1
|
Owens SL, Ahmed SR, Lang RM, Stewart LE, Mori S. Natural Products That Contain Higher Homologated Amino Acids. Chembiochem 2024; 25:e202300822. [PMID: 38487927 PMCID: PMC11386549 DOI: 10.1002/cbic.202300822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 03/13/2024] [Indexed: 04/11/2024]
Abstract
This review focuses on discussing natural products (NPs) that contain higher homologated amino acids (homoAAs) in the structure as well as the proposed and characterized biosynthesis of these non-proteinogenic amino acids. Homologation of amino acids includes the insertion of a methylene group into its side chain. It is not a very common modification found in NP biosynthesis as approximately 450 homoAA-containing NPs have been isolated from four bacterial phyla (Cyanobacteria, Actinomycetota, Myxococcota, and Pseudomonadota), two fungal phyla (Ascomycota and Basidiomycota), and one animal phylum (Porifera), except for a few examples. Amino acids that are found to be homologated and incorporated in the NP structures include the following ten amino acids: alanine, arginine, cysteine, isoleucine, glutamic acid, leucine, phenylalanine, proline, serine, and tyrosine, where isoleucine, leucine, phenylalanine, and tyrosine share the comparable enzymatic pathway. Other amino acids have their individual homologation pathway (arginine, proline, and glutamic acid for bacteria), likely utilize the primary metabolic pathway (alanine and glutamic acid for fungi), or have not been reported (cysteine and serine). Despite its possible high potential in the drug discovery field, the biosynthesis of homologated amino acids has a large room to explore for future combinatorial biosynthesis and metabolic engineering purpose.
Collapse
Affiliation(s)
- Skyler L. Owens
- Department of Chemistry and Biochemistry, Augusta University, 1120 15th Street, Augusta, GA 30912
| | - Shopno R. Ahmed
- Department of Chemistry and Biochemistry, Augusta University, 1120 15th Street, Augusta, GA 30912
| | - Rebecca M. Lang
- Department of Chemistry and Biochemistry, Augusta University, 1120 15th Street, Augusta, GA 30912
| | - Laura E. Stewart
- Department of Chemistry and Biochemistry, Augusta University, 1120 15th Street, Augusta, GA 30912
| | - Shogo Mori
- Department of Chemistry and Biochemistry, Augusta University, 1120 15th Street, Augusta, GA 30912
| |
Collapse
|
2
|
Baunach M, Guljamow A, Miguel-Gordo M, Dittmann E. Harnessing the potential: advances in cyanobacterial natural product research and biotechnology. Nat Prod Rep 2024; 41:347-369. [PMID: 38088806 DOI: 10.1039/d3np00045a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
Covering: 2000 to 2023Cyanobacteria produce a variety of bioactive natural products that can pose a threat to humans and animals as environmental toxins, but also have potential for or inspire pharmaceutical use. As oxygenic phototrophs, cyanobacteria furthermore hold great promise for sustainable biotechnology. Yet, the necessary tools for exploiting their biotechnological potential have so far been established only for a few model strains of cyanobacteria, while large untapped biosynthetic resources are hidden in slow-growing cyanobacterial genera that are difficult to access by genetic techniques. In recent years, several approaches have been developed to circumvent the bottlenecks in cyanobacterial natural product research. Here, we summarize current progress that has been made in unlocking or characterizing cryptic metabolic pathways using integrated omics techniques, orphan gene cluster activation, use of genetic approaches in original producers, heterologous expression and chemo-enzymatic techniques. We are mainly highlighting genomic mining concepts and strategies towards high-titer production of cyanobacterial natural products from the last 10 years and discuss the need for further research developments in this field.
Collapse
Affiliation(s)
- Martin Baunach
- University of Potsdam, Institute of Biochemistry and Biology, Karl-Liebknecht-Str. 24/25, 14476 Potsdam, Germany.
- University of Bonn, Institute of Pharmaceutical Biology, Nußallee 6, 53115 Bonn, Germany
| | - Arthur Guljamow
- University of Potsdam, Institute of Biochemistry and Biology, Karl-Liebknecht-Str. 24/25, 14476 Potsdam, Germany.
| | - María Miguel-Gordo
- University of Potsdam, Institute of Biochemistry and Biology, Karl-Liebknecht-Str. 24/25, 14476 Potsdam, Germany.
| | - Elke Dittmann
- University of Potsdam, Institute of Biochemistry and Biology, Karl-Liebknecht-Str. 24/25, 14476 Potsdam, Germany.
| |
Collapse
|
3
|
Thetsana C, Kobayashi R, Manadee K, Kodani S. Isolation and structure determination of a new depsipeptide crocapeptin C from the myxobacterium Melittangium boletus. Nat Prod Res 2024:1-7. [PMID: 38270086 DOI: 10.1080/14786419.2024.2308719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 01/16/2024] [Indexed: 01/26/2024]
Abstract
A new cyclic depsipeptide, crocapeptin C (1), containing 3-amino-6-hydroxy-2-piperidone (Ahp) was isolated from the methanol extract of the myxobacterium Melittangium boletus. The chemical structure of crocapeptin C (1) was determined through NMR and ESI-MS analysis. The stereochemistries of the constituent amino acids in crocapeptin C (1) were determined using the advanced Marfey's method and ROESY spectrum data. Crocapeptin C (1) exhibited potent inhibitory activity against chymotrypsin with an IC50 value of 0.5 µM.
Collapse
Affiliation(s)
- Chanaphat Thetsana
- Graduate School of Science and Technology, Shizuoka University, Shizuoka, Japan
| | - Ryo Kobayashi
- Graduate School of Integrated Science and Technology, Shizuoka University, Shizuoka, Japan
| | - Kanitta Manadee
- Graduate School of Integrated Science and Technology, Shizuoka University, Shizuoka, Japan
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Shinya Kodani
- Graduate School of Science and Technology, Shizuoka University, Shizuoka, Japan
- Graduate School of Integrated Science and Technology, Shizuoka University, Shizuoka, Japan
- College of Agriculture, Academic Institute, Shizuoka University, Shizuoka, Japan
| |
Collapse
|
4
|
Mandhata CP, Bishoyi AK, Sahoo CR, Maharana S, Padhy RN. Insight to biotechnological utility of phycochemicals from cyanobacterium Anabaena sp.: An overview. Fitoterapia 2023; 169:105594. [PMID: 37343687 DOI: 10.1016/j.fitote.2023.105594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/12/2023] [Accepted: 06/17/2023] [Indexed: 06/23/2023]
Abstract
Cyanobacteria (blue-green algae) are well-known for the ability to excrete extra-cellular products, as a variety of cyanochemicals (phycocompounds) of curio with several extensive therapeutic applications. Among these phycocompound, the cyanotoxins from certain water-bloom forming taxa are toxic to biota, including crocodiles. Failure of current non-renewable source compounds in producing sustainable and non-toxic therapeutics led the urgency of discovering products from natural sources. Particularly, compounds of the filamentous N2-fixing Anabaena sp. have effective antibacterial, antifungal, antioxidant, and anticancer properties. Today, such newer compounds are the potential targets for the possible novel chemical scaffolds, suitable for mainstream-drug development cascades. Bioactive compounds of Anabaena sp. such as, anatoxins, hassallidins and phycobiliproteins have proven their inherent antibacterial, antifungal, and antineoplastic activities, respectively. Herein, the available details of the biomass production and the inherent phyco-constituents namely, alkaloids, lipids, phenols, peptides, proteins, polysaccharides, terpenoids and cyanotoxins are considered, along with geographical distributions and morphological characteristics of the cyanobacterium. The acquisitions of cyanochemicals in recent years have newly addressed several pharmaceutical aliments, and the understanding of the associated molecular interactions of phycochemicals have been considered, for plausible use in drug developments in future.
Collapse
Affiliation(s)
- Chinmayee Priyadarsani Mandhata
- Central Research Laboratory, Institute of Medical Science & SUM Hospital, Siksha O Anusandhan Deemed to be University, Bhubaneswar, 751003, Odisha, India
| | - Ajit Kumar Bishoyi
- Central Research Laboratory, Institute of Medical Science & SUM Hospital, Siksha O Anusandhan Deemed to be University, Bhubaneswar, 751003, Odisha, India
| | - Chita Ranjan Sahoo
- Central Research Laboratory, Institute of Medical Science & SUM Hospital, Siksha O Anusandhan Deemed to be University, Bhubaneswar, 751003, Odisha, India.
| | | | - Rabindra Nath Padhy
- Central Research Laboratory, Institute of Medical Science & SUM Hospital, Siksha O Anusandhan Deemed to be University, Bhubaneswar, 751003, Odisha, India.
| |
Collapse
|
5
|
Duban M, Cociancich S, Leclère V. Nonribosomal Peptide Synthesis Definitely Working Out of the Rules. Microorganisms 2022; 10:577. [PMID: 35336152 PMCID: PMC8949500 DOI: 10.3390/microorganisms10030577] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/02/2022] [Accepted: 03/03/2022] [Indexed: 12/04/2022] Open
Abstract
Nonribosomal peptides are microbial secondary metabolites exhibiting a tremendous structural diversity and a broad range of biological activities useful in the medical and agro-ecological fields. They are built up by huge multimodular enzymes called nonribosomal peptide synthetases. These synthetases are organized in modules constituted of adenylation, thiolation, and condensation core domains. As such, each module governs, according to the collinearity rule, the incorporation of a monomer within the growing peptide. The release of the peptide from the assembly chain is finally performed by a terminal core thioesterase domain. Secondary domains with modifying catalytic activities such as epimerization or methylation are sometimes included in the assembly lines as supplementary domains. This assembly line structure is analyzed by bioinformatics tools to predict the sequence and structure of the final peptides according to the sequence of the corresponding synthetases. However, a constantly expanding literature unravels new examples of nonribosomal synthetases exhibiting very rare domains and noncanonical organizations of domains and modules, leading to several amazing strategies developed by microorganisms to synthesize nonribosomal peptides. In this review, through several examples, we aim at highlighting these noncanonical pathways in order for the readers to perceive their complexity.
Collapse
Affiliation(s)
- Matthieu Duban
- Université de Lille, Université de Liège, UMRT 1158 BioEcoAgro, Métabolites Secondaires d’origine Microbienne, Institut Charles Viollette, F-59000 Lille, France;
| | - Stéphane Cociancich
- CIRAD, UMR PHIM, F-34398 Montpellier, France;
- PHIM, Université Montpellier, CIRAD, INRAE, Institut Agro, IRD, F-34398 Montpellier, France
| | - Valérie Leclère
- Université de Lille, Université de Liège, UMRT 1158 BioEcoAgro, Métabolites Secondaires d’origine Microbienne, Institut Charles Viollette, F-59000 Lille, France;
| |
Collapse
|
6
|
Chen M, Xu C, Wang X, Wu Y, Li L. Nonribosomal peptide synthetases and nonribosomal cyanopeptides synthesis in Microcystis: A comparative genomics study. ALGAL RES 2021. [DOI: 10.1016/j.algal.2021.102432] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
7
|
Eusebio N, Rego A, Glasser NR, Castelo-Branco R, Balskus EP, Leão PN. Distribution and diversity of dimetal-carboxylate halogenases in cyanobacteria. BMC Genomics 2021; 22:633. [PMID: 34461836 PMCID: PMC8406957 DOI: 10.1186/s12864-021-07939-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 08/14/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Halogenation is a recurring feature in natural products, especially those from marine organisms. The selectivity with which halogenating enzymes act on their substrates renders halogenases interesting targets for biocatalyst development. Recently, CylC - the first predicted dimetal-carboxylate halogenase to be characterized - was shown to regio- and stereoselectively install a chlorine atom onto an unactivated carbon center during cylindrocyclophane biosynthesis. Homologs of CylC are also found in other characterized cyanobacterial secondary metabolite biosynthetic gene clusters. Due to its novelty in biological catalysis, selectivity and ability to perform C-H activation, this halogenase class is of considerable fundamental and applied interest. The study of CylC-like enzymes will provide insights into substrate scope, mechanism and catalytic partners, and will also enable engineering these biocatalysts for similar or additional C-H activating functions. Still, little is known regarding the diversity and distribution of these enzymes. RESULTS In this study, we used both genome mining and PCR-based screening to explore the genetic diversity of CylC homologs and their distribution in bacteria. While we found non-cyanobacterial homologs of these enzymes to be rare, we identified a large number of genes encoding CylC-like enzymes in publicly available cyanobacterial genomes and in our in-house culture collection of cyanobacteria. Genes encoding CylC homologs are widely distributed throughout the cyanobacterial tree of life, within biosynthetic gene clusters of distinct architectures (combination of unique gene groups). These enzymes are found in a variety of biosynthetic contexts, which include fatty-acid activating enzymes, type I or type III polyketide synthases, dialkylresorcinol-generating enzymes, monooxygenases or Rieske proteins. Our study also reveals that dimetal-carboxylate halogenases are among the most abundant types of halogenating enzymes in the phylum Cyanobacteria. CONCLUSIONS Our data show that dimetal-carboxylate halogenases are widely distributed throughout the Cyanobacteria phylum and that BGCs encoding CylC homologs are diverse and mostly uncharacterized. This work will help guide the search for new halogenating biocatalysts and natural product scaffolds.
Collapse
Affiliation(s)
- Nadia Eusebio
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Matosinhos, Portugal
| | - Adriana Rego
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Matosinhos, Portugal
| | - Nathaniel R Glasser
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
| | - Raquel Castelo-Branco
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Matosinhos, Portugal
| | - Emily P Balskus
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA.
| | - Pedro N Leão
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Matosinhos, Portugal.
| |
Collapse
|
8
|
Kresna IDM, Linares-Otoya L, Milzarek T, Duell ER, Mir Mohseni M, Mettal U, König GM, Gulder TAM, Schäberle TF. In vitro characterization of 3-chloro-4-hydroxybenzoic acid building block formation in ambigol biosynthesis. Org Biomol Chem 2021; 19:2302-2311. [PMID: 33629091 DOI: 10.1039/d0ob02372h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The cyanobacterium Fischerella ambigua is a natural producer of polychlorinated aromatic compounds, the ambigols A-E. The biosynthetic gene cluster (BGC) of these highly halogenated triphenyls has been recently identified by heterologous expression. It consists of 10 genes named ab1-10. Two of the encoded enzymes, i.e. Ab2 and Ab3, were identified by in vitro and in vivo assays as cytochrome P450 enzymes responsible for biaryl and biaryl ether formation. The key substrate for these P450 enzymes is 2,4-dichlorophenol, which in turn is derived from the precursor 3-chloro-4-hydroxybenzoic acid. Here, the biosynthetic steps leading towards 3-chloro-4-hydroxybenzoic acid were investigated by in vitro assays. Ab7, an isoenzyme of a 3-deoxy-7-phosphoheptulonate (DAHP) synthase, is involved in chorismate biosynthesis by the shikimate pathway. Chorismate in turn is further converted by a dedicated chorismate lyase (Ab5) yielding 4-hydroxybenzoic acid (4-HBA). The stand alone adenylation domain Ab6 is necessary to activate 4-HBA, which is subsequently tethered to the acyl carrier protein (ACP) Ab8. The Ab8 bound substrate is chlorinated by Ab10 in meta position yielding 3-Cl-4-HBA, which is then transfered by the condensation (C) domain to the peptidyl carrier protein and released by the thioesterase (TE) domain of Ab9. The released product is then expected to be the dedicated substrate of the halogenase Ab1 producing the monomeric ambigol building block 2,4-dichlorophenol.
Collapse
Affiliation(s)
- I Dewa Made Kresna
- Institute for Insect Biotechnology, Justus Liebig University of Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany. and Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, Ohlebergsweg 12, 35392 Giessen, Germany
| | - Luis Linares-Otoya
- Institute for Insect Biotechnology, Justus Liebig University of Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany. and Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, Ohlebergsweg 12, 35392 Giessen, Germany
| | - Tobias Milzarek
- Biosystems Chemistry, Department of Chemistry and Center for Integrated Protein Science Munich (CIPSM), Technical University of Munich, Lichtenbergstraße 4, 85748 Garching, Germany
| | - Elke R Duell
- Biosystems Chemistry, Department of Chemistry and Center for Integrated Protein Science Munich (CIPSM), Technical University of Munich, Lichtenbergstraße 4, 85748 Garching, Germany and Institute for Infectious Diseases and Zoonoses, Ludwig-Maximilians-University Munich, Veterinärstraße 13, 80539 Munich, Germany
| | - Mahsa Mir Mohseni
- Institute for Pharmaceutical Biology, University of Bonn, Nußallee 6, 53115 Bonn, Germany and Kinderklinik, Hämatologisch-Onkologisches, Universitätsklinikum Bonn (AöR), Venusberg-Campus 1, Geb. 31, 53127 Bonn, Germany
| | - Ute Mettal
- Institute for Insect Biotechnology, Justus Liebig University of Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany. and Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, Ohlebergsweg 12, 35392 Giessen, Germany
| | - Gabriele M König
- Institute for Pharmaceutical Biology, University of Bonn, Nußallee 6, 53115 Bonn, Germany
| | - Tobias A M Gulder
- Biosystems Chemistry, Department of Chemistry and Center for Integrated Protein Science Munich (CIPSM), Technical University of Munich, Lichtenbergstraße 4, 85748 Garching, Germany and Chair of Technical Biochemistry, Technische Universität Dresden, Bergstraße 66, 01062 Dresden, Germany
| | - Till F Schäberle
- Institute for Insect Biotechnology, Justus Liebig University of Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany. and Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, Ohlebergsweg 12, 35392 Giessen, Germany
| |
Collapse
|
9
|
McDonald K, Renaud JB, Pick FR, Miller JD, Sumarah MW, McMullin DR. Diagnostic Fragmentation Filtering for Cyanopeptolin Detection. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2021; 40:1087-1097. [PMID: 33238037 DOI: 10.1002/etc.4941] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 10/25/2020] [Accepted: 11/20/2020] [Indexed: 06/11/2023]
Abstract
Cyanobacteria are ubiquitous photosynthetic prokaryotes that produce structurally diverse bioactive metabolites. Although microcystins are extensively studied, other cyanopeptides produced by common bloom-forming species have received little attention. Cyanopeptolins are a large cyanopeptide group that contain a characteristic 3-amino-6-hydroxy-2-piperidone (Ahp) moiety. In the present study we used diagnostic fragmentation filtering (DFF), a semitargeted liquid chromatography-tandem mass spectrometry (MS/MS) product ion filtering approach, to investigate cyanopeptolin diversity from 5 Microcystis strains and 4 bloom samples collected from lakes in Ontario and Quebec, Canada. Data processing by DFF was used to search MS/MS data sets for pairs of diagnostic product ions corresponding to cyanopeptolin partial sequences. For example, diagnostic product ions at m/z 150.0912 and 215.1183 identified cyanopeptolins with the NMe-Tyr-Phe-Ahp partial sequence. Forty-eight different cyanopeptolins, including 35 new variants, were detected from studied strains and bloom samples. Different cyanopeptolin profiles were identified from each sample. We detected a new compound, cyanopeptolin 1143, from a bloom and elucidated its planar structure from subsequent targeted MS/MS experiments. Diagnostic fragmentation filtering is a rapid, easy-to-perform postacquisition metabolomics strategy for inferring structural features and prioritizing new compounds for further study and dereplication. More work on cyanopeptolin occurrence and toxicity is needed because their concentrations in freshwater lakes after blooms can be similar to those of microcystins. Environ Toxicol Chem 2021;40:1087-1097. © 2020 SETAC.
Collapse
Affiliation(s)
| | - Justin B Renaud
- London Research and Development Center, Agriculture and Agri-Food Canada, London, Ontario, Canada
| | - Frances R Pick
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - J David Miller
- Department of Chemistry, Carleton University, Ottawa, Ontario, Canada
| | - Mark W Sumarah
- London Research and Development Center, Agriculture and Agri-Food Canada, London, Ontario, Canada
| | - David R McMullin
- Department of Chemistry, Carleton University, Ottawa, Ontario, Canada
| |
Collapse
|
10
|
Dreher TW, Davis EW, Mueller RS, Otten TG. Comparative genomics of the ADA clade within the Nostocales. HARMFUL ALGAE 2021; 104:102037. [PMID: 34023075 DOI: 10.1016/j.hal.2021.102037] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 04/14/2021] [Accepted: 04/23/2021] [Indexed: 06/12/2023]
Abstract
The ADA clade of Nostocales cyanobacteria, a group that is prominent in current harmful algal bloom events, now includes over 40 genome sequences with the recent addition of sixteen novel sequenced genomes (Dreher et al., Harmful Algae, 2021). Fourteen genomes are complete (closed), enabling highly detailed assessments of gene content and genome architecture. ADA genomes contain 5 rRNA operons, genes expected to support a photoautotrophic and diazotrophic lifestyle, and a varied array of genes for the synthesis of bioactive secondary metabolites. Genes for the production of the taste-and-odor compound geosmin and the four major classes of cyanotoxins - anatoxin-a, cylindrospermopsin, microcystin and saxitoxin - are represented in members of the ADA clade. Notably, the gene array for the synthesis of cylindrospermopsin by Dolichospermum sp. DET69 was located on a plasmid, raising the possibility of facile horizontal transmission. However, genes supporting independent conjugative transfer of this plasmid are lacking. Further, analysis of genomic loci containing this and other cyanotoxin gene arrays shows evidence that these arrays have long-term stability and do not appear to be genomic islands easily capable of horizontal transmission to other cells. There is considerable diversity in the gene complements of individual ADA genomes, including the variable presence of physiologically important genes: genomes in three species-level subclades lack the gas vesicle genes that facilitate a planktonic lifestyle, and, surprisingly, the genome of Cuspidothrix issatschenkoi CHARLIE-1, a reported diazotroph, lacks the genes for nitrogen fixation. Notably, phylogenetically related genomes possess limited synteny, indicating a prominent role for chromosome rearrangements during ADA strain evolution. The genomes contain abundant insertion sequences and repetitive transposase genes, which could be the main drivers of genome rearrangement through active transposition and homologous recombination. No prophages were found, and no evidence of viral infection was observed in the bloom population samples from which the genomes discussed here were derived. Phages thus seem to have a limited influence on ADA evolution.
Collapse
Affiliation(s)
- Theo W Dreher
- Department of Microbiology, Oregon State University, Corvallis, Oregon 97331 USA; Center for Genome Research and Biocomputing, Oregon State University, Corvallis, Oregon 97331 USA.
| | - Edward W Davis
- Center for Genome Research and Biocomputing, Oregon State University, Corvallis, Oregon 97331 USA
| | - Ryan S Mueller
- Department of Microbiology, Oregon State University, Corvallis, Oregon 97331 USA
| | - Timothy G Otten
- Department of Microbiology, Oregon State University, Corvallis, Oregon 97331 USA.
| |
Collapse
|
11
|
Köcher S, Resch S, Kessenbrock T, Schrapp L, Ehrmann M, Kaiser M. From dolastatin 13 to cyanopeptolins, micropeptins, and lyngbyastatins: the chemical biology of Ahp-cyclodepsipeptides. Nat Prod Rep 2021; 37:163-174. [PMID: 31451830 DOI: 10.1039/c9np00033j] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Covering: 1989 up to 2019 Ahp-cyclodepsipeptides (also known as Ahp-containing cyclodepsipeptides, cyanopeptolins, micropeptins, microginines, and lyngbyastatins, and by many other names) are a family of non-ribosomal peptide synthesis (NRPS)-derived natural products with potent serine protease inhibitory properties. Here, we review their isolation and structural elucidation from natural sources as well as studies of their biosynthesis, molecular mode of action, and use in drug discovery efforts. Accordingly, this summary aims to provide a comprehensive overview of the current state-of-the-art Ahp-cyclodepsipeptide research.
Collapse
Affiliation(s)
- Steffen Köcher
- Chemical Biology, Zentrum für Medizinische Biotechnologie (ZMB), Faculty of Biology, Universität Duisburg-Essen, Universitätsstr. 2, 45117 Essen, Germany.
| | - Sarah Resch
- Chemical Biology, Zentrum für Medizinische Biotechnologie (ZMB), Faculty of Biology, Universität Duisburg-Essen, Universitätsstr. 2, 45117 Essen, Germany.
| | - Till Kessenbrock
- Chemical Biology, Zentrum für Medizinische Biotechnologie (ZMB), Faculty of Biology, Universität Duisburg-Essen, Universitätsstr. 2, 45117 Essen, Germany.
| | - Lukas Schrapp
- Chemical Biology, Zentrum für Medizinische Biotechnologie (ZMB), Faculty of Biology, Universität Duisburg-Essen, Universitätsstr. 2, 45117 Essen, Germany.
| | - Michael Ehrmann
- Microbiology, Zentrum für Medizinische Biotechnologie (ZMB), Faculty of Biology, Universität Duisburg-Essen, Universitätsstr. 2, 45117 Essen, Germany
| | - Markus Kaiser
- Chemical Biology, Zentrum für Medizinische Biotechnologie (ZMB), Faculty of Biology, Universität Duisburg-Essen, Universitätsstr. 2, 45117 Essen, Germany.
| |
Collapse
|
12
|
Zhang Z, Fan X, Peijnenburg WJGM, Zhang M, Sun L, Zhai Y, Yu Q, Wu J, Lu T, Qian H. Alteration of dominant cyanobacteria in different bloom periods caused by abiotic factors and species interactions. J Environ Sci (China) 2021; 99:1-9. [PMID: 33183685 DOI: 10.1016/j.jes.2020.06.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 05/27/2020] [Accepted: 06/03/2020] [Indexed: 06/11/2023]
Abstract
Freshwater cyanobacterial blooms have drawn public attention because they threaten the safety of water resources and human health worldwide. Heavy cyanobacterial blooms outbreak in Lake Taihu in summer annually and vanish in other months. To find out the factors impacting the cyanobacterial blooms, the present study measured the physicochemical parameters of water and investigated the composition of microbial community using the 16S rRNA gene and internal transcribed spacer amplicon sequencing in the months with or without bloom. The most interesting finding is that two major cyanobacteria, Planktothrix and Microcystis, dramatically alternated during a cyanobacterial bloom in 2016, which is less mentioned in previous studies. When the temperature of the water began increasing in July, Planktothrix appeared first and showed as a superior competitor for M. aeruginosa in NO3--rich conditions. Microcystis became the dominant genus when the water temperature increased further in August. Laboratory experiments confirmed the influence of temperature and the total dissolved nitrogen (TDN) form on the growth of Planktothrix and Microcystis in a co-culture system. Besides, species interactions between cyanobacteria and non-cyanobacterial microorganisms, especially the prokaryotes, also played a key role in the alteration of Planktothrix and Microcystis. The present study exhibited the alteration of two dominant cyanobacteria in the different bloom periods caused by the temperature, TDN forms as well as the species interactions. These results helped the better understanding of cyanobacterial blooms and the factors which contribute to them.
Collapse
Affiliation(s)
- Zhenyan Zhang
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, China
| | - Xiaoji Fan
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - W J G M Peijnenburg
- Institute of Environmental Sciences (CML), Leiden University, 2300 RA, Leiden, the Netherlands; National Institute of Public Health and the Environment (RIVM), Center for Safety of Substances and Products, P.O. Box 1, Bilthoven, the Netherlands
| | - Meng Zhang
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, China
| | - Liwei Sun
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, China
| | - Yujia Zhai
- Institute of Environmental Sciences (CML), Leiden University, 2300 RA, Leiden, the Netherlands
| | - Qi Yu
- Institute of Environmental Sciences (CML), Leiden University, 2300 RA, Leiden, the Netherlands
| | - Juan Wu
- Institute of Environmental Sciences (CML), Leiden University, 2300 RA, Leiden, the Netherlands
| | - Tao Lu
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, China
| | - Haifeng Qian
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, China.
| |
Collapse
|
13
|
Shimura Y, Fujisawa T, Hirose Y, Misawa N, Kanesaki Y, Nakamura Y, Kawachi M. Complete sequence and structure of the genome of the harmful algal bloom-forming cyanobacterium Planktothrix agardhii NIES-204 T and detailed analysis of secondary metabolite gene clusters. HARMFUL ALGAE 2021; 101:101942. [PMID: 33526179 DOI: 10.1016/j.hal.2020.101942] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 10/31/2020] [Accepted: 11/03/2020] [Indexed: 06/12/2023]
Abstract
Planktothrix species are distributed worldwide, and these prevalent cyanobacteria occasionally form potentially devastating toxic blooms. Given the ecological and taxonomic importance of Planktothrix agardhii as a bloom species, we set out to determine the complete genome sequence of the type strain Planktothrix agardhii NIES-204. Remarkably, we found that the 5S ribosomal RNA genes are not adjacent to the 16S and 23S ribosomal RNA genes. The genomic structure of P. agardhii NIES-204 is highly similar to that of another P. agardhii strain isolated from a geographically distant site, although they differ distinctly by a large inversion. We identified numerous gene clusters that encode the components of the metabolic pathways that generate secondary metabolites. We found that the aeruginosin biosynthetic gene cluster was more similar to that of another toxic bloom-forming cyanobacterium Microcystis aeruginosa than to that of other strains of Planktothrix, suggesting horizontal gene transfer. Prenyltransferases encoded in the prenylagaramide gene cluster of Planktothrix strains were classified into two phylogenetically distinct types, suggesting a functional difference. In addition to the secondary metabolite gene clusters, we identified genes for inorganic nitrogen and phosphate uptake components and gas vesicles. Our findings contribute to further understanding of the ecologically important genus Planktothrix.
Collapse
Affiliation(s)
- Yohei Shimura
- Center for Environmental Biology and Ecosystem Studies, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506, Japan.
| | - Takatomo Fujisawa
- Center for Information Biology, National Institute of Genetics, Research Organization of Information and Systems, 1111 Yata, Mishima, Shizuoka 411-8540, Japan
| | - Yuu Hirose
- Department of Applied Chemistry and Life Science, Toyohashi University of Technology, Hibarigaoka 1-1, Tempaku, Toyohashi, Aichi 441-8580, Japan
| | - Naomi Misawa
- Department of Applied Chemistry and Life Science, Toyohashi University of Technology, Hibarigaoka 1-1, Tempaku, Toyohashi, Aichi 441-8580, Japan
| | - Yu Kanesaki
- Research Institute of Green Science and Technology, Shizuoka University, 836 Ohya, Suruga, Shizuoka, 422-8529, Japan
| | - Yasukazu Nakamura
- Center for Information Biology, National Institute of Genetics, Research Organization of Information and Systems, 1111 Yata, Mishima, Shizuoka 411-8540, Japan
| | - Masanobu Kawachi
- Center for Environmental Biology and Ecosystem Studies, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506, Japan
| |
Collapse
|
14
|
Wang F, Gao Y, Yang G. Recent advances in synthetic biology of cyanobacteria for improved chemicals production. Bioengineered 2020; 11:1208-1220. [PMID: 33124500 PMCID: PMC8291842 DOI: 10.1080/21655979.2020.1837458] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Cyanobacteria are Gram-negative photoautotrophic prokaryotes and have shown great importance to the Earth’s ecology. Based on their capability in oxygenic photosynthesis and genetic merits, they can be engineered as microbial chassis for direct conversion of carbon dioxide to value-added biofuels and chemicals. In the last decades, attempts have given to the application of synthetic biology tools and approaches in the development of cyanobacterial cell factories. Despite the successful proof-of-principle studies, large-scale application is still a technical challenge due to low yields of bioproducts. Therefore, recent efforts are underway to characterize and develop genetic regulatory parts and strategies for the synthetic biology applications in cyanobacteria. In this review, we present the recent advancements and application in cyanobacterial synthetic biology toolboxes. We also discuss the limitations and future perspectives for using such novel tools in cyanobacterial biotechnology.
Collapse
Affiliation(s)
- Fen Wang
- Department of Surgery, College of Medicine, University of Florida , Gainesville, FL, USA
| | - Yuanyuan Gao
- Jining Academy of Agricultural Science , Jining, Shandong, China
| | - Guang Yang
- Department of Aging and Geriatric Research, Institute on Aging, University of Florida , Gainesville, FL, USA
| |
Collapse
|
15
|
Lundy TA, Mori S, Garneau-Tsodikova S. A thorough analysis and categorization of bacterial interrupted adenylation domains, including previously unidentified families. RSC Chem Biol 2020; 1:233-250. [PMID: 34458763 PMCID: PMC8341866 DOI: 10.1039/d0cb00092b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 08/04/2020] [Indexed: 11/25/2022] Open
Abstract
Interrupted adenylation (A) domains are key to the immense structural diversity seen in the nonribosomal peptide (NRP) class of natural products (NPs). Interrupted A domains are A domains that contain within them the catalytic portion of another domain, most commonly a methylation (M) domain. It has been well documented that methylation events occur with extreme specificity on either the backbone (N-) or side chain (O- or S-) of the amino acid (or amino acid-like) building blocks of NRPs. Here, through taxonomic and phylogenetic analyses as well as multiple sequence alignments, we evaluated the similarities and differences between interrupted A domains. We probed their taxonomic distribution amongst bacterial organisms, their evolutionary relatedness, and described conserved motifs of each type of M domain found to be embedded in interrupted A domains. Additionally, we categorized interrupted A domains and the M domains within them into a total of seven distinct families and six different types, respectively. The families of interrupted A domains include two new families, 6 and 7, that possess new architectures. Rather than being interrupted between the previously described a2–a3 or a8–a9 of the ten conserved A domain sequence motifs (a1–a10), family 6 contains an M domain between a6–a7, a previously unknown interruption site. Family 7 demonstrates that di-interrupted A domains exist in Nature, containing an M domain between a2–a3 as well as one between a6–a7, displaying a novel arrangement. These in-depth investigations of amino acid sequences deposited in the NCBI database highlighted the prevalence of interrupted A domains in bacterial organisms, with each family of interrupted A domains having a different taxonomic distribution. They also emphasized the importance of utilizing a broad range of bacteria for NP discovery. Categorization of the families of interrupted A domains and types of M domains allowed for a better understanding of the trends of naturally occurring interrupted A domains, which illuminated patterns and insights on how to harness them for future engineering studies. In-depth study of intriguing bacterial interrupted adenylation domains from seven distinct families and six different types.![]()
Collapse
Affiliation(s)
- Taylor A Lundy
- University of Kentucky, Department of Pharmaceutical Sciences, College of Pharmacy Lexington KY 40536-0596 USA
| | - Shogo Mori
- University of Kentucky, Department of Pharmaceutical Sciences, College of Pharmacy Lexington KY 40536-0596 USA
| | - Sylvie Garneau-Tsodikova
- University of Kentucky, Department of Pharmaceutical Sciences, College of Pharmacy Lexington KY 40536-0596 USA
| |
Collapse
|
16
|
Lundy TA, Mori S, Thamban Chandrika N, Garneau-Tsodikova S. Characterization of a Unique Interrupted Adenylation Domain That Can Catalyze Three Reactions. ACS Chem Biol 2020; 15:282-289. [PMID: 31887013 DOI: 10.1021/acschembio.9b00929] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Interrupted adenylation (A) domains contain auxiliary domains within their structure and are a subject of growing interest in the field of nonribosomal peptide biosynthesis. They have been shown to possess intriguing functions and structure as well as promising engineering potential. Here, we present the characterization of an unprecedented type of interrupted A domain from the columbamides biosynthetic pathway, ColG(AMsMbA). This interrupted A domain contains two back-to-back methylation (M) domains within the same interruption site in the A domain, whereas previously, naturally occurring reported and characterized interrupted A domains harbored only one M domain. By a series of radiometric and mass spectrometry assays, we show that the first and second M domains site specifically methylate the side-chain oxygen and backbone nitrogen of l-Ser after the substrate is transferred onto a carrier thiolation domain, ColG(T). This is the first reported characterization of a dimethylating back-to-back interrupted A domain. The insights gained by this work lay the foundation for future combinatorial biosynthesis of site specifically methylated nonribosomal peptides.
Collapse
Affiliation(s)
- Taylor A. Lundy
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536-0596, United States
| | - Shogo Mori
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536-0596, United States
| | - Nishad Thamban Chandrika
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536-0596, United States
| | - Sylvie Garneau-Tsodikova
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536-0596, United States
| |
Collapse
|
17
|
Oleksak P, Gonda J, Nepovimova E, Kuca K, Musilek K. The oxazolomycin family: a review of current knowledge. RSC Adv 2020; 10:40745-40794. [PMID: 35519217 PMCID: PMC9057759 DOI: 10.1039/d0ra08396h] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 10/25/2020] [Indexed: 12/19/2022] Open
Abstract
Oxazolomycin A and neooxazolomycin were firstly isolated in 1985 by the group of Uemura et al. from the Streptomyces sp. bacteria.
Collapse
Affiliation(s)
- Patrik Oleksak
- University of Hradec Kralove
- Faculty of Science
- Department of Chemistry
- Hradec Kralove
- Czech Republic
| | - Jozef Gonda
- Pavol Jozef Safarik University
- Faculty of Science
- Department of Organic Chemistry
- Kosice
- Slovak Republic
| | - Eugenie Nepovimova
- University of Hradec Kralove
- Faculty of Science
- Department of Chemistry
- Hradec Kralove
- Czech Republic
| | - Kamil Kuca
- University of Hradec Kralove
- Faculty of Science
- Department of Chemistry
- Hradec Kralove
- Czech Republic
| | - Kamil Musilek
- University of Hradec Kralove
- Faculty of Science
- Department of Chemistry
- Hradec Kralove
- Czech Republic
| |
Collapse
|
18
|
Shishido TK, Popin RV, Jokela J, Wahlsten M, Fiore MF, Fewer DP, Herfindal L, Sivonen K. Dereplication of Natural Products with Antimicrobial and Anticancer Activity from Brazilian Cyanobacteria. Toxins (Basel) 2019; 12:E12. [PMID: 31878347 PMCID: PMC7020483 DOI: 10.3390/toxins12010012] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 12/20/2019] [Accepted: 12/21/2019] [Indexed: 12/19/2022] Open
Abstract
Cyanobacteria are photosynthetic organisms that produce a large diversity of natural products with interesting bioactivities for biotechnological and pharmaceutical applications. Cyanobacterial extracts exhibit toxicity towards other microorganisms and cancer cells and, therefore, represent a source of potentially novel natural products for drug discovery. We tested 62 cyanobacterial strains isolated from various Brazilian biomes for antileukemic and antimicrobial activities. Extracts from 39 strains induced selective apoptosis in acute myeloid leukemia (AML) cancer cell lines. Five of these extracts also exhibited antifungal and antibacterial activities. Chemical and dereplication analyses revealed the production of nine known natural products. Natural products possibly responsible for the observed bioactivities and five unknown, chemically related chlorinated compounds present only in Brazilian cyanobacteria were illustrated in a molecular network. Our results provide new information on the vast biosynthetic potential of cyanobacteria isolated from Brazilian environments.
Collapse
Affiliation(s)
- Tania Keiko Shishido
- Department of Microbiology, University of Helsinki, Viikinkaari 9, FI-00014 Helsinki, Finland; (T.K.S.); (R.V.P.); (J.J.); (M.W.); (D.P.F.)
- Institute of Biotechnology, University of Helsinki, Viikinkaari 5D, FI-00014 Helsinki, Finland
| | - Rafael Vicentini Popin
- Department of Microbiology, University of Helsinki, Viikinkaari 9, FI-00014 Helsinki, Finland; (T.K.S.); (R.V.P.); (J.J.); (M.W.); (D.P.F.)
| | - Jouni Jokela
- Department of Microbiology, University of Helsinki, Viikinkaari 9, FI-00014 Helsinki, Finland; (T.K.S.); (R.V.P.); (J.J.); (M.W.); (D.P.F.)
| | - Matti Wahlsten
- Department of Microbiology, University of Helsinki, Viikinkaari 9, FI-00014 Helsinki, Finland; (T.K.S.); (R.V.P.); (J.J.); (M.W.); (D.P.F.)
| | - Marli Fatima Fiore
- Center for Nuclear Energy in Agriculture, University of São Paulo, Avenida Centenário 303, 13400-970 Piracicaba, São Paulo, Brazil;
| | - David P. Fewer
- Department of Microbiology, University of Helsinki, Viikinkaari 9, FI-00014 Helsinki, Finland; (T.K.S.); (R.V.P.); (J.J.); (M.W.); (D.P.F.)
| | - Lars Herfindal
- Centre for Pharmacy, Department of Clinical Science, University of Bergen, P.O. Box 7804, 5020 Bergen, Norway;
| | - Kaarina Sivonen
- Department of Microbiology, University of Helsinki, Viikinkaari 9, FI-00014 Helsinki, Finland; (T.K.S.); (R.V.P.); (J.J.); (M.W.); (D.P.F.)
| |
Collapse
|
19
|
Huang IS, Zimba PV. Cyanobacterial bioactive metabolites-A review of their chemistry and biology. HARMFUL ALGAE 2019; 86:139-209. [PMID: 31358273 DOI: 10.1016/j.hal.2019.05.001] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 09/14/2018] [Accepted: 11/16/2018] [Indexed: 06/10/2023]
Abstract
Cyanobacterial blooms occur when algal densities exceed baseline population concentrations. Cyanobacteria can produce a large number of secondary metabolites. Odorous metabolites affect the smell and flavor of aquatic animals, whereas bioactive metabolites cause a range of lethal and sub-lethal effects in plants, invertebrates, and vertebrates, including humans. Herein, the bioactivity, chemistry, origin, and biosynthesis of these cyanobacterial secondary metabolites were reviewed. With recent revision of cyanobacterial taxonomy by Anagnostidis and Komárek as part of the Süβwasserflora von Mitteleuropa volumes 19(1-3), names of many cyanobacteria that produce bioactive compounds have changed, thereby confusing readers. The original and new nomenclature are included in this review to clarify the origins of cyanobacterial bioactive compounds. Due to structural similarity, the 157 known bioactive classes produced by cyanobacteria have been condensed to 55 classes. This review will provide a basis for more formal procedures to adopt a logical naming system. This review is needed for efficient management of water resources to understand, identify, and manage cyanobacterial harmful algal bloom impacts.
Collapse
Affiliation(s)
- I-Shuo Huang
- Center for Coastal Studies, Texas A&M University-Corpus Christi, 6300 Ocean Drive, Corpus Christi, TX 78412, USA.
| | - Paul V Zimba
- Center for Coastal Studies, Texas A&M University-Corpus Christi, 6300 Ocean Drive, Corpus Christi, TX 78412, USA
| |
Collapse
|
20
|
Huang IS, Zimba PV. Cyanobacterial bioactive metabolites-A review of their chemistry and biology. HARMFUL ALGAE 2019; 83:42-94. [PMID: 31097255 DOI: 10.1016/j.hal.2018.11.008] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 09/14/2018] [Accepted: 11/16/2018] [Indexed: 06/09/2023]
Abstract
Cyanobacterial blooms occur when algal densities exceed baseline population concentrations. Cyanobacteria can produce a large number of secondary metabolites. Odorous metabolites affect the smell and flavor of aquatic animals, whereas bioactive metabolites cause a range of lethal and sub-lethal effects in plants, invertebrates, and vertebrates, including humans. Herein, the bioactivity, chemistry, origin, and biosynthesis of these cyanobacterial secondary metabolites were reviewed. With recent revision of cyanobacterial taxonomy by Anagnostidis and Komárek as part of the Süβwasserflora von Mitteleuropa volumes 19(1-3), names of many cyanobacteria that produce bioactive compounds have changed, thereby confusing readers. The original and new nomenclature are included in this review to clarify the origins of cyanobacterial bioactive compounds. Due to structural similarity, the 157 known bioactive classes produced by cyanobacteria have been condensed to 55 classes. This review will provide a basis for more formal procedures to adopt a logical naming system. This review is needed for efficient management of water resources to understand, identify, and manage cyanobacterial harmful algal bloom impacts.
Collapse
Affiliation(s)
- I-Shuo Huang
- Center for Coastal Studies, Texas A&M University Corpus Christi, 6300 Ocean Drive, Corpus Christi, TX 78412, USA.
| | - Paul V Zimba
- Center for Coastal Studies, Texas A&M University Corpus Christi, 6300 Ocean Drive, Corpus Christi, TX 78412, USA
| |
Collapse
|
21
|
Kaysser L. Built to bind: biosynthetic strategies for the formation of small-molecule protease inhibitors. Nat Prod Rep 2019; 36:1654-1686. [DOI: 10.1039/c8np00095f] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The discovery and characterization of natural product protease inhibitors has inspired the development of numerous pharmaceutical agents.
Collapse
Affiliation(s)
- Leonard Kaysser
- Department of Pharmaceutical Biology
- University of Tübingen
- 72076 Tübingen
- Germany
- German Centre for Infection Research (DZIF)
| |
Collapse
|
22
|
Reimer JM, Harb I, Ovchinnikova OG, Jiang J, Whitfield C, Schmeing TM. Structural Insight into a Novel Formyltransferase and Evolution to a Nonribosomal Peptide Synthetase Tailoring Domain. ACS Chem Biol 2018; 13:3161-3172. [PMID: 30346688 DOI: 10.1021/acschembio.8b00739] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Nonribosomal peptide synthetases (NRPSs) increase the chemical diversity of their products by acquiring tailoring domains. Linear gramicidin synthetase starts with a tailoring formylation (F) domain, which likely originated from a sugar formyltransferase (FT) gene. Here, we present studies on an Anoxybacillus kamchatkensis sugar FT representative of the prehorizontal gene transfer FT. Gene cluster analysis reveals that this FT acts on a UDP-sugar in a novel pathway for synthesis of a 7-formamido derivative of CMP-pseudaminic acid. We recapitulate the pathway up to and including the formylation step in vitro, experimentally demonstrating the role of the FT. We also present X-ray crystal structures of the FT alone and with ligands, which unveil contrasts with other structurally characterized sugar FTs and show close structural similarity with the F domain. The structures reveal insights into the adaptations that were needed to co-opt and evolve a sugar FT into a functional and useful NRPS domain.
Collapse
Affiliation(s)
- Janice M. Reimer
- Department of Biochemistry, McGill University, Montréal, Québec H3G 0B1, Canada
| | - Ingrid Harb
- Department of Biochemistry, McGill University, Montréal, Québec H3G 0B1, Canada
| | - Olga G. Ovchinnikova
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Jessie Jiang
- Department of Biochemistry, McGill University, Montréal, Québec H3G 0B1, Canada
| | - Chris Whitfield
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - T. Martin Schmeing
- Department of Biochemistry, McGill University, Montréal, Québec H3G 0B1, Canada
| |
Collapse
|
23
|
Kodani S, Komaki H, Hemmi H, Miyake Y, Kaweewan I, Dohra H. Streptopeptolin, a Cyanopeptolin-Type Peptide from Streptomyces olivochromogenes. ACS OMEGA 2018; 3:8104-8110. [PMID: 30087936 PMCID: PMC6072256 DOI: 10.1021/acsomega.8b01042] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 07/06/2018] [Indexed: 06/08/2023]
Abstract
Cyanopeptolin-type peptides are cyclic depsipeptides that commonly have 3-amino-6-hydroxy-2-piperidone (Ahp) unit in the molecules. So far, cyanopeptolin-type peptides have been isolated as protease inhibitors from a wide variety of cyanobacteria. In the course of screening for new peptides, a new peptide streptopeptolin, which had the similar structure to cyanopeptolin, was isolated from the extract of Streptomyces olivochromogenes NBRC 3561. Streptopeptolin is the first cyanopeptolin-type peptide isolated from actinobacteria. The structure of streptopeptolin was determined by the analysis of electrospray ionization mass spectrometry and NMR to be cyclic depsipeptide containing unusual amino acids, Ahp, and N-methyl tyrosine. As a result of protease inhibition test, streptopeptolin showed inhibitory activity against chymotrypsin. The whole genome sequence data of S. olivochromogenes revealed the biosynthetic gene cluster for streptopeptolin, which encoded a nonribosomal peptide synthetase. We proposed a biosynthetic pathway of streptopeptolin based on bioinformatics analysis.
Collapse
Affiliation(s)
- Shinya Kodani
- Academic
Institute, Graduate School of Integrated Science and Technology, Graduate School of
Science and Technology, Research Institute of Green Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, Shizuoka 422-8529, Japan
| | - Hisayuki Komaki
- Biological
Resource Center, National Institute of Technology
and Evaluation (NBRC), 2-5-8 Kazusakamatari, Kisarazu, Chiba 292-0818, Japan
| | - Hikaru Hemmi
- Food
Research
Institute, National Agriculture and Food
Research Organization (NARO), 2-1-12 Kannondai, Tsukuba, Ibaraki 305-8642, Japan
| | - Yuto Miyake
- Academic
Institute, Graduate School of Integrated Science and Technology, Graduate School of
Science and Technology, Research Institute of Green Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, Shizuoka 422-8529, Japan
| | - Issara Kaweewan
- Academic
Institute, Graduate School of Integrated Science and Technology, Graduate School of
Science and Technology, Research Institute of Green Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, Shizuoka 422-8529, Japan
| | - Hideo Dohra
- Academic
Institute, Graduate School of Integrated Science and Technology, Graduate School of
Science and Technology, Research Institute of Green Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, Shizuoka 422-8529, Japan
| |
Collapse
|
24
|
Driscoll CB, Meyer KA, Šulčius S, Brown NM, Dick GJ, Cao H, Gasiūnas G, Timinskas A, Yin Y, Landry ZC, Otten TG, Davis TW, Watson SB, Dreher TW. A closely-related clade of globally distributed bloom-forming cyanobacteria within the Nostocales. HARMFUL ALGAE 2018; 77:93-107. [PMID: 30005805 DOI: 10.1016/j.hal.2018.05.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 05/18/2018] [Accepted: 05/24/2018] [Indexed: 06/08/2023]
Abstract
In order to better understand the relationships among current Nostocales cyanobacterial blooms, eight genomes were sequenced from cultured isolates or from environmental metagenomes of recent planktonic Nostocales blooms. Phylogenomic analysis of publicly available sequences placed the new genomes among a group of 15 genomes from four continents in a distinct ADA clade (Anabaena/Dolichospermum/Aphanizomenon) within the Nostocales. This clade contains four species-level groups, two of which include members with both Anabaena-like and Aphanizomenon flos-aquae-like morphology. The genomes contain many repetitive genetic elements and a sizable pangenome, in which ABC-type transporters are highly represented. Alongside common core genes for photosynthesis, the differentiation of N2-fixing heterocysts, and the uptake and incorporation of the major nutrients P, N and S, we identified several gene pathways in the pangenome that may contribute to niche partitioning. Genes for problematic secondary metabolites-cyanotoxins and taste-and-odor compounds-were sporadically present, as were other polyketide synthase (PKS) and nonribosomal peptide synthetase (NRPS) gene clusters. By contrast, genes predicted to encode the ribosomally generated bacteriocin peptides were found in all genomes.
Collapse
Affiliation(s)
- Connor B Driscoll
- Department of Microbiology, Oregon State University, 226 Nash Hall, Corvallis, OR, 97331, USA
| | - Kevin A Meyer
- Department of Earth & Environmental Sciences, University of Michigan, Ann Arbor, MI 48109-1005, USA; Cooperative Institute for Great Lakes Research (CIGLR), University of Michigan, Ann Arbor, MI 48109-1005, USA
| | - Sigitas Šulčius
- Laboratory of Algology and Microbial Ecology, Akademijos Str. 2, LT-08412, Vilnius, Lithuania
| | - Nathan M Brown
- Department of Microbiology, Oregon State University, 226 Nash Hall, Corvallis, OR, 97331, USA
| | - Gregory J Dick
- Department of Earth & Environmental Sciences, University of Michigan, Ann Arbor, MI 48109-1005, USA
| | - Huansheng Cao
- Biodesign Center for Fundamental and Applied Microbiomics, Arizona State University, 427 E Tyler Mall, Tempe, AZ 85287, USA
| | - Giedrius Gasiūnas
- Department of Protein-DNA Interactions, Institute of Biotechnology, Vilnius University, Saulėtekio av. 7, LT-10257, Vilnius, Lithuania
| | - Albertas Timinskas
- Department of Bioinformatics, Institute of Biotechnology, Vilnius University, Saulėtekio 7, LT-10257 Vilnius, Lithuania
| | - Yanbin Yin
- Department of Biological Sciences, Northern Illinois University, DeKalb, IL, USA
| | - Zachary C Landry
- Department of Microbiology, Oregon State University, 226 Nash Hall, Corvallis, OR, 97331, USA
| | - Timothy G Otten
- Department of Microbiology, Oregon State University, 226 Nash Hall, Corvallis, OR, 97331, USA
| | - Timothy W Davis
- Department of Biological Sciences, Bowling Green State University, Bowling Green, OH 43402, USA
| | - Susan B Watson
- Environment and Climate Change Canada, Canada Centre for Inland Waters, Burlington, ON L7S 1A1, Canada
| | - Theo W Dreher
- Department of Microbiology, Oregon State University, 226 Nash Hall, Corvallis, OR, 97331, USA; Center for Genome Research and Biocomputing, Oregon State University, Corvallis, OR 97331, USA.
| |
Collapse
|
25
|
Cyanopeptolins with Trypsin and Chymotrypsin Inhibitory Activity from the Cyanobacterium Nostoc edaphicum CCNP1411. Mar Drugs 2018; 16:md16070220. [PMID: 29949853 PMCID: PMC6070996 DOI: 10.3390/md16070220] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 06/19/2018] [Accepted: 06/20/2018] [Indexed: 12/15/2022] Open
Abstract
Cyanopeptolins (CPs) are one of the most frequently occurring cyanobacterial peptides, many of which are inhibitors of serine proteases. Some CP variants are also acutely toxic to aquatic organisms, especially small crustaceans. In this study, thirteen CPs, including twelve new variants, were detected in the cyanobacterium Nostoc edaphicum CCNP1411 isolated from the Gulf of Gdańsk (southern Baltic Sea). Structural elucidation was performed by tandem mass spectrometry with verification by NMR for CP962 and CP985. Trypsin and chymotrypsin inhibition assays confirmed the significance of the residue adjacent to 3-amino-6-hydroxy-2-piperidone (Ahp) for the activity of the peptides. Arginine-containing CPs (CPs-Arg²) inhibited trypsin at low IC50 values (0.24⁻0.26 µM) and showed mild activity against chymotrypsin (IC50 3.1⁻3.8 µM), while tyrosine-containing CPs (CPs-Tyr²) were selectively and potently active against chymotrypsin (IC50 0.26 µM). No degradation of the peptides was observed during the enzyme assays. Neither of the CPs were active against thrombin, elastase or protein phosphatase 1. Two CPs (CP962 and CP985) had no cytotoxic effects on MCF-7 breast cancer cells. Strong and selective activity of the new cyanopeptolin variants makes them potential candidates for the development of drugs against metabolic disorders and other diseases.
Collapse
|
26
|
Agarwal V, Miles ZD, Winter JM, Eustáquio AS, El Gamal AA, Moore BS. Enzymatic Halogenation and Dehalogenation Reactions: Pervasive and Mechanistically Diverse. Chem Rev 2017; 117:5619-5674. [PMID: 28106994 PMCID: PMC5575885 DOI: 10.1021/acs.chemrev.6b00571] [Citation(s) in RCA: 271] [Impact Index Per Article: 33.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Naturally produced halogenated compounds are ubiquitous across all domains of life where they perform a multitude of biological functions and adopt a diversity of chemical structures. Accordingly, a diverse collection of enzyme catalysts to install and remove halogens from organic scaffolds has evolved in nature. Accounting for the different chemical properties of the four halogen atoms (fluorine, chlorine, bromine, and iodine) and the diversity and chemical reactivity of their organic substrates, enzymes performing biosynthetic and degradative halogenation chemistry utilize numerous mechanistic strategies involving oxidation, reduction, and substitution. Biosynthetic halogenation reactions range from simple aromatic substitutions to stereoselective C-H functionalizations on remote carbon centers and can initiate the formation of simple to complex ring structures. Dehalogenating enzymes, on the other hand, are best known for removing halogen atoms from man-made organohalogens, yet also function naturally, albeit rarely, in metabolic pathways. This review details the scope and mechanism of nature's halogenation and dehalogenation enzymatic strategies, highlights gaps in our understanding, and posits where new advances in the field might arise in the near future.
Collapse
Affiliation(s)
- Vinayak Agarwal
- Center for Oceans and Human Health, Scripps Institution of Oceanography, University of California, San Diego
| | - Zachary D. Miles
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, San Diego
| | | | - Alessandra S. Eustáquio
- College of Pharmacy, Department of Medicinal Chemistry & Pharmacognosy and Center for Biomolecular Sciences, University of Illinois at Chicago
| | - Abrahim A. El Gamal
- Center for Oceans and Human Health, Scripps Institution of Oceanography, University of California, San Diego
| | - Bradley S. Moore
- Center for Oceans and Human Health, Scripps Institution of Oceanography, University of California, San Diego
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, San Diego
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego
| |
Collapse
|
27
|
Two novel cyclic hexapeptides from the genetically engineered Actinosynnema pretiosum. Appl Microbiol Biotechnol 2016; 101:2273-2279. [DOI: 10.1007/s00253-016-8017-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 11/08/2016] [Accepted: 11/20/2016] [Indexed: 10/20/2022]
|
28
|
Al-Haj L, Lui YT, Abed RMM, Gomaa MA, Purton S. Cyanobacteria as Chassis for Industrial Biotechnology: Progress and Prospects. Life (Basel) 2016; 6:life6040042. [PMID: 27916886 PMCID: PMC5198077 DOI: 10.3390/life6040042] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 11/13/2016] [Accepted: 11/25/2016] [Indexed: 12/24/2022] Open
Abstract
Cyanobacteria hold significant potential as industrial biotechnology (IB) platforms for the production of a wide variety of bio-products ranging from biofuels such as hydrogen, alcohols and isoprenoids, to high-value bioactive and recombinant proteins. Underpinning this technology, are the recent advances in cyanobacterial “omics” research, the development of improved genetic engineering tools for key species, and the emerging field of cyanobacterial synthetic biology. These approaches enabled the development of elaborate metabolic engineering programs aimed at creating designer strains tailored for different IB applications. In this review, we provide an overview of the current status of the fields of cyanobacterial omics and genetic engineering with specific focus on the current molecular tools and technologies that have been developed in the past five years. The paper concludes by giving insights on future commercial applications of cyanobacteria and highlights the challenges that need to be addressed in order to make cyanobacterial industrial biotechnology more feasible in the near future.
Collapse
Affiliation(s)
- Lamya Al-Haj
- Biology Department, College of Science, Sultan Qaboos University, Al-Khoud, P.O. Box 36, Muscat 123, Oman.
| | - Yuen Tin Lui
- Institute of Structural & Molecular Biology, University College London, London WC1E 6BT, UK.
| | - Raeid M M Abed
- Biology Department, College of Science, Sultan Qaboos University, Al-Khoud, P.O. Box 36, Muscat 123, Oman.
| | - Mohamed A Gomaa
- Biology Department, College of Science, Sultan Qaboos University, Al-Khoud, P.O. Box 36, Muscat 123, Oman.
| | - Saul Purton
- Institute of Structural & Molecular Biology, University College London, London WC1E 6BT, UK.
| |
Collapse
|
29
|
Dittmann E, Gugger M, Sivonen K, Fewer DP. Natural Product Biosynthetic Diversity and Comparative Genomics of the Cyanobacteria. Trends Microbiol 2016; 23:642-652. [PMID: 26433696 DOI: 10.1016/j.tim.2015.07.008] [Citation(s) in RCA: 189] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Revised: 07/07/2015] [Accepted: 07/17/2015] [Indexed: 10/23/2022]
Abstract
Cyanobacteria are an ancient lineage of slow-growing photosynthetic bacteria and a prolific source of natural products with intricate chemical structures and potent biological activities. The bulk of these natural products are known from just a handful of genera. Recent efforts have elucidated the mechanisms underpinning the biosynthesis of a diverse array of natural products from cyanobacteria. Many of the biosynthetic mechanisms are unique to cyanobacteria or rarely described from other organisms. Advances in genome sequence technology have precipitated a deluge of genome sequences for cyanobacteria. This makes it possible to link known natural products to biosynthetic gene clusters but also accelerates the discovery of new natural products through genome mining. These studies demonstrate that cyanobacteria encode a huge variety of cryptic gene clusters for the production of natural products, and the known chemical diversity is likely to be just a fraction of the true biosynthetic capabilities of this fascinating and ancient group of organisms.
Collapse
Affiliation(s)
- Elke Dittmann
- Department of Microbiology, Institute of Biochemistry and Biology, University of Potsdam, Golm, Germany
| | - Muriel Gugger
- Institut Pasteur, Collection des Cyanobactéries, Paris, France
| | - Kaarina Sivonen
- Microbiology and Biotechnology Division, Department of Food and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - David P Fewer
- Microbiology and Biotechnology Division, Department of Food and Environmental Sciences, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
30
|
Kurmayer R, Deng L, Entfellner E. Role of toxic and bioactive secondary metabolites in colonization and bloom formation by filamentous cyanobacteria Planktothrix. HARMFUL ALGAE 2016; 54:69-86. [PMID: 27307781 PMCID: PMC4892429 DOI: 10.1016/j.hal.2016.01.004] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Revised: 01/15/2016] [Accepted: 01/15/2016] [Indexed: 05/22/2023]
Abstract
Bloom-forming cyanobacteria Planktothrix agardhii and P. rubescens are regularly involved in the occurrence of cyanotoxin in lakes and reservoirs. Besides microcystins (MCs), which inhibit eukaryotic protein phosphatase 1 and 2A, several families of bioactive peptides are produced, thereby resulting in impressive secondary metabolite structural diversity. This review will focus on the current knowledge of the phylogeny, morphology, and ecophysiological adaptations of Planktothrix as well as the toxins and bioactive peptides produced. The relatively well studied ecophysiological adaptations (buoyancy, shade tolerance, nutrient storage capacity) can partly explain the invasiveness of this group of cyanobacteria that bloom within short periods (weeks to months). The more recent elucidation of the genetic basis of toxin and bioactive peptide synthesis paved the way for investigating its regulation both in the laboratory using cell cultures as well as under field conditions. The high frequency of several toxin and bioactive peptide synthesis genes observed within P. agardhii and P. rubescens, but not for other Planktothrix species (e.g. P. pseudagardhii), suggests a potential functional linkage between bioactive peptide production and the colonization potential and possible dominance in habitats. It is hypothesized that, through toxin and bioactive peptide production, Planktothrix act as a niche constructor at the ecosystem scale, possibly resulting in an even higher ability to monopolize resources, positive feedback loops, and resilience under stable environmental conditions. Thus, refocusing harmful algal bloom management by integrating ecological and phylogenetic factors acting on toxin and bioactive peptide synthesis gene distribution and concentrations could increase the predictability of the risks originating from Planktothrix blooms.
Collapse
Affiliation(s)
- Rainer Kurmayer
- University of Innsbruck, Research Institute for Limnology, Mondseestrasse 9, 5310 Mondsee, Austria.
| | - Li Deng
- Helmholtz Zentrum München, Institute of Groundwater Ecology, Ingolstädter Landstrasse 1, 85764 Neuherberg, Germany
| | - Elisabeth Entfellner
- University of Innsbruck, Research Institute for Limnology, Mondseestrasse 9, 5310 Mondsee, Austria
| |
Collapse
|
31
|
Reimer JM, Aloise MN, Harrison PM, Schmeing TM. Synthetic cycle of the initiation module of a formylating nonribosomal peptide synthetase. Nature 2016; 529:239-42. [PMID: 26762462 DOI: 10.1038/nature16503] [Citation(s) in RCA: 125] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2015] [Accepted: 12/02/2015] [Indexed: 12/22/2022]
Abstract
Nonribosomal peptide synthetases (NRPSs) are very large proteins that produce small peptide molecules with wide-ranging biological activities, including environmentally friendly chemicals and many widely used therapeutics. NRPSs are macromolecular machines, with modular assembly-line logic, a complex catalytic cycle, moving parts and many active sites. In addition to the core domains required to link the substrates, they often include specialized tailoring domains, which introduce chemical modifications and allow the product to access a large expanse of chemical space. It is still unknown how the NRPS tailoring domains are structurally accommodated into megaenzymes or how they have adapted to function in nonribosomal peptide synthesis. Here we present a series of crystal structures of the initiation module of an antibiotic-producing NRPS, linear gramicidin synthetase. This module includes the specialized tailoring formylation domain, and states are captured that represent every major step of the assembly-line synthesis in the initiation module. The transitions between conformations are large in scale, with both the peptidyl carrier protein domain and the adenylation subdomain undergoing huge movements to transport substrate between distal active sites. The structures highlight the great versatility of NRPSs, as small domains repurpose and recycle their limited interfaces to interact with their various binding partners. Understanding tailoring domains is important if NRPSs are to be utilized in the production of novel therapeutics.
Collapse
Affiliation(s)
- Janice M Reimer
- Department of Biochemistry, McGill University, 3649 Promenade Sir-William-Osler, Montréal, Québec H3G 0B1, Canada
| | - Martin N Aloise
- Department of Biochemistry, McGill University, 3649 Promenade Sir-William-Osler, Montréal, Québec H3G 0B1, Canada
| | - Paul M Harrison
- Department of Biology, McGill University, 1205 Dr Penfield Avenue, Montréal, Québec H3A 1B1, Canada
| | - T Martin Schmeing
- Department of Biochemistry, McGill University, 3649 Promenade Sir-William-Osler, Montréal, Québec H3G 0B1, Canada
| |
Collapse
|
32
|
Antifungal activity improved by coproduction of cyclodextrins and anabaenolysins in Cyanobacteria. Proc Natl Acad Sci U S A 2015; 112:13669-74. [PMID: 26474830 DOI: 10.1073/pnas.1510432112] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cyclodextrins are cyclic oligosaccharides widely used in the pharmaceutical industry to improve drug delivery and to increase the solubility of hydrophobic compounds. Anabaenolysins are lipopeptides produced by cyanobacteria with potent lytic activity in cholesterol-containing membranes. Here, we identified the 23- to 24-kb gene clusters responsible for the production of the lipopeptide anabaenolysin. The hybrid nonribosomal peptide synthetase and polyketide synthase biosynthetic gene cluster is encoded in the genomes of three anabaenolysin-producing strains of Anabaena. We detected previously unidentified strains producing known anabaenolysins A and B and discovered the production of new variants of anabaenolysins C and D. Bioassays demonstrated that anabaenolysins have weak antifungal activity against Candida albicans. Surprisingly, addition of the hydrophilic fraction of the whole-cell extracts increased the antifungal activity of the hydrophobic anabaenolysins. The fraction contained compounds identified by NMR as α-, β-, and γ-cyclodextrins, which undergo acetylation. Cyclodextrins have been used for decades to improve the solubility and bioavailability of many drugs including antifungal compounds. This study shows a natural example of cyclodextrins improving the solubility and efficacy of an antifungal compound in an ancient lineage of photosynthetic bacteria.
Collapse
|
33
|
Labby KJ, Watsula SG, Garneau-Tsodikova S. Interrupted adenylation domains: unique bifunctional enzymes involved in nonribosomal peptide biosynthesis. Nat Prod Rep 2015; 32:641-53. [PMID: 25622971 DOI: 10.1039/c4np00120f] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Nonribosomal peptides (NRPs) account for a large portion of drugs and drug leads currently available in the pharmaceutical industry. They are one of two main families of natural products biosynthesized on megaenzyme assembly-lines composed of multiple modules that are, in general, each comprised of three core domains and on occasion of accompanying auxiliary domains. The core adenylation (A) domains are known to delineate the identity of the specific chemical components to be incorporated into the growing NRPs. Previously believed to be inactive, A domains interrupted by auxiliary enzymes have recently been proven to be active and capable of performing two distinct chemical reactions. This highlight summarizes current knowledge on A domains and presents the various interrupted A domains found in a number of nonribosomal peptide synthetase (NRPS) assembly-lines, their predicted or proven dual functions, and their potential for manipulation and engineering for chemoenzymatic synthesis of new pharmaceutical agents with increased potency.
Collapse
Affiliation(s)
- Kristin J Labby
- Beloit College, Department of Chemistry, 700 College Street, Beloit, WI 53511, USA
| | | | | |
Collapse
|
34
|
Transcriptomic and Proteomic Profiling of Anabaena sp. Strain 90 under Inorganic Phosphorus Stress. Appl Environ Microbiol 2015; 81:5212-22. [PMID: 26025890 DOI: 10.1128/aem.01062-15] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Accepted: 05/18/2015] [Indexed: 01/06/2023] Open
Abstract
Inorganic phosphorus (Pi) is one of the main growth-limiting factors of diazotrophic cyanobacteria. Due to human activity, the availability of Pi has increased in water bodies, resulting in eutrophication and the formation of massive cyanobacterial blooms. In this study, we examined the molecular responses of the cyanobacterium Anabaena sp. strain 90 to phosphorus deprivation, aiming at the identification of candidate genes to monitor the Pi status in cyanobacteria. Furthermore, this study increased the basic understanding of how phosphorus affects diazotrophic and bloom-forming cyanobacteria as a major growth-limiting factor. Based on RNA sequencing data, we identified 246 differentially expressed genes after phosphorus starvation and 823 differentially expressed genes after prolonged Pi limitation, most of them related to central metabolism and cellular growth. The transcripts of the genes related to phosphorus transport and assimilation (pho regulon) were most upregulated during phosphorus depletion. One of the most increased transcripts encodes a giant protein of 1,869 amino acid residues, which contains, among others, a phytase-like domain. Our findings predict its crucial role in phosphorus starvation, but future studies are still needed. Using two-dimensional difference in gel electrophoresis (2D-DIGE) and liquid chromatography-tandem mass spectrometry (LC-MS/MS), we found 43 proteins that were differentially expressed after prolonged phosphorus stress. However, correlation analysis unraveled an association only to some extent between the transcriptomic and proteomic abundances. Based on the present results, we suggest that the method used for monitoring the Pi status in cyanobacterial bloom should contain wider combinations of pho regulon genes (e.g., PstABCS transport systems) in addition to the commonly used alkaline phosphatase gene alone.
Collapse
|
35
|
Liu J, Wang B, Li H, Xie Y, Li Q, Qin X, Zhang X, Ju J. Biosynthesis of the anti-infective marformycins featuring pre-NRPS assembly line N-formylation and O-methylation and post-assembly line C-hydroxylation chemistries. Org Lett 2015; 17:1509-12. [PMID: 25746634 DOI: 10.1021/acs.orglett.5b00389] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The biosynthetic gene cluster governing production of anti-infective marformycins was identified from deep sea-derived Streptomyces drozdowiczii SCSIO 10141. The putative mfn gene cluster (45 kb, 20 orfs) was found to encode six NRPSs and related proteins for cyclodepsipeptide core construction (mfnCDEFKL), a methionyl-tRNA formyltransferase (mfnA), a SAM-dependent methyltransferase (mfnG), and a cytochrome P450 monooxygenase for piperazic acid moiety hydroxylation (mfnN); notably, only MfnN uses an intact cyclodepsipeptide intermediate as its substrate.
Collapse
Affiliation(s)
- Jing Liu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
| | - Bo Wang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
| | - Hongzhi Li
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
| | - Yunchang Xie
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
| | - Qinglian Li
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
| | - Xiangjing Qin
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
| | - Xing Zhang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
| | - Jianhua Ju
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
| |
Collapse
|
36
|
Micallef ML, D'Agostino PM, Al-Sinawi B, Neilan BA, Moffitt MC. Exploring cyanobacterial genomes for natural product biosynthesis pathways. Mar Genomics 2014; 21:1-12. [PMID: 25482899 DOI: 10.1016/j.margen.2014.11.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Revised: 11/22/2014] [Accepted: 11/23/2014] [Indexed: 11/26/2022]
Abstract
Cyanobacteria produce a vast array of natural products, some of which are toxic to human health, while others possess potential pharmaceutical activities. Genome mining enables the identification and characterisation of natural product gene clusters; however, the current number of cyanobacterial genomes remains low compared to other phyla. There has been a recent effort to rectify this issue by increasing the number of sequenced cyanobacterial genomes. This has enabled the identification of biosynthetic gene clusters for structurally diverse metabolites, including non-ribosomal peptides, polyketides, ribosomal peptides, UV-absorbing compounds, alkaloids, terpenes and fatty acids. While some of the identified biosynthetic gene clusters correlate with known metabolites, genome mining also highlights the number and diversity of clusters for which the product is unknown (referred to as orphan gene clusters). A number of bioinformatic tools have recently been developed in order to predict the products of orphan gene clusters; however, in some cases the complexity of the cyanobacterial pathways makes the prediction problematic. This can be overcome by the use of mass spectrometry-guided natural product genome mining, or heterologous expression. Application of these techniques to cyanobacterial natural product gene clusters will be explored.
Collapse
Affiliation(s)
- Melinda L Micallef
- School of Science and Health, University of Western Sydney, Campbelltown, NSW 2560, Australia
| | - Paul M D'Agostino
- School of Science and Health, University of Western Sydney, Campbelltown, NSW 2560, Australia; School of Biotechnology and Biomolecular Sciences, University of New South Wales, Kensington, NSW 2052, Australia
| | - Bakir Al-Sinawi
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Kensington, NSW 2052, Australia
| | - Brett A Neilan
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Kensington, NSW 2052, Australia
| | - Michelle C Moffitt
- School of Science and Health, University of Western Sydney, Campbelltown, NSW 2560, Australia.
| |
Collapse
|
37
|
Agha R, Quesada A. Oligopeptides as biomarkers of cyanobacterial subpopulations. Toward an understanding of their biological role. Toxins (Basel) 2014; 6:1929-50. [PMID: 24960202 PMCID: PMC4073138 DOI: 10.3390/toxins6061929] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Revised: 06/09/2014] [Accepted: 06/16/2014] [Indexed: 11/25/2022] Open
Abstract
Cyanobacterial oligopeptides comprise a wide range of bioactive and/or toxic compounds. While current research is strongly focused on exploring new oligopeptide variants and their bioactive properties, the biological role of these compounds remains elusive. Oligopeptides production abilities show a remarkably patchy distribution among conspecific strains. This observation has prompted alternative approaches to unveil their adaptive value, based on the use of cellular oligopeptide compositions as biomarkers of intraspecific subpopulations or chemotypes in freshwater cyanobacteria. Studies addressing the diversity, distribution, and dynamics of chemotypes in natural systems have provided important insights into the structure and ecology of cyanobacterial populations and the adaptive value of oligopeptides. This review presents an overview of the fundamentals of this emerging approach and its most relevant findings, and discusses our current understanding of the role of oligopeptides in the ecology of cyanobacteria.
Collapse
Affiliation(s)
- Ramsy Agha
- Departamento de Biología, Universidad Autónoma de Madrid, C/Darwin, 2, Madrid 28049, Spain.
| | - Antonio Quesada
- Departamento de Biología, Universidad Autónoma de Madrid, C/Darwin, 2, Madrid 28049, Spain.
| |
Collapse
|
38
|
Hassallidins, antifungal glycolipopeptides, are widespread among cyanobacteria and are the end-product of a nonribosomal pathway. Proc Natl Acad Sci U S A 2014; 111:E1909-17. [PMID: 24742428 DOI: 10.1073/pnas.1320913111] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cyanobacteria produce a wide variety of cyclic peptides, including the widespread hepatotoxins microcystins and nodularins. Another class of peptides, cyclic glycosylated lipopeptides called hassallidins, show antifungal activity. Previously, two hassallidins (A and B) were reported from an epilithic cyanobacterium Hassallia sp. and found to be active against opportunistic human pathogenic fungi. Bioinformatic analysis of the Anabaena sp. 90 genome identified a 59-kb cryptic inactive nonribosomal peptide synthetase gene cluster proposed to be responsible for hassallidin biosynthesis. Here we describe the hassallidin biosynthetic pathway from Anabaena sp. SYKE748A, as well as the large chemical variation and common occurrence of hassallidins in filamentous cyanobacteria. Analysis demonstrated that 20 strains of the genus Anabaena carry hassallidin synthetase genes and produce a multitude of hassallidin variants that exhibit activity against Candida albicans. The compounds discovered here were distinct from previously reported hassallidins A and B. The IC50 of hassallidin D was 0.29-1.0 µM against Candida strains. A large variation in amino acids, sugars, their degree of acetylation, and fatty acid side chain length was detected. In addition, hassallidins were detected in other cyanobacteria including Aphanizomenon, Cylindrospermopsis raciborskii, Nostoc, and Tolypothrix. These compounds may protect some of the most important bloom-forming and globally distributed cyanobacteria against attacks by parasitic fungi.
Collapse
|
39
|
Bayer K, Scheuermayer M, Fieseler L, Hentschel U. Genomic mining for novel FADH₂-dependent halogenases in marine sponge-associated microbial consortia. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2013; 15:63-72. [PMID: 22562484 DOI: 10.1007/s10126-012-9455-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2011] [Accepted: 04/15/2012] [Indexed: 05/31/2023]
Abstract
Many marine sponges (Porifera) are known to contain large amounts of phylogenetically diverse microorganisms. Sponges are also known for their large arsenal of natural products, many of which are halogenated. In this study, 36 different FADH₂-dependent halogenase gene fragments were amplified from various Caribbean and Mediterranean sponges using newly designed degenerate PCR primers. Four unique halogenase-positive fosmid clones, all containing the highly conserved amino acid motif "GxGxxG", were identified in the microbial metagenome of Aplysina aerophoba. Sequence analysis of one halogenase-bearing fosmid revealed notably two open reading frames with high homologies to efflux and multidrug resistance proteins. Single cell genomic analysis allowed for a taxonomic assignment of the halogenase genes to specific symbiotic lineages. Specifically, the halogenase cluster S1 is predicted to be produced by a deltaproteobacterial symbiont and halogenase cluster S2 by a poribacterial sponge symbiont. An additional halogenase gene is possibly produced by an actinobacterial symbiont of marine sponges. The identification of three novel, phylogenetically, and possibly also functionally distinct halogenase gene clusters indicates that the microbial consortia of sponges are a valuable resource for novel enzymes involved in halogenation reactions.
Collapse
Affiliation(s)
- Kristina Bayer
- Julius-von-Sachs Institute for Biological Sciences, University of Wuerzburg, Julius-von-Sachs Platz 3, D-97082 Wuerzburg, Germany
| | | | | | | |
Collapse
|
40
|
Wang H, Sivonen K, Rouhiainen L, Fewer DP, Lyra C, Rantala-Ylinen A, Vestola J, Jokela J, Rantasärkkä K, Li Z, Liu B. Genome-derived insights into the biology of the hepatotoxic bloom-forming cyanobacterium Anabaena sp. strain 90. BMC Genomics 2012; 13:613. [PMID: 23148582 PMCID: PMC3542288 DOI: 10.1186/1471-2164-13-613] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Accepted: 11/05/2012] [Indexed: 11/15/2022] Open
Abstract
Background Cyanobacteria can form massive toxic blooms in fresh and brackish bodies of water and are frequently responsible for the poisoning of animals and pose a health risk for humans. Anabaena is a genus of filamentous diazotrophic cyanobacteria commonly implicated as a toxin producer in blooms in aquatic ecosystems throughout the world. The biology of bloom-forming cyanobacteria is poorly understood at the genome level. Results Here, we report the complete sequence and comprehensive annotation of the bloom-forming Anabaena sp. strain 90 genome. It comprises two circular chromosomes and three plasmids with a total size of 5.3 Mb, encoding a total of 4,738 genes. The genome is replete with mobile genetic elements. Detailed manual annotation demonstrated that almost 5% of the gene repertoire consists of pseudogenes. A further 5% of the genome is dedicated to the synthesis of small peptides that are the products of both ribosomal and nonribosomal biosynthetic pathways. Inactivation of the hassallidin (an antifungal cyclic peptide) biosynthetic gene cluster through a deletion event and a natural mutation of the buoyancy-permitting gvpG gas vesicle gene were documented. The genome contains a large number of genes encoding restriction-modification systems. Two novel excision elements were found in the nifH gene that is required for nitrogen fixation. Conclusions Genome analysis demonstrated that this strain invests heavily in the production of bioactive compounds and restriction-modification systems. This well-annotated genome provides a platform for future studies on the ecology and biology of these important bloom-forming cyanobacteria.
Collapse
Affiliation(s)
- Hao Wang
- Department of Food and Environmental Sciences, University of Helsinki, Helsinki, FIN-00014, Finland
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Hur GH, Vickery CR, Burkart MD. Explorations of catalytic domains in non-ribosomal peptide synthetase enzymology. Nat Prod Rep 2012; 29:1074-98. [PMID: 22802156 DOI: 10.1039/c2np20025b] [Citation(s) in RCA: 226] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Many pharmaceuticals on the market today belong to a large class of natural products called nonribosomal peptides (NRPs). Originating from bacteria and fungi, these peptide-based natural products consist not only of the 20 canonical L-amino acids, but also non-proteinogenic amino acids, heterocyclic rings, sugars, and fatty acids, generating tremendous chemical diversity. As a result, these secondary metabolites exhibit a broad array of bioactivity, ranging from antimicrobial to anticancer. The biosynthesis of these complex compounds is carried out by large multimodular megaenzymes called nonribosomal peptide synthetases (NRPSs). Each module is responsible for incorporation of a monomeric unit into the natural product peptide and is composed of individual domains that perform different catalytic reactions. Biochemical and bioinformatic investigations of these enzymes have uncovered the key principles of NRP synthesis, expanding the pharmaceutical potential of their enzymatic processes. Progress has been made in the manipulation of this biosynthetic machinery to develop new chemoenzymatic approaches for synthesizing novel pharmaceutical agents with increased potency. This review focuses on the recent discoveries and breakthroughs in the structural elucidation, molecular mechanism, and chemical biology underlying the discrete domains within NRPSs.
Collapse
|
42
|
Aravind L, Anantharaman V, Zhang D, de Souza RF, Iyer LM. Gene flow and biological conflict systems in the origin and evolution of eukaryotes. Front Cell Infect Microbiol 2012; 2:89. [PMID: 22919680 PMCID: PMC3417536 DOI: 10.3389/fcimb.2012.00089] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Accepted: 06/13/2012] [Indexed: 11/24/2022] Open
Abstract
The endosymbiotic origin of eukaryotes brought together two disparate genomes in the cell. Additionally, eukaryotic natural history has included other endosymbiotic events, phagotrophic consumption of organisms, and intimate interactions with viruses and endoparasites. These phenomena facilitated large-scale lateral gene transfer and biological conflicts. We synthesize information from nearly two decades of genomics to illustrate how the interplay between lateral gene transfer and biological conflicts has impacted the emergence of new adaptations in eukaryotes. Using apicomplexans as example, we illustrate how lateral transfer from animals has contributed to unique parasite-host interfaces comprised of adhesion- and O-linked glycosylation-related domains. Adaptations, emerging due to intense selection for diversity in the molecular participants in organismal and genomic conflicts, being dispersed by lateral transfer, were subsequently exapted for eukaryote-specific innovations. We illustrate this using examples relating to eukaryotic chromatin, RNAi and RNA-processing systems, signaling pathways, apoptosis and immunity. We highlight the major contributions from catalytic domains of bacterial toxin systems to the origin of signaling enzymes (e.g., ADP-ribosylation and small molecule messenger synthesis), mutagenic enzymes for immune receptor diversification and RNA-processing. Similarly, we discuss contributions of bacterial antibiotic/siderophore synthesis systems and intra-genomic and intra-cellular selfish elements (e.g., restriction-modification, mobile elements and lysogenic phages) in the emergence of chromatin remodeling/modifying enzymes and RNA-based regulation. We develop the concept that biological conflict systems served as evolutionary “nurseries” for innovations in the protein world, which were delivered to eukaryotes via lateral gene flow to spur key evolutionary innovations all the way from nucleogenesis to lineage-specific adaptations.
Collapse
Affiliation(s)
- L Aravind
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda MD, USA.
| | | | | | | | | |
Collapse
|
43
|
Pistorius D, Müller R. Discovery of the Rhizopodin Biosynthetic Gene Cluster in Stigmatella aurantiaca Sg a15 by Genome Mining. Chembiochem 2012; 13:416-26. [DOI: 10.1002/cbic.201100575] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2011] [Indexed: 11/06/2022]
|
44
|
|
45
|
Kehr JC, Gatte Picchi D, Dittmann E. Natural product biosyntheses in cyanobacteria: A treasure trove of unique enzymes. Beilstein J Org Chem 2011; 7:1622-35. [PMID: 22238540 PMCID: PMC3252866 DOI: 10.3762/bjoc.7.191] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2011] [Accepted: 09/19/2011] [Indexed: 11/25/2022] Open
Abstract
Cyanobacteria are prolific producers of natural products. Investigations into the biochemistry responsible for the formation of these compounds have revealed fascinating mechanisms that are not, or only rarely, found in other microorganisms. In this article, we survey the biosynthetic pathways of cyanobacteria isolated from freshwater, marine and terrestrial habitats. We especially emphasize modular nonribosomal peptide synthetase (NRPS) and polyketide synthase (PKS) pathways and highlight the unique enzyme mechanisms that were elucidated or can be anticipated for the individual products. We further include ribosomal natural products and UV-absorbing pigments from cyanobacteria. Mechanistic insights obtained from the biochemical studies of cyanobacterial pathways can inspire the development of concepts for the design of bioactive compounds by synthetic-biology approaches in the future.
Collapse
Affiliation(s)
- Jan-Christoph Kehr
- University of Potsdam, Institute for Biochemistry and Biology, Karl-Liebknecht-Str. 24/25, 14476 Potsdam-Golm, Germany
| | - Douglas Gatte Picchi
- University of Potsdam, Institute for Biochemistry and Biology, Karl-Liebknecht-Str. 24/25, 14476 Potsdam-Golm, Germany
| | - Elke Dittmann
- University of Potsdam, Institute for Biochemistry and Biology, Karl-Liebknecht-Str. 24/25, 14476 Potsdam-Golm, Germany
| |
Collapse
|
46
|
Nostophycin biosynthesis is directed by a hybrid polyketide synthase-nonribosomal peptide synthetase in the toxic cyanobacterium Nostoc sp. strain 152. Appl Environ Microbiol 2011; 77:8034-40. [PMID: 21948844 DOI: 10.1128/aem.05993-11] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cyanobacteria are a rich source of natural products with interesting pharmaceutical properties. Here, we report the identification, sequencing, annotation, and biochemical analysis of the nostophycin (npn) biosynthetic gene cluster. The npn gene cluster spans 45.1 kb and consists of three open reading frames encoding a polyketide synthase, a mixed polyketide nonribosomal peptide synthetase, and a nonribosomal peptide synthetase. The genetic architecture and catalytic domain organization of the proteins are colinear in arrangement, with the putative order of the biosynthetic assembly of the cyclic heptapeptide. NpnB contains an embedded monooxygenase domain linking nonribosomal peptide synthetase (NRPS) and polyketide synthase (PKS) catalytic domains and predicted here to hydroxylate the nostophycin during assembly. Expression of the adenylation domains and subsequent substrate specificity assays support the involvement of this cluster in nostophycin biosynthesis. Biochemical analyses suggest that the loading substrate of NpnA is likely to be a phenylpropanoic acid necessitating deletion of a carbon atom to explain the biosynthesis of nostophycin. Biosyntheses of nostophycin and microcystin resemble each other, but the phylogenetic analyses suggest that they are distantly related to one another.
Collapse
|
47
|
Nishizawa T, Ueda A, Nakano T, Nishizawa A, Miura T, Asayama M, Fujii K, Harada KI, Shirai M. Characterization of the locus of genes encoding enzymes producing heptadepsipeptide micropeptin in the unicellular cyanobacterium Microcystis. J Biochem 2011; 149:475-85. [PMID: 21212071 DOI: 10.1093/jb/mvq150] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The gene cluster involved in producing the cyclic heptadepsipeptide micropeptin was cloned from the genome of the unicellular cyanobacterium Microcystis aeruginosa K-139. Sequencing revealed four genes encoding non-ribosomal peptide synthetases (NRPSs) that are highly similar to the gene cluster involved in cyanopeptolins biosynthesis. According to predictions based on the non-ribosomal consensus code, the order of the mcnABCE NPRS modules was well consistent with that of the biosynthetic assembly of cyclic peptides. The biochemical analysis of a McnB(K-139) adenylation domain and the knock-out of mcnC in a micropeptin-producing strain, M. viridis S-70, revealed that the mcn gene clusters were responsible for the production of heptadepsipeptide micropeptins. A detailed comparison of nucleotide sequences also showed that the regions between the mcnC and mcnE genes of M. aeruginosa K-139 retained short stretches of DNA homologous to halogenase genes involved in the synthesis of halogenated cyclic peptides of the cyanopeptolin class including anabaenopeptilides. This suggests that the mcn clusters of M. aeruginosa K-139 have lost the halogenase genes during evolution. Finally, a comparative bioinformatics analysis of the congenial gene cluster for depsipetide biosynthesis suggested the diversification and propagation of the NRPS genes in cyanobacteria.
Collapse
Affiliation(s)
- Tomoyasu Nishizawa
- Laboratory of Molecular Genetics, College of Agriculture, Ibaraki University, Ami, Ibaraki 300-0393, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Aravind L, Abhiman S, Iyer LM. Natural history of the eukaryotic chromatin protein methylation system. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2011; 101:105-76. [PMID: 21507350 DOI: 10.1016/b978-0-12-387685-0.00004-4] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
In eukaryotes, methylation of nucleosomal histones and other nuclear proteins is a central aspect of chromatin structure and dynamics. The past 15 years have seen an enormous advance in our understanding of the biochemistry of these modifications, and of their role in establishing the epigenetic code. We provide a synthetic overview, from an evolutionary perspective, of the main players in the eukaryotic chromatin protein methylation system, with an emphasis on catalytic domains. Several components of the eukaryotic protein methylation system had their origins in bacteria. In particular, the Rossmann fold protein methylases (PRMTs and DOT1), and the LSD1 and jumonji-related demethylases and oxidases, appear to have emerged in the context of bacterial peptide methylation and hydroxylation systems. These systems were originally involved in synthesis of peptide secondary metabolites, such as antibiotics, toxins, and siderophores. The peptidylarginine deiminases appear to have been acquired by animals from bacterial enzymes that modify cell-surface proteins. SET domain methylases, which display the β-clip fold, apparently first emerged in prokaryotes from the SAF superfamily of carbohydrate-binding domains. However, even in bacteria, a subset of the SET domains might have evolved a chromatin-related role in conjunction with a BAF60a/b-like SWIB domain protein and topoisomerases. By the time of the last eukaryotic common ancestor, multiple SET and PRMT methylases were already in place and are likely to have mediated methylation at the H3K4, H3K9, H3K36, and H4K20 positions, and carried out both asymmetric and symmetric arginine dimethylation. Inference of H3K27 methylation in the ancestral eukaryote appears uncertain, though it was certainly in place a little later in eukaryotic evolution. Current data suggest that unlike SET methylases, which are universally present in eukaryotes, demethylases are not. They appear to be absent in the earliest-branching eukaryotic lineages, and emerged later along with several other chromatin proteins, such as the Dot1-methylase, prior to divergence of the kinetoplastid-heterolobosean lineage from the remaining eukaryotes. This period also corresponds to the point of origin of DNA cytosine methylation by DNMT1. Origin of major lineages of SET domains such as the Trithorax, Su(var)3-9, Ash1, SMYD, and TTLL12 and E(Z) might have played the initial role in the establishment of multiple distinct heterochromatic and euchromatic states that are likely to have been present, in some form, through much of eukaryotic evolution. Elaboration of these chromatin states might have gone hand-in-hand with acquisition of multiple jumonji-related and LSD1-like demethylases, and functional linkages with the DNA methylation and RNAi systems. Throughout eukaryotic evolution, there were several lineage-specific expansions of SET domain proteins, which might be related to a special transcription regulation process in trypanosomes, acquisition of new meiotic recombination hotspots in animals, and methylation and associated modifications of the diatom silaffin proteins involved in silica biomineralization. The use of specific domains to "read" the methylation marks appears to have been present in the ancestral eukaryote itself. Of these the chromo-like domains appear to have been acquired from bacterial secreted proteins that might have a role in binding cell-surface peptides or peptidoglycan. Domain architectures of the primary enzymes involved in the eukaryotic protein methylation system indicate key features relating to interactions with each other and other modifications in chromatin, such as acetylation. They also emphasize the profound functional distinction between the role of demethylation and deacetylation in regulation of chromatin dynamics.
Collapse
Affiliation(s)
- L Aravind
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, USA
| | | | | |
Collapse
|
49
|
Rouhiainen L, Jokela J, Fewer DP, Urmann M, Sivonen K. Two alternative starter modules for the non-ribosomal biosynthesis of specific anabaenopeptin variants in Anabaena (Cyanobacteria). ACTA ACUST UNITED AC 2010; 17:265-73. [PMID: 20338518 DOI: 10.1016/j.chembiol.2010.01.017] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2009] [Revised: 01/27/2010] [Accepted: 01/28/2010] [Indexed: 11/25/2022]
Abstract
Anabaenopeptins are a diverse family of cyclic hexapeptide protease inhibitors produced by cyanobacteria that contain a conserved ureido bond and D-Lys moiety. Here we demonstrate that anabaenopeptins are assembled on a nonribosomal peptide synthetase enzyme complex encoded by a 32 kb apt gene cluster in the cyanobacterium Anabaena sp. strain 90. Surprisingly, the gene cluster encoded two alternative starter modules organized in separate bimodular proteins. The starter modules display high substrate specificity for L-Arg/L-Lys and L-Tyr, respectively, and allow the specific biosynthesis of different anabaenopeptin variants. The two starter modules were found also in other Anabaena strains. However, just a single module was present in the anabaenopeptin gene clusters of Nostoc and Nodularia, respectively. The organization of the apt gene cluster in Anabaena represents an exception to the established colinearity rule of linear non-ribosomal peptide synthetases.
Collapse
Affiliation(s)
- Leo Rouhiainen
- Department of Food and Environmental Sciences, P.O. Box 56, Viikki Biocenter, Viikinkaari 9, FIN-00014, University of Helsinki, Finland
| | | | | | | | | |
Collapse
|
50
|
Zhao C, Coughlin JM, Ju J, Zhu D, Wendt-Pienkowski E, Zhou X, Wang Z, Shen B, Deng Z. Oxazolomycin biosynthesis in Streptomyces albus JA3453 featuring an "acyltransferase-less" type I polyketide synthase that incorporates two distinct extender units. J Biol Chem 2010; 285:20097-108. [PMID: 20406823 DOI: 10.1074/jbc.m109.090092] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The oxazolomycins (OZMs) are a growing family of antibiotics produced by several Streptomyces species that show diverse and important antibacterial, antitumor, and anti-human immunodeficiency virus activity. Oxazolomycin A is a peptide-polyketide hybrid compound containing a unique spiro-linked beta-lactone/gamma-lactam, a 5-substituted oxazole ring. The oxazolomycin biosynthetic gene cluster (ozm) was identified from Streptomyces albus JA3453 and localized to 79.5-kb DNA, consisting of 20 open reading frames that encode non-ribosomal peptide synthases, polyketide synthases (PKSs), hybrid non-ribosomal peptide synthase-PKS, trans-acyltransferases (trans-ATs), enzymes for methoxymalonyl-acyl carrier protein (ACP) synthesis, putative resistance genes, and hypothetical regulation genes. In contrast to classical type I polyketide or fatty acid biosynthases, all 10 PKS modules in the gene cluster lack cognate ATs. Instead, discrete ATs OzmM (with tandem domains OzmM-AT1 and OzmM-AT2) and OzmC were equipped to carry out all of the loading functions of both malonyl-CoA and methoxymalonyl-ACP extender units. Strikingly, only OzmM-AT2 is required for OzmM activity for OZM biosynthesis, whereas OzmM-AT1 seemed to be a cryptic AT domain. The above findings, together with previous results using isotope-labeled precursor feeding assays, are assembled for the OZM biosynthesis model to be proposed. The incorporation of both malonyl-CoA (by OzmM-AT2) and methoxymalonyl-ACP (by OzmC) extender units seemed to be unprecedented for this class of trans-AT type I PKSs, which might be fruitfully manipulated to create structurally diverse novel compounds.
Collapse
Affiliation(s)
- Chunhua Zhao
- Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiaotong University, Shanghai 200030, China
| | | | | | | | | | | | | | | | | |
Collapse
|