1
|
Li X, Chen X, Zhao S, Jiang H, Cai Y, Bai J, Shao J, Yu H, Chen T. Comparative secretome and proteome analysis unveils the response mechanism in the phosphorus utilization of Alexandrium pacificum. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 373:126135. [PMID: 40154869 DOI: 10.1016/j.envpol.2025.126135] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 03/13/2025] [Accepted: 03/25/2025] [Indexed: 04/01/2025]
Abstract
Phosphorus (P) acts as a crucial limiting nutrient for the growth of marine phytoplankton cells and the formation of algal blooms. The dinoflagellate Alexandrium pacificum is known for causing frequent and intense blooms in specific estuarine and coastal regions. In this study, we investigated the growth and physiological transformations under conditions characterized by P-deficiency, NaH2PO4, and ATP. For the first time, an integrated comparative analysis of the secretome and proteome was performed to investigate the global protein expression profile of A. pacificum, with 355 and 2308 differentially expressed proteins (DEPs), respectively. The results demonstrated that P-deficiency led to a reduction in growth and notable decreases in metabolic processes in A. pacificum. In P-deficient and ATP groups, the expression of secretory protein alkaline phosphatase A (PhoA) was increased, while intracellular acid phosphatase (ACP) displayed significant upregulation in P-deficient group, indicating that A. pacificum has evolved multiple organic P utilization strategies to adapt to low-P environments. A. pacificum can utilize the intracellular carbohydrate storage pools via glycolysis and the TCA cycle to replenish Calvin cycle intermediates. However, the growth of the ATP and NaH2PO4 groups showed no significant alteration. These results suggest that A. pacificum possesses distinct adaptive strategies towards P-deficiency in the environment and employs specific mechanisms for utilizing organic P, which may be a crucial factor in the formation of blooms in low inorganic P environments.
Collapse
Affiliation(s)
- Xiaohang Li
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China; Key Laboratory of Marine Environment and Ecology, Ocean University of China, Qingdao, 266100, China
| | - Xi Chen
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Shuxue Zhao
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China; Shandong Key Laboratory of Edible Mushroom Technology, Yantai Edible and Medicinal Mushroom Technology Innovation Center, School of Horticulture, Ludong University, Yantai, 264025, China
| | - Hua Jiang
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China; Key Laboratory of Marine Environment and Ecology, Ocean University of China, Qingdao, 266100, China
| | - Yuqin Cai
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China; Key Laboratory of Marine Environment and Ecology, Ocean University of China, Qingdao, 266100, China
| | - Jie Bai
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China; Key Laboratory of Marine Environment and Ecology, Ocean University of China, Qingdao, 266100, China
| | - Jiajun Shao
- Shandong Provincial Key Laboratory of Applied Mycology, School of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, Shandong Province, China
| | - Hao Yu
- Shandong Provincial Key Laboratory of Applied Mycology, School of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, Shandong Province, China.
| | - Tiantian Chen
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China; Key Laboratory of Marine Environment and Ecology, Ocean University of China, Qingdao, 266100, China.
| |
Collapse
|
2
|
Burchacka E, Pięta P, Łupicka-Słowik A. Recent advances in fungal serine protease inhibitors. Biomed Pharmacother 2021; 146:112523. [PMID: 34902742 DOI: 10.1016/j.biopha.2021.112523] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 11/30/2021] [Accepted: 12/06/2021] [Indexed: 12/20/2022] Open
Abstract
Four types of antifungal drugs are available that include inhibitors of ergosterol synthesis, of fungal RNA biosynthesis, and of cell wall biosynthesis as well as physiochemical regulators of fungal membrane sterols. Increasing resistance to antifungal drugs can severely limit treatment options of fungal nail infections, vaginal candidiasis, ringworm, blastomycosis, histoplasmosis, and Candida infections of the mouth, throat, and esophagus, among other infections. Development of strategies focused on new fungicides can effectively help tackle troublesome fungal diseases. The virulence and optimal growth of fungi depend on various extracellular secreted factors, among which proteases, such as serine proteases, are of particular interest. A specific extracellular proteolytic system enables fungi to survive and penetrate the tissues. Given the role of fungal proteases in infection, any molecule capable of selectively and specifically inhibiting their activity can lead to the development of potential drugs. Owing to their specific mode of action, fungal protease inhibitors can avoid fungal resistance observed with currently available treatments. Although fungal secreted proteases have been extensively studied as potential virulence factors, our understanding of the substrate specificity of such proteases remains poor. In this review, we summarize the recent advances in the design and development of specific serine protease inhibitors and provide a brief history of the compounds that inhibit fungal serine protease activity.
Collapse
Affiliation(s)
- E Burchacka
- Faculty of Chemistry, Department of Organic and Medicinal Chemistry, Wrocław University of Science and Technology, 27 Wybrzeże Wyspiańskiego St, 50-370 Wrocław, Poland.
| | - P Pięta
- Department of Bionic and Medical Experimental Biology, Poznań University of Medical Sciences, Parkowa 2 St, 60-775 Poznań, Poland
| | - A Łupicka-Słowik
- Faculty of Chemistry, Department of Organic and Medicinal Chemistry, Wrocław University of Science and Technology, 27 Wybrzeże Wyspiańskiego St, 50-370 Wrocław, Poland
| |
Collapse
|
3
|
Núñez A, Dulude D, Jbel M, Rokeach LA. Calnexin is essential for survival under nitrogen starvation and stationary phase in Schizosaccharomyces pombe. PLoS One 2015; 10:e0121059. [PMID: 25803873 PMCID: PMC4372366 DOI: 10.1371/journal.pone.0121059] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Accepted: 02/06/2015] [Indexed: 12/04/2022] Open
Abstract
Cell fate is determined by the balance of conserved molecular mechanisms regulating death (apoptosis) and survival (autophagy). Autophagy is a process by which cells recycle their organelles and macromolecules through degradation within the vacuole in yeast and plants, and lysosome in metazoa. In the yeast Schizosaccharomyces pombe, autophagy is strongly induced under nitrogen starvation and in aging cells. Previously, we demonstrated that calnexin (Cnx1p), a highly conserved transmembrane chaperone of the endoplasmic reticulum (ER), regulates apoptosis under ER stress or inositol starvation. Moreover, we showed that in stationary phase, Cnx1p is cleaved into two moieties, L_Cnx1p and S_Cnx1p. Here, we show that the processing of Cnx1p is regulated by autophagy, induced by nitrogen starvation or cell aging. The cleavage of Cnx1p involves two vacuolar proteases: Isp6, which is essential for autophagy, and its paralogue Psp3. Blocking autophagy through the knockout of autophagy-related genes (atg) results in inhibition of both, the cleavage and the trafficking of Cnx1p from the ER to the vacuole. We demonstrate that Cnx1p is required for cell survival under nitrogen-starvation and in chronological aging cultures. The death of the mini_cnx1 mutant (overlapping S_cnx1p) cells is accompanied by accumulation of high levels of reactive-oxygen species (ROS), a slowdown in endocytosis and severe cell-wall defects. Moreover, mutant cells expressing only S_Cnx1p showed cell wall defects. Co-expressing mutant overlapping the L_Cnx1p and S_Cnx1p cleavage products reverses the death, ROS phenotype and cell wall defect to wild-type levels. As it is involved in both apoptosis and autophagy, Cnx1p could be a nexus for the crosstalk between these pro-death and pro-survival mechanisms. Ours, and observations in mammalian systems, suggest that the multiple roles of calnexin depend on its sub-cellular localization and on its cleavage. The use of S. pombe should assist in further shedding light on the multiple roles of calnexin.
Collapse
Affiliation(s)
- Andrés Núñez
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, Québec, Canada
| | - Dominic Dulude
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, Québec, Canada
| | - Mehdi Jbel
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, Québec, Canada
| | - Luis A. Rokeach
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, Québec, Canada
- * E-mail:
| |
Collapse
|
4
|
Weston C, Bond M, Croft W, Ladds G. The coordination of cell growth during fission yeast mating requires Ras1-GTP hydrolysis. PLoS One 2013; 8:e77487. [PMID: 24147005 PMCID: PMC3797800 DOI: 10.1371/journal.pone.0077487] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2013] [Accepted: 08/31/2013] [Indexed: 12/30/2022] Open
Abstract
The spatial and temporal control of polarity is fundamental to the survival of all organisms. Cells define their polarity using highly conserved mechanisms that frequently rely upon the action of small GTPases, such as Ras and Cdc42. Schizosaccharomyces pombe is an ideal system with which to study the control of cell polarity since it grows from defined tips using Cdc42-mediated actin remodeling. Here we have investigated the importance of Ras1-GTPase activity for the coordination of polarized cell growth during fission yeast mating. Following pheromone stimulation, Ras1 regulates both a MAPK cascade and the activity of Cdc42 to enable uni-directional cell growth towards a potential mating partner. Like all GTPases, when bound to GTP, Ras1 adopts an active conformation returning to an inactive state upon GTP-hydrolysis, a process accelerated through interaction with negative regulators such as GAPs. Here we show that, at low levels of pheromone stimulation, loss of negative regulation of Ras1 increases signal transduction via the MAPK cascade. However, at the higher concentrations observed during mating, hyperactive Ras1 mutations promote cell death. We demonstrate that these cells die due to their failure to coordinate active Cdc42 into a single growth zone resulting in disorganized actin deposition and unsustainable elongation from multiple tips. These results provide a striking demonstration that the deactivation stage of Ras signaling is fundamentally important in modulating cell polarity.
Collapse
Affiliation(s)
- Cathryn Weston
- Division of Biomedical Cell Biology, Warwick Medical School, University of Warwick, Coventry, United Kingdom
- * E-mail:
| | - Michael Bond
- Division of Biomedical Cell Biology, Warwick Medical School, University of Warwick, Coventry, United Kingdom
| | - Wayne Croft
- Division of Biomedical Cell Biology, Warwick Medical School, University of Warwick, Coventry, United Kingdom
| | - Graham Ladds
- Division of Biomedical Cell Biology, Warwick Medical School, University of Warwick, Coventry, United Kingdom
| |
Collapse
|
5
|
The role of the RACK1 ortholog Cpc2p in modulating pheromone-induced cell cycle arrest in fission yeast. PLoS One 2013; 8:e65927. [PMID: 23843946 PMCID: PMC3701009 DOI: 10.1371/journal.pone.0065927] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Accepted: 05/04/2013] [Indexed: 11/24/2022] Open
Abstract
The detection and amplification of extracellular signals requires the involvement of multiple protein components. In mammalian cells the receptor of activated C kinase (RACK1) is an important scaffolding protein for signal transduction networks. Further, it also performs a critical function in regulating the cell cycle by modulating the G1/S transition. Many eukaryotic cells express RACK1 orthologs, with one example being Cpc2p in the fission yeast Schizosaccharomyces pombe. In contrast to RACK1, Cpc2p has been described to positively regulate, at the ribosomal level, cells entry into M phase. In addition, Cpc2p controls the stress response pathways through an interaction with Msa2p, and sexual development by modulating Ran1p/Pat1p. Here we describe investigations into the role, which Cpc2p performs in controlling the G protein-mediated mating response pathway. Despite structural similarity to Gβ-like subunits, Cpc2p appears not to function at the G protein level. However, upon pheromone stimulation, cells overexpressing Cpc2p display substantial cell morphology defects, disorientation of septum formation and a significantly protracted G1 arrest. Cpc2p has the potential to function at multiple positions within the pheromone response pathway. We provide a mechanistic interpretation of this novel data by linking Cpc2p function, during the mating response, with its previous described interactions with Ran1p/Pat1p. We suggest that overexpressing Cpc2p prolongs the stimulated state of pheromone-induced cells by increasing ste11 gene expression. These data indicate that Cpc2p regulates the pheromone-induced cell cycle arrest in fission yeast by delaying cells entry into S phase.
Collapse
|
6
|
Bond M, Croft W, Tyson R, Bretschneider T, Davey J, Ladds G. Quantitative analysis of human ras localization and function in the fission yeast Schizosaccharomyces pombe. Yeast 2013; 30:145-56. [PMID: 23447405 DOI: 10.1002/yea.2949] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2012] [Revised: 02/06/2013] [Accepted: 02/12/2013] [Indexed: 12/30/2022] Open
Abstract
Ras signalling is central to fundamental and diverse cellular processes. In higher eukaryotes ras signalling is highly complex, involving multiple isoforms, regulatory proteins and effectors. As a consequence, the study of ras activity in mammalian systems presents a number of technical challenges. The model organism Schizosaccharomyces pombe has previously proved a key system for the study of human signalling components and provides an ideal model for the study of ras, as it contains just one ras protein (Ras1p), which is non-essential and controls a number of downstream processes. Here we present data demonstrating the quantitative analysis of three distinct Ras1-related signalling outputs, utilizing the three most abundant human ras isoforms, H-Ras, N-Ras and K-Ras4B, in Sz. pombe. Further, we have characterized the localization of these three human ras isoforms in Sz. pombe, utilizing quantitative image analysis techniques. These data indicate that all three human ras isoforms are functional in fission yeast, displaying differing localization patterns which correlate strongly with function in the regulation of pheromone response and cell shape. These data demonstrate that such yeast strains could provide powerful tools for the investigation of ras biology, and potentially in the development of cancer therapies.
Collapse
Affiliation(s)
- Michael Bond
- Division of Clinical Sciences, Warwick Medical School, Coventry, CV4 7AL, UK; Medical Research Council Laboratory for Molecular Cell Biology, University College London, Gower Street, London, WC1E 6BT, UK
| | | | | | | | | | | |
Collapse
|
7
|
Sohn MJ, Oh DB, Kim EJ, Cheon SA, Kwon O, Kim JY, Lee SY, Kang HA. HpYPS1 and HpYPS7 encode functional aspartyl proteases localized at the cell surface in the thermotolerant methylotrophic yeast Hansenula polymorpha. Yeast 2011; 29:1-16. [PMID: 22162039 DOI: 10.1002/yea.1912] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2011] [Accepted: 10/14/2011] [Indexed: 11/11/2022] Open
Abstract
In the present study, we functionally analysed two yapsin genes of the thermotolerant methylotrophic yeast Hansenula polymorpha, HpYPS1 and HpYPS7, for their roles in maintaining cell wall integrity and proteolytic processing. Both HpYPS1 and HpYPS7 proteins were shown to largely localize on the cell wall via glycosylphosphatidylinositol anchor. Heterologous expression of HpYPS1 completely restored all of the growth defects of the Saccharomyces cerevisiae yps1-deletion strains, while HpYPS7 expression exhibited a limited complementation effect on the S. cerevisiae yps7-deletion strain. However, different from S. cerevisiae, deletion of the HpYPS genes generated only minor influence on the sensitivity to cell wall stress. Likewise, HpYPS1 expression was significantly induced only by a subset of stressor agents, such as sodium dodecyl sulphate and tunicamycin. HpYps1p was shown to consist of two subunits, whereas HpYps7p comprises a single long polypeptide chain. Biochemical analysis revealed that HpYps1p has much stronger proteolytic cleavage activity at basic amino acids, compared to HpYps7p. Consistent with the much higher proteolytic activity and expression level of HpYps1p compared to HpYps7p, the sole disruption of HpYPS1 was sufficient in eliminating the aberrant proteolytic cleavage of recombinant proteins secreted by H. polymorpha. The results indicate that, although their roles in the maintenance of cell wall integrity are not critical, HpYps1p and HpYps7p are functional aspartic proteases at the cell surface of H. polymorpha. Furthermore, our data present the high biotechnological potential of H. polymorpha yps1-mutant strains as hosts useful for the production of secretory recombinant proteins.
Collapse
Affiliation(s)
- Min Jeong Sohn
- Department of Life Science, Research Centre for Biomolecules and Biosystems, Chung-Ang University, Seoul, Korea
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Cawley NX, Portela-Gomes G, Lou H, Loh YP. Yapsin 1 immunoreactivity in {alpha}-cells of human pancreatic islets: implications for the processing of human proglucagon by mammalian aspartic proteases. J Endocrinol 2011; 210:181-7. [PMID: 21632904 PMCID: PMC3640344 DOI: 10.1530/joe-11-0121] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Yapsin 1 is an aspartic protease from Saccharomyces cerevisiae and belongs to a class of aspartic proteases that demonstrate specificity for basic amino acids. It is capable of processing prohormone substrates at specific basic residue cleavage sites, similar to that of the prohormone convertases, to generate bioactive peptide hormones. An antibody raised against yapsin 1 was previously shown to immunostain endocrine cells of rat pituitary and brain as well as lysates from bovine pituitary secretory granules demonstrating the existence of yapsin 1-like aspartic proteases in mammalian endocrine tissues, potentially involved in peptide hormone production. Here, we show the specific staining of yapsin 1 immunoreactivity in the α-cells of human pancreatic islets. No staining was observed in the β- or δ-cells, indicating a specificity of the staining for glucagon-producing and not insulin- or somatostatin-producing cells. Purified yapsin 1 was also shown to process proglucagon into glucagon in vitro, demonstrating that the prototypical enzyme of this subclass of enzymes can correctly process proglucagon to glucagon. These findings suggest the existence of a yapsin 1-like enzyme exclusively in the α-cells of the islets of Langerhans in humans, which may play a role in the production of glucagon in that tissue.
Collapse
Affiliation(s)
- Niamh X Cawley
- Section on Cellular Neurobiology, Eunice Shriver Kennedy National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA.
| | | | | | | |
Collapse
|
9
|
Processing and maturation of carboxypeptidase Y and alkaline phosphatase in Schizosaccharomyces pombe. Appl Microbiol Biotechnol 2010; 90:203-13. [DOI: 10.1007/s00253-010-3031-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2010] [Revised: 11/07/2010] [Accepted: 11/25/2010] [Indexed: 10/18/2022]
|
10
|
Bader O, Krauke Y, Hube B. Processing of predicted substrates of fungal Kex2 proteinases from Candida albicans, C. glabrata, Saccharomyces cerevisiae and Pichia pastoris. BMC Microbiol 2008; 8:116. [PMID: 18625069 PMCID: PMC2515848 DOI: 10.1186/1471-2180-8-116] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2008] [Accepted: 07/14/2008] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Kexin-like proteinases are a subfamily of the subtilisin-like serine proteinases with multiple regulatory functions in eukaryotes. In the yeast Saccharomyces cerevisiae the Kex2 protein is biochemically well investigated, however, with the exception of a few well known proteins such as the alpha-pheromone precursors, killer toxin precursors and aspartic proteinase propeptides, very few substrates are known. Fungal kex2 deletion mutants display pleiotropic phenotypes that are thought to result from the failure to proteolytically activate such substrates. RESULTS In this study we have aimed at providing an improved assembly of Kex2 target proteins to explain the phenotypes observed in fungal kex2 deletion mutants by in vitro digestion of recombinant substrates from Candida albicans and C. glabrata. We identified CaEce1, CA0365, one member of the Pry protein family and CaOps4-homolog proteins as novel Kex2 substrates. CONCLUSION Statistical analysis of the cleavage sites revealed extended subsite recognition of negatively charged residues in the P1', P2' and P4' positions, which is also reflected in construction of the respective binding pockets in the ScKex2 enzyme. Additionally, we provide evidence for the existence of structural constrains in potential substrates prohibiting proteolysis. Furthermore, by using purified Kex2 proteinases from S. cerevisiae, P. pastoris, C. albicans and C. glabrata, we show that while the substrate specificity is generally conserved between organisms, the proteinases are still distinct from each other and are likely to have additional unique substrate recognition.
Collapse
Affiliation(s)
- Oliver Bader
- FG16, Robert Koch-Institut, Nordufer 20, D-13353 Berlin, Germany
- Institut für Medizinische Mikrobiologie, Universität Göttingen, Kreuzbergring 57, D-37075 Göttingen, Germany
| | - Yannick Krauke
- FG16, Robert Koch-Institut, Nordufer 20, D-13353 Berlin, Germany
- Dept. Membrane Transport, Institute of Physiology AS CR v.v.i., Videnska 1083, 142 20 Prague 4, Czech Republic
| | - Bernhard Hube
- FG16, Robert Koch-Institut, Nordufer 20, D-13353 Berlin, Germany
- Department of Microbial Pathogenicity, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knoell Institute, Beutenbergstrasse 11a, D-07745 Jena, and Friedrich-Schiller-University Jena, Germany
| |
Collapse
|
11
|
Idiris A, Tohda H, Bi KW, Isoai A, Kumagai H, Giga-Hama Y. Enhanced productivity of protease-sensitive heterologous proteins by disruption of multiple protease genes in the fission yeast Schizosaccharomyces pombe. Appl Microbiol Biotechnol 2006; 73:404-20. [PMID: 16802154 DOI: 10.1007/s00253-006-0489-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2006] [Revised: 04/25/2006] [Accepted: 05/02/2006] [Indexed: 10/24/2022]
Abstract
The creation of protease-deficient mutants to avoid product degradation is one of the current strategies employed to improve productivity and secretion efficiency of heterologous protein expression. We previously constructed a set of single protease-deficient mutants of the fission yeast Schizosaccharomyces pombe by respective disruption of 52 protease genes, and we succeeded in confirming useful disruptants (Idiris et al., Yeast 23:83-99, 2006). In the present study, we attempted multiple deletions of 13 protease genes, single deletions of which were previously confirmed as being beneficial for reducing extracellular product degradation. Using PCR-based gene replacement, a series of multiple deletion strains was constructed by multiple disruption of a maximum of seven protease genes. Effects of the resultant multiple deletion strains on heterologous expression were then measured by practical expression of a proteolytically sensitive model protein, the human growth hormone (hGH). Time profiles of hGH secretion from each resultant mutant demonstrated significantly enhanced hGH productivity with processing of the multiple protease deletions. The data clearly indicated that disruption of multiple protease genes in the fission yeast is an effective method for controlling proteolytic degradation of heterologous proteins particularly susceptible to proteases.
Collapse
Affiliation(s)
- Alimjan Idiris
- ASPEX Division, Research Center, Asahi Glass Co., Ltd., Yokohama 221-8755, Japan
| | | | | | | | | | | |
Collapse
|
12
|
Iwaki T, Hosomi A, Tokudomi S, Kusunoki Y, Fujita Y, Giga-Hama Y, Tanaka N, Takegawa K. Vacuolar protein sorting receptor in Schizosaccharomyces pombe. Microbiology (Reading) 2006; 152:1523-1532. [PMID: 16622069 DOI: 10.1099/mic.0.28627-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The mechanism by which soluble proteins, such as carboxypeptidase Y, reach the vacuole inSaccharomyces cerevisiaeis very similar to the mechanism of lysosomal protein sorting in mammalian cells. Vps10p is a receptor for transport of soluble vacuolar proteins inS. cerevisiae.vps10+, a gene encoding a homologue ofS. cerevisiae PEP1/VPS10, has been identified and deleted from the fission yeastSchizosaccharomyces pombe. Deletion of thevps10+gene resulted in missorting and secretion ofSch. pombevacuolar carboxypeptidase Cpy1p, indicating that it is required for targeting Cpy1p to the vacuole.Sch. pombeVps10p (SpVps10p) is a type I transmembrane protein and its C-terminal cytoplasmic tail domain is essential for Cpy1p transport to the vacuole. Cells expressing green fluorescent protein-tagged SpVps10p produced a punctate pattern of fluorescence, indicating that SpVps10p was largely localized in the Golgi compartment. In addition,Sch. pombe vps26+,vps29+andvps35+, encoding homologues of theS. cerevisiaeretromer componentsVPS26,VPS29andVPS35, were identified and deleted. Fluorescence microscopy demonstrated that SpVps10p mislocalized to the vacuolar membrane in these mutants. These results indicate that thevps26+,vps29+andvps35+gene products are required for retrograde transport of SpVps10p from the prevacuolar compartment back to the Golgi inSch. pombecells.
Collapse
Affiliation(s)
- Tomoko Iwaki
- Research Center, Asahi Glass Co. Ltd, Kanagawa, Yokohama 221-8755, Japan
- Department of Life Sciences, Faculty of Agriculture, Kagawa University, Miki-cho, Kagawa 761-0795, Japan
| | - Akira Hosomi
- Department of Life Sciences, Faculty of Agriculture, Kagawa University, Miki-cho, Kagawa 761-0795, Japan
| | - Sanae Tokudomi
- Department of Life Sciences, Faculty of Agriculture, Kagawa University, Miki-cho, Kagawa 761-0795, Japan
| | - Yoko Kusunoki
- Department of Life Sciences, Faculty of Agriculture, Kagawa University, Miki-cho, Kagawa 761-0795, Japan
| | - Yasuko Fujita
- Research Center, Asahi Glass Co. Ltd, Kanagawa, Yokohama 221-8755, Japan
- Department of Life Sciences, Faculty of Agriculture, Kagawa University, Miki-cho, Kagawa 761-0795, Japan
| | - Yuko Giga-Hama
- Research Center, Asahi Glass Co. Ltd, Kanagawa, Yokohama 221-8755, Japan
| | - Naotaka Tanaka
- Department of Life Sciences, Faculty of Agriculture, Kagawa University, Miki-cho, Kagawa 761-0795, Japan
| | - Kaoru Takegawa
- Department of Life Sciences, Faculty of Agriculture, Kagawa University, Miki-cho, Kagawa 761-0795, Japan
| |
Collapse
|
13
|
Idiris A, Bi K, Tohda H, Kumagai H, Giga-Hama Y. Construction of a protease-deficient strain set for the fission yeast Schizosaccharomyces pombe, useful for effective production of protease-sensitive heterologous proteins. Yeast 2006; 23:83-99. [PMID: 16491466 DOI: 10.1002/yea.1342] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
One of the major problems hindering effective production and purification of heterologous proteins from the fission yeast Schizosaccharomyces pombe is proteolytic degradation of the recombinant gene products by host-specific proteases. As an initial solution to this problem, we constructed a protease-deficient disruptant set by respective disruption of 52 Sz. pombe protease genes. Functional screening of the resultant set was performed by observing secretory production of a proteolytically sensitive model protein, human growth hormone (hGH). The results indicated that some of the resultant disruptants were effective in reducing hGH degradation, as observed during the hGH expression procedure and mainly as a result of unknown serine- and/or cysteine-type proteases in the culture medium. These findings also demonstrated that construction of a protease-deficient strain set is not only useful for practical application in protein production, but also for functional screening, specification and modification of proteases in Sz. pombe, where further investigations of proteolytic processes and improvement through multiple gene manipulations are required.
Collapse
Affiliation(s)
- Alimjan Idiris
- ASPEX Division, Research Centre, Asahi Glass Co. Ltd, 1150 Hazawa-cho, Kanagawa-ku, Yokohama 221-8755, Japan
| | | | | | | | | |
Collapse
|
14
|
Abstract
Glycosylphosphatidylinositol-modified (GPI) proteins share structural features that allow their identification using a genomic approach. From the known S. cerevisiae and C. albicans GPI proteins, the following consensus sequence for the GPI attachment site and its downstream region was derived: [NSGDAC]-[GASVIETKDLF]-[GASV]-X(4,19)-[FILMVAGPSTCYWN](10)>, where > indicates the C-terminal end of the protein. This consensus sequence, which recognized known GPI proteins from various fungi, was used to screen the genomes of the yeasts S. cerevisiae, C. albicans, Sz. pombe and the filamentous fungus N. crassa for putative GPI proteins. The subsets of proteins so obtained were further screened for the presence of an N-terminal signal sequence for the secretion and absence of internal transmembrane domains. In this way, we identified 66 putative GPI proteins in S. cerevisiae. Some of these are known GPI proteins that were not identified by earlier genomic analyses, indicating that this selection procedure renders a more complete image of the S. cerevisiae GPI proteome. Using the same approach, 104 putative GPI proteins were identified in the human pathogen C. albicans. Among these were the proteins Gas/Phr, Ecm33, Crh and Plb, all members of GPI protein families that are also present in S. cerevisiae. In addition, several proteins and protein families with no significant homology to S. cerevisiae proteins were identified, including the cell wall-associated Als, Csa1/Rbt5, Hwp1/Rbt1 and Hyr1 protein families. In Sz. pombe, which has a low level of (galacto)mannan in the cell wall compared to C. albicans and S. cerevisiae, only 33 GPI candidates were identified and in N. crassa 97. BLAST searches revealed that about half of the putative GPI proteins that were identified in Sz. pombe and N. crassa are homologous to known or putative GPI proteins from other fungi. We conclude that our algorithm is selective and can also be used for GPI protein identification in other fungi.
Collapse
Affiliation(s)
- Piet W J De Groot
- Laboratory for Microbiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Nieuwe Achtergracht 166, 1018 WV Amsterdam, The Netherlands.
| | | | | |
Collapse
|
15
|
Current awareness on yeast. Yeast 2001; 18:577-84. [PMID: 11284013 DOI: 10.1002/yea.684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|