1
|
Dvořák P, Galvão TC, Pflüger‐Grau K, Banks AM, de Lorenzo V, Jiménez JI. Water potential governs the effector specificity of the transcriptional regulator XylR of Pseudomonas putida. Environ Microbiol 2023; 25:1041-1054. [PMID: 36683138 PMCID: PMC10946618 DOI: 10.1111/1462-2920.16342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 01/18/2023] [Indexed: 01/24/2023]
Abstract
The biodegradative capacity of bacteria in their natural habitats is affected by water availability. In this work, we have examined the activity and effector specificity of the transcriptional regulator XylR of the TOL plasmid pWW0 of Pseudomonas putida mt-2 for biodegradation of m-xylene when external water potential was manipulated with polyethylene glycol PEG8000. By using non-disruptive luxCDEAB reporter technology, we noticed that the promoter activated by XylR (Pu) restricted its activity and the regulator became more effector-specific towards head TOL substrates when cells were grown under water subsaturation. Such a tight specificity brought about by water limitation was relaxed when intracellular osmotic stress was counteracted by the external addition of the compatible solute glycine betaine. With these facts in hand, XylR variants isolated earlier as effector-specificity responders to the non-substrate 1,2,4-trichlorobenzene under high matric stress were re-examined and found to be unaffected by water potential in vivo. All these phenomena could be ultimately explained as the result of water potential-dependent conformational changes in the A domain of XylR and its effector-binding pocket, as suggested by AlphaFold prediction of protein structures. The consequences of this scenario for the evolution of specificities in regulators and the emergence of catabolic pathways are discussed.
Collapse
Affiliation(s)
- Pavel Dvořák
- Department of Experimental Biology (Section of Microbiology, Microbial Bioengineering Laboratory), Faculty of ScienceMasaryk UniversityBrnoCzech Republic
| | | | - Katharina Pflüger‐Grau
- Specialty Division for Systems BiotechnologyTechnische Universität MünchenGarchingGermany
| | - Alice M. Banks
- Department of Life SciencesImperial College LondonLondonUK
| | - Víctor de Lorenzo
- Systems Biology DepartmentCentro Nacional de Biotecnología‐CSICMadridSpain
| | | |
Collapse
|
2
|
The structure-function relationship of bacterial transcriptional regulators as a target for enhanced biodegradation of aromatic hydrocarbons. Microbiol Res 2022; 262:127087. [DOI: 10.1016/j.micres.2022.127087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 06/03/2022] [Accepted: 06/03/2022] [Indexed: 11/20/2022]
|
3
|
Malaga F, Mayberry O, Park DJ, Rodgers ME, Toptygin D, Schleif RF. A genetic and physical study of the interdomain linker of E. Coli
AraC protein-a trans
-subunit communication pathway. Proteins 2016; 84:448-60. [DOI: 10.1002/prot.24990] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Revised: 12/23/2015] [Accepted: 01/12/2016] [Indexed: 11/08/2022]
Affiliation(s)
- Fabiana Malaga
- Biology Department; UPCH; Lima San Martín De Porres Peru
| | - Ory Mayberry
- Department of Biology; Johns Hopkins University; Baltimore Maryland 21218
| | - David J. Park
- Tufts University Medical School; Boston Massachusetts
| | - Michael E. Rodgers
- Department of Biology; Johns Hopkins University; Baltimore Maryland 21218
| | - Dmitri Toptygin
- Department of Biology; Johns Hopkins University; Baltimore Maryland 21218
| | - Robert F. Schleif
- Department of Biology; Johns Hopkins University; Baltimore Maryland 21218
| |
Collapse
|
4
|
The role of bacterial enhancer binding proteins as specialized activators of σ54-dependent transcription. Microbiol Mol Biol Rev 2013; 76:497-529. [PMID: 22933558 DOI: 10.1128/mmbr.00006-12] [Citation(s) in RCA: 249] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacterial enhancer binding proteins (bEBPs) are transcriptional activators that assemble as hexameric rings in their active forms and utilize ATP hydrolysis to remodel the conformation of RNA polymerase containing the alternative sigma factor σ(54). We present a comprehensive and detailed summary of recent advances in our understanding of how these specialized molecular machines function. The review is structured by introducing each of the three domains in turn: the central catalytic domain, the N-terminal regulatory domain, and the C-terminal DNA binding domain. The role of the central catalytic domain is presented with particular reference to (i) oligomerization, (ii) ATP hydrolysis, and (iii) the key GAFTGA motif that contacts σ(54) for remodeling. Each of these functions forms a potential target of the signal-sensing N-terminal regulatory domain, which can act either positively or negatively to control the activation of σ(54)-dependent transcription. Finally, we focus on the DNA binding function of the C-terminal domain and the enhancer sites to which it binds. Particular attention is paid to the importance of σ(54) to the bacterial cell and its unique role in regulating transcription.
Collapse
|
5
|
Yu H, Peng Z, Zhan Y, Wang J, Yan Y, Chen M, Lu W, Ping S, Zhang W, Zhao Z, Li S, Takeo M, Lin M. Novel regulator MphX represses activation of phenol hydroxylase genes caused by a XylR/DmpR-type regulator MphR in Acinetobacter calcoaceticus. PLoS One 2011; 6:e17350. [PMID: 21455294 PMCID: PMC3063778 DOI: 10.1371/journal.pone.0017350] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2010] [Accepted: 01/31/2011] [Indexed: 11/18/2022] Open
Abstract
Acinetobacter calcoaceticus PHEA-2 utilizes phenol as its sole carbon and energy source and has a multi-component phenol hydroxylase-encoding gene operon (mphKLMNOP) for phenol degradation. Two additional genes, mphR and mphX, were found upstream and downstream of mphKLMNOP, respectively. The mphR gene encodes a XylR/DmpR-type regulator-like protein and is transcribed in the opposite direction to mphKLMNOP. The mphX gene is transcribed in the same direction as mphKLMNOP and encodes a protein with 293 amino acid residues showing weak identity with some unknown proteins encoded in the meta-cleavage pathway gene clusters for aromatic compound degradation. Disruption of mphR by homologous recombination resulted in the loss of phenol degradation while disruption of mphX caused significantly faster phenol degradation than in the wild type strain. Transcriptional assays for mphK, mphR, and mphX revealed that mphR activated mphKLMNOP transcription in the presence of phenol, but mphX partially repressed this activation. Gel mobility-shift assay demonstrated a direct interaction of MphR with the mphK promoter region. These results indicate the involvement of a novel repressor protein MphX in transcriptional regulation of phenol hydroxylase genes caused by a XylR/DmpR-type regulator MphR.
Collapse
Affiliation(s)
- Haiying Yu
- College of Biological Sciences, China Agricultural University, Beijing, China
- Key Laboratory of Crop Biotechnology, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Ministry of Agriculture, Beijing, China
| | - Zixin Peng
- Key Laboratory of Crop Biotechnology, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Ministry of Agriculture, Beijing, China
- Department of Materials Science and Chemistry, Graduate School of Engineering, University of Hyogo, Himeji, Hyogo, Japan
| | - Yuhua Zhan
- Key Laboratory of Crop Biotechnology, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Ministry of Agriculture, Beijing, China
| | - Jin Wang
- Key Laboratory of Crop Biotechnology, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Ministry of Agriculture, Beijing, China
| | - Yongliang Yan
- Key Laboratory of Crop Biotechnology, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Ministry of Agriculture, Beijing, China
- National Centre for Plant Gene Research, Beijing, China
| | - Ming Chen
- Key Laboratory of Crop Biotechnology, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Ministry of Agriculture, Beijing, China
| | - Wei Lu
- Key Laboratory of Crop Biotechnology, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Ministry of Agriculture, Beijing, China
| | - Shuzhen Ping
- Key Laboratory of Crop Biotechnology, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Ministry of Agriculture, Beijing, China
| | - Wei Zhang
- Key Laboratory of Crop Biotechnology, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Ministry of Agriculture, Beijing, China
- National Centre for Plant Gene Research, Beijing, China
| | - Zhonglin Zhao
- Key Laboratory of Crop Biotechnology, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Ministry of Agriculture, Beijing, China
| | - Shuying Li
- Key Laboratory of Crop Biotechnology, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Ministry of Agriculture, Beijing, China
| | - Masahiro Takeo
- Department of Materials Science and Chemistry, Graduate School of Engineering, University of Hyogo, Himeji, Hyogo, Japan
- * E-mail: (MT); (ML)
| | - Min Lin
- College of Biological Sciences, China Agricultural University, Beijing, China
- Key Laboratory of Crop Biotechnology, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Ministry of Agriculture, Beijing, China
- * E-mail: (MT); (ML)
| |
Collapse
|
6
|
Vogne C, Bisht H, Arias S, Fraile S, Lal R, van der Meer JR. Characterisation of the putative effector interaction site of the regulatory HbpR protein from Pseudomonas azelaica by site-directed mutagenesis. PLoS One 2011; 6:e16539. [PMID: 21379585 PMCID: PMC3040749 DOI: 10.1371/journal.pone.0016539] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2010] [Accepted: 12/29/2010] [Indexed: 11/18/2022] Open
Abstract
Bacterial transcription activators of the XylR/DmpR subfamily exert their expression control via σ(54)-dependent RNA polymerase upon stimulation by a chemical effector, typically an aromatic compound. Where the chemical effector interacts with the transcription regulator protein to achieve activation is still largely unknown. Here we focus on the HbpR protein from Pseudomonas azelaica, which is a member of the XylR/DmpR subfamily and responds to biaromatic effectors such as 2-hydroxybiphenyl. We use protein structure modeling to predict folding of the effector recognition domain of HbpR and molecular docking to identify the region where 2-hydroxybiphenyl may interact with HbpR. A large number of site-directed HbpR mutants of residues in- and outside the predicted interaction area was created and their potential to induce reporter gene expression in Escherichia coli from the cognate P(C) promoter upon activation with 2-hydroxybiphenyl was studied. Mutant proteins were purified to study their conformation. Critical residues for effector stimulation indeed grouped near the predicted area, some of which are conserved among XylR/DmpR subfamily members in spite of displaying different effector specificities. This suggests that they are important for the process of effector activation, but not necessarily for effector specificity recognition.
Collapse
Affiliation(s)
- Christelle Vogne
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - Hansi Bisht
- Department of Zoology, University of Delhi, Delhi, India
| | - Sagrario Arias
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - Sofia Fraile
- National Centre for Biotechnology, CSIC, Madrid, Spain
| | - Rup Lal
- Department of Zoology, University of Delhi, Delhi, India
| | - Jan Roelof van der Meer
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
- * E-mail:
| |
Collapse
|
7
|
de las Heras A, de Lorenzo V. Cooperative amino acid changes shift the response of the σ54-dependent regulator XylR from natural m-xylene towards xenobiotic 2,4-dinitrotoluene. Mol Microbiol 2011; 79:1248-59. [DOI: 10.1111/j.1365-2958.2010.07518.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
8
|
Abstract
Alternative σ-factors of bacteria bind core RNA polymerase to program the specific promoter selectivity of the holoenzyme. Signal-responsive changes in the availability of different σ-factors redistribute the RNA polymerase among the distinct promoter classes in the genome for appropriate adaptive, developmental and survival responses. The σ(54) -factor is structurally and functionally distinct from all other σ-factors. Consequently, binding of σ(54) to RNA polymerase confers unique features on the cognate holoenzyme, which requires activation by an unusual class of mechano-transcriptional activators, whose activities are highly regulated in response to environmental cues. This review summarizes the current understanding of the mechanisms of transcriptional activation by σ(54) -RNA polymerase and highlights the impact of global regulatory factors on transcriptional efficiency from σ(54) -dependent promoters. These global factors include the DNA-bending proteins IHF and CRP, the nucleotide alarmone ppGpp, and the RNA polymerase-targeting protein DksA.
Collapse
|
9
|
Galvão TC, Mencía M, de Lorenzo V. Emergence of novel functions in transcriptional regulators by regression to stem protein types. Mol Microbiol 2007; 65:907-19. [PMID: 17645451 DOI: 10.1111/j.1365-2958.2007.05832.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Evolutionary expansion of metabolic networks entails the emergence of regulatory factors that become sensitive to new chemical species. A dedicated genetic system was developed for the soil bacterium Pseudomonas putida aimed at deciphering the steps involved in the gain of responsiveness of the toluene-activated prokaryotic regulator XylR to the xenobiotic chemical 2,4 dinitrotoluene (DNT). A mutant library of the A domain of XylR was screened in vivo for those variants activated by DNT through coupling the cognate promoter Pu to the P. putida yeast URA3 homologue, pyrF. All DNT-responsive clones maintained their sensitivity to ordinary effectors of XylR and broadened the range of inducers to unrelated aromatics. Yet, none of the altered amino acids lay in the recognizable effector binding pocket of the polypeptide. Instead, mutations appeared in protein surfaces believed to engage in the conformational shifts that follow effector binding and modulate signal transmission between XylR domains. It thus seems that transcriptional factors are likely to regress into functionally multipotent forms (i.e. stem protein types) as a first step towards the divergence of a new specificity.
Collapse
Affiliation(s)
- Teca Calcagno Galvão
- Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Darwin 3, Cantoblanco, 28049 Madrid, Spain
| | | | | |
Collapse
|
10
|
Velázquez F, de Lorenzo V, Valls M. The m-xylene biodegradation capacity of Pseudomonas putida mt-2 is submitted to adaptation to abiotic stresses: evidence from expression profiling of xyl genes. Environ Microbiol 2006; 8:591-602. [PMID: 16584471 DOI: 10.1111/j.1462-2920.2005.00936.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The effect of archetypal environmental stresses on expression of the catabolic xyl genes of the TOL plasmid pWW0 of the m-xylene degrading strain Pseudomonas putida mt-2 has been investigated. To this end, a subgenomic DNA chip was employed which included structural and regulatory DNA sequences of the TOL pathway along with selected descriptors of specific physiological conditions. Cells were separately exposed to m-xylene under various oxygen tensions, temperatures and nitrogen sources as well as situations of DNA damage, oxidative stress, carbon and iron starvation, respiratory chain damage, and contact with arsenic, but at doses which did not cause a gross effect on growth or cell viability. The incidence of each stress class was categorized through the corresponding descriptors in the chip in respect to the relative output of xyl transcripts. While most of the stresses downregulated the m-xylene biodegradation-related genes, some uncouplers of the respiratory chain (azide) and small doses of arsenate appeared to stimulate their expression. The replacement of NH4+ by NO3- as N source augmented expression of the TOL cistrons also. We subsequently subjected P. putida mt-2 cells to the multiple abiotic stress brought about by exposure to crude tar from the 2002 oil spill of the Prestige tanker, which embraces a complex mixture of hydrocarbons. The resulting expression profile of xyl genes and stress-responding markers over time suggested that adaptation to external insults precedes any significant expression of the catabolic genes. The consequences of this hierarchy of responses for microbial biodegradation in situ are discussed.
Collapse
Affiliation(s)
- Francisco Velázquez
- Centro Nacional de Biotecnología-CSIC, Campus UAM-Cantoblanco, Madrid 28049, Spain
| | | | | |
Collapse
|
11
|
Velázquez F, Fernández S, de Lorenzo V. The upstream-activating sequences of the sigma54 promoter Pu of Pseudomonas putida filter transcription readthrough from upstream genes. J Biol Chem 2006; 281:11940-8. [PMID: 16510445 DOI: 10.1074/jbc.m511782200] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Although the m-xylene-responsive sigma54 promoter Pu of Pseudomonas putida mt-2, borne by the TOL plasmid pWWO, is one of the strongest known promoters in vivo, its base-line level in the absence of its aromatic inducer is below the limit of any detection procedure. This is unusual because regulatory networks (such as the one to which Pu belongs) can hardly escape the noise caused by intrinsic fluctuations in background transcription, including that transmitted from upstream promoters. This study provides genetic evidence that the upstream-activating sequences (UAS), which serve as the binding sites for the pWW0-encoded XylR protein (the m-xylene-responsive sigma54-dependent activator of Pu), isolate expression of the upper TOL genes from any adventitious transcriptional flow originating further upstream. An in vivo test system was developed in which different segments of the Pu promoter were examined for the inhibition of incoming transcription products from an upstream promoter in P. putida and Escherichia coli. Minimal transcription filter ability was located within a 105-bp fragment encompassing the UAS of Pu. Although S1 nuclease assays showed that the UAS prevented the buildup of downstream transcripts, the mechanism seems to diverge from a typical termination system. This was shown by the fact that the UAS did not halt transcription in vitro and that the filter effect could not be relieved by the anti-termination system of lambda phage. Because the Pu promoter lies adjacent to the edge of a transposon in pWW0, the preset transcriptional filter in the UAS may isolate the upper TOL operon from undue expression after random insertion of the mobile genetic element in a new replicon.
Collapse
Affiliation(s)
- Francisco Velázquez
- Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Campus UAM-Cantoblanco, 28049 Madrid, Spain
| | | | | |
Collapse
|
12
|
Aranda-Olmedo I, Ramos JL, Marqués S. Integration of signals through Crc and PtsN in catabolite repression of Pseudomonas putida TOL plasmid pWW0. Appl Environ Microbiol 2005; 71:4191-8. [PMID: 16085802 PMCID: PMC1183334 DOI: 10.1128/aem.71.8.4191-4198.2005] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Toluene degradation in Pseudomonas putida KT2440 pWW0 plasmid is subjected to catabolite repression. Pu and P(S1) promoters of the pWW0 TOL plasmid are down-regulated in vivo during exponential growth in rich medium. In cells growing on minimal medium, yeast extract (YE) addition mimics exponential-phase rich medium repression of these promoters. We have constructed and tested mutants in a series of global regulators described in Pseudomonas. We describe that a mutant in crc (catabolite repression control) partially relieves YE repression. Macroarray experiments show that crc transcription is strongly increased in the presence of YE, inversely correlated with TOL pathway expression. On the other hand, we have found that induced levels of expression from Pu and P(S) in the presence of YE are partially derepressed in a ptsN mutant of P. putida. PtsN but not Crc seems to directly interfere with XylR activation at target promoters. The effect of the double mutation in ptsN and crc is not the sum of the effects of each independent mutation and suggests that both regulators are elements of a common regulatory pathway. Basal expression levels from these promoters in the absence of inducer are still XylR dependent and are also repressed in the presence of yeast extract. Neither crc nor ptsN could relieve this repression.
Collapse
Affiliation(s)
- Isabel Aranda-Olmedo
- Department of Biochemistry and Molecular and Cellular Biology of Plants, EEZ-CSIC, Apdo. de Correos 419, E-18080 Granada, Spain
| | | | | |
Collapse
|
13
|
Doucleff M, Chen B, Maris AE, Wemmer DE, Kondrashkina E, Nixon BT. Negative Regulation of AAA+ ATPase Assembly by Two Component Receiver Domains: A Transcription Activation Mechanism that is Conserved in Mesophilic and Extremely Hyperthermophilic Bacteria. J Mol Biol 2005; 353:242-55. [PMID: 16169010 DOI: 10.1016/j.jmb.2005.08.003] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2005] [Revised: 08/01/2005] [Accepted: 08/03/2005] [Indexed: 10/25/2022]
Abstract
Only a few transcriptional regulatory proteins have been characterized in extremely hyperthermophilic organisms, and most function as repressors. Structural features of the NtrC1 protein from the hyperthermophilic bacterium Aquifex aeolicus suggested that this protein functions similarly to the sigma(54)-polymerase activator DctD of Sinorhizobium meliloti. Here, we demonstrate that NtrC1 is an enzyme that hydrolyzes ATP to activate initiation of transcription by sigma(54)-holoenzyme. New structural data, including small-angle solution scattering data and the crystal structure of the phosphorylated receiver domain, show that NtrC1 uses a signal transduction mechanism very similar to that of DctD to control assembly of its AAA+ ATPase domain. As for DctD, the off-state of NtrC1 depends upon a tight dimer of the receiver domain to repress oligomerization of an intrinsically competent ATPase domain. Activation of NtrC1 stabilizes an alternative dimer configuration of the receiver domain that is very similar to the on-state dimers of the DctD and FixJ receiver domains. This alternative dimer appears to relieve repression of the ATPase domain by disrupting the off-state dimerization interface along the helical linker region between receiver and ATPase domains. Bacterial enhancer binding proteins typically have two linker sequences, one between N-terminal regulatory and central ATPase domains, and one between the central ATPase and C-terminal DNA binding domains. Sequence analyses reveal an intriguing correlation between the negative regulation mechanism of NtrC1 and DctD, and a structured N-terminal linker and unstructured C-terminal one; conversely, the very different, positive mechanism present in NtrC protein occurs in the context of an unstructured N-terminal linker and a structured C-terminal one. In both cases, the structured linkers significantly contribute to the stability of the off-state dimer conformation. These analyses also raise the possibility that a structured linker between N-terminal regulatory and central output domains is used frequently in regulatory proteins from hyperthermophilic organisms.
Collapse
Affiliation(s)
- Michaeleen Doucleff
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | | | | | | | | | | |
Collapse
|
14
|
Velázquez F, Parro V, de Lorenzo V. Inferring the genetic network ofm-xylene metabolism through expression profiling of thexylgenes ofPseudomonas putidamt-2. Mol Microbiol 2005; 57:1557-69. [PMID: 16135224 DOI: 10.1111/j.1365-2958.2005.04787.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
A subgenomic array of structural and regulatory genes of the TOL plasmid pWW0 of Pseudomonas putida mt-2 has been constructed to sort out the interplay between m-xylene catabolism and the environmental stress brought about by this aromatic chemical. To this end, xyl sequences were spotted along with groups of selected P. putida genes, the transcription of which become descriptors of distinct physiological conditions. The expression of the TOL pathway in response to pathway substrates was thus profiled, uncovering a regulatory network that overcomes and expands the predictions made by projecting known data from individual promoters. First, post-transcriptional checks appear to mitigate the burden caused by non-productive induction of the TOL operons. Second, the fate of different segments of the polycistronic mRNAs from the upper and lower TOL operons varies depending on the metabolism of their inducers. Finally, m-xylene triggers a noticeable heat shock, the onset of which does interfere with optimal expression of catabolic genes. These results reveal a degree of regulatory partnership between TOL plasmid-encoded functions and host physiology that go beyond transcription initiation control.
Collapse
Affiliation(s)
- Francisco Velázquez
- Centro Nacional de Biotecnología-CSIC, Campus UAM-Cantoblanco, Madrid 28049, Spain
| | | | | |
Collapse
|
15
|
Palacios S, Escalante-Semerena JC. 2-Methylcitrate-dependent activation of the propionate catabolic operon (prpBCDE) of Salmonella enterica by the PrpR protein. MICROBIOLOGY-SGM 2005; 150:3877-3887. [PMID: 15528672 DOI: 10.1099/mic.0.27299-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The function of the PrpR protein of Salmonella enterica serovar Typhimurium LT2 was studied in vitro and in vivo. The PrpR protein is a sensor of 2-methylcitrate (2-MC), an intermediate of the 2-methylcitric acid cycle used by this bacterium to convert propionate to pyruvate. PrpR was unresponsive to citrate (a close structural analogue of 2-MC) and to propionate, suggesting that 2-MC, not propionate, is the metabolite that signals the presence of propionate in the environment to S. enterica. prpR alleles encoding mutant proteins with various levels of 2-MC-independent activity were isolated. All lesions causing constitutive PrpR activity were mapped to the N-terminal domain of the protein. Removal of the entire sensing domain resulted in a protein (PrpR(c)) with the highest 2-MC-independent activity. Residue A162 is critical to 2-MC sensing, since the mutant PrpR protein PrpR(A162T) was as active as the PrpR(c) protein in the absence of 2-MC. DNA footprinting studies identified the site in the region between prpR and the prpBCDE operon to which the PrpR protein binds. Analysis of the binding-site sequence revealed two sites with dyad symmetry. Results from DNase I footprinting assays suggested that the PrpR protein may have higher affinity for the site proximal to the P(prpBCDE) promoter.
Collapse
Affiliation(s)
- Sergio Palacios
- Department of Bacteriology, University of Wisconsin, 1710 University Avenue, Madison, WI 53726-4087, USA
| | - Jorge C Escalante-Semerena
- Department of Bacteriology, University of Wisconsin, 1710 University Avenue, Madison, WI 53726-4087, USA
| |
Collapse
|
16
|
Kim MN, Park HH, Lim WK, Shin HJ. Construction and comparison of Escherichia coli whole-cell biosensors capable of detecting aromatic compounds. J Microbiol Methods 2005; 60:235-45. [PMID: 15590098 DOI: 10.1016/j.mimet.2004.09.018] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2004] [Revised: 08/31/2004] [Accepted: 09/28/2004] [Indexed: 11/28/2022]
Abstract
The XylR regulatory protein is a transcription factor involved in the BTEX (benzene, toluene, ethylbenzene, and xylene) degradation pathway in Pseudomonas species. When XylR-dependent stimulation of transcription from a plasmid containing XylR and its cognate promoters Pr and Pu was monitored as firefly luciferase activities in Escherichia coli, a notably high level of basal activity was observed in the absence of inducers. To improve the response specificity of XylR in this system, two related but different promoters were tested for their activities; the XylS activator promoter Ps and the DmpR activator promoter Po. Po with the deletion of its own upstream activating sequences (UASs; Po') showed a very low level of basal activity compared to Pu and Ps. The maximum level with the addition of inducers was increased 3151-fold by o-xylene with Po', while it was 31.5 and 74.1 fold by m-xylene with Pu and Ps, respectively. Gel mobility shift assay showed that the purified XylR without inducers can bind to Pr/Pu but not to Pr/Po', implying that XylR multimerization with Pr/Pu could be formed for initiation of transcription in this system. The data suggest that Po' can be an excellent alternative in constructing a signal-intensified, whole-cell biosensor in response to the xenobiotics.
Collapse
Affiliation(s)
- Mi Na Kim
- Department of Molecular Biology, College of Natural Sciences, Pusan National University, Busan 609-735, Republic of Korea
| | | | | | | |
Collapse
|
17
|
Tropel D, van der Meer JR. Bacterial transcriptional regulators for degradation pathways of aromatic compounds. Microbiol Mol Biol Rev 2004; 68:474-500, table of contents. [PMID: 15353566 PMCID: PMC515250 DOI: 10.1128/mmbr.68.3.474-500.2004] [Citation(s) in RCA: 295] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human activities have resulted in the release and introduction into the environment of a plethora of aromatic chemicals. The interest in discovering how bacteria are dealing with hazardous environmental pollutants has driven a large research community and has resulted in important biochemical, genetic, and physiological knowledge about the degradation capacities of microorganisms and their application in bioremediation, green chemistry, or production of pharmacy synthons. In addition, regulation of catabolic pathway expression has attracted the interest of numerous different groups, and several catabolic pathway regulators have been exemplary for understanding transcription control mechanisms. More recently, information about regulatory systems has been used to construct whole-cell living bioreporters that are used to measure the quality of the aqueous, soil, and air environment. The topic of biodegradation is relatively coherent, and this review presents a coherent overview of the regulatory systems involved in the transcriptional control of catabolic pathways. This review summarizes the different regulatory systems involved in biodegradation pathways of aromatic compounds linking them to other known protein families. Specific attention has been paid to describing the genetic organization of the regulatory genes, promoters, and target operon(s) and to discussing present knowledge about signaling molecules, DNA binding properties, and operator characteristics, and evidence from regulatory mutants. For each regulator family, this information is combined with recently obtained protein structural information to arrive at a possible mechanism of transcription activation. This demonstrates the diversity of control mechanisms existing in catabolic pathways.
Collapse
Affiliation(s)
- David Tropel
- Swiss Federal Institute for Environmental Science and Technology (EAWAG), Dübendorf, Switzerland
| | | |
Collapse
|
18
|
Martinez-Argudo I, Little R, Dixon R. Role of the amino-terminal GAF domain of the NifA activator in controlling the response to the antiactivator protein NifL. Mol Microbiol 2004; 52:1731-44. [PMID: 15186421 DOI: 10.1111/j.1365-2958.2004.04089.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The NifA protein from Azotobacter vinelandii belongs to a family of enhancer binding proteins (EBPs) that activate transcription by RNA polymerase containing the sigma factor sigma(54). These proteins have conserved AAA+ domains that catalyse ATP hydrolysis to drive conformational changes necessary for open complex formation by sigma(54)-RNA polymerase. The activity of the NifA protein is highly regulated in response to redox and fixed nitrogen through interaction with the antiactivator protein NifL. Binding of NifL to NifA inhibits the ATPase activity of NifA, and this interaction is controlled by the amino-terminal GAF domain of NifA that binds 2-oxoglutarate. Mutations conferring resistance to NifL are located in both the GAF and the AAA+ domains of NifA. To investigate the mechanism by which the GAF domain regulates the activity of the AAA+ domain, we screened for second-site mutations that suppress the NifL-resistant phenotype of mutations in the AAA+ domain. One suppressor mutation, F119S, in the GAF domain restores inhibition by NifL to an AAA+ domain mutation, E356K, in response to fixed nitrogen but not in response to oxygen. The biochemical properties of this mutant protein are consistent with the in vivo phenotype and demonstrate that interdomain suppression results in sensitivity to inhibition by NifL in the presence of the signal transduction protein GlnK, but not to the oxidized form of NifL. In the absence of an AAA+ domain mutation, the F119S mutation confers hypersensitivity to repression by NifL. Isothermal titration calorimetry demonstrates that this mutation prevents binding of 2-oxoglutarate to the GAF domain. Our data support a model in which the GAF domain plays an essential role in preventing inhibition by NifL under conditions appropriate for nitrogen fixation. These observations are of general significance in considering how the activities of EBPs are controlled in response to environmental signals.
Collapse
Affiliation(s)
- Isabel Martinez-Argudo
- Department of Molecular Microbiology, John Innes Centre, Colney Lane, Norwich NR4 7UH, UK
| | | | | |
Collapse
|
19
|
Shingler V. Integrated regulation in response to aromatic compounds: from signal sensing to attractive behaviour. Environ Microbiol 2004; 5:1226-41. [PMID: 14641570 DOI: 10.1111/j.1462-2920.2003.00472.x] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Deciphering the complex interconnecting bacterial responses to the presence of aromatic compounds is required to gain an integrated understanding of how aromatic catabolic processes function in relation to their genome and environmental context. In addition to the properties of the catabolic enzymes themselves, regulatory responses on at least three different levels are important. At a primary level, aromatic compounds control the activity of specific members of many families of transcriptional regulators to direct the expression of the specialized enzymes for their own catabolism. At a second level, dominant global regulation in response to environmental and physiological cues is incorporated to subvert and couple transcription levels to the energy status of the bacteria. Mediators of these global regulatory responses include the alarmone (p)ppGpp, the DNA-bending protein IHF and less well-defined systems that probably sense the energy status through the activity of the electron transport chain. At a third level, aromatic compounds can also impact on catabolic performance by provoking behavioural responses that allow the bacteria to seek out aromatic growth substrates in their environment.
Collapse
Affiliation(s)
- Victoria Shingler
- Department of Molecular Biology, Umeå University, SE-901 87 Umeå, Sweden.
| |
Collapse
|
20
|
Rescalli E, Saini S, Bartocci C, Rychlewski L, De Lorenzo V, Bertoni G. Novel physiological modulation of the Pu promoter of TOL plasmid: negative regulatory role of the TurA protein of Pseudomonas putida in the response to suboptimal growth temperatures. J Biol Chem 2003; 279:7777-84. [PMID: 14672954 DOI: 10.1074/jbc.m310580200] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
From crude protein extracts of Pseudomonas putida KT2440, we identified a small protein, TurA, able to bind to DNA fragments bearing the entire Pu promoter sequence of the TOL plasmid. The knock-out inactivation of the turA gene resulted in enhanced transcription initiation from the Pu promoter, initially suggesting a negative regulatory role of TurA on Pu expression. Ectopic expression of TurA both in P. putida and in Escherichia coli reporter strains and transcription in vitro of the Pu promoter in the presence of purified TurA confirmed the TurA repressor role on Pu activity. turA gene inactivation did not significantly alter two well characterized physiological regulations of the Pu expression in routine conditions of cultivation, exponential silencing, and carbon-mediated repression, respectively. However, the growth at suboptimal temperatures resulted in a TurA-dependent increase of Pu repression. These results strongly suggest that a physiological significance of the negative role of TurA on Pu activity could be limitation of the expression of the toluene-degrading enzymes at suboptimal growth temperatures. Therefore, the identification of TurA as Pu-binding protein revealed a novel physiological modulation of Pu promoter that is different from those strictly nutritional described previously.
Collapse
Affiliation(s)
- Emanuela Rescalli
- Dipartimento di Scienze Biomolecolari e Biotecnologie, Universita' degli Studi di Milano, via Celoria 26, 20133 Milan, Italy, BioInfoBank Institute, Limanowskiego 24A/16, 60-744 Poznan, Poland
| | | | | | | | | | | |
Collapse
|
21
|
Valls M, de Lorenzo V. Transient XylR binding to the UAS of the Pseudomonas putida sigma54 promoter Pu revealed with high intensity UV footprinting in vivo. Nucleic Acids Res 2003; 31:6926-34. [PMID: 14627825 PMCID: PMC290279 DOI: 10.1093/nar/gkg912] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2003] [Revised: 10/16/2003] [Accepted: 10/16/2003] [Indexed: 11/12/2022] Open
Abstract
The binding of the transcriptional regulator XylR to its cognate upstream activating sequences (UAS) of the sigma54-dependent promoter Pu of Pseudomonas putida has been examined in vivo in single copy gene dose and stoichiometry. To this end, we have employed a novel in vivo genomic footprinting procedure that uses short exposures of bacterial cells to diffuse high intensity UV light that causes formation of TT or TC dimers. In contrast to simpler models for activation of sigma54-dependent promoters, our results clearly indicate that the XylR protein is not permanently bound in vivo to its target sites in Pu. On the contrary, the UAS appear to be mostly unoccupied at all growth stages. This is in contrast to the integration host factor (IHF), which binds Pu strongly in vivo at stationary phase, as also revealed by UV footprinting. Only overexpression of XylR altered the photoreactivity of the corresponding DNA region to report stable binding of the regulator to the UAS. However, the presence of aromatic XylR inducers reversed the forced occupation caused by increased levels of the activator. These results are compatible with the notion that XylR interacts very transiently with the UAS and detaches from the promoter during transcriptional activation of Pu.
Collapse
Affiliation(s)
- Marc Valls
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología del Consejo Superior de Investigaciones Científicas (CSIC), Campus de Cantoblanco, 28049 Madrid, Spain
| | | |
Collapse
|
22
|
Effect of medium compositions on biosensing of benzene derivatives using recombinant Escherichia coli. Biochem Eng J 2003. [DOI: 10.1016/s1369-703x(03)00059-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
23
|
Lee SY, De La Torre A, Yan D, Kustu S, Nixon BT, Wemmer DE. Regulation of the transcriptional activator NtrC1: structural studies of the regulatory and AAA+ ATPase domains. Genes Dev 2003; 17:2552-63. [PMID: 14561776 PMCID: PMC218149 DOI: 10.1101/gad.1125603] [Citation(s) in RCA: 169] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Transcription by sigma54 RNA polymerase depends on activators that contain ATPase domains of the AAA+ class. These activators, which are often response regulators of two-component signal transduction systems, remodel the polymerase so that it can form open complexes at promoters. Here, we report the first crystal structures of the ATPase domain of an activator, the NtrC1 protein from the extreme thermophile Aquifex aeolicus. This domain alone, which is active, crystallized as a ring-shaped heptamer. The protein carrying both the ATPase and adjacent receiver domains, which is inactive, crystallized as a dimer. In the inactive dimer, one residue needed for catalysis is far from the active site, and extensive contacts among the domains prevent oligomerization of the ATPase domain. Oligomerization, which completes the active site, depends on surfaces that are buried in the dimer, and hence, on a rearrangement of the receiver domains upon phosphorylation. A motif in the ATPase domain known to be critical for coupling energy to remodeling of polymerase forms a novel loop that projects from the middle of an alpha helix. The extended, structured loops from the subunits of the heptamer localize to a pore in the center of the ring and form a surface that could contact sigma54.
Collapse
Affiliation(s)
- Seok-Yong Lee
- Graduate Group in Biophysics, University of California, Berkeley, California 94720,USA
| | | | | | | | | | | |
Collapse
|
24
|
Park S, Meyer M, Jones AD, Yennawar HP, Yennawar NH, Nixon BT. Two-component signaling in the AAA + ATPase DctD: binding Mg2+ and BeF3- selects between alternate dimeric states of the receiver domain. FASEB J 2002; 16:1964-6. [PMID: 12368235 DOI: 10.1096/fj.02-0395fje] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
A Crystallogral structure is described for the Mg2+-BeF3--bound receiver domain of Sinorhizobium meliloti DctD bearing amino acid substitution E121K. Differences between the apo- and ligand-bound active sites are similar to those reported for other receiver domains. However, the off and on states of the DctD receiver domain are characterized by dramatically different dimeric structures, which supports the following hypothesis of signal transduction. In the off state, the receiver domain and coiled-coil linker form a dimer that inhibits oligomerization of the AAA+ ATPase domain. In this conformation, the receiver domain cannot be phosphorylated or bind Mg2+ and BeF3-. Instead, these modifications stabilize an alternative dimeric conformation that repositions the subunits by approximately 20 A, thus replacing the a4-b5-a5 interface with an a4-b5 interface. Reoriented receiver domains permit the ATPase domain to oligomerize and stimulate open complex formation by the s54 form of RNA polymerase. NtrC, which shares 38% sequence identity with DctD, works differently. Its activated receiver domain must facilitate oligomerization of its ATPase domain. Significant differences exist in the signaling surfaces of the DctD and NtrC receiver domains that may help explain how triggering the common two-component switch can variously regulate assembly of a AAA+ ATPase domain.
Collapse
Affiliation(s)
- Sungdae Park
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, USA
| | | | | | | | | | | |
Collapse
|
25
|
Devos D, Garmendia J, de Lorenzo V, Valencia A. Deciphering the action of aromatic effectors on the prokaryotic enhancer-binding protein XylR: a structural model of its N-terminal domain. Environ Microbiol 2002; 4:29-41. [PMID: 11966823 DOI: 10.1046/j.1462-2920.2002.00265.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The prokaryotic enhancer-binding protein XylR is the central regulator of the toluene degradation pathway in Pseudomonas species. Copious genetic and biochemical data indicate that the N-terminal domain of the protein (domain A) interacts directly with m-xylene, which renders the protein competent as a transcriptional activator. Single-site and shuffling mutants of XylR or homologues have been reported to change or expand their effector profiles. Here, we follow a fold recognition approach to generate three-dimensional models of the domain A of XylR and DmpR with the purpose of deciphering the molecular activity of this protein family. The model is based on the crystallographic data of the rat catechol O-methyltransferase, a typical alpha/beta fold, consisting of eight alpha-helices and seven beta-strands. The fold identification is supported by physico-chemical properties of conserved amino acids, distribution of residues characteristic of the sequence families and confrontation with experimental data. The model not only provides a rationale for understanding published experimental data, but also suggests the molecular mechanism of the activation step and is a potentially useful conceptual tool for designing regulators with predefined inducer specificities.
Collapse
Affiliation(s)
- D Devos
- Protein Design Group, National Center for Biotechnology, CNB-CSIC, Cantoblanco, Madrid E-28049, Spain
| | | | | | | |
Collapse
|
26
|
Fraile S, Roncal F, Fernández LA, de Lorenzo V. Monitoring intracellular levels of XylR in Pseudomonas putida with a single-chain antibody specific for aromatic-responsive enhancer-binding proteins. J Bacteriol 2001; 183:5571-9. [PMID: 11544219 PMCID: PMC95448 DOI: 10.1128/jb.183.19.5571-5579.2001] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have isolated a recombinant phage antibody (Phab) that binds a distinct epitope of the subclass of the sigma(54)-dependent prokaryotic enhancer-binding proteins that respond directly to aromatic effectors, e.g., those that activate biodegradative operons of Pseudomonas spp. The DNA segments encoding the variable (V) domains of the immunoglobulins expressed by mice immunized with the C-terminal half of TouR (TouRDeltaA) of Pseudomonas stutzeri OX1 were amplified and rearranged in vitro as single-chain Fv (scFv) genes. An scFv library was thereby constructed, expressed in an M13 display system, and subjected to a panning procedure with TouR. One clone (named B7) was selected with high affinity for TouR and XylR (the regulator of the upper TOL operon of the pWW0 plasmid). The epitope recognized by this Phab was mapped to the peptide TPRAQATLLRVL, which seems to be characteristic of the group of enhancer-binding proteins to which TouR and XylR belong and which is located adjacent to the Walker B motif of the proteins. The Phab B7 was instrumental in measuring directly the intracellular levels of XylR expressed from its natural promoter in monocopy gene dosage in Pseudomonas putida under various conditions. Growth stage, the physical form of the protein produced (XylR or XylRDeltaA), and the presence or absence of aromatic inducers in the medium influenced the intracellular pool of these molecules. XylR oscillated from a minimum of approximately 30 molecules (monomers) per cell during exponential phase to approximately140 molecules per cell at stationary phase. Activation of XylR by aromatic inducers decreased the intracellular concentration of the regulator. The levels of the constitutively active variant of XylR named XylRDeltaA were higher, fluctuating between approximately 90 and approximately 570 molecules per cell, depending on the growth stage. These results are compatible with the present model of transcriptional autoregulation of XylR and suggest the existence of mechanisms controlling the stability of XylR protein in vivo.
Collapse
Affiliation(s)
- S Fraile
- Centro Nacional de Biotecnología del Consejo Superior de Investigaciones Científicas, Campus de Cantoblanco, 28049 Madrid, Spain
| | | | | | | |
Collapse
|
27
|
Garmendia J, Devos D, Valencia A, de Lorenzo V. A la carte transcriptional regulators: unlocking responses of the prokaryotic enhancer-binding protein XylR to non-natural effectors. Mol Microbiol 2001; 42:47-59. [PMID: 11679066 DOI: 10.1046/j.1365-2958.2001.02633.x] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
To investigate the activation mechanism of the enhancer-binding protein XylR encoded by the TOL plasmid of Pseudomonas putida mt-2, a combinatorial library was generated composed of shuffled N-terminal A domains of the homologous regulators DmpR, XylR and TbuT, reassembled within the XylR structure. When the library was screened in vivo for responsiveness to non-effectors bulkier than one aromatic ring (such as biphenyl) or bearing an entirely different distribution of electronegative groups (e.g. nitrotoluenes), protein variants were found that displayed an expanded inducer range including the new effectors. Although the phenotypes endowed with the corresponding changes were largely similar, the modifications involved different sites within the A domain. The positions of the mutations within a structural model of the A domain suggest that expansion of the inducer profile can be brought about not only by changes in the effector pocket of the protein but also by unlocking steps of the signal transmission mechanism that follows effector binding. These results provide a rationale for evolving in vitro regulators à la carte that are responsive to predetermined, natural or xenobiotic chemical species.
Collapse
Affiliation(s)
- J Garmendia
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología CSIC, Campus de Cantoblanco, 28049 Madrid, Spain
| | | | | | | |
Collapse
|
28
|
Cases I, de Lorenzo V. The black cat/white cat principle of signal integration in bacterial promoters. EMBO J 2001; 20:1-11. [PMID: 11226149 PMCID: PMC140184 DOI: 10.1093/emboj/20.1.1] [Citation(s) in RCA: 115] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2000] [Revised: 10/30/2000] [Accepted: 11/08/2000] [Indexed: 11/13/2022] Open
Affiliation(s)
| | - Víctor de Lorenzo
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología CSIC, Campus de Cantoblanco, 28049 Madrid, Spain
Corresponding author e-mail:
| |
Collapse
|