseudomonas putida capable of degrading polychlorinated biphenyl was also found to transform 4-nitrocatechol to 3-nitro-2-hydroxy-6-oxohexa-2,4-dienoic acid (NHODA). Crude cell extract of this bacterium exhibited an enzyme (nitrocatechol dioxygenase, Ndo) activity catalyzing this transformation. The gene encoding Ndo was cloned in E. coli. The cloned gene (ndo) expressed in E. coli had enzyme activity that degraded not only 4-nitrocatechol but also 4-chlorocatechol, 4-methylcatechol, 2,3-dihydroxybiphenyl, and 4'-chloro-2,3-dihydroxybiphenyl. Nucleotide sequence analysis of the cloned ndo exhibited an open reading frame of 939 base pairs. This sequence can encode a 313 amino acids protein of approximately molecular weight of 35 kd, which was confirmed by in vitro transcription and translation assay and SDS-PAGE analysis. A putative ribosomal binding site (GAGGAGA) was present 7 base pairs upstream from the AUG start codon and a promotor site homologous to E. coli '-10' and '-35' regulatory region was located at '-123' and '-174' area of our clone with sequences of TTGAAG and GTGACA, respectively. The deduced amino acid sequence showed 69% homology with Cdo from Burkholderia cepacia AAI. A unique insertion of 21 amino acids was found towards the N-terminal of the Ndo. Expression of ndo in strain OU83 was repressed in presence of 3-chlorobenzoic acid as judged by the decrease in the expression of ndo specific transcript.
Collapse
Affiliation(s)
- Satish Walia
- Department of Biological Sciences, Oakland University, Rochester, MI 48309, USA
| | | | | | | | | |
Collapse
|
27
|
Teramoto M, Ohnishi K, Harayama S, Watanabe K. An AraC/XylS family member at a high level in a hierarchy of regulators for phenol-metabolizing enzymes in Comamonas testosteroni R5. J Bacteriol 2002; 184:3941-6. [PMID: 12081966 PMCID: PMC135190 DOI: 10.1128/jb.184.14.3941-3946.2002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Comamonas testosteroni strain R5 expresses a higher level of phenol-oxygenating activity than any other bacterial strain so far characterized. The expression of the operon encoding multicomponent phenol hydroxylase (mPH), which is responsible for the phenol-oxygenating activity, is controlled by two transcriptional regulators, PhcS and PhcR, in strain R5. In this study, we identified a third transcriptional regulator for the mPH operon (PhcT) that belongs to the AraC/XylS family. While the disruption of phcT in strain R5 significantly reduced the expression of the mPH operon, it did not eliminate the expression. However, the disruption of phcT in strain R5 increased the expression of phcR. The phenol-oxygenating activity was abolished by the disruption of phcR, indicating that PhcT alone was not sufficient to activate the expression of the mPH operon. The disruption of phcS has been shown in our previous study to confer the ability of strain R5 to express the mPH operon in the absence of the genuine substrate for mPH. PhcT was not involved in the gratuitous expression. Strain R5 thus possesses a more elaborate mechanism for regulating the mPH operon expression than has been found in other bacteria.
Collapse
Affiliation(s)
- Maki Teramoto
- Marine Biotechnology Institute, Kamaishi Laboratories, Kamaishi City, Iwate 026-0001, Japan.
| | | | | | | |
Collapse
|
28
|
Rigali S, Derouaux A, Giannotta F, Dusart J. Subdivision of the helix-turn-helix GntR family of bacterial regulators in the FadR, HutC, MocR, and YtrA subfamilies. J Biol Chem 2002; 277:12507-15. [PMID: 11756427 DOI: 10.1074/jbc.m110968200] [Citation(s) in RCA: 302] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Haydon and Guest (Haydon, D. J, and Guest, J. R. (1991) FEMS Microbiol. Lett. 63, 291-295) first described the helix-turn-helix GntR family of bacterial regulators. They presented them as transcription factors sharing a similar N-terminal DNA-binding (d-b) domain, but they observed near-maximal divergence in the C-terminal effector-binding and oligomerization (E-b/O) domain. To elucidate this C-terminal heterogeneity, structural, phylogenetic, and functional analyses were performed on a family that now comprises about 270 members. Our comparative study first focused on the C-terminal E-b/O domains and next on DNA-binding domains and palindromic operator sequences, has classified the GntR members into four subfamilies that we called FadR, HutC, MocR, and YtrA. Among these subfamilies a degree of similarity of about 55% was observed throughout the entire sequence. Structure/function associations were highlighted although they were not absolutely stringent. The consensus sequences deduced for the DNA-binding domain were slightly different for each subfamily, suggesting that fusion between the D-b and E-b/O domains have occurred separately, with each subfamily having its own D-b domain ancestor. Moreover, the compilation of the known or predicted palindromic cis-acting elements has highlighted different operator sequences according to our subfamily subdivision. The observed C-terminal E-b/O domain heterogeneity was therefore reflected on the DNA-binding domain and on the cis-acting elements, suggesting the existence of a tight link between the three regions involved in the regulating process.
Collapse
Affiliation(s)
- Sébastien Rigali
- Centre d'Ingénierie des Protéines, Université de Liège, Institut de Chimie B6, Sart-Tilman, B-4000 Liège, Belgium.
| | | | | | | |
Collapse
|
29
|
Ohtsubo Y, Delawary M, Kimbara K, Takagi M, Ohta A, Nagata Y. BphS, a key transcriptional regulator of bph genes involved in polychlorinated biphenyl/biphenyl degradation in Pseudomonas sp. KKS102. J Biol Chem 2001; 276:36146-54. [PMID: 11459836 DOI: 10.1074/jbc.m100302200] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The bph genes in Pseudomonas sp. KKS102, which are involved in the degradation of polychlorinated biphenyl/biphenyl, are induced in the presence of biphenyl. In this study our goal was to understand the regulatory mechanisms involved in the inducible expression. The bph genes (bphEGF(orf4)A1A2A3BCD(orf1)A4R) constitute an operon, and its expression is strongly dependent on the pE promoter located upstream of the bphE gene. A bphS gene, whose deduced amino acid sequence showed homology with the GntR family transcriptional repressors, was identified at the upstream region of the bphE gene. Disruption of the bphS gene resulted in constitutive expression of bph genes, suggesting that the bphS gene product negatively regulated the pE promoter. The gel retardation and DNase footprinting analyses demonstrated specific binding of BphS to the pE promoter region and identified four BphS binding sites that were located within and immediately downstream of the -10 box of the pE promoter. The four binding sites were functional in repression because their respective elimination resulted in derepression of the pE promoter. The binding of BphS was abolished in the presence of 2-hydroxy-6-oxo-6-phenylhexa-2,4-dienoic acid, an intermediate compound in the biphenyl degradation pathway. We concluded that the negative regulator BphS plays a central role in the regulation of bph gene expression through its action at the pE promoter.
Collapse
Affiliation(s)
- Y Ohtsubo
- Department of Biotechnology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan.
| | | | | | | | | | | |
Collapse
|
30
|
Beltrametti F, Reniero D, Backhaus S, Hofer B. Analysis of transcription of the bph locus of Burkholderia sp. strain LB400 and evidence that the ORF0 gene product acts as a regulator of the bphA1 promoter. MICROBIOLOGY (READING, ENGLAND) 2001; 147:2169-2182. [PMID: 11495994 DOI: 10.1099/00221287-147-8-2169] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Although gene clusters for the degradation of biphenyls and polychlorobiphenyls have been extensively characterized, comparatively little is known about the regulation of their expression. In the present work, different aspects of transcription of the bph locus of the potent polychlorobiphenyl degrader Burkholderia sp. strain LB400 were investigated. An RNA blot analysis of the entire gene cluster revealed that the transcription of all genes encoding biphenyl catabolic enzymes responded similarly to the presence of biphenyl, succinate or a mixture of the two. One region of the locus, encompassing ORF0, was separately transcribed and differently regulated. A single start position was mapped for this monocistronic transcript. Synthesis of the adjacent RNA, encoding subunits of biphenyl dioxygenase, was strongly biphenyl-inducible. In this case, four major 5'-ends were mapped between 25 and 70 bp upstream of the start codon of gene bphA1. Sequence elements between approximately positions 710 and 1080 upstream were required in cis for full functioning of the respective promoter(s) (P(bphA1)). ORF0(-) mutants of strain LB400 retained the ability to grow on biphenyl, but showed decreased concentrations of bphA1A2 RNA and decreased lacZ expression in strains harbouring a reporter system with a bphA1-lacZ transcriptional fusion. This effect was compensated by the introduction of an intact ORF0 in trans, indicating that the ORF0 gene product mediates activation of P(bphA1).
Collapse
Affiliation(s)
- Fabrizio Beltrametti
- German Research Centre for Biotechnology (GBF), Department of Environmental Microbiology, Mascheroder Weg 1, D-38124 Braunschweig, Germany1
| | - Daniela Reniero
- German Research Centre for Biotechnology (GBF), Department of Environmental Microbiology, Mascheroder Weg 1, D-38124 Braunschweig, Germany1
| | - Silke Backhaus
- German Research Centre for Biotechnology (GBF), Department of Environmental Microbiology, Mascheroder Weg 1, D-38124 Braunschweig, Germany1
| | - Bernd Hofer
- German Research Centre for Biotechnology (GBF), Department of Environmental Microbiology, Mascheroder Weg 1, D-38124 Braunschweig, Germany1
| |
Collapse
|
31
|
Teramoto M, Harayama S, Watanabe K. PhcS represses gratuitous expression of phenol-metabolizing enzymes in Comamonas testosteroni R5. J Bacteriol 2001; 183:4227-34. [PMID: 11418563 PMCID: PMC95312 DOI: 10.1128/jb.183.14.4227-4234.2001] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We identified an open reading frame, designated phcS, downstream of the transcriptional activator gene (phcR) for the expression of multicomponent phenol hydroxylase (mPH) in Comamonas testosteroni R5. The deduced product of phcS was homologous to AphS of C. testosteroni TA441, which belongs to the GntR family of transcriptional regulators. The transformation of Pseudomonas aeruginosa PAO1c (phenol negative, catechol positive) with pROR502 containing phcR and the mPH genes conferred the ability to grow on phenol, while transformation with pROR504 containing phcS, phcR, and mPH genes did not confer this ability. The disruption of phcS in strain R5 had no effect on its phenol-oxygenating activity in a chemostat culture with phenol. The phenol-oxygenating activity was not expressed in strain R5 grown in a chemostat with acetate. In contrast, the phenol-oxygenating activity in the strain with a knockout phcS gene when grown in a chemostat with acetate as the limiting growth factor was 66% of that obtained in phenol-grown cells of the strain with a knockout in the phcS gene. The disruption of phcS and/or phcR and the complementation in trans of these defects confirm that PhcS is a trans-acting repressor and that the unfavorable expression of mPH in the phcS knockout cells grown on acetate requires PhcR. These results show that the PhcS protein repressed the gratuitous expression of phenol-metabolizing enzymes in the absence of the genuine substrate and that strain R5 acted by an unknown mechanism in which the PhcS-mediated repression was overcome in the presence of the pathway substrate.
Collapse
Affiliation(s)
- M Teramoto
- Marine Biotechnology Institute, Kamaishi Laboratories, Kamaishi City, Iwate 026-0001, Japan
| | | | | |
Collapse
|
32
|
Xiong G, Maser E. Regulation of the steroid-inducible 3alpha-hydroxysteroid dehydrogenase/carbonyl reductase gene in Comamonas testosteroni. J Biol Chem 2001; 276:9961-70. [PMID: 11139589 DOI: 10.1074/jbc.m010962200] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Comamonas testosteroni 3alpha-hydroxysteroid dehydrogenase/carbonyl reductase gene (hsdA) codes for an adaptive enzyme in the degradation of steroid compounds. However, no information was available on the molecular regulation of steroid-inducible genes nor on the mechanism of steroid signaling in procaryotes. We, therefore, investigated the cis- and trans-acting elements of hsdA expression to infer the mechanism of its molecular regulation by steroids. The gene was localized on a 5.257-kilobase EcoRI fragment of C. testosteroni chromosomal DNA. The promoter was characterized, and the transcriptional start site was identified. Two palindromic operator domains were found upstream of hsdA. A new gene coding for a trans-acting negative regulator (repressor A, RepA) of hsdA expression was characterized. The specific interaction between RepA, testosterone, and the operator domain is demonstrated. From our results we conclude that hsdA is under negative transcriptional control by an adjacent gene product (RepA). Accordingly, induction of hsdA by steroids in fact is a derepression, where steroidal inducers bind to the repressor, thereby preventing its binding to the hsdA operator.
Collapse
Affiliation(s)
- G Xiong
- Department of Pharmacology and Toxicology, School of Medicine, Philipps University of Marburg, Karl-von-Frisch-Strasse 1, D-35033 Marburg, Germany
| | | |
Collapse
|
33
|
Watanabe T, Inoue R, Kimura N, Furukawa K. Versatile transcription of biphenyl catabolic bph operon in Pseudomonas pseudoalcaligenes KF707. J Biol Chem 2000; 275:31016-23. [PMID: 10900199 DOI: 10.1074/jbc.m003023200] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Pseudomonas pseudoalcaligenes KF707 possesses a chromosomally encoded bph gene cluster responsible for the catabolism of biphenyl/polychlorinated biphenyls. The gene cluster consists of (orf0)bphA1A2(orf3)bphA3A4BCX0X1X2X3D. We studied the role of orf0 and transcription in the KF707 bph operon. Primer extension analyses revealed that at least as many as six transcriptional initiation sites exist upstream of orf0, bphA1, bphX0, bphX1, and bphD, including two upstream of bphD. The orf0-disruptant failed to grow on biphenyl but accumulated large amounts of the biphenyl ring meta-cleavage yellow compound (2-hydroxy-6-oxo-6-phenylhexa-2, 4-dienoate). Western blot analysis revealed that ORF0 protein is inducibly expressed in KF707 in the presence of biphenyl. Gel shift assay revealed that ORF0 directly binds to the orf0 operator region. This binding was greatly enhanced by addition of the biphenyl ring meta-cleavage yellow compound. These results indicated that orf0, bphA1A2(orf3)bphA3A4BC and bphX0X1X2X3D are independently transcribed, and that ORF0 protein belonging to the GntR family is involved in the regulation of the bph operon in KF707 and is absolutely required for the expression of orf0 and bphX0X1X2X3D.
Collapse
Affiliation(s)
- T Watanabe
- Laboratory of Applied Microbiology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Hakozaki 6-10-1 Fukuoka 812-8581, Japan
| | | | | | | |
Collapse
|
34
|
Abstract
Unraveling the complex transcriptional regulation of bacterial catabolism of aromatic pollutants is a prerequisite for engineering efficient biological systems for many biotechnological applications. A first level of regulation relies on specific regulator-promoter pairs. There have been new insights into the molecular mechanisms that regulatory proteins use to sense a given signal and to activate transcription initiation from the cognate promoters. A second level of regulation allows adjustment of the expression of the particular catabolic operons in response to the global environmental conditions of the cells, and recent findings provide some clues about the mechanisms underlying such complex regulatory checkpoints.
Collapse
Affiliation(s)
- E Díaz
- Department of Molecular Microbiology, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Velázquez 144, 28006, Madrid, Spain.
| | | |
Collapse
|
35
|
Arai H, Ohishi T, Chang MY, Kudo T. Arrangement and regulation of the genes for meta-pathway enzymes required for degradation of phenol in Comamonas testosteroni TA441. MICROBIOLOGY (READING, ENGLAND) 2000; 146 ( Pt 7):1707-1715. [PMID: 10878134 DOI: 10.1099/00221287-146-7-1707] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Comamonas testosteroni TA441 degrades phenol by a meta-cleavage pathway after the occurrence of a spontaneous mutation that derepresses the aphKLMNOPQB operon encoding phenol hydroxylase and catechol 2,3-dioxygenase, the enzymes for the initial two steps of the degradation pathway. A gene cluster, aphCEFGHJI, encoding the meta-pathway enzymes for degradation of 2-hydroxymuconic semialdehyde (HMS) to TCA cycle intermediates was found downstream of the aphK operon. The upstream operon and the downstream gene cluster were found to be separated by two open reading frames of unknown function and an oppositely oriented aphT gene, which is similar to regulatory genes for ortho-cleavage of catechol or chlorinated catechols. A promoter assay using an aphC::lacZ transcriptional fusion plasmid revealed that the aphC promoter activity is induced by both phenol and HMS. The phenol-dependent induction was mediated by AphR and the HMS-dependent induction was mediated by AphT. The aphC promoter in strain TA441 was not silenced, unlike the cases of the aphK and aphR promoters, and was highly induced by HMS.
Collapse
Affiliation(s)
- Hiroyuki Arai
- Laboratory of Microbiology, The Institute of Physical and Chemical Research (RIKEN), Hirosawa 2-1, Wako, Saitama 351-0198, Japan1
| | - Tohru Ohishi
- Laboratory of Microbiology, The Institute of Physical and Chemical Research (RIKEN), Hirosawa 2-1, Wako, Saitama 351-0198, Japan1
| | - Mee Young Chang
- Laboratory of Microbiology, The Institute of Physical and Chemical Research (RIKEN), Hirosawa 2-1, Wako, Saitama 351-0198, Japan1
| | - Toshiaki Kudo
- Laboratory of Microbiology, The Institute of Physical and Chemical Research (RIKEN), Hirosawa 2-1, Wako, Saitama 351-0198, Japan1
| |
Collapse
|
36
|
Ferrández A, García JL, Díaz E. Transcriptional regulation of the divergent paa catabolic operons for phenylacetic acid degradation in Escherichia coli. J Biol Chem 2000; 275:12214-22. [PMID: 10766858 DOI: 10.1074/jbc.275.16.12214] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The expression of the divergently transcribed paaZ and paaABCDEFGHIJK catabolic operons, which are responsible for phenylacetic acid (PA) degradation in Escherichia coli, is driven by the Pz and Pa promoters, respectively. To study the transcriptional regulation of the inducible paa catabolic genes, genetic and biochemical approaches were used. Gel retardation assays showing that the PaaX regulator binds specifically to the Pa and Pz promoters were complemented with in vivo experiments that indicated a PaaX-mediated repression effect on the expression of Pa-lacZ and Pz-lacZ reporter fusions. The region within the Pa and Pz promoters that is protected by the PaaX repressor in DNase I footprinting assays contains a conserved 15-base pair imperfect palindromic sequence motif that was shown, through mutational analysis, to be indispensable for PaaX binding and repression. PA-coenzyme A (PA-CoA), but not PA, specifically inhibited binding of PaaX to the target sequences, thus confirming the first intermediate of the pathway as the true inducer and PaaX as the only bacterial regulatory protein described so far that responds to an aryl-CoA compound. Superimposed in the specific PaaX-mediated regulation is transcriptional activation by the cAMP receptor protein and the integration host factor protein. These global regulators may adjust the transcriptional output from Pa and Pz promoters to the overall growth status of the cell.
Collapse
Affiliation(s)
- A Ferrández
- Department of Molecular Microbiology, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, 28006 Madrid, Spain
| | | | | |
Collapse
|