1
|
Lucca C, Ferrari E, Shubassi G, Ajazi A, Choudhary R, Bruhn C, Matafora V, Bachi A, Foiani M. Sch9 S6K controls DNA repair and DNA damage response efficiency in aging cells. Cell Rep 2024; 43:114281. [PMID: 38805395 DOI: 10.1016/j.celrep.2024.114281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 04/10/2024] [Accepted: 05/10/2024] [Indexed: 05/30/2024] Open
Abstract
Survival from UV-induced DNA lesions relies on nucleotide excision repair (NER) and the Mec1ATR DNA damage response (DDR). We study DDR and NER in aging cells and find that old cells struggle to repair DNA and activate Mec1ATR. We employ pharmacological and genetic approaches to rescue DDR and NER during aging. Conditions activating Snf1AMPK rescue DDR functionality, but not NER, while inhibition of the TORC1-Sch9S6K axis restores NER and enhances DDR by tuning PP2A activity, specifically in aging cells. Age-related repair deficiency depends on Snf1AMPK-mediated phosphorylation of Sch9S6K on Ser160 and Ser163. PP2A activity in old cells is detrimental for DDR and influences NER by modulating Snf1AMPK and Sch9S6K. Hence, the DDR and repair pathways in aging cells are influenced by the metabolic tuning of opposing AMPK and TORC1 networks and by PP2A activity. Specific Sch9S6K phospho-isoforms control DDR and NER efficiency, specifically during aging.
Collapse
Affiliation(s)
- Chiara Lucca
- IFOM ETS - The AIRC Institute of Molecular Oncology, Via Adamello 16, 20139 Milan, Italy
| | - Elisa Ferrari
- IFOM ETS - The AIRC Institute of Molecular Oncology, Via Adamello 16, 20139 Milan, Italy.
| | - Ghadeer Shubassi
- AtomVie Global Radiopharma Inc., 1280 Main Street W NRB-A316, Hamilton, ON L8S-4K1, Canada
| | - Arta Ajazi
- IFOM ETS - The AIRC Institute of Molecular Oncology, Via Adamello 16, 20139 Milan, Italy
| | - Ramveer Choudhary
- IFOM ETS - The AIRC Institute of Molecular Oncology, Via Adamello 16, 20139 Milan, Italy
| | - Christopher Bruhn
- IFOM ETS - The AIRC Institute of Molecular Oncology, Via Adamello 16, 20139 Milan, Italy
| | - Vittoria Matafora
- IFOM ETS - The AIRC Institute of Molecular Oncology, Via Adamello 16, 20139 Milan, Italy
| | - Angela Bachi
- IFOM ETS - The AIRC Institute of Molecular Oncology, Via Adamello 16, 20139 Milan, Italy
| | - Marco Foiani
- IFOM ETS - The AIRC Institute of Molecular Oncology, Via Adamello 16, 20139 Milan, Italy; Istituto di Genetica Molecolare, CNR, Pavia, Italy.
| |
Collapse
|
2
|
Licheva M, Raman B, Kraft C, Reggiori F. Phosphoregulation of the autophagy machinery by kinases and phosphatases. Autophagy 2021; 18:104-123. [PMID: 33970777 PMCID: PMC8865292 DOI: 10.1080/15548627.2021.1909407] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Eukaryotic cells use post-translational modifications to diversify and dynamically coordinate the function and properties of protein networks within various cellular processes. For example, the process of autophagy strongly depends on the balanced action of kinases and phosphatases. Highly conserved from the budding yeast Saccharomyces cerevisiae to humans, autophagy is a tightly regulated self-degradation process that is crucial for survival, stress adaptation, maintenance of cellular and organismal homeostasis, and cell differentiation and development. Many studies have emphasized the importance of kinases and phosphatases in the regulation of autophagy and identified many of the core autophagy proteins as their direct targets. In this review, we summarize the current knowledge on kinases and phosphatases acting on the core autophagy machinery and discuss the relevance of phosphoregulation for the overall process of autophagy.
Collapse
Affiliation(s)
- Mariya Licheva
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Babu Raman
- Department of Cell Biology, University of Groningen, University Medical Center Groningen, AV Groningen, The Netherlands
| | - Claudine Kraft
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,CIBSS-Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| | - Fulvio Reggiori
- Department of Cell Biology, University of Groningen, University Medical Center Groningen, AV Groningen, The Netherlands
| |
Collapse
|
3
|
Qian B, Liu X, Ye Z, Zhou Q, Liu P, Yin Z, Wang W, Zheng X, Zhang H, Zhang Z. Phosphatase-associated protein MoTip41 interacts with the phosphatase MoPpe1 to mediate crosstalk between TOR and cell wall integrity signalling during infection by the rice blast fungus Magnaporthe oryzae. Environ Microbiol 2020; 23:791-809. [PMID: 32564502 DOI: 10.1111/1462-2920.15136] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 06/16/2020] [Accepted: 06/17/2020] [Indexed: 12/26/2022]
Abstract
The type 2A (PP2A) and type 2A-like (PP4 and PP6) serine/threonine phosphatases participate in a variety of cellular processes, such as cell cycle progression, signal transduction and apoptosis. Previously, we reported that the PP6 catalytic subunit MoPpe1, which interacts with and is suppressed by type 2A associated protein of 42 kDa (MoTap42), an essential protein involved in the target of rapamycin (TOR) signalling pathway, has important roles in development, virulence and activation of the cell wall integrity (CWI) pathway in the rice blast fungus Magnaporthe oryzae. Here, we show that Tap42-interacting protein 41 (MoTip41) mediates crosstalk between the TOR and CWI signalling pathways; and participates in the TOR pathway via interaction with MoPpe1, but not MoTap42. The deletion of MoTIP41 resulted in disruption of CWI signalling, autophagy, vegetative growth, appressorium function and plant infection, as well as increased sensitivity to rapamycin. Further investigation revealed that MoTip41 modulates activation of the CWI pathway in response to infection by interfering with the interaction between MoTap42 and MoPpe1. These findings enhance our understanding of how crosstalk between TOR and CWI signalling modulates the development and pathogenicity of M. oryzae.
Collapse
Affiliation(s)
- Bin Qian
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China.,The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, China
| | - Xinyu Liu
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China.,The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, China
| | - Ziyuan Ye
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China.,The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, China
| | - Qikun Zhou
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China.,The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, China
| | - Peng Liu
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China.,The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, China
| | - Ziyi Yin
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China.,The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, China
| | - Wenhao Wang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China.,The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, China
| | - Xiaobo Zheng
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China.,The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, China
| | - Haifeng Zhang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China.,The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, China
| | - Zhengguang Zhang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China.,The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
4
|
Pkh1p-Ypk1p and Pkh1p-Sch9p Pathways Are Activated by Acetic Acid to Induce a Mitochondrial-Dependent Regulated Cell Death. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:7095078. [PMID: 32318242 PMCID: PMC7154982 DOI: 10.1155/2020/7095078] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 02/20/2020] [Accepted: 02/28/2020] [Indexed: 12/14/2022]
Abstract
The yeast Saccharomyces cerevisiae undergoes a mitochondrial-dependent regulated cell death (RCD) exhibiting typical markers of mammalian apoptosis. We have previously shown that ceramide production contributes to RCD induced by acetic acid and is involved in mitochondrial outer membrane permeabilization and cytochrome c release, especially through hydrolysis of complex sphingolipids catalyzed by Isc1p. Recently, we also showed that Sch9p regulates the translocation of Isc1p from the endoplasmic reticulum into mitochondria, perturbing sphingolipid balance and determining cell fate. In this study, we addressed the role of other signaling proteins in acetic acid-induced RCD. We found that single deletion of PKH1 or YPK1, as shown for SCH9 and ISC1, leads to an increase in cell survival in response to acetic acid and that Pkh1/2p-dependent phosphorylation of Ypk1p and Sch9p increases under these conditions. These results indicate that Pkh1p regulates acetic acid-induced RCD through Ypk1p and Sch9p. In addition, our results suggest that Pkh1p-Ypk1p is necessary for isc1Δ resistance to acetic acid-induced RCD. Moreover, double deletion of ISC1 and PKH1 has a drastic effect on cell survival associated with increased ROS accumulation and release of cytochrome c, which is counteracted by overexpression of the PKA pathway negative regulator PDE2. Overall, our results suggest that Pkh1p-Ypk1p and Pkh1p-Sch9p pathways contribute to RCD induced by acetic acid.
Collapse
|
5
|
Tate JJ, Tolley EA, Cooper TG. Sit4 and PP2A Dephosphorylate Nitrogen Catabolite Repression-Sensitive Gln3 When TorC1 Is Up- as Well as Downregulated. Genetics 2019; 212:1205-1225. [PMID: 31213504 PMCID: PMC6707456 DOI: 10.1534/genetics.119.302371] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 06/17/2019] [Indexed: 11/18/2022] Open
Abstract
Saccharomyces cerevisiae lives in boom and bust nutritional environments. Sophisticated regulatory systems have evolved to rapidly cope with these changes while preserving intracellular homeostasis. Target of Rapamycin Complex 1 (TorC1), is a serine/threonine kinase complex and a principle nitrogen-responsive regulator. TorC1 is activated by excess nitrogen and downregulated by limiting nitrogen. Two of TorC1's many downstream targets are Gln3 and Gat1-GATA-family transcription activators-whose localization and function are Nitrogen Catabolite Repression- (NCR-) sensitive. In nitrogen replete environments, TorC1 is activated, thereby inhibiting the PTap42-Sit4 and PTap42-PP2A (Pph21/Pph22-Tpd3, Pph21,22-Rts1/Cdc55) phosphatase complexes. Gln3 is phosphorylated, sequestered in the cytoplasm and NCR-sensitive transcription repressed. In nitrogen-limiting conditions, TorC1 is downregulated and PTap42-Sit4 and PTap42-PP2A are active. They dephosphorylate Gln3, which dissociates from Ure2, relocates to the nucleus, and activates transcription. A paradoxical observation, however, led us to suspect that Gln3 control was more complex than appreciated, i.e., Sit4 dephosphorylates Gln3 more in excess than in limiting nitrogen conditions. This paradox motivated us to reinvestigate the roles of these phosphatases in Gln3 regulation. We discovered that: (i) Sit4 and PP2A actively function both in conditions where TorC1 is activated as well as down-regulated; (ii) nuclear Gln3 is more highly phosphorylated than when it is sequestered in the cytoplasm; (iii) in nitrogen-replete conditions, Gln3 relocates from the nucleus to the cytoplasm, where it is dephosphorylated by Sit4 and PP2A; and (iv) in nitrogen excess and limiting conditions, Sit4, PP2A, and Ure2 are all required to maintain cytoplasmic Gln3 in its dephosphorylated form.
Collapse
Affiliation(s)
- Jennifer J Tate
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, 38163 Tennessee
| | - Elizabeth A Tolley
- Department of Preventive Medicine, University of Tennessee Health Science Center, Memphis, 38163 Tennessee
| | - Terrance G Cooper
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, 38163 Tennessee
| |
Collapse
|
6
|
Rodriguez-Iglesias A, Schmoll M. Protein phosphatases regulate growth, development, cellulases and secondary metabolism in Trichoderma reesei. Sci Rep 2019; 9:10995. [PMID: 31358805 PMCID: PMC6662751 DOI: 10.1038/s41598-019-47421-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 07/03/2019] [Indexed: 12/15/2022] Open
Abstract
Trichoderma reesei represents one of the most prolific producers of plant cell wall degrading enzymes. Recent research showed broad regulation by phosphorylation in T. reesei, including important transcription factors involved in cellulase regulation. To evaluate factors crucial for changes in these phosphorylation events, we studied non-essential protein phosphatases (PPs) of T. reesei. Viable deletion strains were tested for growth on different carbon sources, osmotic and oxidative stress response, asexual and sexual development, cellulase and protease production as well as secondary metabolism. Six PPs were found to be positive or negative regulators for cellulase production. A correlation of the effects of PPs on protease activities and cellulase activities was not detected. Hierarchical clustering of regulation patterns and phenotypes of deletion indicated functional specialization within PP classes and common as well as variable effects. Our results confirmed the central role of catalytic and regulatory subunits of PP2A which regulates several aspects of cell growth and metabolism. Moreover we show that the additional homologue of PPH5 in Trichoderma spp., PPH5-2 assumes distinct functions in metabolism, development and stress response, different from PPH5. The influence of PPs on both cellulase gene expression and secondary metabolite production support an interrelationship in the underlying regulation mechanisms.
Collapse
Affiliation(s)
- Aroa Rodriguez-Iglesias
- Austrian Institute of Technology GmbH, Health & Environment, Bioresources, Konrad-Lorenz-Straße 24, 3430, Tulln, Austria
| | - Monika Schmoll
- Austrian Institute of Technology GmbH, Health & Environment, Bioresources, Konrad-Lorenz-Straße 24, 3430, Tulln, Austria.
| |
Collapse
|
7
|
Lv X, Liu J, Qin Y, Liu Y, Jin M, Dai J, Chua BT, Yang H, Li P. Identification of gene products that control lipid droplet size in yeast using a high-throughput quantitative image analysis. Biochim Biophys Acta Mol Cell Biol Lipids 2018; 1864:113-127. [PMID: 30414449 DOI: 10.1016/j.bbalip.2018.11.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 10/14/2018] [Accepted: 11/06/2018] [Indexed: 02/07/2023]
Abstract
Lipid droplets (LDs) are important organelles involved in energy storage and expenditure. LD dynamics has been investigated using genome-wide image screening methods in yeast and other model organisms. For most studies, genes were identified using two-dimensional images with LD enlargement as readout. Due to imaging limitation, reduction of LD size is seldom explored. Here, we aim to set up a screen that specifically utilizes reduced LD size as the readout. To achieve this, a novel yeast screen is set up to quantitatively and systematically identify genes that regulate LD size through a three-dimensional imaging-based approach. Cidea which promotes LD fusion and growth in mammalian cells was overexpressed in a yeast knockout library to induce large LD formation. Next, an automated, high-throughput image analysis method that monitors LD size was utilized. With this screen, we identified twelve genes that reduced LD size when deleted. The effects of eight of these genes on LD size were further validated in fld1 null strain background. In addition, six genes were previously identified as LD-regulating genes. To conclude, this methodology represents a promising strategy to screen for players in LD size control in both yeast and mammalian cells to aid in the investigation of LD-associated metabolic diseases.
Collapse
Affiliation(s)
- Xuchao Lv
- State Key Laboratory of Membrane Biology and Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Jiaming Liu
- State Key Laboratory of Membrane Biology and Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yiran Qin
- MOE Key Laboratory of Bioinformatics and Centre for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yizhang Liu
- State Key Laboratory of Membrane Biology and Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Meijun Jin
- State Key Laboratory of Membrane Biology and Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Junbiao Dai
- MOE Key Laboratory of Bioinformatics and Centre for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Boon Tin Chua
- Institute of Metabolism and Integrative Biology, Fudan University, Shanghai 200438, China
| | - Hongyuan Yang
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Peng Li
- State Key Laboratory of Membrane Biology and Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
8
|
Tang S, Qin F, Wang X, Liang Z, Cai H, Mo L, Huang Y, Liang B, Wei X, Ao Q, Xu Y, Liu Y, Xiao D, Guo S, Lu C, Li X. H 2 O 2 induces PP2A demethylation to downregulate mTORC1 signaling in HEK293 cells. Cell Biol Int 2018; 42:1182-1191. [PMID: 29752834 DOI: 10.1002/cbin.10987] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 05/05/2018] [Indexed: 12/14/2022]
Abstract
Mammalian target of rapamycin (mTOR) is a Ser/Thr protein kinase that functions as an ATP and amino acid sensor to govern cell growth and proliferation by mediating mitogen- and nutrient-dependent signal transduction. Protein phosphatase 2A (PP2A), a ubiquitously expressed serine/threonine phosphatase, negatively regulates mTOR signaling. Methylation of PP2A is catalyzed by leucine carboxyl methyltransferase-1 (LCMT1) and reversed by protein phosphatase methylesterase 1 (PME-1), which regulates PP2A activity and substrate specificity. However, whether PP2A methylation is related to mTOR signaling is still unknown. In this study, we examined the effect of PP2A methylation on mTOR signaling in HEK293 cells under oxidative stress. Our results show that oxidative stress induces PP2A demethylation and inhibits the mTORC1 signaling pathway. Next, we examined two strategies to block PP2A demethylation under oxidative stress. One strategy was to prevent PP2A demethylation using a PME-1 inhibitor; the other strategy was to activate PP2A methylation via overexpression of LCMT1. The results show that both the PME-1 inhibitor and LCMT1 overexpression prevent the mTORC1 signaling suppression induced by oxidative stress. Additionally, LCMT1 overexpression rescued cell viability and the mitochondrial membrane potential decrease in response to oxidative stress. These results demonstrate that H2 O2 induces PP2A demethylation to downregulate mTORC1 signaling. These findings provide a novel mechanism for the regulation of PP2A demethylation and mTORC1 signaling under oxidative stress.
Collapse
Affiliation(s)
- Shen Tang
- School of Preclinical Medicine, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Fu Qin
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Nanning, Guangxi, 530021, China.,School of Public Health, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Xinhang Wang
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Nanning, Guangxi, 530021, China.,School of Public Health, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Ziwei Liang
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Nanning, Guangxi, 530021, China.,School of Public Health, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Haiqing Cai
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Nanning, Guangxi, 530021, China.,School of Public Health, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Laiming Mo
- School of Preclinical Medicine, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Yue Huang
- School of Medicine, University of Queensland, Herston, Brisbane, QLD, 4006, Australia
| | - Boyin Liang
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Nanning, Guangxi, 530021, China.,School of Public Health, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Xuejing Wei
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Nanning, Guangxi, 530021, China.,School of Public Health, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Qingqing Ao
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Nanning, Guangxi, 530021, China.,School of Public Health, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Yilu Xu
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Nanning, Guangxi, 530021, China.,School of Public Health, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Yuyang Liu
- Hunan Provincial Center for Disease Control and Prevention, Changsha, Hunan, 410005, China
| | - Deqiang Xiao
- School of Public Health, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Songchao Guo
- School of Public Health, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Cailing Lu
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Nanning, Guangxi, 530021, China.,School of Public Health, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Xiyi Li
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Nanning, Guangxi, 530021, China.,School of Public Health, Guangxi Medical University, Nanning, Guangxi, 530021, China
| |
Collapse
|
9
|
Cdc14 Phosphatase Promotes TORC1-Regulated Autophagy in Yeast. J Mol Biol 2018; 430:1671-1684. [DOI: 10.1016/j.jmb.2018.04.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 04/06/2018] [Accepted: 04/06/2018] [Indexed: 12/20/2022]
|
10
|
Abstract
Adaptation to alternating CO2 concentrations is crucial for all organisms. Carbonic anhydrases—metalloenzymes that have been found in all domains of life—enable fixation of scarce CO2 by accelerating its conversion to bicarbonate and ensure maintenance of cellular metabolism. In fungi and other eukaryotes, the carbonic anhydrase Nce103 has been shown to be essential for growth in air (~0.04% CO2). Expression of NCE103 is regulated in response to CO2 availability. In Saccharomyces cerevisiae, NCE103 is activated by the transcription factor ScCst6, and in Candida albicans and Candida glabrata, it is activated by its homologues CaRca1 and CgRca1, respectively. To identify the kinase controlling Cst6/Rca1, we screened an S. cerevisiae kinase/phosphatase mutant library for the ability to regulate NCE103 in a CO2-dependent manner. We identified ScSch9 as a potential ScCst6-specific kinase, as the sch9Δ mutant strain showed deregulated NCE103 expression on the RNA and protein levels. Immunoprecipitation revealed the binding capabilities of both proteins, and detection of ScCst6 phosphorylation by ScSch9 in vitro confirmed Sch9 as the Cst6 kinase. We could show that CO2-dependent activation of Sch9, which is part of a kinase cascade, is mediated by lipid/Pkh1/2 signaling but not TORC1. Finally, we tested conservation of the identified regulatory cascade in the pathogenic yeast species C. albicans and C. glabrata. Deletion of SCH9 homologues of both species impaired CO2-dependent regulation of NCE103 expression, which indicates a conservation of the CO2 adaptation mechanism among yeasts. Thus, Sch9 is a Cst6/Rca1 kinase that links CO2 adaptation to lipid signaling via Pkh1/2 in fungi. All living organisms have to cope with alternating CO2 concentrations as CO2 levels range from very low in the atmosphere (0.04%) to high (5% and more) in other niches, including the human body. In fungi, CO2 is sensed via two pathways. The first regulates virulence in pathogenic yeast by direct activation of adenylyl cyclase. The second pathway, although playing a fundamental role in fungal metabolism, is much less understood. Here the transcription factor Cst6/Rca1 controls carbon homeostasis by regulating carbonic anhydrase expression. Upstream signaling in this pathway remains elusive. We identify Sch9 as the kinase controlling Cst6/Rca1 activity in yeast and demonstrate that this pathway is conserved in pathogenic yeast species, which highlights identified key players as potential pharmacological targets. Furthermore, we provide a direct link between adaptation to changing CO2 conditions and lipid/Pkh1/2 signaling in yeast, thus establishing a new signaling cascade central to metabolic adaptation.
Collapse
|
11
|
Orchestrated Action of PP2A Antagonizes Atg13 Phosphorylation and Promotes Autophagy after the Inactivation of TORC1. PLoS One 2016; 11:e0166636. [PMID: 27973551 PMCID: PMC5156417 DOI: 10.1371/journal.pone.0166636] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Accepted: 11/01/2016] [Indexed: 12/30/2022] Open
Abstract
Target of rapamycin complex 1 (TORC1) phosphorylates autophagy-related Atg13 and represses autophagy under nutrient-rich conditions. However, when TORC1 becomes inactive upon nutrient depletion or treatment with the TORC1 inhibitor rapamycin, Atg13 dephosphorylation occurs rapidly, and autophagy is induced. At present, the phosphatases involved in Atg13 dephosphorylation remain unknown. Here, we show that two protein phosphatase 2A (PP2A) phosphatases, PP2A-Cdc55 and PP2A-Rts1, which are activated by inactivation of TORC1, are required for sufficient Atg13 dephosphorylation and autophagy induction after TORC1 inactivation in budding yeast. After rapamycin treatment, dephosphorylation of Atg13, activation of Atg1 kinase, pre-autophagosomal structure (PAS) formation and autophagy induction are all impaired in PP2A-deleted cells. Conversely, overexpression of non-phosphorylatable Atg13 suppressed defects in autophagy in PP2A mutant. This study revealed that the orchestrated action of PP2A antagonizes Atg13 phosphorylation and promotes autophagy after the inactivation of TORC1.
Collapse
|
12
|
Sato TK, Tremaine M, Parreiras LS, Hebert AS, Myers KS, Higbee AJ, Sardi M, McIlwain SJ, Ong IM, Breuer RJ, Avanasi Narasimhan R, McGee MA, Dickinson Q, La Reau A, Xie D, Tian M, Reed JL, Zhang Y, Coon JJ, Hittinger CT, Gasch AP, Landick R. Directed Evolution Reveals Unexpected Epistatic Interactions That Alter Metabolic Regulation and Enable Anaerobic Xylose Use by Saccharomyces cerevisiae. PLoS Genet 2016; 12:e1006372. [PMID: 27741250 PMCID: PMC5065143 DOI: 10.1371/journal.pgen.1006372] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 09/19/2016] [Indexed: 11/25/2022] Open
Abstract
The inability of native Saccharomyces cerevisiae to convert xylose from plant biomass into biofuels remains a major challenge for the production of renewable bioenergy. Despite extensive knowledge of the regulatory networks controlling carbon metabolism in yeast, little is known about how to reprogram S. cerevisiae to ferment xylose at rates comparable to glucose. Here we combined genome sequencing, proteomic profiling, and metabolomic analyses to identify and characterize the responsible mutations in a series of evolved strains capable of metabolizing xylose aerobically or anaerobically. We report that rapid xylose conversion by engineered and evolved S. cerevisiae strains depends upon epistatic interactions among genes encoding a xylose reductase (GRE3), a component of MAP Kinase (MAPK) signaling (HOG1), a regulator of Protein Kinase A (PKA) signaling (IRA2), and a scaffolding protein for mitochondrial iron-sulfur (Fe-S) cluster biogenesis (ISU1). Interestingly, the mutation in IRA2 only impacted anaerobic xylose consumption and required the loss of ISU1 function, indicating a previously unknown connection between PKA signaling, Fe-S cluster biogenesis, and anaerobiosis. Proteomic and metabolomic comparisons revealed that the xylose-metabolizing mutant strains exhibit altered metabolic pathways relative to the parental strain when grown in xylose. Further analyses revealed that interacting mutations in HOG1 and ISU1 unexpectedly elevated mitochondrial respiratory proteins and enabled rapid aerobic respiration of xylose and other non-fermentable carbon substrates. Our findings suggest a surprising connection between Fe-S cluster biogenesis and signaling that facilitates aerobic respiration and anaerobic fermentation of xylose, underscoring how much remains unknown about the eukaryotic signaling systems that regulate carbon metabolism. The yeast Saccharomyces cerevisiae is being genetically engineered to produce renewable biofuels from sustainable plant material. Efficient biofuel production from plant material requires conversion of the complex suite of sugars found in plant material, including the five-carbon sugar xylose. Because it does not efficiently metabolize xylose, S. cerevisiae has been engineered with a minimal set of genes that should overcome this problem; however, additional genetic changes are required for optimal fermentative conversion of xylose into biofuel. Despite extensive knowledge of the regulatory networks controlling glucose metabolism, less is known about the regulation of xylose metabolism and how to rewire these networks for effective biofuel production. Here we report genetic mutations that enabled the conversion of xylose into bioethanol by a previously ineffective yeast strain. By comparing altered protein and metabolite abundance within yeast cells containing these mutations, we determined that the mutations synergistically alter metabolic pathways to improve the rate of xylose conversion. One change in a gene with well-characterized aerobic mitochondrial functions was found to play an unexpected role in anaerobic conversion of xylose into ethanol. The results of this work will allow others to rapidly generate yeast strains for the conversion of xylose into biofuels and other products.
Collapse
Affiliation(s)
- Trey K. Sato
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- * E-mail: (TKS); (APG); (RL)
| | - Mary Tremaine
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Lucas S. Parreiras
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Alexander S. Hebert
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Genome Center of Wisconsin, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Kevin S. Myers
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Genome Center of Wisconsin, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Alan J. Higbee
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Genome Center of Wisconsin, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Maria Sardi
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Genome Center of Wisconsin, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Sean J. McIlwain
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Irene M. Ong
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Rebecca J. Breuer
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Ragothaman Avanasi Narasimhan
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Mick A. McGee
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Quinn Dickinson
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Alex La Reau
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Dan Xie
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Mingyuan Tian
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Jennifer L. Reed
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Yaoping Zhang
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Joshua J. Coon
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Genome Center of Wisconsin, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Chris Todd Hittinger
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Genome Center of Wisconsin, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Wisconsin Energy Institute, J.F. Crow Institute for the Study of Evolution, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Audrey P. Gasch
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Genome Center of Wisconsin, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- * E-mail: (TKS); (APG); (RL)
| | - Robert Landick
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- * E-mail: (TKS); (APG); (RL)
| |
Collapse
|
13
|
Tatjer L, González A, Serra-Cardona A, Barceló A, Casamayor A, Ariño J. The Saccharomyces cerevisiae Ptc1 protein phosphatase attenuates G2-M cell cycle blockage caused by activation of the cell wall integrity pathway. Mol Microbiol 2016; 101:671-87. [PMID: 27169355 DOI: 10.1111/mmi.13416] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/05/2016] [Indexed: 01/24/2023]
Abstract
Lack of the yeast Ptc1 Ser/Thr protein phosphatase results in numerous phenotypic defects. A parallel search for high-copy number suppressors of three of these phenotypes (sensitivity to Calcofluor White, rapamycin and alkaline pH), allowed the isolation of 25 suppressor genes, which could be assigned to three main functional categories: maintenance of cell wall integrity (CWI), vacuolar function and protein sorting, and cell cycle regulation. The characterization of these genetic interactions strengthens the relevant role of Ptc1 in downregulating the Slt2-mediated CWI pathway. We show that under stress conditions activating the CWI pathway the ptc1 mutant displays hyperphosphorylated Cdc28 kinase and that these cells accumulate with duplicated DNA content, indicative of a G2-M arrest. Clb2-associated Cdc28 activity was also reduced in ptc1 cells. These alterations are attenuated by mutation of the MKK1 gene, encoding a MAP kinase kinase upstream Slt2. Therefore, our data show that Ptc1 is required for proper G2-M cell cycle transition after activation of the CWI pathway.
Collapse
Affiliation(s)
- Laura Tatjer
- Institut de Biotecnologia i Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Cerdanyola del Vallès 08193, Barcelona, Spain
| | - Asier González
- Institut de Biotecnologia i Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Cerdanyola del Vallès 08193, Barcelona, Spain
| | - Albert Serra-Cardona
- Institut de Biotecnologia i Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Cerdanyola del Vallès 08193, Barcelona, Spain
| | - Anna Barceló
- Institut de Biotecnologia i Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Cerdanyola del Vallès 08193, Barcelona, Spain
| | - Antonio Casamayor
- Institut de Biotecnologia i Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Cerdanyola del Vallès 08193, Barcelona, Spain
| | - Joaquín Ariño
- Institut de Biotecnologia i Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Cerdanyola del Vallès 08193, Barcelona, Spain
| |
Collapse
|
14
|
Assessing the relevance of light for fungi: Implications and insights into the network of signal transmission. ADVANCES IN APPLIED MICROBIOLOGY 2016; 76:27-78. [PMID: 21924971 DOI: 10.1016/b978-0-12-387048-3.00002-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Light represents an important environmental cue, which provides information enabling fungi to prepare and react to the different ambient conditions between day and night. This adaptation requires both anticipation of the changing conditions, which is accomplished by daily rhythmicity of gene expression brought about by the circadian clock, and reaction to sudden illumination. Besides perception of the light signal, also integration of this signal with other environmental cues, most importantly nutrient availability, necessitates light-dependent regulation of signal transduction pathways and metabolic pathways. An influence of light and/or the circadian clock is known for the cAMP pathway, heterotrimeric G-protein signaling, mitogen-activated protein kinases, two-component phosphorelays, and Ca(2+) signaling. Moreover, also the target of rapamycin signaling pathway and reactive oxygen species as signal transducing elements are assumed to be connected to the light-response pathway. The interplay of the light-response pathway with signaling cascades results in light-dependent regulation of primary and secondary metabolism, morphology, development, biocontrol activity, and virulence. The frequent use of fungi in biotechnology as well as analysis of fungi in the artificial environment of a laboratory therefore requires careful consideration of still operative evolutionary heritage of these organisms. This review summarizes the diverse effects of light on fungi and the mechanisms they apply to deal both with the information content and with the harmful properties of light. Additionally, the implications of the reaction of fungi to light in a laboratory environment for experimental work and industrial applications are discussed.
Collapse
|
15
|
|
16
|
The Aspergillus fumigatus sitA Phosphatase Homologue Is Important for Adhesion, Cell Wall Integrity, Biofilm Formation, and Virulence. EUKARYOTIC CELL 2015; 14:728-44. [PMID: 25911225 DOI: 10.1128/ec.00008-15] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Accepted: 04/09/2015] [Indexed: 11/20/2022]
Abstract
Aspergillus fumigatus is an opportunistic pathogenic fungus able to infect immunocompromised patients, eventually causing disseminated infections that are difficult to control and lead to high mortality rates. It is important to understand how the signaling pathways that regulate these factors involved in virulence are orchestrated. Protein phosphatases are central to numerous signal transduction pathways. Here, we characterize the A. fumigatus protein phosphatase 2A SitA, the Saccharomyces cerevisiae Sit4p homologue. The sitA gene is not an essential gene, and we were able to construct an A. fumigatus null mutant. The ΔsitA strain had decreased MpkA phosphorylation levels, was more sensitive to cell wall-damaging agents, had increased β-(1,3)-glucan and chitin, was impaired in biofilm formation, and had decreased protein kinase C activity. The ΔsitA strain is more sensitive to several metals and ions, such as MnCl2, CaCl2, and LiCl, but it is more resistant to ZnSO4. The ΔsitA strain was avirulent in a murine model of invasive pulmonary aspergillosis and induces an augmented tumor necrosis factor alpha (TNF-α) response in mouse macrophages. These results stress the importance of A. fumigatus SitA as a possible modulator of PkcA/MpkA activity and its involvement in the cell wall integrity pathway.
Collapse
|
17
|
Lillo C, Kataya ARA, Heidari B, Creighton MT, Nemie-Feyissa D, Ginbot Z, Jonassen EM. Protein phosphatases PP2A, PP4 and PP6: mediators and regulators in development and responses to environmental cues. PLANT, CELL & ENVIRONMENT 2014; 37:2631-48. [PMID: 24810976 DOI: 10.1111/pce.12364] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Revised: 04/25/2014] [Accepted: 04/28/2014] [Indexed: 05/23/2023]
Abstract
The three closely related groups of serine/threonine protein phosphatases PP2A, PP4 and PP6 are conserved throughout eukaryotes. The catalytic subunits are present in trimeric and dimeric complexes with scaffolding and regulatory subunits that control activity and confer substrate specificity to the protein phosphatases. In Arabidopsis, three scaffolding (A subunits) and 17 regulatory (B subunits) proteins form complexes with five PP2A catalytic subunits giving up to 255 possible combinations. Three SAP-domain proteins act as regulatory subunits of PP6. Based on sequence similarities with proteins in yeast and mammals, two putative PP4 regulatory subunits are recognized in Arabidopsis. Recent breakthroughs have been made concerning the functions of some of the PP2A and PP6 regulatory subunits, for example the FASS/TON2 in regulation of the cellular skeleton, B' subunits in brassinosteroid signalling and SAL proteins in regulation of auxin transport. Reverse genetics is starting to reveal also many more physiological functions of other subunits. A system with key regulatory proteins (TAP46, TIP41, PTPA, LCMT1, PME-1) is present in all eukaryotes to stabilize, activate and inactivate the catalytic subunits. In this review, we present the status of knowledge concerning physiological functions of PP2A, PP4 and PP6 in Arabidopsis, and relate these to yeast and mammals.
Collapse
Affiliation(s)
- Cathrine Lillo
- Centre for Organelle Research, Faculty of Science and Technology, University of Stavanger, Stavanger, N-4036, Norway
| | | | | | | | | | | | | |
Collapse
|
18
|
Insight into Tor2, a budding yeast microdomain protein. Eur J Cell Biol 2014; 93:87-97. [DOI: 10.1016/j.ejcb.2014.01.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Revised: 01/03/2014] [Accepted: 01/06/2014] [Indexed: 11/20/2022] Open
|
19
|
Koh PO. Identification of Proteins Differentially Expressed in Cerebral Cortexes of Ginkgo biloba Extract (EGb761)-Treated Rats in a Middle Cerebral Artery Occlusion Model — A Proteomics Approach. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2012; 39:315-24. [DOI: 10.1142/s0192415x11008841] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
EGb 761 is a standardized extract of Ginkgo biloba that appears to have a neuroprotective effect against neurodegenerative diseases. Adult male rats were treated with EGb 761 (100 mg/kg) or vehicle prior to middle cerebral artery occlusion (MCAO), and brains were collected 24 h after MCAO. Proteins that were differentially expressed after EGb 761 treatment during cerebral ischemia were detected using two-dimensional gel electrophoresis. Protein spots with more than a 2.5-fold change in intensity between vehicle- and EGb 761-treated groups were identified by mass spectrometry. The levels of peroxiredoxin-2 and protein phosphatase 2A subunit B were significantly decreased in the vehicle-treated group in comparison to the EGb 761-treated group. In contrast, levels of the collapsing response mediator protein 2 (CRMP2) were significantly increased in vehicle-treated animals, while EGb 761 prevented the injury-induced increase of CRMP2. These results suggest that EGb 761 protects neuronal cells against ischemic brain injury through the specific up- and down-modulation of various proteins.
Collapse
Affiliation(s)
- Phil-Ok Koh
- Department of Anatomy, College of Veterinary Medicine, Research Institute of Life Science, Gyeongsang National University, Jinju 660-701, South Korea
| |
Collapse
|
20
|
Bánréti Á, Lukácsovich T, Csikós G, Erdélyi M, Sass M. PP2A regulates autophagy in two alternative ways in Drosophila. Autophagy 2012; 8:623-36. [PMID: 22330894 DOI: 10.4161/auto.19081] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Protein phosphatase 2A (PP2A) holoenzyme is a heterotrimeric complex, consisting of A, B and C subunits. The catalytic subunit PP2A-C (microtubule star/mts) binds to the C-terminal part of the scaffold protein PP2A-A (PP2A-29B). In Drosophila, there are three different forms of B subunits (widerborst/wdb, twins/tws and PP2A-B'), which determine the subcellular localization and substrate specificity of the holoenzyme. Previous studies demonstrated that PP2A is involved in the control of TOR-dependent autophagy both in yeast and mammals. Furthermore, in Drosophila, wdb genetically interacts with the PtdIns3K/PTEN/Akt signaling cascade, which is a main upstream regulatory system of dTOR. Here we demonstrate that in Drosophila, two different PP2A complexes (containing B' or wdb subunit) play essential roles in the regulation of starvation-induced autophagy. The PP2A-A/wdb/C complex acts upstream of dTOR, whereas the PP2A-A/B'/C complex functions as a target of dTOR and may regulate the elongation of autophagosomes and their subsequent fusion with lysosomes. We also identified three Drosophila Atg orthologs (Atg14, Atg17 and Atg101), which represent potential targets of the PP2A-A/B'/C complex during autophagy.
Collapse
Affiliation(s)
- Ágnes Bánréti
- Department of Anatomy, Cell and Developmental Biology, Eötvös Loránd University, Budapest, Hungary
| | | | | | | | | |
Collapse
|
21
|
Castermans D, Somers I, Kriel J, Louwet W, Wera S, Versele M, Janssens V, Thevelein JM. Glucose-induced posttranslational activation of protein phosphatases PP2A and PP1 in yeast. Cell Res 2012; 22:1058-77. [PMID: 22290422 PMCID: PMC3367521 DOI: 10.1038/cr.2012.20] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The protein phosphatases PP2A and PP1 are major regulators of a variety of cellular processes in yeast and other eukaryotes. Here, we reveal that both enzymes are direct targets of glucose sensing. Addition of glucose to glucose-deprived yeast cells triggered rapid posttranslational activation of both PP2A and PP1. Glucose activation of PP2A is controlled by regulatory subunits Rts1, Cdc55, Rrd1 and Rrd2. It is associated with rapid carboxymethylation of the catalytic subunits, which is necessary but not sufficient for activation. Glucose activation of PP1 was fully dependent on regulatory subunits Reg1 and Shp1. Absence of Gac1, Glc8, Reg2 or Red1 partially reduced activation while Pig1 and Pig2 inhibited activation. Full activation of PP2A and PP1 was also dependent on subunits classically considered to belong to the other phosphatase. PP2A activation was dependent on PP1 subunits Reg1 and Shp1 while PP1 activation was dependent on PP2A subunit Rts1. Rts1 interacted with both Pph21 and Glc7 under different conditions and these interactions were Reg1 dependent. Reg1-Glc7 interaction is responsible for PP1 involvement in the main glucose repression pathway and we show that deletion of Shp1 also causes strong derepression of the invertase gene SUC2. Deletion of the PP2A subunits Pph21 and Pph22, Rrd1 and Rrd2, specifically enhanced the derepression level of SUC2, indicating that PP2A counteracts SUC2 derepression. Interestingly, the effect of the regulatory subunit Rts1 was consistent with its role as a subunit of both PP2A and PP1, affecting derepression and repression of SUC2, respectively. We also show that abolished phosphatase activation, except by reg1Δ, does not completely block Snf1 dephosphorylation after addition of glucose. Finally, we show that glucose activation of the cAMP-PKA (protein kinase A) pathway is required for glucose activation of both PP2A and PP1. Our results provide novel insight into the complex regulatory role of these two major protein phosphatases in glucose regulation.
Collapse
Affiliation(s)
- Dries Castermans
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KULeuven, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Proteomic identification of proteins differentially expressed by nicotinamide in focal cerebral ischemic injury. Neuroscience 2011; 174:171-7. [DOI: 10.1016/j.neuroscience.2010.11.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2010] [Revised: 11/06/2010] [Accepted: 11/11/2010] [Indexed: 11/18/2022]
|
23
|
Ahn CS, Han JA, Lee HS, Lee S, Pai HS. The PP2A regulatory subunit Tap46, a component of the TOR signaling pathway, modulates growth and metabolism in plants. THE PLANT CELL 2011; 23:185-209. [PMID: 21216945 PMCID: PMC3051261 DOI: 10.1105/tpc.110.074005] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2010] [Revised: 11/29/2010] [Accepted: 12/17/2010] [Indexed: 05/18/2023]
Abstract
Tap42/α4, a regulatory subunit of protein phosphatase 2A, is a downstream effector of the target of rapamycin (TOR) protein kinase, which regulates cell growth in coordination with nutrient and environmental conditions in yeast and mammals. In this study, we characterized the functions and phosphatase regulation of plant Tap46. Depletion of Tap46 resulted in growth arrest and acute plant death with morphological markers of programmed cell death. Tap46 interacted with PP2A and PP2A-like phosphatases PP4 and PP6. Tap46 silencing modulated cellular PP2A activities in a time-dependent fashion similar to TOR silencing. Immunoprecipitated full-length and deletion forms of Arabidopsis thaliana TOR phosphorylated recombinant Tap46 protein in vitro, supporting a functional link between Tap46 and TOR. Tap46 depletion reproduced the signature phenotypes of TOR inactivation, such as dramatic repression of global translation and activation of autophagy and nitrogen mobilization, indicating that Tap46 may act as a positive effector of TOR signaling in controlling those processes. Additionally, Tap46 silencing in tobacco (Nicotiana tabacum) BY-2 cells caused chromatin bridge formation at anaphase, indicating its role in sister chromatid segregation. These findings suggest that Tap46, in conjunction with associated phosphatases, plays an essential role in plant growth and development as a component of the TOR signaling pathway.
Collapse
Affiliation(s)
| | | | | | | | - Hyun-Sook Pai
- Department of Biology, Yonsei University, Seoul 120-749, Korea
| |
Collapse
|
24
|
Life in the midst of scarcity: adaptations to nutrient availability in Saccharomyces cerevisiae. Curr Genet 2010; 56:1-32. [PMID: 20054690 DOI: 10.1007/s00294-009-0287-1] [Citation(s) in RCA: 168] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2009] [Revised: 12/18/2009] [Accepted: 12/19/2009] [Indexed: 12/27/2022]
Abstract
Cells of all living organisms contain complex signal transduction networks to ensure that a wide range of physiological properties are properly adapted to the environmental conditions. The fundamental concepts and individual building blocks of these signalling networks are generally well-conserved from yeast to man; yet, the central role that growth factors and hormones play in the regulation of signalling cascades in higher eukaryotes is executed by nutrients in yeast. Several nutrient-controlled pathways, which regulate cell growth and proliferation, metabolism and stress resistance, have been defined in yeast. These pathways are integrated into a signalling network, which ensures that yeast cells enter a quiescent, resting phase (G0) to survive periods of nutrient scarceness and that they rapidly resume growth and cell proliferation when nutrient conditions become favourable again. A series of well-conserved nutrient-sensory protein kinases perform key roles in this signalling network: i.e. Snf1, PKA, Tor1 and Tor2, Sch9 and Pho85-Pho80. In this review, we provide a comprehensive overview on the current understanding of the signalling processes mediated via these kinases with a particular focus on how these individual pathways converge to signalling networks that ultimately ensure the dynamic translation of extracellular nutrient signals into appropriate physiological responses.
Collapse
|
25
|
Palmer LK, Baptiste BA, Fester JC, Perkins JC, Keil RL. RRD1, a component of the TORC1 signalling pathway, affects anaesthetic response in Saccharomyces cerevisiae. Yeast 2010; 26:655-61. [PMID: 19774547 DOI: 10.1002/yea.1712] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The molecular mechanisms of action of volatile anaesthetics remain unknown despite clinical use for over 150 years. While many effects of these agents have been characterized, clear insight into how these effects relate to the physiological state of anaesthesia has not been established. Volatile anaesthetics arrest cell division in Saccharomyces cerevisiae in a manner that parallels the anaesthetic actions of these drugs in mammals. To gain additional insight into the cellular activities of these drugs, we isolated genes that, when present on multi-copy plasmids, render S. cerevisiae resistant to the volatile anaesthetic isoflurane. One of these genes, RRD1, encodes a subunit of the Tap42p-Sit4p-Rrd1p phosphatase complex that functions in the target of rapamycin complex 1 (TORC1) signalling pathway. In addition, we show that mutations in two other genes encoding components of the TORC1 pathway, GLN3 and URE2, also affect yeast anaesthetic response. These findings suggest that TORC1-mediated signalling is involved in cellular response to volatile anaesthetics in S. cerevisiae.
Collapse
Affiliation(s)
- Laura K Palmer
- Division of Mathematics and Natural Sciences, Pennsylvania State University Altoona, College, PA 16601, USA.
| | | | | | | | | |
Collapse
|
26
|
Broglie P, Matsumoto K, Akira S, Brautigan DL, Ninomiya-Tsuji J. Transforming growth factor beta-activated kinase 1 (TAK1) kinase adaptor, TAK1-binding protein 2, plays dual roles in TAK1 signaling by recruiting both an activator and an inhibitor of TAK1 kinase in tumor necrosis factor signaling pathway. J Biol Chem 2009; 285:2333-9. [PMID: 19955178 DOI: 10.1074/jbc.m109.090522] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Transforming growth factor beta-activated kinase 1 (TAK1) kinase is an indispensable signaling intermediate in tumor necrosis factor (TNF), interleukin 1, and Toll-like receptor signaling pathways. TAK1-binding protein 2 (TAB2) and its closely related protein, TAB3, are binding partners of TAK1 and have previously been identified as adaptors of TAK1 that recruit TAK1 to a TNF receptor signaling complex. TAB2 and TAB3 redundantly mediate activation of TAK1. In this study, we investigated the role of TAB2 by analyzing fibroblasts having targeted deletion of the tab2 gene. In TAB2-deficient fibroblasts, TAK1 was associated with TAB3 and was activated following TNF stimulation. However, TAB2-deficient fibroblasts displayed a significantly prolonged activation of TAK1 compared with wild type control cells. This suggests that TAB2 mediates deactivation of TAK1. We found that a TAK1-negative regulator, protein phosphatase 6 (PP6), was recruited to the TAK1 complex in wild type but not in TAB2-deficient fibroblasts. Furthermore, we demonstrated that both PP6 and TAB2 interacted with the polyubiquitin chains and this interaction mediated the assembly with TAK1. Our results indicate that TAB2 not only activates TAK1 but also plays an essential role in the deactivation of TAK1 by recruiting PP6 through a polyubiquitin chain-dependent mechanism.
Collapse
Affiliation(s)
- Peter Broglie
- Department of Environmental and Molecular Toxicology, North Carolina State University, Raleigh, North Carolina 27695, USA
| | | | | | | | | |
Collapse
|
27
|
Maalouf M, Rho JM, Mattson MP. The neuroprotective properties of calorie restriction, the ketogenic diet, and ketone bodies. BRAIN RESEARCH REVIEWS 2009; 59:293-315. [PMID: 18845187 PMCID: PMC2649682 DOI: 10.1016/j.brainresrev.2008.09.002] [Citation(s) in RCA: 407] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/03/2008] [Revised: 09/11/2008] [Accepted: 09/12/2008] [Indexed: 12/18/2022]
Abstract
Both calorie restriction and the ketogenic diet possess broad therapeutic potential in various clinical settings and in various animal models of neurological disease. Following calorie restriction or consumption of a ketogenic diet, there is notable improvement in mitochondrial function, a decrease in the expression of apoptotic and inflammatory mediators and an increase in the activity of neurotrophic factors. However, despite these intriguing observations, it is not yet clear which of these mechanisms account for the observed neuroprotective effects. Furthermore, limited compliance and concern for adverse effects hamper efforts at broader clinical application. Recent research aimed at identifying compounds that can reproduce, at least partially, the neuroprotective effects of the diets with less demanding changes to food intake suggests that ketone bodies might represent an appropriate candidate. Ketone bodies protect neurons against multiple types of neuronal injury and are associated with mitochondrial effects similar to those described during calorie restriction or ketogenic diet treatment. The present review summarizes the neuroprotective effects of calorie restriction, of the ketogenic diet and of ketone bodies, and compares their putative mechanisms of action.
Collapse
Affiliation(s)
- Marwan Maalouf
- Department of Neurobiology, David Geffen School of Medicine, University of California, 63-323 CH5, Box 951763, Los Angeles, CA 90095-1763, USA.
| | | | | |
Collapse
|
28
|
Almeida B, Ohlmeier S, Almeida AJ, Madeo F, Leão C, Rodrigues F, Ludovico P. Yeast protein expression profile during acetic acid-induced apoptosis indicates causal involvement of the TOR pathway. Proteomics 2009; 9:720-32. [DOI: 10.1002/pmic.200700816] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
29
|
Chowdhury D, Xu X, Zhong X, Ahmed F, Zhong J, Liao J, Dykxhoorn DM, Weinstock DM, Pfeifer GP, Lieberman J. A PP4-phosphatase complex dephosphorylates gamma-H2AX generated during DNA replication. Mol Cell 2008; 31:33-46. [PMID: 18614045 PMCID: PMC3242369 DOI: 10.1016/j.molcel.2008.05.016] [Citation(s) in RCA: 191] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2007] [Revised: 03/26/2008] [Accepted: 05/29/2008] [Indexed: 11/19/2022]
Abstract
The histone H2A variant H2AX is rapidly phosphorylated in response to DNA double-stranded breaks to produce gamma-H2AX. gamma-H2AX stabilizes cell-cycle checkpoint proteins and DNA repair factors at the break site. We previously found that the protein phosphatase PP2A is required to resolve gamma-H2AX foci and complete DNA repair after exogenous DNA damage. Here we describe a three-protein PP4 phosphatase complex in mammalian cells, containing PP4C, PP4R2, and PP4R3beta, that specifically dephosphorylates ATR-mediated gamma-H2AX generated during DNA replication. PP4 efficiently dephosphorylates gamma-H2AX within mononucleosomes in vitro and does not directly alter ATR or checkpoint kinase activity, suggesting that PP4 acts directly on gamma-H2AX in cells. When the PP4 complex is silenced, repair of DNA replication-mediated breaks is inefficient, and cells are hypersensitive to DNA replication inhibitors, but not radiomimetic drugs. Therefore, gamma-H2AX elimination at DNA damage foci is required for DNA damage repair, but accomplishing this task involves distinct phosphatases with potentially overlapping roles.
Collapse
Affiliation(s)
- Dipanjan Chowdhury
- Immune Disease Institute and Department of Pediatrics, Harvard Medical School, Boston MA 02115
- Dana Farber Cancer Institute and Department of Radiation Oncology, Harvard Medical School, Boston MA 02115
| | - Xingzhi Xu
- Laboratory of Cancer Biology, College of Life Science, Capital Normal University, Beijing 100037 China
- Department of Biology, City of Hope National Medical Center, Duarte CA 91010
| | - Xueyan Zhong
- Department of Biology, City of Hope National Medical Center, Duarte CA 91010
| | - Fariyal Ahmed
- Immune Disease Institute and Department of Pediatrics, Harvard Medical School, Boston MA 02115
| | - Jianing Zhong
- Laboratory of Cancer Biology, College of Life Science, Capital Normal University, Beijing 100037 China
| | - Ji Liao
- Laboratory of Cancer Biology, College of Life Science, Capital Normal University, Beijing 100037 China
| | - Derek M. Dykxhoorn
- Immune Disease Institute and Department of Pediatrics, Harvard Medical School, Boston MA 02115
| | - David M. Weinstock
- Dana Farber Cancer Institute and Department of Medical Oncology, Harvard Medical School, Boston MA 02115
| | - Gerd P. Pfeifer
- Department of Biology, City of Hope National Medical Center, Duarte CA 91010
| | - Judy Lieberman
- Immune Disease Institute and Department of Pediatrics, Harvard Medical School, Boston MA 02115
| |
Collapse
|
30
|
Lizotte DL, Blakeslee JJ, Siryaporn A, Heath JT, DeLong A. A PP2A active site mutant impedes growth and causes misregulation of native catalytic subunit expression. J Cell Biochem 2008; 103:1309-25. [PMID: 17803193 DOI: 10.1002/jcb.21514] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Activity of protein phosphatase 2A (PP2A) is tightly regulated and performs a diverse repertoire of cellular functions. Previously we isolated a dominant-negative active site mutant of the PP2A catalytic (C) subunit using a yeast complementation assay. We have established stable fibroblastic cell lines expressing epitope-tagged versions of the wild-type and H118N mutant C subunits and have used these cells to investigate mechanisms that regulate PP2A activity. Cells expressing the mutant C subunit exhibit a decreased growth rate and a prolonged G1 cell cycle phase. The mutant protein is enzymatically inactive, but extracts made from cells expressing the H118N C subunit show normal levels of total PP2A activity in vitro. The H118N mutant shows reduced binding to the regulatory A subunit, but binds normally to the alpha4 protein, a non-canonical regulator of PP2A. Expression of the H118N mutant interferes with the normal control of C subunit abundance, causing accumulation of the endogenous wild-type protein as well as the mutant transgene product. Our results indicate that the H118N mutant isoform retards C subunit turnover and suggest that PP2A C subunit turnover may be important for normal cell cycle progression.
Collapse
Affiliation(s)
- Donna L Lizotte
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island 02912, USA
| | | | | | | | | |
Collapse
|
31
|
Influence of genotype and nutrition on survival and metabolism of starving yeast. Proc Natl Acad Sci U S A 2008; 105:6930-5. [PMID: 18456835 DOI: 10.1073/pnas.0802601105] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Starvation of yeast cultures limited by auxotrophic requirements results in glucose wasting and failure to achieve prompt cell-cycle arrest when compared with starvation for basic natural nutrients like phosphate or sulfate. We measured the survival of yeast auxotrophs upon starvation for different nutrients and found substantial differences: When deprived of leucine or uracil, viability declined exponentially with a half-life of <2 days, whereas when the same strains were deprived of phosphate or sulfate, the half-life was approximately 10 days. The survival rates of nongrowing auxotrophs deprived of uracil or leucine depended on the carbon source available during starvation, but were independent of the carbon source during prior growth. We performed an enrichment procedure for mutants that suppress lethality during auxotrophy starvation. We repeatedly found loss-of-function mutations in a number of functionally related genes. Mutations in PPM1, which methylates protein phosphatase 2A, and target of rapamycin (TOR1) were characterized further. Deletion of PPM1 almost completely suppressed the rapid lethality and substantially suppressed glucose wasting during starvation for leucine or uracil. Suppression by a deletion of TOR1 was less complete. We suggest that, similar to the Warburg effect observed in tumor cells, starving yeast auxotrophs wastes glucose as a consequence of the failure of conserved growth control pathways. Furthermore, we suggest that our results on condition-dependent chronological lifespan have important implications for the interpretation and design of studies on chronological aging.
Collapse
|
32
|
López-Mirabal HR, Winther JR, Kielland-Brandt MC. Oxidant resistance in a yeast mutant deficient in the Sit4 phosphatase. Curr Genet 2008; 53:275-86. [PMID: 18357452 DOI: 10.1007/s00294-008-0184-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2007] [Revised: 02/27/2008] [Accepted: 03/02/2008] [Indexed: 10/22/2022]
Abstract
Resistance to thiol oxidation can arise from mutations altering redox homeostasis. A Saccharomyces cerevisiae sit4-110 mutant is here described, which was isolated as resistant to the thiol-specific oxidant dipyridyl disulfide (DPS) and which contains a single-residue substitution in the SIT4 gene. Sit4p is a protein phosphatase with multiple roles in signal transduction through the target-of-rapamycin (TOR) pathway. We found that sit4-110 elevates the levels of glutathione. However, this cannot be the (only) cause for the DPS-resistance, since sit4-110 also conferred DPS/H2O2-resistance in a glutathione-deficient strain. Of the known Sit4p substrates, only Tip41p is involved in DPS-resistance; both Delta tip41 deletion and overexpression of the Tip41p target Tap42p resulted in increased DPS-resistance. Thus, the role of Sit4p in DPS-tolerance differs from its role during TOR-inactivation and salt stress. In view of Tap42p's known involvement in actin homeostasis, sit4-110 could compensate for putative actin-related defects caused by DPS. However, sit4-110 has pronounced actin polarization defects under both absence and presence of DPS. A relation between actin homeostasis and DPS resistance of sit4-110 cannot be ruled out, but our results suggest that unknown pathways might be involved in DPS resistance through mechanisms involving the Sit4p and/or Tap42p function(s).
Collapse
|
33
|
Identification of genes affecting hydrogen sulfide formation in Saccharomyces cerevisiae. Appl Environ Microbiol 2008; 74:1418-27. [PMID: 18192430 DOI: 10.1128/aem.01758-07] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A screen of the Saccharomyces cerevisiae deletion strain set was performed to identify genes affecting hydrogen sulfide (H(2)S) production. Mutants were screened using two assays: colony color on BiGGY agar, which detects the basal level of sulfite reductase activity, and production of H(2)S in a synthetic juice medium using lead acetate detection of free sulfide in the headspace. A total of 88 mutants produced darker colony colors than the parental strain, and 4 produced colonies significantly lighter in color. There was no correlation between the appearance of a dark colony color on BiGGY agar and H(2)S production in synthetic juice media. Sixteen null mutations were identified as leading to the production of increased levels of H(2)S in synthetic juice using the headspace analysis assay. All 16 mutants also produced H(2)S in actual juices. Five of these genes encode proteins involved in sulfur containing amino acid or precursor biosynthesis and are directly associated with the sulfate assimilation pathway. The remaining genes encode proteins involved in a variety of cellular activities, including cell membrane integrity, cell energy regulation and balance, or other metabolic functions. The levels of hydrogen sulfide production of each of the 16 strains varied in response to nutritional conditions. In most cases, creation of multiple deletions of the 16 mutations in the same strain did not lead to a further increase in H(2)S production, instead often resulting in decreased levels.
Collapse
|
34
|
Choi YE, Shim WB. Functional characterization of Fusarium verticillioides CPP1, a gene encoding a putative protein phosphatase 2A catalytic subunit. Microbiology (Reading) 2008; 154:326-336. [DOI: 10.1099/mic.0.2007/011411-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Affiliation(s)
- Yoon-E Choi
- Department of Plant Pathology and Microbiology, Program for the Biology of Filamentous Fungi, Texas A&M University, College Station, TX 77843-2132, USA
| | - Won-Bo Shim
- Department of Plant Pathology and Microbiology, Program for the Biology of Filamentous Fungi, Texas A&M University, College Station, TX 77843-2132, USA
| |
Collapse
|
35
|
Smetana JHC, Zanchin NIT. Interaction analysis of the heterotrimer formed by the phosphatase 2A catalytic subunit, alpha4 and the mammalian ortholog of yeast Tip41 (TIPRL). FEBS J 2007; 274:5891-904. [PMID: 17944932 DOI: 10.1111/j.1742-4658.2007.06112.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Type 2A serine/threonine phosphatases are part of the PPP subfamily that is formed by PP2A, PP4 and PP6, and participate in a variety of cellular processes including transcription, translation, regulation of the cell cycle, signal transduction and apoptosis. PP2A is found predominantly as a heterotrimer formed by the catalytic subunit (C) and by a regulatory (B, B' or B'') and a scaffolding (A) subunit. Yeast Tap42p and Tip41p are regulators of type 2A phosphatases, playing antagonistic roles in the target of rapamycin signaling pathway. alpha4 and target of rapamycin signaling pathway regulator-like (TIPRL) are the respective mammalian orthologs of Tap42p and Tip41p. alpha4 has been characterized as an essential protein implicated in cell signaling, differentiation and survival; by contrast, the role of mammalian TIPRL is still poorly understood. In this study, a yeast two-hybrid screen revealed that TIPRL interacts with the C-terminal region of the catalytic subunits of PP2A, PP4 and PP6. Tauhe TIPRL-interacting region on the catalytic subunit was mapped to residues 210-309 and does not overlap with the alpha4-binding region, as shown by yeast two-hybrid and pull-down assays using recombinant proteins. TIPRL and alpha4 can bind PP2Ac simultaneously, forming a stable ternary complex. Reverse two-hybrid assays revealed that single amino acid substitutions on TIPRL including D71L, I136T, M196V and D198N can block its interaction with PP2Ac. TIPRL inhibits PP2Ac activity in vitro and forms a rapamycin-insensitive complex with PP2Ac and alpha4 in human cells. These results suggest the existence of a novel PP2A heterotrimer (alpha4:PP2Ac:TIPRL) in mammalian cells.
Collapse
Affiliation(s)
- Juliana H C Smetana
- Center for Structural Molecular Biology, Brazilian Synchrotron Light Laboratory (LNLS), Campinas, Brazil
| | | |
Collapse
|
36
|
Kuepfer L, Peter M, Sauer U, Stelling J. Ensemble modeling for analysis of cell signaling dynamics. Nat Biotechnol 2007; 25:1001-6. [PMID: 17846631 DOI: 10.1038/nbt1330] [Citation(s) in RCA: 122] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Systems biology iteratively combines experimentation with mathematical modeling. However, limited mechanistic knowledge, conflicting hypotheses and scarce experimental data severely hamper the development of predictive mechanistic models in many areas of biology. Even under such high uncertainty, we show here that ensemble modeling, when combined with targeted experimental analysis, can unravel key operating principles in complex cellular pathways. For proof of concept, we develop a library of mechanistically alternative dynamic models for the highly conserved target-of-rapamycin (TOR) pathway of Saccharomyces cerevisiae. In contrast to the prevailing view of a de novo assembly of type 2A phosphatases (PP2As), our integrated computational and experimental analysis proposes a specificity factor, based on Tap42p-Tip41p, for PP2As as the key signaling mechanism that is quantitatively consistent with all available experimental data. Beyond revising our picture of TOR signaling, we expect ensemble modeling to help elucidate other insufficiently characterized cellular circuits.
Collapse
Affiliation(s)
- Lars Kuepfer
- Institute of Molecular Systems Biology, ETH Zurich, 8092 Zurich, Switzerland
| | | | | | | |
Collapse
|
37
|
Leulliot N, Vicentini G, Jordens J, Quevillon-Cheruel S, Schiltz M, Barford D, van Tilbeurgh H, Goris J. Crystal structure of the PP2A phosphatase activator: implications for its PP2A-specific PPIase activity. Mol Cell 2006; 23:413-24. [PMID: 16885030 DOI: 10.1016/j.molcel.2006.07.008] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2006] [Revised: 06/12/2006] [Accepted: 07/13/2006] [Indexed: 11/23/2022]
Abstract
PTPA, an essential and specific activator of protein phosphatase 2A (PP2A), functions as a peptidyl prolyl isomerase (PPIase). We present here the crystal structures of human PTPA and of the two yeast orthologs (Ypa1 and Ypa2), revealing an all alpha-helical protein fold that is radically different from other PPIases. The protein is organized into two domains separated by a groove lined by highly conserved residues. To understand the molecular mechanism of PTPA activity, Ypa1 was cocrystallized with a proline-containing PPIase peptide substrate. In the complex, the peptide binds at the interface of a peptide-induced dimer interface. Conserved residues of the interdomain groove contribute to the peptide binding site and dimer interface. Structure-guided mutational studies showed that in vivo PTPA activity is influenced by mutations on the surface of the peptide binding pocket, the same mutations that also influenced the in vitro activation of PP2Ai and PPIase activity.
Collapse
Affiliation(s)
- Nicolas Leulliot
- Institut de Biochimie et de Biophysique Moléculaire et Cellulaire, UMR8619, Bât 430, Université de Paris-Sud, 91405 Orsay Cedex, France
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Stefansson B, Brautigan DL. Protein phosphatase 6 subunit with conserved Sit4-associated protein domain targets IkappaBepsilon. J Biol Chem 2006; 281:22624-34. [PMID: 16769727 DOI: 10.1074/jbc.m601772200] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Protein Ser/Thr phosphatases compose a PPP family that includes type-2 PP2A, PP4, and PP6, each with essential functions. The human PP6 gene rescues sit4(ts) mutants of Saccharomyces cerevisiae, and Sit4 phosphatase function depends on multiple Sit4-associated protein (SAP) subunits. We report here finding a SAPS sequence domain encoded in only a single gene each in Schizosaccharomyces pombe, Caenorhabditis elegans, and Drosophila but in three distinct open reading frames in Xenopus, Mus musculus, and Homo sapiens. The SAPS proteins are more divergent in sequence than PP6. Northern hybridization showed differential distribution of the human SAPS-related mRNA in multiple human tissues, named as PP6R1, PP6R2, and PP6R3. Antibodies were generated, distribution of endogenous PP6, PP6R1, PP6R2, and PP6R3 proteins was examined by immunoblotting, and the abundance of mRNA and protein in various tissues did not match. FLAG-tagged PP6R1 and PP6R2 expressed in HEK293 cells co-precipitated endogenous PP6, but not PP2A or PP4, showing specificity for recognition of phosphatases. The SAPS domain of PP6R1 alone was sufficient for association with PP6, and this predicts that conserved sequence motifs in the SAPS domain accounts for the specificity. FLAG-PP6R1 and FLAG-PP6R2 co-precipitated HA-IkappaBepsilon. Knockdown of PP6 or PP6R1 but not PP6R3 with siRNA significantly enhanced degradation of endogenous IkappaBepsilon in response to tumor necrosis factor-alpha. The results show SAPS domain subunits recruit substrates such as IkappaBepsilon as one way to determine specific functions for PP6.
Collapse
Affiliation(s)
- Bjarki Stefansson
- Center for Cell Signaling, University of Virginia School of Medicine, Charlottesville, Virginia 22908, USA
| | | |
Collapse
|
39
|
Jiang Y. Regulation of the cell cycle by protein phosphatase 2A in Saccharomyces cerevisiae. Microbiol Mol Biol Rev 2006; 70:440-9. [PMID: 16760309 PMCID: PMC1489537 DOI: 10.1128/mmbr.00049-05] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Protein phosphatase 2A (PP2A) has long been implicated in cell cycle regulation in many different organisms. In the yeast Saccharomyces cerevisiae, PP2A controls cell cycle progression mainly through modulation of cyclin-dependent kinase (CDK) at the G(2)/M transition. However, CDK does not appear to be a direct target of PP2A. PP2A affects CDK activity through its roles in checkpoint controls. Inactivation of PP2A downregulates CDK by activating the morphogenesis checkpoint and, consequently, delays mitotic entry. Defects in PP2A also compromise the spindle checkpoint and predispose the cell to an error-prone mitotic exit. In addition, PP2A is involved in controlling the G(1)/S transition and cytokinesis. These findings suggest that PP2A functions in many stages of the cell cycle and its effect on cell cycle progression is pleiotropic.
Collapse
Affiliation(s)
- Yu Jiang
- Department of Pharmacology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA.
| |
Collapse
|
40
|
Eckert-Boulet N, Larsson K, Wu B, Poulsen P, Regenberg B, Nielsen J, Kielland-Brandt MC. Deletion of RTS1, encoding a regulatory subunit of protein phosphatase 2A, results in constitutive amino acid signaling via increased Stp1p processing. EUKARYOTIC CELL 2006; 5:174-9. [PMID: 16400180 PMCID: PMC1360261 DOI: 10.1128/ec.5.1.174-179.2006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In Saccharomyces cerevisiae, extracellular amino acids are sensed at the plasma membrane by the SPS sensor, consisting of the transporter homologue Ssy1p, Ptr3p, and the endoprotease Ssy5p. Amino acid sensing results in proteolytic truncation of the transcription factors Stp1p and Stp2p, followed by their relocation from the cytoplasm to the nucleus, where they activate transcription of amino acid permease genes. We screened a transposon mutant library for constitutively signaling mutants, with the aim of identifying down-regulating components of the SPS-mediated pathway. Three isolated mutants were carrying a transposon in the RTS1 gene, which encodes a regulatory subunit of protein phosphatase 2A. We investigated the basal activity of the AGP1 and BAP2 promoters in rts1delta cells and found increased transcription from these promoters, as well as increased Stp1p processing, even in the absence of amino acids. Based on our findings we propose that the phosphatase complex containing Rts1p keeps the SPS-mediated pathway down-regulated in the absence of extracellular amino acids by dephosphorylating a component of the pathway.
Collapse
|
41
|
Tomás-Cobos L, Viana R, Sanz P. TOR kinase pathway and 14-3-3 proteins regulate glucose-induced expression of HXT1, a yeast low-affinity glucose transporter. Yeast 2005; 22:471-9. [PMID: 15849787 DOI: 10.1002/yea.1224] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Expression of HXT1, a gene encoding a Saccharomyces cerevisiae low-affinity glucose transporter, is regulated by glucose availability, being activated in the presence of glucose and inhibited when the levels of the sugar are scarce. In this study we show that 14-3-3 proteins are involved in the regulation of the expression of HXT1 by glucose. We also demonstrate that 14-3-3 proteins, in complex with Reg1, a regulatory subunit of Glc7 protein phosphatase, interact physically with Grr1 (a component of the SCF-Grr1 ubiquitination complex), a key player in the process of HXT1 induction by glucose. In addition, we show that the TOR kinase pathway participates actively in the induction of HXT1 expression by glucose. Inhibition of the TOR kinase pathway by rapamycin treatment abolishes HXT1 glucose induction. A possible involvement of PP2A protein phosphatase complex, through the Cdc55 B-subunit, in the glucose induction of HXT1 is also discussed.
Collapse
Affiliation(s)
- Lidia Tomás-Cobos
- Instituto de Biomedicina de Valencia (CSIC), Jaime Roig 11, 46010-Valencia, Spain
| | | | | |
Collapse
|
42
|
Van Hoof C, Martens E, Longin S, Jordens J, Stevens I, Janssens V, Goris J. Specific interactions of PP2A and PP2A-like phosphatases with the yeast PTPA homologues, Ypa1 and Ypa2. Biochem J 2005; 386:93-102. [PMID: 15447631 PMCID: PMC1134770 DOI: 10.1042/bj20040887] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2004] [Revised: 09/02/2004] [Accepted: 09/24/2004] [Indexed: 11/17/2022]
Abstract
To elucidate the specific biological role of the yeast homologues of PTPA (phosphatase 2A phosphatase activator), Ypa1 and Ypa2 (where Ypa stands for yeast phosphatase activator), in the regulation of PP2A (protein phosphatase 2A), we investigated the physical interaction of both Ypa proteins with the catalytic subunit of the different yeast PP2A-like phosphatases. Ypa1 interacts specifically with Pph3, Sit4 and Ppg1, whereas Ypa2 binds to Pph21 and Pph22. The Ypa1 and Ypa2 proteins do not compete with Tap42 (PP2A associating protein) for binding to PP2A family members. The interaction of the Ypa proteins with the catalytic subunit of PP2A-like phosphatases is direct and independent of other regulatory subunits, implicating a specific function for the different PP2A-Ypa complexes. Strikingly, the interaction of Ypa2 with yeast PP2A is promoted by the presence of Ypa1, suggesting a positive role of Ypa1 in the regulation of PP2A association with other interacting proteins. As in the mammalian system, all yeast PP2A-like enzymes associate as an inactive complex with Yme (yeast methyl esterase). Ypa1 as well as Ypa2 can reactivate all these inactive complexes, except Pph22-Yme. Ypa1 is the most potent activator of PP2A activity, suggesting that there is no direct correlation between activation potential and binding capacity.
Collapse
Key Words
- phosphatase 2a phosphatase activator (ptpa)
- protein phosphatase 2a (pp2a)
- pp2a methyl esterase 1 (pme-1)
- saccharomyces cerevisiae
- tap42
- target of rapamycin (tor)
- gst, glutathione s-transferase
- ha, haemagglutinin
- ivtt, in vitro transcribed and translated
- lcmt-1, leucine carboxyl methyl transferase 1
- pp2a, protein phosphatase 2a
- pme-1, pp2a methyl esterase 1
- pp2ac, catalytic subunit of pp2a
- pp2ai, inactive form of pp2a
- ptpa, phosphatase 2a phosphatase activator
- sap, sit4 associating protein
- tap42, pp2a associating protein
- tip41, tap42 interacting protein
- tor, target of rapamycin
- yme, yeast methyl esterase
- ypa, yeast phosphatase activator
Collapse
Affiliation(s)
- Christine Van Hoof
- Afdeling Biochemie, Faculteit Geneeskunde, Campus Gasthuisberg O&N, Katholieke Universiteit Leuven, Herestraat 49, B-3000 Leuven, Belgium
| | - Ellen Martens
- Afdeling Biochemie, Faculteit Geneeskunde, Campus Gasthuisberg O&N, Katholieke Universiteit Leuven, Herestraat 49, B-3000 Leuven, Belgium
| | - Sari Longin
- Afdeling Biochemie, Faculteit Geneeskunde, Campus Gasthuisberg O&N, Katholieke Universiteit Leuven, Herestraat 49, B-3000 Leuven, Belgium
| | - Jan Jordens
- Afdeling Biochemie, Faculteit Geneeskunde, Campus Gasthuisberg O&N, Katholieke Universiteit Leuven, Herestraat 49, B-3000 Leuven, Belgium
| | - Ilse Stevens
- Afdeling Biochemie, Faculteit Geneeskunde, Campus Gasthuisberg O&N, Katholieke Universiteit Leuven, Herestraat 49, B-3000 Leuven, Belgium
| | - Veerle Janssens
- Afdeling Biochemie, Faculteit Geneeskunde, Campus Gasthuisberg O&N, Katholieke Universiteit Leuven, Herestraat 49, B-3000 Leuven, Belgium
| | - Jozef Goris
- Afdeling Biochemie, Faculteit Geneeskunde, Campus Gasthuisberg O&N, Katholieke Universiteit Leuven, Herestraat 49, B-3000 Leuven, Belgium
| |
Collapse
|
43
|
Zheng Y, Jiang Y. The yeast phosphotyrosyl phosphatase activator is part of the Tap42-phosphatase complexes. Mol Biol Cell 2005; 16:2119-27. [PMID: 15689491 PMCID: PMC1073688 DOI: 10.1091/mbc.e04-09-0797] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Phosphotyrosyl phosphatase activator PTPA is a type 2A phosphatase regulatory protein that possesses an ability to stimulate the phosphotyrosyl phosphatase activity of PP2A in vitro. In yeast Saccharomyces cerevisiae, PTPA is encoded by two related genes, RRD1 and RRD2, whose products are 38 and 37% identical, respectively, to the mammalian PTPA. Inactivation of either gene renders yeast cells rapamycin resistant. In this study, we investigate the mechanism underling rapamycin resistance associated with inactivation of PTPA in yeast. We show that the yeast PTPA is an integral part of the Tap42-phosphatase complexes that act downstream of the Tor proteins, the target of rapamycin. We demonstrate a specific interaction of Rrd1 with the Tap42-Sit4 complex and that of Rrd2 with the Tap42-PP2Ac complex. A small portion of PTPA also is found to be associated with the AC dimeric core of PP2A, but the amount is significantly less than that associated with the Tap42-containing complexes. In addition, our results show that the association of PTPA with Tap42-phosphatase complexes is rapamycin sensitive, and importantly, that rapamycin treatment results in release of the PTPA-phosphatase dimer as a functional phosphatase unit.
Collapse
Affiliation(s)
- Yin Zheng
- Department of Pharmacology, University of Pittsburgh School of Medicine, PA 15213, USA
| | | |
Collapse
|
44
|
Malagon F, Tong AH, Shafer BK, Strathern JN. Genetic interactions of DST1 in Saccharomyces cerevisiae suggest a role of TFIIS in the initiation-elongation transition. Genetics 2004; 166:1215-27. [PMID: 15082542 PMCID: PMC1470799 DOI: 10.1534/genetics.166.3.1215] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
TFIIS promotes the intrinsic ability of RNA polymerase II to cleave the 3'-end of the newly synthesized RNA. This stimulatory activity of TFIIS, which is dependent upon Rpb9, facilitates the resumption of transcription elongation when the polymerase stalls or arrests. While TFIIS has a pronounced effect on transcription elongation in vitro, the deletion of DST1 has no major effect on cell viability. In this work we used a genetic approach to increase our knowledge of the role of TFIIS in vivo. We showed that: (1) dst1 and rpb9 mutants have a synthetic growth defective phenotype when combined with fyv4, gim5, htz1, yal011w, ybr231c, soh1, vps71, and vps72 mutants that is exacerbated during germination or at high salt concentrations; (2) TFIIS and Rpb9 are essential when the cells are challenged with microtubule-destabilizing drugs; (3) among the SDO (synthetic with Dst one), SOH1 shows the strongest genetic interaction with DST1; (4) the presence of multiple copies of TAF14, SUA7, GAL11, RTS1, and TYS1 alleviate the growth phenotype of dst1 soh1 mutants; and (5) SRB5 and SIN4 genetically interact with DST1. We propose that TFIIS is required under stress conditions and that TFIIS is important for the transition between initiation and elongation in vivo.
Collapse
Affiliation(s)
- Francisco Malagon
- Gene Regulation and Chromosome Biology Laboratory, National Cancer Institute, National Institutes of Health, Frederick, Maryland 21702, USA
| | | | | | | |
Collapse
|
45
|
Demlow CM, Fox TD. Activity of mitochondrially synthesized reporter proteins is lower than that of imported proteins and is increased by lowering cAMP in glucose-grown Saccharomyces cerevisiae cells. Genetics 2004; 165:961-74. [PMID: 14668357 PMCID: PMC1462836 DOI: 10.1093/genetics/165.3.961] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
We selected for increased phenotypic expression of a synthetic cox2::arg8m-G66S reporter gene inserted into Saccharomyces cerevisiae mtDNA in place of COX2. Recessive mutations in ras2 and cyr1, as well as elevated dosage of PDE2, allowed cox2::arg8m-G66S to support Arg prototrophy. Each of these genetic alterations should decrease cellular cAMP levels. The resulting signal was transduced through redundant action of the three cAMP-dependent protein kinases, TPK1, TPK2, and TPK3. ras2 had little or no effect on the level of wild-type Arg8p encoded by cox2::ARG8m, but did increase Arg8p activity, as judged by growth phenotype. ras2 also caused increased fluorescence in cells carrying the synthetic cox3::GFPm reporter in mtDNA, but had little effect on the steady-state level of GFP polypeptide detected immunologically. Thus, decreased cAMP levels did not affect the synthesis of mitochondrially coded protein reporters in glucose-grown cells, but rather elevated activities in the matrix that promote efficient folding. Furthermore, we show that when Arg8p is synthesized in the cytoplasm and imported into mitochondria, it has greater activity than when it is synthesized in the matrix. Thus, mitochondrially synthesized proteins may not have the same access to matrix chaperones as cytoplasmically synthesized proteins emerging from the import apparatus.
Collapse
Affiliation(s)
- Christina M Demlow
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853, USA
| | | |
Collapse
|
46
|
Mizunuma M, Miyamura K, Hirata D, Yokoyama H, Miyakawa T. Involvement of S-adenosylmethionine in G1 cell-cycle regulation in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 2004; 101:6086-91. [PMID: 15073333 PMCID: PMC395927 DOI: 10.1073/pnas.0308314101] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2003] [Accepted: 03/02/2004] [Indexed: 01/21/2023] Open
Abstract
S-adenosyl-l-methionine (AdoMet) is a molecule central to general metabolism, serving as a principal methyl donor for methylation of various cellular constituents. The alteration in the availability of AdoMet has profound effect on cell growth. A mutant allele of Saccharomyces cerevisiae gene SAH1 encoding S-adenosyl-l-homocysteine (AdoHcy) hydrolase, was isolated as a mutation that suppressed the Ca(2+)-sensitive phenotypes of the zds1Delta strain, such as the Ca(2+)-induced, Swe1p- and Cln2p-mediated G(2) cell-cycle arrest, and polarized bud growth. The mutation (sah1-1) led the cells to accumulate AdoMet besides AdoHcy, the substrate of Sah1p. The cells treated with exogenous AdoMet and AdoHcy had markedly decreased levels of SWE1 and CLN2 mRNA, providing the basis for the suppression of the Ca(2+) sensitivity by the sah1-1 mutation. Exogenous AdoMet transiently led the cells to G(1) cell-cycle delay whereas AdoHcy caused growth inhibition irrelevant to the cell cycle. The effect of AdoMet in inducing the cell-cycle delay was exerted in a manner independent of Met4p, an overall transcriptional activator for MET genes. Our observation provides an insight into the role played by AdoMet in cell cycle regulation.
Collapse
Affiliation(s)
- Masaki Mizunuma
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, Higashi-Hiroshima 739-8530, Japan
| | | | | | | | | |
Collapse
|
47
|
Winderickx J, Holsbeeks I, Lagatie O, Giots F, Thevelein J, de Winde H. From feast to famine; adaptation to nutrient availability in yeast. ACTA ACUST UNITED AC 2002. [DOI: 10.1007/3-540-45611-2_7] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
|
48
|
Zabrocki P, Swiatek W, Sugajska E, Thevelein JM, Wera S, Zolnierowicz S. The Saccharomyces cerevisiae type 2A protein phosphatase Pph22p is biochemically different from mammalian PP2A. EUROPEAN JOURNAL OF BIOCHEMISTRY 2002; 269:3372-82. [PMID: 12135475 DOI: 10.1046/j.1432-1033.2002.02965.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The Saccharomyces cerevisiae type 2A protein phosphatase (PP2A) Pph22p differs from the catalytic subunits of PP2A (PP2Ac) present in mammals, plants and Schizosaccharomyces pombe by a unique N-terminal extension of approximately 70 amino acids. We have overexpressed S. cerevisiae Pph22p and its N-terminal deletion mutant Delta N-Pph22p in the GS115 strain of Pichia pastoris and purified these enzymes to apparent homogeneity. Similar to other heterologous systems used to overexpress PP2Ac, a low yield of an active enzyme was obtained. The recombinant enzymes designed with an 8 x His-tag at their N-terminus were purified by ion-exchange chromatography on DEAE-Sephacel and affinity chromatography on Ni2+-nitrilotriacetic acid agarose. Comparison of biochemical properties of purified Pph22p and Delta N-Pph22p with purified human 8 x His PP2Ac identified similarities and differences between these two enzymes. Both enzymes displayed similar specific activities with 32P-labelled phosphorylase a as substrate. Furthermore, selected inhibitors and metal ions affected their activities to the same extend. In contrast to the mammalian catalytic subunit PP2Ac, but similar to the dimeric form of mammalian PP2A, Pph22p, but not Delta N-Pph22p, interacted strongly with protamine. Also with regard to the effects of protamine and polylysine on phosphatase activity Pph22p, but not Delta N-Pph22p, behaved similarly to the PP2Ac-PR65 dimer, indicating a regulatory role for the N-terminal extension of Pph22p. The N-terminal extension appears also responsible for interactions with phospholipids. Additionally Pph22p has different redox properties than PP2Ac; in contrast to human PP2Ac it cannot be reactivated by reducing agents. These properties make the S. cerevisiae Pph22p phosphatase a unique enzyme among all type 2A protein phosphatases studied so far.
Collapse
Affiliation(s)
- Piotr Zabrocki
- Cell and Molecular Signaling Laboratory, Intercollegiate Faculty of Biotechnology UG-MUG, Gdansk, Poland
| | | | | | | | | | | |
Collapse
|
49
|
Current awareness. Yeast 2002; 19:903-8. [PMID: 12112243 DOI: 10.1002/yea.826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|