1
|
Dyrma S, Pei TT, Liang X, Dong T. Not just passengers: effectors contribute to the assembly of the type VI secretion system as structural building blocks. J Bacteriol 2025; 207:e0045524. [PMID: 39902958 PMCID: PMC11925235 DOI: 10.1128/jb.00455-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2025] Open
Abstract
Protein secretion systems are critical macromolecular machines employed by bacteria to interact with diverse environments and hosts during their life cycle. Cytosolically produced protein effectors are translocated across at least one membrane to the outside of the cells or directly into target cells. In most secretion systems, these effectors are mere passengers in unfolded or folded states. However, the type VI secretion system (T6SS) stands out as a powerful contractile device that requires some of its effectors as structural components. This review aims to provide an updated view of the diverse functions of effectors, especially focusing on their roles in T6SS assembly, the implications for T6SS engineering, and the potential of recently developed T6SS models to study effector-T6SS association.
Collapse
Affiliation(s)
- Sherina Dyrma
- Department of Immunology and Microbiology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Tong-Tong Pei
- Department of Immunology and Microbiology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Xiaoye Liang
- Department of Immunology and Microbiology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Tao Dong
- Department of Immunology and Microbiology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong, China
| |
Collapse
|
2
|
Marcos-Vilchis A, Espinosa N, Alvarez AF, Puente JL, Soto JE, González-Pedrajo B. On the role of the sorting platform in hierarchical type III secretion regulation in enteropathogenic Escherichia coli. J Bacteriol 2025; 207:e0044624. [PMID: 40029102 PMCID: PMC11925242 DOI: 10.1128/jb.00446-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 02/09/2025] [Indexed: 03/05/2025] Open
Abstract
The virulence of enteropathogenic Escherichia coli (EPEC) depends on a type III secretion system (T3SS), a membrane-spanning apparatus that injects effector proteins into the cytoplasm of target enterocytes. The T3SS, or injectisome, is a self-assembled nanomachine whose biogenesis and function rely on the ordered secretion of three distinct categories of proteins: early, middle, and late type III substrates. In EPEC, this hierarchical secretion is assisted by several cytosolic protein complexes at the base of the injectisome. Among these, the sorting platform is involved in the recognition and sequential loading of the different classes of T3-substrates. In addition, a heterotrimeric gatekeeper complex, also known as a molecular switch, operates in concert with components of the T3SS export apparatus to guarantee the delivery of middle substrates prior to late substrate secretion. In this study, we showed that the sorting platform is differentially required for the secretion of distinct categories of substrates. Moreover, we demonstrated a cooperative interplay and protein-protein interactions between the sorting platform and the gatekeeper complex for proper middle and late substrate docking and secretion. Overall, our results provide new insights into the intricate molecular mechanisms that regulate protein secretion hierarchy during T3SS assembly.IMPORTANCEEnteropathogenic Escherichia coli employs a type III secretion system to deliver virulence proteins directly into host cells, disrupting multiple cellular processes to promote infection. This multiprotein system assembles in a precise stepwise manner, with specific proteins being recruited and secreted at distinct stages. The sorting platform and the gatekeeper complex play critical roles in regulating this process, but their cooperative mechanism has not been fully elucidated. Here, we reveal a novel functional interaction between these two components, which is critical for hierarchical substrate recognition and secretion. These findings advance our understanding of the molecular mechanisms underlying bacterial virulence and suggest new potential targets for antimicrobial strategies aimed at disrupting T3SS function.
Collapse
Affiliation(s)
- Arely Marcos-Vilchis
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Norma Espinosa
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Adrián F Alvarez
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - José L Puente
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Morelos, Mexico
| | - J Eduardo Soto
- Programa de Ingeniería Genómica, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Morelos, Mexico
| | - Bertha González-Pedrajo
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
3
|
Bcr4 Is a Chaperone for the Inner Rod Protein in the Bordetella Type III Secretion System. Microbiol Spectr 2022; 10:e0144322. [PMID: 36040173 PMCID: PMC9603008 DOI: 10.1128/spectrum.01443-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Bordetella bronchiseptica injects virulence proteins called effectors into host cells via a type III secretion system (T3SS) conserved among many Gram-negative bacteria. Small proteins called chaperones are required to stabilize some T3SS components or localize them to the T3SS machinery. In a previous study, we identified a chaperone-like protein named Bcr4 that regulates T3SS activity in B. bronchiseptica. Bcr4 does not show strong sequence similarity to well-studied T3SS proteins of other bacteria, and its function remains to be elucidated. Here, we investigated the mechanism by which Bcr4 controls T3SS activity. A pulldown assay revealed that Bcr4 interacts with BscI, based on its homology to other bacterial proteins, to be an inner rod protein of the T3SS machinery. An additional pulldown assay using truncated Bcr4 derivatives and secretion profiles of B. bronchiseptica producing truncated Bcr4 derivatives showed that the Bcr4 C-terminal region is necessary for the interaction with BscI and activation of the T3SS. Moreover, the deletion of BscI abolished the secretion of type III secreted proteins from B. bronchiseptica and the translocation of a cytotoxic effector into cultured mammalian cells. Finally, we show that BscI is unstable in the absence of Bcr4. These results suggest that Bcr4 supports the construction of the T3SS machinery by stabilizing BscI. This is the first demonstration of a chaperone for the T3SS inner rod protein among the virulence bacteria possessing the T3SS. IMPORTANCE The type III secretion system (T3SS) is a needle-like complex that projects outward from bacterial cells. Bordetella bronchiseptica uses the T3SS to inject virulence proteins into host cells. Our previous study reported that a protein named Bcr4 is essential for the secretion of virulence proteins from B. bronchiseptica bacterial cells and delivery through the T3SS. Because other bacteria lack a Bcr4 homologue, the function of Bcr4 has not been elucidated. In this study, we discovered that Bcr4 interacts with BscI, a component of the T3SS machinery. We show that a B. bronchiseptica BscI-deficient strain was unable to secrete type III secreted proteins. Furthermore, in a B. bronchiseptica strain that overproduces T3SS component proteins, Bcr4 is required to maintain BscI in bacterial cells. These results suggest that Bcr4 stabilizes BscI to allow construction of the T3SS in B. bronchiseptica.
Collapse
|
4
|
Computational prediction of secreted proteins in gram-negative bacteria. Comput Struct Biotechnol J 2021; 19:1806-1828. [PMID: 33897982 PMCID: PMC8047123 DOI: 10.1016/j.csbj.2021.03.019] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 03/18/2021] [Accepted: 03/18/2021] [Indexed: 12/29/2022] Open
Abstract
Gram-negative bacteria harness multiple protein secretion systems and secrete a large proportion of the proteome. Proteins can be exported to periplasmic space, integrated into membrane, transported into extracellular milieu, or translocated into cytoplasm of contacting cells. It is important for accurate, genome-wide annotation of the secreted proteins and their secretion pathways. In this review, we systematically classified the secreted proteins according to the types of secretion systems in Gram-negative bacteria, summarized the known features of these proteins, and reviewed the algorithms and tools for their prediction.
Collapse
|
5
|
Phan TH, Houben ENG. Bacterial secretion chaperones: the mycobacterial type VII case. FEMS Microbiol Lett 2019; 365:5067300. [PMID: 30085058 PMCID: PMC6109436 DOI: 10.1093/femsle/fny197] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 08/04/2018] [Indexed: 12/13/2022] Open
Abstract
Chaperones are central players in maintaining the proteostasis in all living cells. Besides highly conserved generic chaperones that assist protein folding and assembly in the cytosol, additional more specific chaperones have evolved to ensure the successful trafficking of proteins with extra-cytoplasmic locations. Associated with the distinctive secretion systems present in bacteria, different dedicated chaperones have been described that not only keep secretory proteins in a translocation competent state, but often are also involved in substrate targeting to the specific translocation channel. Recently, a new class of such chaperones has been identified that are involved in the specific recognition of substrates transported via the type VII secretion pathway in mycobacteria. In this minireview, we provide an overview of the different bacterial chaperones with a focus on their roles in protein secretion and will discuss in detail the roles of mycobacterial type VII secretion chaperones in substrate recognition and targeting.
Collapse
Affiliation(s)
- Trang H Phan
- Section Molecular Microbiology, Amsterdam Institute for Molecules, Medicines and Systems, Vrije Universiteit, Amsterdam, The Netherlands
| | - Edith N G Houben
- Section Molecular Microbiology, Amsterdam Institute for Molecules, Medicines and Systems, Vrije Universiteit, Amsterdam, The Netherlands
| |
Collapse
|
6
|
Zeng C, Zou L. An account of in silico identification tools of secreted effector proteins in bacteria and future challenges. Brief Bioinform 2019; 20:110-129. [PMID: 28981574 DOI: 10.1093/bib/bbx078] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Indexed: 01/08/2023] Open
Abstract
Bacterial pathogens secrete numerous effector proteins via six secretion systems, type I to type VI secretion systems, to adapt to new environments or to promote virulence by bacterium-host interactions. Many computational approaches have been used in the identification of effector proteins before the subsequent experimental verification because they tolerate laborious biological procedures and are genome scale, automated and highly efficient. Prevalent examples include machine learning methods and statistical techniques. In this article, we summarize the computational progress toward predicting secreted effector proteins in bacteria, with an opening of an introduction of features that are used to discriminate effectors from non-effectors. The mechanism, contribution and deficiency of previous developed detection tools are presented, which are further benchmarked based on a curated testing data set. According to the results of benchmarking, potential improvements of the prediction performance are discussed, which include (1) more informative features for discriminating the effectors from non-effectors; (2) the construction of comprehensive training data set of the machine learning algorithms; (3) the advancement of reliable prediction methods and (4) a better interpretation of the mechanisms behind the molecular processes. The future of in silico identification of bacterial secreted effectors includes both opportunities and challenges.
Collapse
Affiliation(s)
- Cong Zeng
- Bioinformatics Center, Third Military Medical University (TMMU), China
| | | |
Collapse
|
7
|
Borah SM, Jha AN. Identification and analysis of structurally critical fragments in HopS2. BMC Bioinformatics 2019; 19:552. [PMID: 30717655 PMCID: PMC7394326 DOI: 10.1186/s12859-018-2551-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Accepted: 11/30/2018] [Indexed: 12/02/2022] Open
Abstract
Background Among the diverse roles of the Type III secretion-system (T3SS), one of the notable functions is that it serves as unique nano machineries in gram-negative bacteria that facilitate the translocation of effector proteins from bacteria into their host. These effector proteins serve as potential targets to control the pathogenicity conferred to the bacteria. Despite being ideal choices to disrupt bacterial systems, it has been quite an ordeal in the recent times to experimentally reveal and establish a concrete sequence-structure-function relationship for these effector proteins. This work focuses on the disease-causing spectrum of an effector protein, HopS2 secreted by the phytopathogen Pseudomonas syringae pv. tomato DC3000. Results The study addresses the structural attributes of HopS2 via a bioinformatics approach to by-pass some of the experimental shortcomings resulting in mining some critical regions in the effector protein. We have elucidated the functionally important regions of HopS2 with the assistance of sequence and structural analyses. The sequence based data supports the presence of important regions in HopS2 that are present in the other functional parts of Hop family proteins. Furthermore, these regions have been validated by an ab-initio structure prediction of the protein followed by 100 ns long molecular dynamics (MD) simulation. The assessment of these secondary structural regions has revealed the stability and importance of these regions in the protein structure. Conclusions The analysis has provided insights on important functional regions that may be vital to the effector functioning. In dearth of ample experimental evidence, such a bioinformatics approach has helped in the revelation of a few structural regions which will aid in future experiments to attain and evaluate the structural and functional aspects of this protein family. Electronic supplementary material The online version of this article (10.1186/s12859-018-2551-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sapna M Borah
- Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur, Assam, 784028, India
| | - Anupam Nath Jha
- Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur, Assam, 784028, India.
| |
Collapse
|
8
|
Godiee C, Cerny O, Durkin CH, Hoiden DW. SrcA is a chaperone for the Salmonella SPI-2 type three secretion system effector SteD. MICROBIOLOGY (READING, ENGLAND) 2019; 165:15-25. [PMID: 30457515 PMCID: PMC7614968 DOI: 10.1099/mic.0.000732] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Effector proteins of type three secretion systems (T3SS) often require cytosolic chaperones for their stabilization, to interact with the secretion machinery and to enable effector delivery into host cells. We found that deletion of srcA, previously shown to encode a chaperone for the Salmonella pathogenicity island 2 (SPI-2) T3SS effectors SseL and PipB2, prevented the reduction of mature Major Histocompatibility Complex class II (mMHCII) from the surface of antigen-presenting cells during Salmonella infection. This activity was shown previously to be caused by the SPI-2 T3SS effector SteD. Since srcA and steD are located in the same operon on the Salmonella chromosome, this suggested that the srcA phenotype might be due to an indirect effect on SteD. We found that SrcA is not translocated by the SPI-2 T3SS but interacts directly and forms a stable complex with SteD in bacteria with a 2 : 1 stoichiometry. We found that SrcA was not required for SPI-2 T3SS-dependent, neutral pH-induced secretion of either SseL or PipB2 but was essential for secretion of SteD. SrcA therefore functions as a chaperone for SteD, explaining its requirement for the reduction in surface levels of mMHCII.
Collapse
Affiliation(s)
- Camilla Godiee
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, SW7 2AZ, UK
| | - Ondrej Cerny
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, SW7 2AZ, UK
| | - Charlotte H. Durkin
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, SW7 2AZ, UK
| | - David W. Hoiden
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, SW7 2AZ, UK
| |
Collapse
|
9
|
Wang J, Li J, Yang B, Xie R, Marquez-Lago TT, Leier A, Hayashida M, Akutsu T, Zhang Y, Chou KC, Selkrig J, Zhou T, Song J, Lithgow T. Bastion3: a two-layer ensemble predictor of type III secreted effectors. Bioinformatics 2018; 35:2017-2028. [PMID: 30388198 PMCID: PMC7963071 DOI: 10.1093/bioinformatics/bty914] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 10/15/2018] [Accepted: 10/31/2018] [Indexed: 01/31/2023] Open
Abstract
MOTIVATION Type III secreted effectors (T3SEs) can be injected into host cell cytoplasm via type III secretion systems (T3SSs) to modulate interactions between Gram-negative bacterial pathogens and their hosts. Due to their relevance in pathogen-host interactions, significant computational efforts have been put toward identification of T3SEs and these in turn have stimulated new T3SE discoveries. However, as T3SEs with new characteristics are discovered, these existing computational tools reveal important limitations: (i) most of the trained machine learning models are based on the N-terminus (or incorporating also the C-terminus) instead of the proteins' complete sequences, and (ii) the underlying models (trained with classic algorithms) employed only few features, most of which were extracted based on sequence-information alone. To achieve better T3SE prediction, we must identify more powerful, informative features and investigate how to effectively integrate these into a comprehensive model. RESULTS In this work, we present Bastion3, a two-layer ensemble predictor developed to accurately identify type III secreted effectors from protein sequence data. In contrast with existing methods that employ single models with few features, Bastion3 explores a wide range of features, from various types, trains single models based on these features and finally integrates these models through ensemble learning. We trained the models using a new gradient boosting machine, LightGBM and further boosted the models' performances through a novel genetic algorithm (GA) based two-step parameter optimization strategy. Our benchmark test demonstrates that Bastion3 achieves a much better performance compared to commonly used methods, with an ACC value of 0.959, F-value of 0.958, MCC value of 0.917 and AUC value of 0.956, which comprehensively outperformed all other toolkits by more than 5.6% in ACC value, 5.7% in F-value, 12.4% in MCC value and 5.8% in AUC value. Based on our proposed two-layer ensemble model, we further developed a user-friendly online toolkit, maximizing convenience for experimental scientists toward T3SE prediction. With its design to ease future discoveries of novel T3SEs and improved performance, Bastion3 is poised to become a widely used, state-of-the-art toolkit for T3SE prediction. AVAILABILITY AND IMPLEMENTATION http://bastion3.erc.monash.edu/. CONTACT selkrig@embl.de or wyztli@163.com or or trevor.lithgow@monash.edu. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Jiawei Wang
- Infection and Immunity Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Melbourne, VIC, Australia
| | - Jiahui Li
- Infection and Immunity Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Melbourne, VIC, Australia,Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Bingjiao Yang
- School of Computer Science and Information Security, Guilin University of Electronic Technology, Guilin, China
| | - Ruopeng Xie
- School of Computer Science and Information Security, Guilin University of Electronic Technology, Guilin, China
| | - Tatiana T Marquez-Lago
- Department of Genetics, School of Medicine, University of Alabama at Birmingham, AL, USA,Department of Cell, Developmental and Integrative Biology, School of Medicine, University of Alabama at Birmingham, AL, USA
| | - André Leier
- Department of Genetics, School of Medicine, University of Alabama at Birmingham, AL, USA,Department of Cell, Developmental and Integrative Biology, School of Medicine, University of Alabama at Birmingham, AL, USA
| | - Morihiro Hayashida
- National Institute of Technology, Matsue College, Matsue, Shimane, Japan
| | - Tatsuya Akutsu
- Bioinformatics Center, Institute for Chemical Research, Kyoto University, Kyoto, Japan
| | - Yanju Zhang
- School of Computer Science and Information Security, Guilin University of Electronic Technology, Guilin, China
| | - Kuo-Chen Chou
- Gordon Life Science Institute, Boston, MA, USA,Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, China,Center of Excellence in Genomic Medicine Research (CEGMR), King Abdulaziz University, Jeddah, Saudi Arabia
| | - Joel Selkrig
- European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg, Germany
| | - Tieli Zhou
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | | | - Trevor Lithgow
- Infection and Immunity Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
10
|
High-Throughput Screening of Type III Secretion Determinants Reveals a Major Chaperone-Independent Pathway. mBio 2018; 9:mBio.01050-18. [PMID: 29921672 PMCID: PMC6016238 DOI: 10.1128/mbio.01050-18] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Numerous Gram-negative bacterial pathogens utilize type III secretion systems (T3SSs) to inject tens of effector proteins directly into the cytosol of host cells. Through interactions with cognate chaperones, type III effectors are defined and recruited to the sorting platform, a cytoplasmic component of these membrane-embedded nanomachines. However, notably, a comprehensive review of the literature reveals that the secretion of most type III effectors has not yet been linked to a chaperone, raising questions regarding the existence of unknown chaperones as well as the universality of chaperones in effector secretion. Here, we describe the development of the first high-throughput type III secretion (T3S) assay, a semiautomated solid-plate-based assay, which enables the side-by-side comparison of secretion of over 20 Shigella effectors under a multitude of conditions. Strikingly, we found that the majority of Shigella effectors are secreted at equivalent levels by wild-type and variants of Shigella that no longer encode one or all known Shigella T3S effector chaperones. In addition, we found that Shigella effectors are efficiently secreted from a laboratory strain of Escherichia coli expressing the core Shigella type III secretion apparatus (T3SA) but no other Shigella-specific proteins. Furthermore, we observed that the sequences necessary and sufficient to define chaperone-dependent and -independent effectors are fundamentally different. Together, these findings support the existence of a major, previously unrecognized, noncanonical chaperone-independent secretion pathway that is likely common to many T3SSs. Many bacterial pathogens use specialized nanomachines, including type III secretion systems, to directly inject virulence proteins (effectors) into host cells. Here, we present the first extensive analysis of chaperone dependence in the process of type III effector secretion, providing strong evidence for the existence of a previously unrecognized chaperone-independent pathway. This noncanonical pathway is likely common to many bacteria, as an extensive review of the literature reveals that the secretion of multiple type III effectors has not yet been knowingly linked to a chaperone. While additional studies will be required to discern the molecular details of this pathway, its prevalence suggests that it can likely serve as a new target for the development of antimicrobial agents.
Collapse
|
11
|
Abstract
Type III secretion systems (T3SSs) are protein transport nanomachines that are found in Gram-negative bacterial pathogens and symbionts. Resembling molecular syringes, T3SSs form channels that cross the bacterial envelope and the host cell membrane, which enable bacteria to inject numerous effector proteins into the host cell cytoplasm and establish trans-kingdom interactions with diverse hosts. Recent advances in cryo-electron microscopy and integrative imaging have provided unprecedented views of the architecture and structure of T3SSs. Furthermore, genetic and molecular analyses have elucidated the functions of many effectors and key regulators of T3SS assembly and secretion hierarchy, which is the sequential order by which the protein substrates are secreted. As essential virulence factors, T3SSs are attractive targets for vaccines and therapeutics. This Review summarizes our current knowledge of the structure and function of this important protein secretion machinery. A greater understanding of T3SSs should aid mechanism-based drug design and facilitate their manipulation for biotechnological applications.
Collapse
|
12
|
Han SW, Hwang BK. Molecular functions of Xanthomonas type III effector AvrBsT and its plant interactors in cell death and defense signaling. PLANTA 2017; 245:237-253. [PMID: 27928637 DOI: 10.1007/s00425-016-2628-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2016] [Accepted: 11/30/2016] [Indexed: 05/20/2023]
Abstract
Xanthomonas effector AvrBsT interacts with plant defense proteins and triggers cell death and defense response. This review highlights our current understanding of the molecular functions of AvrBsT and its host interactor proteins. The AvrBsT protein is a member of a growing family of effector proteins in both plant and animal pathogens. Xanthomonas type III effector AvrBsT, a member of the YopJ/AvrRxv family, suppresses plant defense responses in susceptible hosts, but triggers cell death signaling leading to hypersensitive response (HR) and defense responses in resistant plants. AvrBsT interacts with host defense-related proteins to trigger the HR cell death and defense responses in plants. Here, we review and discuss recent progress in understanding the molecular functions of AvrBsT and its host interactor proteins in pepper (Capsicum annuum). Pepper arginine decarboxylase1 (CaADC1), pepper aldehyde dehydrogenase1 (CaALDH1), pepper heat shock protein 70a (CaHSP70a), pepper suppressor of the G2 allele of skp1 (CaSGT1), pepper SNF1-related kinase1 (SnRK1), and Arabidopsis acetylated interacting protein1 (ACIP1) have been identified as AvrBsT interactors in pepper and Arabidopsis. Gene expression profiling, virus-induced gene silencing, and transient transgenic overexpression approaches have advanced the functional characterization of AvrBsT-interacting proteins in plants. AvrBsT is localized in the cytoplasm and forms protein-protein complexes with host interactors. All identified AvrBsT interactors regulate HR cell death and defense responses in plants. Notably, CaSGT1 physically binds to both AvrBsT and pepper receptor-like cytoplasmic kinase1 (CaPIK1) in the cytoplasm. During infection with Xanthomonas campestris pv. vesicatoria strain Ds1 (avrBsT), AvrBsT is phosphorylated by CaPIK1 and forms the active AvrBsT-CaSGT1-CaPIK1 complex, which ultimately triggers HR cell death and defense responses. Collectively, the AvrBsT interactor proteins are involved in plant cell death and immunity signaling.
Collapse
Affiliation(s)
- Sang Wook Han
- Department of Integrative Plant Science, Chung-Ang University, Anseong, 17546, Republic of Korea
| | - Byung Kook Hwang
- Laboratory of Molecular Plant Pathology, College of Life Sciences and Biotechnology, Korea University, Anam-dong, Sungbuk-ku, Seoul, 02841, Republic of Korea.
| |
Collapse
|
13
|
Abstract
Type III secretion systems (T3SSs) afford Gram-negative bacteria an intimate means of altering the biology of their eukaryotic hosts--the direct delivery of effector proteins from the bacterial cytoplasm to that of the eukaryote. This incredible biophysical feat is accomplished by nanosyringe "injectisomes," which form a conduit across the three plasma membranes, peptidoglycan layer, and extracellular space that form a barrier to the direct delivery of proteins from bacterium to host. The focus of this chapter is T3SS function at the structural level; we will summarize the core findings that have shaped our understanding of the structure and function of these systems and highlight recent developments in the field. In turn, we describe the T3SS secretory apparatus, consider its engagement with secretion substrates, and discuss the posttranslational regulation of secretory function. Lastly, we close with a discussion of the future prospects for the interrogation of structure-function relationships in the T3SS.
Collapse
|
14
|
Diepold A, Armitage JP. Type III secretion systems: the bacterial flagellum and the injectisome. Philos Trans R Soc Lond B Biol Sci 2016; 370:rstb.2015.0020. [PMID: 26370933 DOI: 10.1098/rstb.2015.0020] [Citation(s) in RCA: 139] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The flagellum and the injectisome are two of the most complex and fascinating bacterial nanomachines. At their core, they share a type III secretion system (T3SS), a transmembrane export complex that forms the extracellular appendages, the flagellar filament and the injectisome needle. Recent advances, combining structural biology, cryo-electron tomography, molecular genetics, in vivo imaging, bioinformatics and biophysics, have greatly increased our understanding of the T3SS, especially the structure of its transmembrane and cytosolic components, the transcriptional, post-transcriptional and functional regulation and the remarkable adaptivity of the system. This review aims to integrate these new findings into our current knowledge of the evolution, function, regulation and dynamics of the T3SS, and to highlight commonalities and differences between the two systems, as well as their potential applications.
Collapse
Affiliation(s)
- Andreas Diepold
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Judith P Armitage
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| |
Collapse
|
15
|
Wang G, Xia Y, Xiong Z, Zhang H, Ai L. Use of a Novel Report Protein to Study the Secretion Signal of Flagellin in Bacillus subtilis. Curr Microbiol 2016; 73:242-7. [PMID: 27154466 DOI: 10.1007/s00284-016-1054-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 03/21/2016] [Indexed: 01/16/2023]
Abstract
Flagellin (also called Hag) is the main component of bacterial flagellum and is transported across the cytoplasmic membrane by flagellar secretion apparatus. Because flagella play an essential role in the pathogenesis of numerous pathogens, the flagellins of Escherichia coli, Salmonella typhimurium, Pseudomonas aeruginosa, Campylobacter jejuni, and Vibrio cholerae have been intensively studied; however, very few studies have focused on the flagellin of Bacillus subtilis, which is considered to be a model organism with which to study the secretion of bacteria and is used on an industrial scale for the secretion of proteins. The signal of B. subtilis flagellin is still debated. This study was performed to seek the export signals of flagellin from B. subtilis. The naturally nonsecretory, intrinsically disordered domain of nucleoskeletal-like protein (Nsp) was used as the reporter protein. Our results demonstrate that the export signal is contained within the first 50 amino acids of B. subtilis flagellin. Nsp is easily degraded inside the cell and can be exported into culture medium with the aid of the signal of flagellin. This method provides a new potential strategy for the expression of proteins with high proteolytic susceptibility via fusion to export signals.
Collapse
Affiliation(s)
- Guangqiang Wang
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, People's Republic of China
| | - Yongjun Xia
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, People's Republic of China
| | - Zhiqiang Xiong
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, People's Republic of China
| | - Hui Zhang
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, People's Republic of China
| | - Lianzhong Ai
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, People's Republic of China.
| |
Collapse
|
16
|
Login FH, Wolf-Watz H. YscU/FlhB of Yersinia pseudotuberculosis Harbors a C-terminal Type III Secretion Signal. J Biol Chem 2015; 290:26282-91. [PMID: 26338709 DOI: 10.1074/jbc.m114.633677] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Indexed: 12/20/2022] Open
Abstract
All type III secretion systems (T3SS) harbor a member of the YscU/FlhB family of proteins that is characterized by an auto-proteolytic process that occurs at a conserved cytoplasmic NPTH motif. We have previously demonstrated that YscUCC, the C-terminal peptide generated by auto-proteolysis of Yersinia pseudotuberculosis YscU, is secreted by the T3SS when bacteria are grown in Ca(2+)-depleted medium at 37 °C. Here, we investigated the secretion of this early T3S-substrate and showed that YscUCC encompasses a specific C-terminal T3S signal within the 15 last residues (U15). U15 promoted C-terminal secretion of reporter proteins like GST and YopE lacking its native secretion signal. Similar to the "classical" N-terminal secretion signal, U15 interacted with the ATPase YscN. Although U15 is critical for YscUCC secretion, deletion of the C-terminal secretion signal of YscUCC did neither affect Yop secretion nor Yop translocation. However, these deletions resulted in increased secretion of YscF, the needle subunit. Thus, these results suggest that YscU via its C-terminal secretion signal is involved in regulation of the YscF secretion.
Collapse
Affiliation(s)
- Frédéric H Login
- From the Department of Molecular Biology and The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå Centre for Microbial Research (UCMR), Umeå University, SE-901 87 Umeå, Sweden
| | - Hans Wolf-Watz
- From the Department of Molecular Biology and The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå Centre for Microbial Research (UCMR), Umeå University, SE-901 87 Umeå, Sweden
| |
Collapse
|
17
|
Reeves AZ, Spears WE, Du J, Tan KY, Wagers AJ, Lesser CF. Engineering Escherichia coli into a protein delivery system for mammalian cells. ACS Synth Biol 2015; 4:644-54. [PMID: 25853840 PMCID: PMC4487226 DOI: 10.1021/acssynbio.5b00002] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Many Gram-negative pathogens encode type 3 secretion systems, sophisticated nanomachines that deliver proteins directly into the cytoplasm of mammalian cells. These systems present attractive opportunities for therapeutic protein delivery applications; however, their utility has been limited by their inherent pathogenicity. Here, we report the reengineering of a laboratory strain of Escherichia coli with a tunable type 3 secretion system that can efficiently deliver heterologous proteins into mammalian cells, thereby circumventing the need for virulence attenuation. We first introduced a 31 kB region of Shigella flexneri DNA that encodes all of the information needed to form the secretion nanomachine onto a plasmid that can be directly propagated within E. coli or integrated into the E. coli chromosome. To provide flexible control over type 3 secretion and protein delivery, we generated plasmids expressing master regulators of the type 3 system from either constitutive or inducible promoters. We then constructed a Gateway-compatible plasmid library of type 3 secretion sequences to enable rapid screening and identification of sequences that do not perturb function when fused to heterologous protein substrates and optimized their delivery into mammalian cells. Combining these elements, we found that coordinated expression of the type 3 secretion system and modified target protein substrates produces a nonpathogenic strain that expresses, secretes, and delivers heterologous proteins into mammalian cells. This reengineered system thus provides a highly flexible protein delivery platform with potential for future therapeutic applications.
Collapse
Affiliation(s)
- Analise Z. Reeves
- Department
of Medicine, Division of Infectious Diseases, Massachusetts General Hospital, Cambridge, Massachusetts 02139, United States
- Department
of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts 02138, United States
| | - William E. Spears
- Department
of Medicine, Division of Infectious Diseases, Massachusetts General Hospital, Cambridge, Massachusetts 02139, United States
| | - Juan Du
- Department
of Medicine, Division of Infectious Diseases, Massachusetts General Hospital, Cambridge, Massachusetts 02139, United States
- Department
of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts 02138, United States
| | - Kah Yong Tan
- Howard
Hughes Medical Institute and Department of Stem Cell and Regenerative
Biology, Harvard University, Cambridge, Massachusetts 02138, United States
- Harvard Stem Cell Institute, Cambridge, Massachusetts 02138, United States
- Joslin Diabetes Center, Boston, Massachusetts 02215, United States
| | - Amy J. Wagers
- Howard
Hughes Medical Institute and Department of Stem Cell and Regenerative
Biology, Harvard University, Cambridge, Massachusetts 02138, United States
- Harvard Stem Cell Institute, Cambridge, Massachusetts 02138, United States
- Joslin Diabetes Center, Boston, Massachusetts 02215, United States
| | - Cammie F. Lesser
- Department
of Medicine, Division of Infectious Diseases, Massachusetts General Hospital, Cambridge, Massachusetts 02139, United States
- Department
of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts 02138, United States
- Harvard Stem Cell Institute, Cambridge, Massachusetts 02138, United States
| |
Collapse
|
18
|
Singer HM, Erhardt M, Hughes KT. Comparative analysis of the secretion capability of early and late flagellar type III secretion substrates. Mol Microbiol 2014; 93:505-20. [PMID: 24946091 DOI: 10.1111/mmi.12675] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/13/2014] [Indexed: 11/28/2022]
Abstract
A remarkable feature of the flagellar-specific type III secretion system (T3SS) is the selective recognition of a few substrate proteins among the many thousand cytoplasmic proteins. Secretion substrates are divided into two specificity classes: early substrates secreted for hook-basal body (HBB) construction and late substrates secreted after HBB completion. Secretion was reported to require a disordered N-terminal secretion signal, mRNA secretion signals within the 5'-untranslated region (5'-UTR) and for late substrates, piloting proteins known as the T3S chaperones. Here, we utilized translational β-lactamase fusions to probe the secretion efficacy of the N-terminal secretion signal of fourteen secreted flagellar substrates in Salmonella enterica. We observed a surprising variety in secretion capability between flagellar proteins of the same secretory class. The peptide secretion signals of the early-type substrates FlgD, FlgF, FlgE and the late-type substrate FlgL were analysed in detail. Analysing the role of the 5'-UTR in secretion of flgB and flgE revealed that the native 5'-UTR substantially enhanced protein translation and secretion. Based on our data, we propose a multicomponent signal that drives secretion via the flagellar T3SS. Both mRNA and peptide signals are recognized by the export apparatus and together with substrate-specific chaperones allowing for targeted secretion of flagellar substrates.
Collapse
Affiliation(s)
- Hanna M Singer
- Microbiologie, Département de Médecine, Université de Fribourg, Fribourg, Switzerland
| | | | | |
Collapse
|
19
|
Hayashi F, Kawashima Y, Takeuchi S, Okimori K, Inobe E, Oosawa K. SptP106-136 plays a role in the complex formation with SptP-specific chaperone SicP. Biosci Biotechnol Biochem 2014; 78:1560-3. [PMID: 25209503 DOI: 10.1080/09168451.2014.921552] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
SptP is a virulence effector protein of Salmonella that is involved in bacterial invasion into a host cell. For effective secretion, SptP forms a complex with SptP-specific chaperone SicP through its chaperone-binding domain, residues 35-139. Here, we suggest the possibility that residues 106-136 of SptP are important for complex formation with SicP by in vitro reconstitution experiments.
Collapse
Affiliation(s)
- Fumio Hayashi
- a Division of Molecular Science, Faculty of Science and Technology , Gunma University , Kiryu , Japan
| | | | | | | | | | | |
Collapse
|
20
|
Marín M, Ott T. Intrinsic disorder in plant proteins and phytopathogenic bacterial effectors. Chem Rev 2014; 114:6912-32. [PMID: 24697726 DOI: 10.1021/cr400488d] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Macarena Marín
- Genetics Institute, Faculty of Biology, Ludwig-Maximilians-University of Munich , Grosshaderner Strasse 2-4, 82152 Martinsried, Germany
| | | |
Collapse
|
21
|
da Cunha M, Milho C, Almeida F, Pais SV, Borges V, Maurício R, Borrego MJ, Gomes JP, Mota LJ. Identification of type III secretion substrates of Chlamydia trachomatis using Yersinia enterocolitica as a heterologous system. BMC Microbiol 2014; 14:40. [PMID: 24533538 PMCID: PMC3931295 DOI: 10.1186/1471-2180-14-40] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2013] [Accepted: 02/10/2014] [Indexed: 12/18/2022] Open
Abstract
Background Chlamydia trachomatis is an obligate intracellular human pathogen causing ocular and urogenital infections that are a significant clinical and public health concern. This bacterium uses a type III secretion (T3S) system to manipulate host cells, through the delivery of effector proteins into their cytosol, membranes, and nucleus. In this work, we aimed to find previously unidentified C. trachomatis T3S substrates. Results We first analyzed the genome of C. trachomatis L2/434 strain for genes encoding mostly uncharacterized proteins that did not appear to possess a signal of the general secretory pathway and which had not been previously experimentally shown to be T3S substrates. We selected several genes with these characteristics and analyzed T3S of the encoding proteins using Yersinia enterocolitica as a heterologous system. We identified 23 C. trachomatis proteins whose first 20 amino acids were sufficient to drive T3S of the mature form of β-lactamase TEM-1 by Y. enterocolitica. We found that 10 of these 23 proteins were also type III secreted in their full-length versions by Y. enterocolitica, providing additional support that they are T3S substrates. Seven of these 10 likely T3S substrates of C. trachomatis were delivered by Y. enterocolitica into host cells, further suggesting that they could be effectors. Finally, real-time quantitative PCR analysis of expression of genes encoding the 10 likely T3S substrates of C. trachomatis showed that 9 of them were clearly expressed during infection of host cells. Conclusions Using Y. enterocolitica as a heterologous system, we identified 10 likely T3S substrates of C. trachomatis (CT053, CT105, CT142, CT143, CT144, CT161, CT338, CT429, CT656, and CT849) and could detect translocation into host cells of CT053, CT105, CT142, CT143, CT161, CT338, and CT429. Therefore, we revealed several C. trachomatis proteins that could be effectors subverting host cell processes.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Luís Jaime Mota
- Infection Biology Laboratory, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal.
| |
Collapse
|
22
|
Yang X, Guo Y, Luo J, Pu X, Li M. Effective identification of Gram-negative bacterial type III secreted effectors using position-specific residue conservation profiles. PLoS One 2013; 8:e84439. [PMID: 24391954 PMCID: PMC3877298 DOI: 10.1371/journal.pone.0084439] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Accepted: 11/07/2013] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Type III secretion systems (T3SSs) are central to the pathogenesis and specifically deliver their secreted substrates (type III secreted proteins, T3SPs) into host cells. Since T3SPs play a crucial role in pathogen-host interactions, identifying them is crucial to our understanding of the pathogenic mechanisms of T3SSs. This study reports a novel and effective method for identifying the distinctive residues which are conserved different from other SPs for T3SPs prediction. Moreover, the importance of several sequence features was evaluated and further, a promising prediction model was constructed. RESULTS Based on the conservation profiles constructed by a position-specific scoring matrix (PSSM), 52 distinctive residues were identified. To our knowledge, this is the first attempt to identify the distinct residues of T3SPs. Of the 52 distinct residues, the first 30 amino acid residues are all included, which is consistent with previous studies reporting that the secretion signal generally occurs within the first 30 residue positions. However, the remaining 22 positions span residues 30-100 were also proven by our method to contain important signal information for T3SP secretion because the translocation of many effectors also depends on the chaperone-binding residues that follow the secretion signal. For further feature optimisation and compression, permutation importance analysis was conducted to select 62 optimal sequence features. A prediction model across 16 species was developed using random forest to classify T3SPs and non-T3 SPs, with high receiver operating curve of 0.93 in the 10-fold cross validation and an accuracy of 94.29% for the test set. Moreover, when performing on a common independent dataset, the results demonstrate that our method outperforms all the others published to date. Finally, the novel, experimentally confirmed T3 effectors were used to further demonstrate the model's correct application. The model and all data used in this paper are freely available at http://cic.scu.edu.cn/bioinformatics/T3SPs.zip.
Collapse
Affiliation(s)
- Xiaojiao Yang
- College of Chemistry, Sichuan University, Chengdu, P.R.China
| | - Yanzhi Guo
- College of Chemistry, Sichuan University, Chengdu, P.R.China
| | - Jiesi Luo
- College of Chemistry, Sichuan University, Chengdu, P.R.China
| | - Xuemei Pu
- College of Chemistry, Sichuan University, Chengdu, P.R.China
| | - Menglong Li
- College of Chemistry, Sichuan University, Chengdu, P.R.China
| |
Collapse
|
23
|
Wang Y, Sun M, Bao H, Zhang Q, Guo D. Effective identification of bacterial type III secretion signals using joint element features. PLoS One 2013; 8:e59754. [PMID: 23593149 PMCID: PMC3617162 DOI: 10.1371/journal.pone.0059754] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2012] [Accepted: 02/18/2013] [Indexed: 11/18/2022] Open
Abstract
Type III secretion system (T3SS) plays important roles in bacteria and host cell interactions by specifically translocating type III effectors into the cytoplasm of the host cells. The N-terminal amino acid sequences of the bacterial type III effectors determine their specific secretion via type III secretion conduits. It is still unclear as to how the N-terminal sequences guide this specificity. In this work, the amino acid composition, secondary structure, and solvent accessibility in the N-termini of type III and non-type III secreted proteins were compared and contrasted. A high-efficacy mathematical model based on these joint features was developed to distinguish the type III proteins from the non-type III ones. The results indicate that secondary structure and solvent accessibility may make important contribution to the specific recognition of type III secretion signals. Analysis also showed that the joint feature of the N-terminal 6th–10th amino acids are especially important for guiding specific type III secretion. Furthermore, a genome-wide screening was performed to predict Salmonella type III secreted proteins, and 8 new candidates were experimentally validated. Interestingly, type III secretion signals were also predicted in gram-positive bacteria and yeasts. Experimental validation showed that two candidates from yeast can indeed be secreted through Salmonella type III secretion conduit. This research provides the first line of direct evidence that secondary structure and solvent accessibility contain important features for guiding specific type III secretion. The new software based on these joint features ensures a high accuracy (general cross-validation sensitivity of ∼96% at a specificity of ∼98%) in silico identification of new type III secreted proteins, which may facilitate our understanding about the specificity of type III secretion and the evolution of type III secreted proteins.
Collapse
Affiliation(s)
- Yejun Wang
- School of Life Sciences and the State Key Lab of Agrobiotechnology, the Chinese University of Hong Kong, Shatin, NT, Hong Kong
| | | | | | | | | |
Collapse
|
24
|
Heel T, Vogel GF, Lammirato A, Schneider R, Auer B. FlgM as a secretion moiety for the development of an inducible type III secretion system. PLoS One 2013; 8:e59034. [PMID: 23554966 PMCID: PMC3595227 DOI: 10.1371/journal.pone.0059034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Accepted: 02/11/2013] [Indexed: 11/18/2022] Open
Abstract
Regulation and assembly of the flagellar type III secretion system is one of the most investigated and best understood regulational cascades in molecular biology. Depending on the host organism, flagellar morphogenesis requires the interplay of more than 50 genes. Direct secretion of heterologous proteins to the supernatant is appealing due to protection against cellular proteases and simplified downstream processing. As Escherichia coli currently remains the predominant host organism used for recombinant prokaryotic protein expression, the generation of a strain that exhibits inducible flagellar secretion would be highly desirable for biotechnological applications. Here, we report the first engineered Escherichia coli mutant strain featuring flagellar morphogenesis upon addition of an external inducer. Using FlgM as a sensor for direct secretion in combination with this novel strain may represent a potent tool for significant improvements in future engineering of an inducible type III secretion for heterologous proteins.
Collapse
Affiliation(s)
- Thomas Heel
- Institute of Biochemistry, University of Innsbruck, Innsbruck, Austria.
| | | | | | | | | |
Collapse
|
25
|
Wang Y, Sun M, Bao H, White AP. T3_MM: a Markov model effectively classifies bacterial type III secretion signals. PLoS One 2013; 8:e58173. [PMID: 23472154 PMCID: PMC3589343 DOI: 10.1371/journal.pone.0058173] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Accepted: 01/31/2013] [Indexed: 11/18/2022] Open
Abstract
MOTIVATION Type III Secretion Systems (T3SSs) play important roles in the interaction between gram-negative bacteria and their hosts. T3SSs function by translocating a group of bacterial effector proteins into the host cytoplasm. The details of specific type III secretion process are yet to be clarified. This research focused on comparing the amino acid composition within the N-terminal 100 amino acids from type III secretion (T3S) signal sequences or non-T3S proteins, specifically whether each residue exerts a constraint on residues found in adjacent positions. We used these comparisons to set up a statistic model to quantitatively model and effectively distinguish T3S effectors. RESULTS In this study, the amino acid composition (Aac) probability profiles conditional on its sequentially preceding position and corresponding amino acids were compared between N-terminal sequences of T3S and non-T3S proteins. The profiles are generally different. A Markov model, namely T3_MM, was consequently designed to calculate the total Aac conditional probability difference, i.e., the likelihood ratio of a sequence being a T3S or a non-T3S protein. With T3_MM, known T3S and non-T3S proteins were found to well approximate two distinct normal distributions. The model could distinguish validated T3S and non-T3S proteins with a 5-fold cross-validation sensitivity of 83.9% at a specificity of 90.3%. T3_MM was also shown to be more robust, accurate, simple, and statistically quantitative, when compared with other T3S protein prediction models. The high effectiveness of T3_MM also indicated the overall Aac difference between N-termini of T3S and non-T3S proteins, and the constraint of Aac exerted by its preceding position and corresponding Aac. AVAILABILITY An R package for T3_MM is freely downloadable from: http://biocomputer.bio.cuhk.edu.hk/softwares/T3_MM. T3_MM web server: http://biocomputer.bio.cuhk.edu.hk/T3DB/T3_MM.php.
Collapse
Affiliation(s)
- Yejun Wang
- Genomics Research Center, Haerbin Medical University, Harbin, China
- Vaccine and Infectious Disease Organization, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Ming'an Sun
- School of Life Science, the Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
| | - Hongxia Bao
- Genomics Research Center, Haerbin Medical University, Harbin, China
| | - Aaron P. White
- Vaccine and Infectious Disease Organization, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
26
|
Computational modeling and experimental validation of the Legionella and Coxiella virulence-related type-IVB secretion signal. Proc Natl Acad Sci U S A 2013; 110:E707-15. [PMID: 23382224 DOI: 10.1073/pnas.1215278110] [Citation(s) in RCA: 148] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Legionella and Coxiella are intracellular pathogens that use the virulence-related Icm/Dot type-IVB secretion system to translocate effector proteins into host cells during infection. These effectors were previously shown to contain a C-terminal secretion signal required for their translocation. In this research, we implemented a hidden semi-Markov model to characterize the amino acid composition of the signal, thus providing a comprehensive computational model for the secretion signal. This model accounts for dependencies among sites and captures spatial variation in amino acid composition along the secretion signal. To validate our model, we predicted and synthetically constructed an optimal secretion signal whose sequence is different from that of any known effector. We show that this signal efficiently translocates into host cells in an Icm/Dot-dependent manner. Additionally, we predicted in silico and experimentally examined the effects of mutations in the secretion signal, which provided innovative insights into its characteristics. Some effectors were found to lack a strong secretion signal according to our model. We demonstrated that these effectors were highly dependent on the IcmS-IcmW chaperons for their translocation, unlike effectors that harbor a strong secretion signal. Furthermore, our model is innovative because it enables searching ORFs for secretion signals on a genomic scale, which led to the identification and experimental validation of 20 effectors from Legionella pneumophila, Legionella longbeachae, and Coxiella burnetii. Our combined computational and experimental methodology is general and can be applied to the identification of a wide spectrum of protein features that lack sequence conservation but have similar amino acid characteristics.
Collapse
|
27
|
Joseph SS, Plano GV. The SycN/YscB chaperone-binding domain of YopN is required for the calcium-dependent regulation of Yop secretion by Yersinia pestis. Front Cell Infect Microbiol 2013; 3:1. [PMID: 23355975 PMCID: PMC3553376 DOI: 10.3389/fcimb.2013.00001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Accepted: 01/04/2013] [Indexed: 11/13/2022] Open
Abstract
Numerous Gram-negative bacterial pathogens employ type III secretion systems (T3SSs) to inject effector proteins into eukaryotic cells. The activation of the type III secretion (T3S) process is tightly controlled in all T3SSs. In Yersinia pestis, the secretion of effector proteins, termed Yersinia outer proteins (Yops), is regulated by the activity of the YopN/SycN/YscB/TyeA complex. YopN is a secreted protein that interacts with the SycN/YscB chaperone via an N-terminal chaperone-binding domain (CBD) and with TyeA via a C-terminal TyeA-binding domain (TBD). Efficient YopN secretion is dependent upon its N-terminal secretion signal (SS), CBD, and the SycN/YscB chaperone. In this study, we investigate the role of the YopN CBD in the regulation of Yop secretion. Analysis of YopE/YopN hybrid proteins in which the YopN SS or SS and CBD were replaced with the analogous regions of YopE indicated that the YopN CBD or SycN/YscB chaperone play a role in the regulation of Yop secretion that is independent of their established roles in YopN secretion. To further analyze the role of the YopN CBD in the regulation of Yop secretion a series of tetra-alanine substitution mutants were generated throughout the YopN CBD. A number of these mutants exhibited a defect in the regulation of Yop secretion but showed no defect in YopN secretion or in the interaction of YopN with the SycN/YscB chaperone. Finally, conditions were established that enabled YopN and TyeA to regulate Yop secretion in the absence of the SycN/YscB chaperone. Importantly, a number of the YopN CBD mutants maintained their defect in the regulation of Yop secretion even under the established SycN/YscB chaperone-independent conditions. These studies establish a role for the CBD region of YopN in the regulation of Yop secretion that is independent from its role in YopN secretion or in the binding of the SycN/YscB chaperone.
Collapse
Affiliation(s)
- Sabrina S Joseph
- Department of Microbiology and Immunology, F. Edward Hérbert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | | |
Collapse
|
28
|
Tomalka AG, Stopford CM, Lee PC, Rietsch A. A translocator-specific export signal establishes the translocator-effector secretion hierarchy that is important for type III secretion system function. Mol Microbiol 2012; 86:1464-81. [PMID: 23121689 DOI: 10.1111/mmi.12069] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/11/2012] [Indexed: 11/29/2022]
Abstract
Type III secretion systems are used by many Gram-negative pathogens to directly deliver effector proteins into the cytoplasm of host cells. To accomplish this, bacteria secrete translocator proteins that form a pore in the host-cell membrane through which the effector proteins are then introduced into the host cell. Evidence from multiple systems indicates that the pore-forming translocator proteins are exported before effectors, but how this secretion hierarchy is established is unclear. Here we used the Pseudomonas aeruginosa translocator protein PopD as a model to identify its export signals. The N-terminal secretion signal and chaperone, PcrH, are required for export under all conditions. Two novel signals in PopD, one proximal to the chaperone binding site and one at the very C-terminus of the protein, are required for export of PopD before effector proteins. These novel export signals establish the translocator-effector secretion hierarchy, which in turn, is critical for the delivery of effectors into host cells.
Collapse
Affiliation(s)
- Amanda G Tomalka
- Department of Molecular Biology and Microbiology, Case Western Reserve University, 10900 Euclid Ave., Cleveland, OH 44106-4960, USA
| | | | | | | |
Collapse
|
29
|
Tomás JM. The main Aeromonas pathogenic factors. ISRN MICROBIOLOGY 2012; 2012:256261. [PMID: 23724321 PMCID: PMC3658858 DOI: 10.5402/2012/256261] [Citation(s) in RCA: 199] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Accepted: 07/19/2012] [Indexed: 12/27/2022]
Abstract
The members of the Aeromonas genus are ubiquitous, water-borne bacteria. They have been isolated from marine waters, rivers, lakes, swamps, sediments, chlorine water, water distribution systems, drinking water and residual waters; different types of food, such as meat, fish, seafood, vegetables, and processed foods. Aeromonas strains are predominantly pathogenic to poikilothermic animals, and the mesophilic strains are emerging as important pathogens in humans, causing a variety of extraintestinal and systemic infections as well as gastrointestinal infections. The most commonly described disease caused by Aeromonas is the gastroenteritis; however, no adequate animal model is available to reproduce this illness caused by Aeromonas. The main pathogenic factors associated with Aeromonas are: surface polysaccharides (capsule, lipopolysaccharide, and glucan), S-layers, iron-binding systems, exotoxins and extracellular enzymes, secretion systems, fimbriae and other nonfilamentous adhesins, motility and flagella.
Collapse
Affiliation(s)
- J M Tomás
- Departamento Microbiología, Universidad de Barcelona, Diagonal 643, 08071 Barcelona, Spain
| |
Collapse
|
30
|
Schechter LM, Valenta JC, Schneider DJ, Collmer A, Sakk E. Functional and computational analysis of amino acid patterns predictive of type III secretion system substrates in Pseudomonas syringae. PLoS One 2012; 7:e36038. [PMID: 22558318 PMCID: PMC3338616 DOI: 10.1371/journal.pone.0036038] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2012] [Accepted: 03/29/2012] [Indexed: 12/11/2022] Open
Abstract
Bacterial type III secretion systems (T3SSs) deliver proteins called effectors into eukaryotic cells. Although N-terminal amino acid sequences are required for translocation, the mechanism of substrate recognition by the T3SS is unknown. Almost all actively deployed T3SS substrates in the plant pathogen Pseudomonas syringae pathovar tomato strain DC3000 possess characteristic patterns, including (i) greater than 10% serine within the first 50 amino acids, (ii) an aliphatic residue or proline at position 3 or 4, and (iii) a lack of acidic amino acids within the first 12 residues. Here, the functional significance of the P. syringae T3SS substrate compositional patterns was tested. A mutant AvrPto effector protein lacking all three patterns was secreted into culture and translocated into plant cells, suggesting that the compositional characteristics are not absolutely required for T3SS targeting and that other recognition mechanisms exist. To further analyze the unique properties of T3SS targeting signals, we developed a computational algorithm called TEREE (Type III Effector Relative Entropy Evaluation) that distinguishes DC3000 T3SS substrates from other proteins with a high sensitivity and specificity. Although TEREE did not efficiently identify T3SS substrates in Salmonella enterica, it was effective in another P. syringae strain and Ralstonia solanacearum. Thus, the TEREE algorithm may be a useful tool for identifying new effector genes in plant pathogens. The nature of T3SS targeting signals was additionally investigated by analyzing the N-terminus of FtsX, a putative membrane protein that was classified as a T3SS substrate by TEREE. Although the first 50 amino acids of FtsX were unable to target a reporter protein to the T3SS, an AvrPto protein substituted with the first 12 amino acids of FtsX was translocated into plant cells. These results show that the T3SS targeting signals are highly mutable and that secretion may be directed by multiple features of substrates.
Collapse
Affiliation(s)
- Lisa M Schechter
- Department of Biology, University of Missouri-St. Louis, St. Louis, Missouri, USA.
| | | | | | | | | |
Collapse
|
31
|
Canonne J, Pichereaux C, Marino D, Roby D, Rossignol M, Rivas S. Identification of the protein sequence of the type III effector XopD from the B100 strain of Xanthomonas campestris pv campestris. PLANT SIGNALING & BEHAVIOR 2012; 7:184-7. [PMID: 22353870 PMCID: PMC3405711 DOI: 10.4161/psb.18828] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
During evolution, pathogens have developed sophisticated strategies to suppress plant defense responses and promote successful colonization of their hosts. In their attempt to quell host resistance, Gram-negative phytopathogenic bacteria inject type III effectors (T3Es) into plant cells, where they typically target plant components essential for the establishment of defense responses. We have recently shown that the XopD T3E from the strain B100 of Xanthomonas campestris pathovar campestris (XopDXccB100) is able to target AtMYB30, a positive regulator of Arabidopsis defense responses. This protein interaction leads to inhibition of AtMYB30 transcriptional activity and promotion of bacterial virulence. Here, we describe the identification of the complete protein sequence of XopDXccB100, which presents an N-terminal extension of 40 amino acids with respect to the protein annotated in public databases. The implications of this finding are discussed.
Collapse
Affiliation(s)
- Joanne Canonne
- INRA; Laboratoire des Interactions Plantes-Microorganismes (LIPM); UMR441; F-31326; Castanet-Tolosan, France
- CNRS; Laboratoire des Interactions Plantes-Microorganismes (LIPM); UMR2594; F-31326; Castanet-Tolosan, France
| | - Carole Pichereaux
- Fe´de´ration de Recherche FR3450; Plate-Forme prote´omique Ge´nopole Toulouse Midi-Pyre´ne´es; Institut de Pharmacologie et Biologie Structurale; Universite´ de Toulouse; F-31077; Toulouse, France
- Universite´ Paul Sabatier, Universite´ de Toulouse, F-31077 Toulouse, France
| | - Daniel Marino
- INRA; Laboratoire des Interactions Plantes-Microorganismes (LIPM); UMR441; F-31326; Castanet-Tolosan, France
- CNRS; Laboratoire des Interactions Plantes-Microorganismes (LIPM); UMR2594; F-31326; Castanet-Tolosan, France
| | - Dominique Roby
- INRA; Laboratoire des Interactions Plantes-Microorganismes (LIPM); UMR441; F-31326; Castanet-Tolosan, France
- CNRS; Laboratoire des Interactions Plantes-Microorganismes (LIPM); UMR2594; F-31326; Castanet-Tolosan, France
| | - Michel Rossignol
- Fe´de´ration de Recherche FR3450; Plate-Forme prote´omique Ge´nopole Toulouse Midi-Pyre´ne´es; Institut de Pharmacologie et Biologie Structurale; Universite´ de Toulouse; F-31077; Toulouse, France
- Universite´ Paul Sabatier, Universite´ de Toulouse, F-31077 Toulouse, France
| | - Susana Rivas
- INRA; Laboratoire des Interactions Plantes-Microorganismes (LIPM); UMR441; F-31326; Castanet-Tolosan, France
- CNRS; Laboratoire des Interactions Plantes-Microorganismes (LIPM); UMR2594; F-31326; Castanet-Tolosan, France
| |
Collapse
|
32
|
Cardenal-Muñoz E, Ramos-Morales F. Analysis of the expression, secretion and translocation of the Salmonella enterica type III secretion system effector SteA. PLoS One 2011; 6:e26930. [PMID: 22046414 PMCID: PMC3203157 DOI: 10.1371/journal.pone.0026930] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2011] [Accepted: 10/06/2011] [Indexed: 11/28/2022] Open
Abstract
Many Gram-negative pathogens possess virulence-related type III secretion systems. Salmonella enterica uses two of these systems, encoded on the pathogenicity islands SPI-1 and SPI-2, respectively, to translocate more than 30 effector proteins into eukaryotic host cells. SteA is one of the few effectors that can be translocated by both systems. We investigated the conditions affecting the synthesis of this effector, its secretion to culture media and its translocation into host cells. Whereas steA was expressed under a wide range of conditions, some factors, including low and high osmolarity, and presence of butyrate, decreased expression. SteA was efficiently secreted to the culture media under both SPI-1 and SPI-2 inducing conditions. The kinetics of translocation into murine macrophages and human epithelial cells was studied using fusions with the 3xFLAG tag, and fusions with CyaA from Bordetella pertussis. Translocation into macrophages under non-invasive conditions was mainly dependent on the SPI-2-encoded type III secretion system but some participation of the SPI-1 system was also detected 6 hours post-infection. Interestingly, both type III secretion systems had a relevant role in the translocation of SteA into epithelial cells. Finally, a deletion approach allowed the identification of the N-terminal signal necessary for translocation of this effector. The amino acid residues 1–10 were sufficient to direct translocation into host cells through both type III secretion systems. Our results provide new examples of functional overlapping between the two type III secretion systems of Salmonella.
Collapse
Affiliation(s)
- Elena Cardenal-Muñoz
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Sevilla, Spain
| | - Francisco Ramos-Morales
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Sevilla, Spain
- * E-mail:
| |
Collapse
|
33
|
Derouazi M, Wang Y, Marlu R, Epaulard O, Mayol JF, Pasqual N, Le Gouellec A, Polack B, Toussaint B. Optimal epitope composition after antigen screening using a live bacterial delivery vector: application to TRP-2. Bioeng Bugs 2011; 1:51-60. [PMID: 21327126 DOI: 10.4161/bbug.1.1.9482] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2009] [Revised: 07/09/2009] [Accepted: 07/09/2009] [Indexed: 01/03/2023] Open
Abstract
Immunotherapeutic approaches, based on the generation of tumor-specific cytotoxic T-lymphocytes (CTL), are currently emerging as promising strategies of anti-tumor therapy. The potential use of attenuated bacteria as engineered vectors for vaccine development offers several advantages, including the stimulation of innate immunity. We developed an attenuated live bacterial vector using the type III secretion system (TTSS) of Pseudomonas aeruginosa to deliver in vivo tumor antigens. Using an inducible and rapid expression plasmid, vaccination with several antigens of different length and epitope composition, including TRp-2, gp100 and MUC18, was evaluated against glioma tumor cells. We observed similar CTL immunity and T-cell receptor (TCR) repertoire diversity with the vaccines, TRP2(125-243), TRP2L(125-376) and TRP2S(291-376). However, only immunization with TRP2L(125-376) induced significant anti-tumor immunity. Taken together, our data indicate the importance of the epitopes composition and/or peptide length of these peptides for inducing cytotoxic T-lymphocyte (CTL) mediated immunity. Characteristics that consistently improved anti-tumor immunity include: long peptides with immunodominant and cryptic CD8(+) epitopes, and strong CD4(+) Th epitopes. Our bacterial vector is versatile, easy-to-use and quick to produce. This vector is suitable for rapid screening and evaluation of antigens of varying length and epitope composition.
Collapse
Affiliation(s)
- Madiha Derouazi
- Therex, TIMC-IMAG, CNRS Université Joseph Fourier; La Tronche, France
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Type III secretion system-dependent translocation of ectopically expressed Yop effectors into macrophages by intracellular Yersinia pseudotuberculosis. Infect Immun 2011; 79:4322-31. [PMID: 21844228 DOI: 10.1128/iai.05396-11] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Yersinia pseudotuberculosis is a Gram-negative bacterial pathogen. Virulence in Y. pseudotuberculosis requires the plasmid-encoded Ysc type III secretion system (T3SS), which functions to translocate a set of effectors called Yops into infected host cells. The effectors function to antagonize phagocytosis (e.g., YopH) or to induce apoptosis (YopJ) in macrophages infected with Y. pseudotuberculosis. Additionally, when antiphagocytosis is incomplete and Y. pseudotuberculosis is internalized by macrophages, the bacterium can survive in phagosomes. Previous studies have shown that delivery of effectors into host cells occurs efficiently when Yersinia is extracellular. However, it is not clear whether the T3SS can be utilized by intracellular Y. pseudotuberculosis to translocate Yops. This possibility was investigated here using Y. pseudotuberculosis strains that express YopJ or YopH under the control of an inducible promoter. Bone marrow-derived murine macrophages were infected with these strains under conditions that prevented the survival of extracellular bacteria. Effector translocation was detected by measuring apoptosis or the activities of Yop-β-lactamase fusion proteins. Results showed that macrophages underwent apoptosis when YopJ expression was induced prior to phagocytosis, confirming that delivery of this effector prior to or during uptake is sufficient to cause cell death. However, macrophages also underwent apoptosis when YopJ was ectopically expressed after phagocytosis; furthermore, expression of the translocator YopB from intracellular bacteria also resulted in increased cell death. Analysis by microscopy showed that translocation of ectopically expressed YopH- or YopJ-β-lactamase fusions could be correlated with the presence of viable Y. pseudotuberculosis in macrophages. Collectively, our results suggest that the Ysc T3SS of Y. pseudotuberculosis can function within macrophage phagosomes to translocate Yops into the host cytosol.
Collapse
|
35
|
Swietnicki W, Carmany D, Retford M, Guelta M, Dorsey R, Bozue J, Lee MS, Olson MA. Identification of small-molecule inhibitors of Yersinia pestis Type III secretion system YscN ATPase. PLoS One 2011; 6:e19716. [PMID: 21611119 PMCID: PMC3097197 DOI: 10.1371/journal.pone.0019716] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2010] [Accepted: 04/14/2011] [Indexed: 01/12/2023] Open
Abstract
Yersinia pestis is a Gram negative zoonotic pathogen responsible for causing bubonic and pneumonic plague in humans. The pathogen uses a type III secretion system (T3SS) to deliver virulence factors directly from bacterium into host mammalian cells. The system contains a single ATPase, YscN, necessary for delivery of virulence factors. In this work, we show that deletion of the catalytic domain of the yscN gene in Y. pestis CO92 attenuated the strain over three million-fold in the Swiss-Webster mouse model of bubonic plague. The result validates the YscN protein as a therapeutic target for plague. The catalytic domain of the YscN protein was made using recombinant methods and its ATPase activity was characterized in vitro. To identify candidate therapeutics, we tested computationally selected small molecules for inhibition of YscN ATPase activity. The best inhibitors had measured IC50 values below 20 µM in an in vitro ATPase assay and were also found to inhibit the homologous BsaS protein from Burkholderia mallei animal-like T3SS at similar concentrations. Moreover, the compounds fully inhibited YopE secretion by attenuated Y. pestis in a bacterial cell culture and mammalian cells at µM concentrations. The data demonstrate the feasibility of targeting and inhibiting a critical protein transport ATPase of a bacterial virulence system. It is likely the same strategy could be applied to many other common human pathogens using type III secretion system, including enteropathogenic E. coli, Shigella flexneri, Salmonella typhimurium, and Burkholderia mallei/pseudomallei species.
Collapse
Affiliation(s)
- Wieslaw Swietnicki
- The Uniformed Services University, Bethesda, Maryland, United States of America.
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Dean P. Functional domains and motifs of bacterial type III effector proteins and their roles in infection. FEMS Microbiol Rev 2011; 35:1100-25. [PMID: 21517912 DOI: 10.1111/j.1574-6976.2011.00271.x] [Citation(s) in RCA: 214] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
A key feature of the virulence of many bacterial pathogens is the ability to deliver effector proteins into eukaryotic cells via a dedicated type three secretion system (T3SS). Many bacterial pathogens, including species of Chlamydia, Xanthomonas, Pseudomonas, Ralstonia, Shigella, Salmonella, Escherichia and Yersinia, depend on the T3SS to cause disease. T3SS effectors constitute a large and diverse group of virulence proteins that mimic eukaryotic proteins in structure and function. A salient feature of bacterial effectors is their modular architecture, comprising domains or motifs that confer an array of subversive functions within the eukaryotic cell. These domains/motifs therefore represent a fascinating repertoire of molecular determinants with important roles during infection. This review provides a snapshot of our current understanding of bacterial effector domains and motifs where a defined role in infection has been demonstrated.
Collapse
Affiliation(s)
- Paul Dean
- Institute of Cell and Molecular Bioscience, Medical School, University of Newcastle, Newcastle Upon Tyne, UK.
| |
Collapse
|
37
|
Wang Y, Zhang Q, Sun MA, Guo D. High-accuracy prediction of bacterial type III secreted effectors based on position-specific amino acid composition profiles. Bioinformatics 2011; 27:777-84. [DOI: 10.1093/bioinformatics/btr021] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
|
38
|
Translocation of surface-localized effectors in type III secretion. Proc Natl Acad Sci U S A 2011; 108:1639-44. [PMID: 21220342 DOI: 10.1073/pnas.1013888108] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Pathogenic Yersinia species suppress the host immune response by using a plasmid-encoded type III secretion system (T3SS) to translocate virulence proteins into the cytosol of the target cells. T3SS-dependent protein translocation is believed to occur in one step from the bacterial cytosol to the target-cell cytoplasm through a conduit created by the T3SS upon target cell contact. Here, we report that T3SS substrates on the surface of Yersinia pseudotuberculosis are translocated into target cells. Upon host cell contact, purified YopH coated on Y. pseudotuberculosis was specifically and rapidly translocated across the target-cell membrane, which led to a physiological response in the infected cell. In addition, translocation of externally added YopH required a functional T3SS and a specific translocation domain in the effector protein. Efficient, T3SS-dependent translocation of purified YopH added in vitro was also observed when using coated Salmonella typhimurium strains, which implies that T3SS-mediated translocation of extracellular effector proteins is conserved among T3SS-dependent pathogens. Our results demonstrate that polarized T3SS-dependent translocation of proteins can be achieved through an intermediate extracellular step that can be reconstituted in vitro. These results indicate that translocation can occur by a different mechanism from the assumed single-step conduit model.
Collapse
|
39
|
Lorenz C, Büttner D. Secretion of early and late substrates of the type III secretion system from Xanthomonas is controlled by HpaC and the C-terminal domain of HrcU. Mol Microbiol 2011; 79:447-67. [PMID: 21219463 PMCID: PMC3040844 DOI: 10.1111/j.1365-2958.2010.07461.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/05/2010] [Indexed: 11/27/2022]
Abstract
The plant pathogenic bacterium Xanthomonas campestris pv. vesicatoria utilizes a type III secretion (T3S) system to inject effector proteins into eukaryotic cells. T3S substrate specificity is controlled by HpaC, which promotes secretion of translocon and effector proteins but prevents efficient secretion of the early substrate HrpB2. HpaC and HrpB2 interact with the C-terminal domain (HrcU(C) ) of the FlhB/YscU homologue HrcU. Here, we provide experimental evidence that HrcU is proteolytically cleaved at the conserved NPTH motif, which is required for binding of both HpaC and HrpB2 to HrcU(C) . The results of mutant studies showed that cleavage of HrcU contributes to pathogenicity and secretion of late substrates but is dispensable for secretion of HrpB2, which is presumably secreted prior to HrcU cleavage. The introduction of a point mutation (Y318D) into HrcU(C) activated secretion of late substrates in the absence of HpaC and suppressed the hpaC mutant phenotype. However, secretion of HrpB2 was unaffected by HrcU(Y318D) , suggesting that the export of early and late substrates is controlled by independent mechanisms that can be uncoupled. As HrcU(Y318D) did not interact with HrpB2 and HpaC, we propose that the substrate specificity switch leads to the release of HrcU(C) -bound HrpB2 and HpaC.
Collapse
Affiliation(s)
- Christian Lorenz
- Institute of Biology, Department of Genetics, Martin-Luther University Halle-WittenbergD-06099 Halle (Saale), Germany
| | - Daniela Büttner
- Institute of Biology, Department of Genetics, Martin-Luther University Halle-WittenbergD-06099 Halle (Saale), Germany
| |
Collapse
|
40
|
Canonne J, Marino D, Noël LD, Arechaga I, Pichereaux C, Rossignol M, Roby D, Rivas S. Detection and functional characterization of a 215 amino acid N-terminal extension in the Xanthomonas type III effector XopD. PLoS One 2010; 5:e15773. [PMID: 21203472 PMCID: PMC3008746 DOI: 10.1371/journal.pone.0015773] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2010] [Accepted: 11/26/2010] [Indexed: 01/14/2023] Open
Abstract
During evolution, pathogens have developed a variety of strategies to suppress plant-triggered immunity and promote successful infection. In Gram-negative phytopathogenic bacteria, the so-called type III protein secretion system works as a molecular syringe to inject type III effectors (T3Es) into plant cells. The XopD T3E from the strain 85-10 of Xanthomonas campestris pathovar vesicatoria (Xcv) delays the onset of symptom development and alters basal defence responses to promote pathogen growth in infected tomato leaves. XopD was previously described as a modular protein that contains (i) an N-terminal DNA-binding domain (DBD), (ii) two tandemly repeated EAR (ERF-associated amphiphillic repression) motifs involved in transcriptional repression, and (iii) a C-terminal cysteine protease domain, involved in release of SUMO (small ubiquitin-like modifier) from SUMO-modified proteins. Here, we show that the XopD protein that is produced and secreted by Xcv presents an additional N-terminal extension of 215 amino acids. Closer analysis of this newly identified N-terminal domain shows a low complexity region rich in lysine, alanine and glutamic acid residues (KAE-rich) with high propensity to form coiled-coil structures that confers to XopD the ability to form dimers when expressed in E. coli. The full length XopD protein identified in this study (XopD(1-760)) displays stronger repression of the XopD plant target promoter PR1, as compared to the XopD version annotated in the public databases (XopD(216-760)). Furthermore, the N-terminal extension of XopD, which is absent in XopD(216-760), is essential for XopD type III-dependent secretion and, therefore, for complementation of an Xcv mutant strain deleted from XopD in its ability to delay symptom development in tomato susceptible cultivars. The identification of the complete sequence of XopD opens new perspectives for future studies on the XopD protein and its virulence-associated functions in planta.
Collapse
Affiliation(s)
- Joanne Canonne
- Laboratoire des Interactions Plantes Micro-organismes (LIPM), UMR CNRS-INRA 2594/441, Castanet Tolosan, France
| | - Daniel Marino
- Laboratoire des Interactions Plantes Micro-organismes (LIPM), UMR CNRS-INRA 2594/441, Castanet Tolosan, France
| | - Laurent D. Noël
- Laboratoire des Interactions Plantes Micro-organismes (LIPM), UMR CNRS-INRA 2594/441, Castanet Tolosan, France
| | - Ignacio Arechaga
- Departamento de Biología Molecular, Universidad de Cantabria (UC) and Instituto de Biomedicina y Biotecnología de Cantabria, IBBTEC (CSIC-UC-IDICAN), Santander, Spain
| | - Carole Pichereaux
- Institut Fédératif de Recherche (IFR40), Plateforme protéomique Génopole Toulouse Midi-Pyrénées, Institut de Pharmacologie et Biologie Structurale, Université de Toulouse, Toulouse, France
| | - Michel Rossignol
- Institut Fédératif de Recherche (IFR40), Plateforme protéomique Génopole Toulouse Midi-Pyrénées, Institut de Pharmacologie et Biologie Structurale, Université de Toulouse, Toulouse, France
| | - Dominique Roby
- Laboratoire des Interactions Plantes Micro-organismes (LIPM), UMR CNRS-INRA 2594/441, Castanet Tolosan, France
| | - Susana Rivas
- Laboratoire des Interactions Plantes Micro-organismes (LIPM), UMR CNRS-INRA 2594/441, Castanet Tolosan, France
| |
Collapse
|
41
|
Lee PC, Stopford CM, Svenson AG, Rietsch A. Control of effector export by the Pseudomonas aeruginosa type III secretion proteins PcrG and PcrV. Mol Microbiol 2010; 75:924-41. [PMID: 20487288 DOI: 10.1111/j.1365-2958.2009.07027.x] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Pseudomonas aeruginosa uses a type III secretion system to inject protein effectors into a targeted host cell. Effector secretion is triggered by host cell contact. How effector secretion is prevented prior to cell contact is not well understood. In all secretion systems studied to date, the needle tip protein is required for controlling effector secretion, but the mechanism by which needle tip proteins control effector secretion is unclear. Here we present data that the P. aeruginosa needle tip protein, PcrV, controls effector secretion by assembling into a functional needle tip complex. PcrV likely does not simply obstruct the secretion channel because the pore-forming translocator proteins can still be secreted while effector secretion is repressed. This finding suggests that PcrV controls effector secretion by affecting the conformation of the apparatus, shifting it from the default, effector secretion 'on' conformation, to the effector secretion 'off' conformation. We also present evidence that PcrG, which can bind to PcrV and is also involved in controlling effector export, is cytoplasmic and that the interaction between PcrG and PcrV is not required for effector secretion control by either protein. Taken together, these data allow us to propose a working model for control of effector secretion by PcrG and PcrV.
Collapse
Affiliation(s)
- Pei-Chung Lee
- Department of Molecular Biology and Microbiology, Case Western Reserve University, 10900 Euclid Ave., Cleveland, OH 44106-4960, USA
| | | | | | | |
Collapse
|
42
|
Costa TRD, Edqvist PJ, Bröms JE, Ahlund MK, Forsberg A, Francis MS. YopD self-assembly and binding to LcrV facilitate type III secretion activity by Yersinia pseudotuberculosis. J Biol Chem 2010; 285:25269-84. [PMID: 20525687 DOI: 10.1074/jbc.m110.144311] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
YopD-like translocator proteins encoded by several Gram-negative bacteria are important for type III secretion-dependent delivery of anti-host effectors into eukaryotic cells. This probably depends on their ability to form pores in the infected cell plasma membrane, through which effectors may gain access to the cell interior. In addition, Yersinia YopD is a negative regulator essential for the control of effector synthesis and secretion. As a prerequisite for this functional duality, YopD may need to establish molecular interactions with other key T3S components. A putative coiled-coil domain and an alpha-helical amphipathic domain, both situated in the YopD C terminus, may represent key protein-protein interaction domains. Therefore, residues within the YopD C terminus were systematically mutagenized. All 68 mutant bacteria were first screened in a variety of assays designed to identify individual residues essential for YopD function, possibly by providing the interaction interface for the docking of other T3S proteins. Mirroring the effect of a full-length yopD gene deletion, five mutant bacteria were defective for both yop regulatory control and effector delivery. Interestingly, all mutations clustered to hydrophobic amino acids of the amphipathic domain. Also situated within this domain, two additional mutants rendered YopD primarily defective in the control of Yop synthesis and secretion. Significantly, protein-protein interaction studies revealed that functionally compromised YopD variants were also defective in self-oligomerization and in the ability to engage another translocator protein, LcrV. Thus, the YopD amphipathic domain facilitates the formation of YopD/YopD and YopD/LcrV interactions, two critical events in the type III secretion process.
Collapse
Affiliation(s)
- Tiago R D Costa
- Department of Molecular Biology and Umeå Center for Microbial Research, Umeå University, SE-901 87 Umeå, Sweden
| | | | | | | | | | | |
Collapse
|
43
|
Boonyom R, Karavolos MH, Bulmer DM, Khan CMA. Salmonella pathogenicity island 1 (SPI-1) type III secretion of SopD involves N- and C-terminal signals and direct binding to the InvC ATPase. Microbiology (Reading) 2010; 156:1805-1814. [PMID: 20185511 DOI: 10.1099/mic.0.038117-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Salmonella enterica serovar Typhimurium (S. Typhimurium) is an important pathogen and a causative agent of gastroenteritis. During infection, S. Typhimurium assembles molecular-needle complexes termed type III secretion (T3S) systems to translocate effector proteins from the bacterial cytoplasm directly into the host cell. The T3S signals that direct the secretion of effectors still remain enigmatic. SopD is a key T3S effector contributing to the systemic virulence of S. Typhimurium and the development of gastroenteritis. We have scrutinized the distribution of the SopD T3S signals using in silico analysis and a targeted deletion approach. We show that amino acid residues 6–10 act as the N-terminal secretion signal for Salmonella pathogenicity island 1 (SPI-1) T3S. Furthermore, we show that two putative C-terminal helical regions of SopD are essential for its secretion and also help prevent erroneous secretion through the flagellar T3S machinery. In addition, using protein–protein interaction assays, we have identified an association between SopD and the SPI-1 T3S system ATPase, InvC. These findings demonstrate that T3S of SopD involves multiple signals and protein interactions, providing important mechanistic insights into effector protein secretion.
Collapse
Affiliation(s)
- R. Boonyom
- Institute for Cell and Molecular Biosciences and School of Biomedical Sciences, The Medical School, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| | - M. H. Karavolos
- Institute for Cell and Molecular Biosciences and School of Biomedical Sciences, The Medical School, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| | - D. M. Bulmer
- Institute for Cell and Molecular Biosciences and School of Biomedical Sciences, The Medical School, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| | - C. M. A. Khan
- Institute for Cell and Molecular Biosciences and School of Biomedical Sciences, The Medical School, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| |
Collapse
|
44
|
Neal-McKinney JM, Christensen JE, Konkel ME. Amino-terminal residues dictate the export efficiency of the Campylobacter jejuni filament proteins via the flagellum. Mol Microbiol 2010; 76:918-31. [PMID: 20398207 DOI: 10.1111/j.1365-2958.2010.07144.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Bacterial flagella play an essential role in the pathogenesis of numerous enteric pathogens. The flagellum is required for motility, colonization, and in some instances, for the secretion of effector proteins. In contrast to the intensively studied flagella of Escherichia coli and Salmonella typhimurium, the flagella of Campylobacter jejuni, Helicobacter pylori and Vibrio cholerae are less well characterized and composed of multiple flagellin subunits. This study was performed to gain a better understanding of flagellin export from the flagellar type III secretion apparatus of C. jejuni. The flagellar filament of C. jejuni is comprised of two flagellins termed FlaA and FlaB. We demonstrate that the amino-termini of FlaA and FlaB determine the length of the flagellum and motility of C. jejuni. We also demonstrate that protein-specific residues in the amino-terminus of FlaA and FlaB dictate export efficiency from the flagellar type III secretion system (T3SS) of Yersinia enterocolitica. These findings demonstrate that key residues within the amino-termini of two nearly identical proteins influence protein export efficiency, and that the mechanism governing the efficiency of protein export is conserved among two pathogens belonging to distinct bacterial classes. These findings are of additional interest because C. jejuni utilizes the flagellum to export virulence proteins.
Collapse
|
45
|
|
46
|
Arnold R, Jehl A, Rattei T. Targeting effectors: the molecular recognition of Type III secreted proteins. Microbes Infect 2010; 12:346-58. [PMID: 20178857 DOI: 10.1016/j.micinf.2010.02.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2010] [Accepted: 02/10/2010] [Indexed: 01/01/2023]
Abstract
The Type III secretion system (TTSS) facilitates the export of effector proteins from pathogenic and symbiotic Gram-negative bacteria into the cytosol of eukaryotic host cells. The current functional and evolutionary knowledge on the molecular recognition of TTSS substrates and computational models of the secretion signal are discussed in this review.
Collapse
Affiliation(s)
- Roland Arnold
- Department of Genome Oriented Bioinformatics, Technische Universität München, Wissenschaftszentrum Weihenstephan, 85350 Freising, Germany
| | | | | |
Collapse
|
47
|
Timing is everything: the regulation of type III secretion. Cell Mol Life Sci 2009; 67:1065-75. [PMID: 20043184 PMCID: PMC2835726 DOI: 10.1007/s00018-009-0230-0] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2009] [Revised: 11/23/2009] [Accepted: 12/08/2009] [Indexed: 12/19/2022]
Abstract
Type Three Secretion Systems (T3SSs) are essential virulence determinants of many Gram-negative bacteria. The T3SS is an injection device that can transfer bacterial virulence proteins directly into host cells. The apparatus is made up of a basal body that spans both bacterial membranes and an extracellular needle that possesses a channel that is thought to act as a conduit for protein secretion. Contact with a host-cell membrane triggers the insertion of a pore into the target membrane, and effectors are translocated through this pore into the host cell. To assemble a functional T3SS, specific substrates must be targeted to the apparatus in the correct order. Recently, there have been many developments in our structural and functional understanding of the proteins involved in the regulation of secretion. Here we review the current understanding of protein components of the system thought to be involved in switching between different stages of secretion.
Collapse
|
48
|
Narayanan N, Khan M, Chou CP. Enhancing functional expression of heterologous lipase B in Escherichia coli by extracellular secretion. J Ind Microbiol Biotechnol 2009; 37:349-61. [DOI: 10.1007/s10295-009-0680-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2009] [Accepted: 12/08/2009] [Indexed: 12/13/2022]
|
49
|
Application of a short, disordered N-terminal flagellin segment, a fully functional flagellar type III export signal, to expression of secreted proteins. Appl Environ Microbiol 2009; 76:891-9. [PMID: 20008166 DOI: 10.1128/aem.00858-09] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Recently, we have demonstrated that the 26-47 segment of Salmonella enterica serovar Typhimurium flagellin is capable of mediating flagellar export. In order to reveal whether other parts of the N-terminal region have any significant influence on secretion, a series of plasmids were constructed containing the lac promoter followed by the 26-47, 2-65, or 2-192 portion of Salmonella flagellin, to which various heterologous proteins of different size were fused (18 constructs overall). Essentially, all three segments could drive protein export; however, the nature of the attached polypeptide also had a significant effect on secretion efficiency. When low export efficiency was observed, it was mainly caused by inclusion body formation. Our data provide strong support for the idea that a short segment within the disordered N-terminal region of axial proteins is recognized by the flagellar type III export machinery. The 26-47 segment of flagellin contains all of the necessary information to direct translocation of attached polypeptide chains. This short (positions 26 to 47) flagellin segment attached to recombinant proteins can be used for secreted protein expression. Certain fusion proteins that are easily degraded within the cells were found to be intact in the medium, implying a potential application of this expression system for proteins with high proteolytic susceptibility.
Collapse
|
50
|
Liang B, Yu TG, Guo B, Yang C, Dai L, Shen DL. Cloning and Characterization of a Novel Avirulence Gene (arp3) fromXanthomonas oryzae pv. oryzae. ACTA ACUST UNITED AC 2009; 15:110-7. [PMID: 15346765 DOI: 10.1080/10425170410001679174] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
A novel avirulence gene was cloned from Xanthomonas oryzae pv. oryzae strain PX0339, which is the standard representative of the Philippines race 9a. The full-length gene spans 2118 bp and encodes a protein of 705 amino acids. BLAST search in NCBI indicated that the gene belongs to avrBs3 gene family, and designated arp3 (AvrBs3-related protein 3, arp3). The central region of the arp3 contains only 5.5 copies of 102bp repeats, the smallest copy number of repeats found in avrBs3 gene family by now. Together with the repeats is heptad repeats, resembling leucine zippers. Three functional nuclear localization signals and an acidic activation domain are also found in the C-terminal region. However, the arp3 lacks of two segments in its N-terminal region, which is unique in avrBs3 gene family. Southern blotting data showed that the arp3 is present as a single-copy in genomic DNA of PX0339 and locus in plasmid clone. The arp3 could be expressed in vitro in Escherichia coli BL21 and a 128kDa fusion protein was detected by Western analysis.
Collapse
Affiliation(s)
- Bin Liang
- Institute of Genetics, State Key Laboratory of Genetic Engineering, School of Life Science, Fudan University, 220 Handan Road, Shanghai 200433, People's Republic of China
| | | | | | | | | | | |
Collapse
|