1
|
Guo Y, Li J, Zhang S, Song Y, Chen G, He L, Wang L, Liang C. Significant Enhancement Catalytic Activity of Nitrile Hydratase by Balancing the Subunits Expression. Chembiochem 2024; 25:e202400526. [PMID: 39617726 DOI: 10.1002/cbic.202400526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 11/22/2024] [Accepted: 11/27/2024] [Indexed: 12/11/2024]
Abstract
Escherichia coli (E. coli) is the most commonly used bacterial recombinant protein production system due to its easy genetic modification properties. In our previous study, a recombinant plasmid expressing the Fe-type nitrile hydratase derived from Rhodococcus erythropolis CCM2595 (ReNHase) was successfully constructed and the recombinant ReNHase exerted an excellent catalytic effect on dinitrile compounds. Nevertheless, the ReNHases were confronted with imbalanced subunit expression during heterologous expression, which restricted the enzymes assemble functionally. In this study, the secondary structure of mRNA in the ribosome binding sequence region of the β-subunit was optimized to elevate the translation efficiency of the β-subunit gene and balance the expression of α- and β-subunits in ReNHase. The optimized ReNHase showed a 12-fold increase in specific enzyme activity over wild-type ReNHase. To further enhance the soluble expression of ReNHase, the ReNHase was labeled using three different fusion tags, resulting in three new recombinant ReNHases. In these recombinant ReNHases, some of the fusion tags promoted the soluble expression of ReNHase, but also affected the balance of α-/β-subunit expression and the secondary structure of the ReNHase, and reduced the enzyme activity. In conclusion, our results provide an optimized strategy for the heterologous expression of multi-subunit proteins.
Collapse
Affiliation(s)
- Yi Guo
- School of Chemical Engineering, Laboratory of Advanced Materials and Catalytic Engineering, Dalian University of Technology, Dalian, 116024, China
- Laboratory of Synthetic Biology and Biotransformation, Chengdu Research Institute of Dalian University of Technology, Chengdu, 611939, China
| | - Jiaxin Li
- School of Chemical Engineering, Laboratory of Advanced Materials and Catalytic Engineering, Dalian University of Technology, Dalian, 116024, China
- Laboratory of Synthetic Biology and Biotransformation, Chengdu Research Institute of Dalian University of Technology, Chengdu, 611939, China
| | - Song Zhang
- School of Chemical Engineering Ocean and Life Science, Dalian University of Technology, Panjin, 124221, China
| | - Yingjie Song
- School of Chemical Engineering Ocean and Life Science, Dalian University of Technology, Panjin, 124221, China
| | - Guobing Chen
- School of Chemical Engineering Ocean and Life Science, Dalian University of Technology, Panjin, 124221, China
| | - Leiyu He
- School of Chemical Engineering Ocean and Life Science, Dalian University of Technology, Panjin, 124221, China
| | - Li Wang
- School of Chemical Engineering Ocean and Life Science, Dalian University of Technology, Panjin, 124221, China
- Laboratory of Synthetic Biology and Biotransformation, Chengdu Research Institute of Dalian University of Technology, Chengdu, 611939, China
| | - Changhai Liang
- School of Chemical Engineering, Laboratory of Advanced Materials and Catalytic Engineering, Dalian University of Technology, Dalian, 116024, China
- Laboratory of Synthetic Biology and Biotransformation, Chengdu Research Institute of Dalian University of Technology, Chengdu, 611939, China
| |
Collapse
|
2
|
Cho H, Kim KS. Characterization of Escherichia coli chaperonin GroEL as a ribonuclease. Int J Biol Macromol 2024; 281:136330. [PMID: 39370076 DOI: 10.1016/j.ijbiomac.2024.136330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 09/13/2024] [Accepted: 10/03/2024] [Indexed: 10/08/2024]
Abstract
Chaperonins are evolutionarily conserved proteins that facilitate polypeptide assemblies. The most extensively studied chaperonin is GroEL, which plays a crucial role in Escherichia coli. In addition to its chaperone activity, the RNA cleavage activity of GroEL has also been proposed. However, direct evidence of GroEL as a ribonuclease (RNase) and its physiological significance has not been fully elucidated. Here, we characterized the role of GroEL in E. coli as an RNase distinct from RNase E/G activity using in vivo reporter assays, in vitro cleavage assays with varying reaction times, divalent ions, and 5' phosphorylation status. GroEL bound to single-stranded RNA at nanomolar concentrations. Functional analysis of GroEL chaperonin-defective mutants and segments identified specific regions, and the chaperone active status of GroEL is not a necessary factor for RNase activity. Additionally, RNase activity of GroEL was attenuated by co-overexpression with GroES. Finally, we characterized potential transcripts regulated by GroEL and the conserved RNase activity of GroEL in Shigella flexneri. Our findings indicate that GroEL is a novel post-transcriptional regulator in bacteria.
Collapse
Affiliation(s)
- Hyejin Cho
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan 46241, Republic of Korea
| | - Kwang-Sun Kim
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan 46241, Republic of Korea.
| |
Collapse
|
3
|
Jin H, Yeom JH, Shin E, Ha Y, Liu H, Kim D, Joo M, Kim YH, Kim HK, Ryu M, Kim HM, Kim J, Kim KP, Hahn Y, Bae J, Lee K. 5'-tRNA Gly(GCC) halves generated by IRE1α are linked to the ER stress response. Nat Commun 2024; 15:9273. [PMID: 39468069 PMCID: PMC11519470 DOI: 10.1038/s41467-024-53624-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 10/16/2024] [Indexed: 10/30/2024] Open
Abstract
Transfer RNA halves (tRHs) have various biological functions. However, the biogenesis of specific 5'-tRHs under certain conditions remains unknown. Here, we report that inositol-requiring enzyme 1α (IRE1α) cleaves the anticodon stem-loop region of tRNAGly(GCC) to produce 5'-tRHs (5'-tRH-GlyGCC) with highly selective target discrimination upon endoplasmic reticulum (ER) stress. Levels of 5'-tRH-GlyGCC positively affect cancer cell proliferation and modulate mRNA isoform biogenesis both in vitro and in vivo; these effects require co-expression of two nuclear ribonucleoproteins, HNRNPM and HNRNPH2, which we identify as binding proteins of 5'-tRH-GlyGCC. In addition, under ER stress in vivo, we observe simultaneous induction of IRE1α and 5'-tRH-GlyGCC expression in mouse organs and a distantly related organism, Cryptococcus neoformans. Thus, collectively, our findings indicate an evolutionarily conserved function for IRE1α-generated 5'-tRH-GlyGCC in cellular adaptation upon ER stress.
Collapse
Affiliation(s)
- Hanyong Jin
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, 133002, Jilin, China
| | - Ji-Hyun Yeom
- Department of Life Science, Chung-Ang University, Seoul, 06974, Republic of Korea
- R & D Institute, NES Biotechnology, Seoul, 06974, Republic of Korea
| | - Eunkyoung Shin
- Department of Life Science, Chung-Ang University, Seoul, 06974, Republic of Korea
- Department of Microbiology, School of Medicine, Catholic University of Daegu, Daegu, 42472, Republic of Korea
| | - Yoonjie Ha
- Department of Life Science, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Haifeng Liu
- School of Pharmacy, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Daeyoung Kim
- Department of Life Science, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Minju Joo
- Department of Life Science, Chung-Ang University, Seoul, 06974, Republic of Korea
- R & D Institute, NES Biotechnology, Seoul, 06974, Republic of Korea
| | - Yong-Hak Kim
- Department of Microbiology, School of Medicine, Catholic University of Daegu, Daegu, 42472, Republic of Korea
| | - Hak Kyun Kim
- Department of Life Science, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Minkyung Ryu
- Department of Life Science, Chung-Ang University, Seoul, 06974, Republic of Korea
- R & D Institute, NES Biotechnology, Seoul, 06974, Republic of Korea
| | - Hong-Man Kim
- R & D Institute, NES Biotechnology, Seoul, 06974, Republic of Korea
| | - Jeongkyu Kim
- Department of Life Science, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Keun P Kim
- Department of Life Science, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Yoonsoo Hahn
- Department of Life Science, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Jeehyeon Bae
- School of Pharmacy, Chung-Ang University, Seoul, 06974, Republic of Korea.
| | - Kangseok Lee
- Department of Life Science, Chung-Ang University, Seoul, 06974, Republic of Korea.
- R & D Institute, NES Biotechnology, Seoul, 06974, Republic of Korea.
| |
Collapse
|
4
|
Vigoda MB, Argaman L, Kournos M, Margalit H. Unraveling the interplay between a small RNA and RNase E in bacteria. Nucleic Acids Res 2024; 52:8947-8966. [PMID: 39036964 PMCID: PMC11347164 DOI: 10.1093/nar/gkae621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 06/28/2024] [Accepted: 07/03/2024] [Indexed: 07/23/2024] Open
Abstract
Small RNAs (sRNAs) are major regulators of gene expression in bacteria, exerting their regulation primarily via base pairing with their target transcripts and modulating translation. Accumulating evidence suggest that sRNAs can also affect the stability of their target transcripts by altering their accessibility to endoribonucleases. Yet, the effects of sRNAs on transcript stability and the mechanisms underlying them have not been studied in wide scale. Here we employ large-scale RNA-seq-based methodologies in the model bacterium Escherichia coli to quantitatively study the functional interaction between a sRNA and an endoribonuclease in regulating gene expression, using the well-established sRNA, GcvB, and the major endoribonuclease, RNase E. Studying single and double mutants of gcvB and rne and analysing their RNA-seq results by the Double Mutant Cycle approach, we infer distinct modes of the interplay between GcvB and RNase E. Transcriptome-wide mapping of RNase E cleavage sites provides further support to the results of the RNA-seq analysis, identifying cleavage sites in targets in which the functional interaction between GcvB and RNase E is evident. Together, our results indicate that the most dominant mode of GcvB-RNase E functional interaction is GcvB enhancement of RNase E cleavage, which varies in its magnitude between different targets.
Collapse
Affiliation(s)
- Meshi Barsheshet Vigoda
- Department of Microbiology and Molecular Genetics, IMRIC, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Liron Argaman
- Department of Microbiology and Molecular Genetics, IMRIC, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Mark Kournos
- Department of Microbiology and Molecular Genetics, IMRIC, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Hanah Margalit
- Department of Microbiology and Molecular Genetics, IMRIC, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| |
Collapse
|
5
|
Lejars M, Hajnsdorf E. Bacterial RNase III: Targets and physiology. Biochimie 2024; 217:54-65. [PMID: 37482092 DOI: 10.1016/j.biochi.2023.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/28/2023] [Accepted: 07/13/2023] [Indexed: 07/25/2023]
Abstract
Bacteria can rapidly adapt to changes in their environment thanks to the innate flexibility of their genetic expression. The high turnover rate of RNAs, in particular messenger and regulatory RNAs, provides an important contribution to this dynamic adjustment. Recycling of RNAs is ensured by ribonucleases, among which RNase III is the focus of this review. RNase III enzymes are highly conserved from prokaryotes to eukaryotes and have the specific ability to cleave double-stranded RNAs. The role of RNase III in bacterial physiology has remained poorly explored for a long time. However, transcriptomic approaches recently uncovered a large impact of RNase III in gene expression in a wide range of bacteria, generating renewed interest in the physiological role of RNase III. In this review, we first describe the RNase III targets identified from global approaches in 8 bacterial species within 4 Phyla. We then present the conserved and unique functions of bacterial RNase III focusing on growth, resistance to stress, biofilm formation, motility and virulence. Altogether, this review highlights the underestimated impact of RNase III in bacterial adaptation.
Collapse
Affiliation(s)
- Maxence Lejars
- Transborder Medical Research Center, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan.
| | - Eliane Hajnsdorf
- UMR8261, CNRS, Université Paris Cité, Institut de Biologie Physico-Chimique, 13 Rue Pierre et Marie Curie, 75005, Paris, France.
| |
Collapse
|
6
|
Relaxed Cleavage Specificity of Hyperactive Variants of Escherichia coli RNase E on RNA I. J Microbiol 2023; 61:211-220. [PMID: 36814003 DOI: 10.1007/s12275-023-00013-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 12/26/2022] [Accepted: 12/27/2022] [Indexed: 02/24/2023]
Abstract
RNase E is an essential enzyme in Escherichia coli. The cleavage site of this single-stranded specific endoribonuclease is well-characterized in many RNA substrates. Here, we report that the upregulation of RNase E cleavage activity by a mutation that affects either RNA binding (Q36R) or enzyme multimerization (E429G) was accompanied by relaxed cleavage specificity. Both mutations led to enhanced RNase E cleavage in RNA I, an antisense RNA of ColE1-type plasmid replication, at a major site and other cryptic sites. Expression of a truncated RNA I with a major RNase E cleavage site deletion at the 5'-end (RNA I-5) resulted in an approximately twofold increase in the steady-state levels of RNA I-5 and the copy number of ColE1-type plasmid in E. coli cells expressing wild-type or variant RNase E compared to those expressing RNA I. These results indicate that RNA I-5 does not efficiently function as an antisense RNA despite having a triphosphate group at the 5'-end, which protects the RNA from ribonuclease attack. Our study suggests that increased cleavage rates of RNase E lead to relaxed cleavage specificity on RNA I and the inability of the cleavage product of RNA I as an antisense regulator in vivo does not stem from its instability by having 5'-monophosphorylated end.
Collapse
|
7
|
Richards J, Belasco JG. Graded impact of obstacle size on scanning by RNase E. Nucleic Acids Res 2023; 51:1364-1374. [PMID: 36620905 PMCID: PMC9943677 DOI: 10.1093/nar/gkac1242] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/11/2022] [Accepted: 12/13/2022] [Indexed: 01/10/2023] Open
Abstract
In countless bacterial species, the lifetimes of most mRNAs are controlled by the regulatory endonuclease RNase E, which preferentially degrades RNAs bearing a 5' monophosphate and locates cleavage sites within them by scanning linearly from the 5' terminus along single-stranded regions. Consequently, its rate of cleavage at distal sites is governed by any obstacles that it may encounter along the way, such as bound proteins or ribosomes or base pairing that is coaxial with the path traversed by this enzyme. Here, we report that the protection afforded by such obstacles is dependent on the size and persistence of the structural discontinuities they create, whereas the molecular composition of obstacles to scanning is of comparatively little consequence. Over a broad range of sizes, incrementally larger discontinuities are incrementally more protective, with corresponding effects on mRNA stability. The graded impact of such obstacles suggests possible explanations for why their effect on scanning is not an all-or-none phenomenon dependent simply on whether the size of the resulting discontinuity exceeds the step length of RNase E.
Collapse
Affiliation(s)
- Jamie Richards
- Skirball Institute of Biomolecular Medicine, New York University School of Medicine, 540 First Avenue, New York, NY 10016, USA,Department of Microbiology, New York University School of Medicine, 430 E. 29th Street, New York, NY 10016, USA
| | - Joel G Belasco
- To whom correspondence should be addressed. Tel: +1 212 263 5409;
| |
Collapse
|
8
|
Clarke JE, Sabharwal K, Kime L, McDowall KJ. The recognition of structured elements by a conserved groove distant from domains associated with catalysis is an essential determinant of RNase E. Nucleic Acids Res 2023; 51:365-379. [PMID: 36594161 PMCID: PMC9841416 DOI: 10.1093/nar/gkac1228] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 11/11/2022] [Accepted: 12/08/2022] [Indexed: 01/04/2023] Open
Abstract
RNase E is an endoribonuclease found in many bacteria, including important human pathogens. Within Escherichia coli, it has been shown to have a major role in both the maturation of all classes of RNA involved in translation and the initiation of mRNA degradation. Thus, knowledge of the major determinants of RNase E cleavage is central to our understanding and manipulation of bacterial gene expression. We show here that the binding of RNase E to structured RNA elements is crucial for the processing of tRNA, can activate catalysis and may be important in mRNA degradation. The recognition of structured elements by RNase E is mediated by a recently discovered groove that is distant from the domains associated with catalysis. The functioning of this groove is shown here to be essential for E. coli cell viability and may represent a key point of evolutionary divergence from the paralogous RNase G family, which we show lack amino acid residues conserved within the RNA-binding groove of members of the RNase E family. Overall, this work provides new insights into the recognition and cleavage of RNA by RNase E and provides further understanding of the basis of RNase E essentiality in E. coli.
Collapse
Affiliation(s)
| | | | - Louise Kime
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Kenneth J McDowall
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| |
Collapse
|
9
|
Mohanty BK, Kushner SR. Regulation of mRNA decay in E. coli. Crit Rev Biochem Mol Biol 2022; 57:48-72. [PMID: 34547957 PMCID: PMC9973670 DOI: 10.1080/10409238.2021.1968784] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 08/03/2021] [Accepted: 08/12/2021] [Indexed: 10/20/2022]
Abstract
Detailed studies of the Gram-negative model bacterium, Escherichia coli, have demonstrated that post-transcriptional events exert important and possibly greater control over gene regulation than transcription initiation or effective translation. Thus, over the past 30 years, considerable effort has been invested in understanding the pathways of mRNA turnover in E. coli. Although it is assumed that most of the ribonucleases and accessory proteins involved in mRNA decay have been identified, our understanding of the regulation of mRNA decay is still incomplete. Furthermore, the vast majority of the studies on mRNA decay have been conducted on exponentially growing cells. Thus, the mechanism of mRNA decay as currently outlined may not accurately reflect what happens when cells find themselves under a variety of stress conditions, such as, nutrient starvation, changes in pH and temperature, as well as a host of others. While the cellular machinery for degradation is relatively constant over a wide range of conditions, intracellular levels of specific ribonucleases can vary depending on the growth conditions. Substrate competition will also modulate ribonucleolytic activity. Post-transcriptional modifications of transcripts by polyadenylating enzymes may favor a specific ribonuclease activity. Interactions with small regulatory RNAs and RNA binding proteins add additional complexities to mRNA functionality and stability. Since many of the ribonucleases are found at the inner membrane, the physical location of a transcript may help determine its half-life. Here we discuss the properties and role of the enzymes involved in mRNA decay as well as the multiple factors that may affect mRNA decay under various in vivo conditions.
Collapse
Affiliation(s)
| | - Sidney R. Kushner
- Department of Genetics, University of Georgia, Athens GA 30602
- Department of Microbiology, University of Georgia, Athens GA 30602
| |
Collapse
|
10
|
Apura P, Gonçalves LG, Viegas SC, Arraiano CM. The world of ribonucleases from pseudomonads: a short trip through the main features and singularities. Microb Biotechnol 2021; 14:2316-2333. [PMID: 34427985 PMCID: PMC8601179 DOI: 10.1111/1751-7915.13890] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 06/30/2021] [Indexed: 11/27/2022] Open
Abstract
The development of synthetic biology has brought an unprecedented increase in the number molecular tools applicable into a microbial chassis. The exploration of such tools into different bacteria revealed not only the challenges of context dependency of biological functions but also the complexity and diversity of regulatory layers in bacterial cells. Most of the standardized genetic tools and principles/functions have been mostly based on model microorganisms, namely Escherichia coli. In contrast, the non-model pseudomonads lack a deeper understanding of their regulatory layers and have limited molecular tools. They are resistant pathogens and promising alternative bacterial chassis, making them attractive targets for further studies. Ribonucleases (RNases) are key players in the post-transcriptional control of gene expression by degrading or processing the RNA molecules in the cell. These enzymes act according to the cellular requirements and can also be seen as the recyclers of ribonucleotides, allowing a continuous input of these cellular resources. This makes these post-transcriptional regulators perfect candidates to regulate microbial physiology. This review summarizes the current knowledge and unique properties of ribonucleases in the world of pseudomonads, taking into account genomic context analysis, biological function and strategies to use ribonucleases to improve biotechnological processes.
Collapse
Affiliation(s)
- Patrícia Apura
- Instituto de Tecnologia Química e Biológica António XavierUniversidade Nova de LisboaAv. da República, EANOeiras2780‐157Portugal
| | - Luis G. Gonçalves
- Instituto de Tecnologia Química e Biológica António XavierUniversidade Nova de LisboaAv. da República, EANOeiras2780‐157Portugal
| | - Sandra C. Viegas
- Instituto de Tecnologia Química e Biológica António XavierUniversidade Nova de LisboaAv. da República, EANOeiras2780‐157Portugal
| | - Cecília M. Arraiano
- Instituto de Tecnologia Química e Biológica António XavierUniversidade Nova de LisboaAv. da República, EANOeiras2780‐157Portugal
| |
Collapse
|
11
|
Roux C, Etienne TA, Hajnsdorf E, Ropers D, Carpousis AJ, Cocaign-Bousquet M, Girbal L. The essential role of mRNA degradation in understanding and engineering E. coli metabolism. Biotechnol Adv 2021; 54:107805. [PMID: 34302931 DOI: 10.1016/j.biotechadv.2021.107805] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 06/28/2021] [Accepted: 07/14/2021] [Indexed: 11/17/2022]
Abstract
Metabolic engineering strategies are crucial for the development of bacterial cell factories with improved performance. Until now, optimal metabolic networks have been designed based on systems biology approaches integrating large-scale data on the steady-state concentrations of mRNA, protein and metabolites, sometimes with dynamic data on fluxes, but rarely with any information on mRNA degradation. In this review, we compile growing evidence that mRNA degradation is a key regulatory level in E. coli that metabolic engineering strategies should take into account. We first discuss how mRNA degradation interacts with transcription and translation, two other gene expression processes, to balance transcription regulation and remove poorly translated mRNAs. The many reciprocal interactions between mRNA degradation and metabolism are also highlighted: metabolic activity can be controlled by changes in mRNA degradation and in return, the activity of the mRNA degradation machinery is controlled by metabolic factors. The mathematical models of the crosstalk between mRNA degradation dynamics and other cellular processes are presented and discussed with a view towards novel mRNA degradation-based metabolic engineering strategies. We show finally that mRNA degradation-based strategies have already successfully been applied to improve heterologous protein synthesis. Overall, this review underlines how important mRNA degradation is in regulating E. coli metabolism and identifies mRNA degradation as a key target for innovative metabolic engineering strategies in biotechnology.
Collapse
Affiliation(s)
- Charlotte Roux
- TBI, Université de Toulouse, CNRS, INRAE, INSA, 31077 Toulouse, France; UMR8261, CNRS, Université de Paris, Institut de Biologie Physico-Chimique, 13 rue Pierre et Marie Curie, 75005 Paris, France.
| | - Thibault A Etienne
- TBI, Université de Toulouse, CNRS, INRAE, INSA, 31077 Toulouse, France; Univ. Grenoble Alpes, Inria, 38000 Grenoble, France.
| | - Eliane Hajnsdorf
- UMR8261, CNRS, Université de Paris, Institut de Biologie Physico-Chimique, 13 rue Pierre et Marie Curie, 75005 Paris, France.
| | | | - A J Carpousis
- TBI, Université de Toulouse, CNRS, INRAE, INSA, 31077 Toulouse, France; LMGM, Université de Toulouse, CNRS, UPS, CBI, 31062 Toulouse, France.
| | | | - Laurence Girbal
- TBI, Université de Toulouse, CNRS, INRAE, INSA, 31077 Toulouse, France.
| |
Collapse
|
12
|
Lee J, Lee M, Lee K. Trans-acting regulators of ribonuclease activity. J Microbiol 2021; 59:341-359. [PMID: 33779951 DOI: 10.1007/s12275-021-0650-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 12/28/2020] [Accepted: 12/28/2020] [Indexed: 12/16/2022]
Abstract
RNA metabolism needs to be tightly regulated in response to changes in cellular physiology. Ribonucleases (RNases) play an essential role in almost all aspects of RNA metabolism, including processing, degradation, and recycling of RNA molecules. Thus, living systems have evolved to regulate RNase activity at multiple levels, including transcription, post-transcription, post-translation, and cellular localization. In addition, various trans-acting regulators of RNase activity have been discovered in recent years. This review focuses on the physiological roles and underlying mechanisms of trans-acting regulators of RNase activity.
Collapse
Affiliation(s)
- Jaejin Lee
- Department of Life Science, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Minho Lee
- Department of Life Science, Chung-Ang University, Seoul, 06974, Republic of Korea.
| | - Kangseok Lee
- Department of Life Science, Chung-Ang University, Seoul, 06974, Republic of Korea.
| |
Collapse
|
13
|
Lee J, Lee M, Lee K. Trans-acting regulators of ribonuclease activity. J Microbiol 2021:10.1007/s12275-021-0650-3. [PMID: 33565052 DOI: 10.1007/s12275-021-0650-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 12/28/2020] [Accepted: 12/28/2020] [Indexed: 11/29/2022]
Abstract
RNA metabolism needs to be tightly regulated in response to changes in cellular physiology. Ribonucleases (RNases) play an essential role in almost all aspects of RNA metabolism, including processing, degradation, and recycling of RNA molecules. Thus, living systems have evolved to regulate RNase activity at multiple levels, including transcription, post-transcription, post-translation, and cellular localization. In addition, various trans-acting regulators of RNase activity have been discovered in recent years. This review focuses on the physiological roles and underlying mechanisms of trans-acting regulators of RNase activity.
Collapse
Affiliation(s)
- Jaejin Lee
- Department of Life Science, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Minho Lee
- Department of Life Science, Chung-Ang University, Seoul, 06974, Republic of Korea.
| | - Kangseok Lee
- Department of Life Science, Chung-Ang University, Seoul, 06974, Republic of Korea.
| |
Collapse
|
14
|
Lee M, Ryu M, Joo M, Seo YJ, Lee J, Kim HM, Shin E, Yeom JH, Kim YH, Bae J, Lee K. Endoribonuclease-mediated control of hns mRNA stability constitutes a key regulatory pathway for Salmonella Typhimurium pathogenicity island 1 expression. PLoS Pathog 2021; 17:e1009263. [PMID: 33524062 PMCID: PMC7877770 DOI: 10.1371/journal.ppat.1009263] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 02/11/2021] [Accepted: 01/01/2021] [Indexed: 01/04/2023] Open
Abstract
Bacteria utilize endoribonuclease-mediated RNA processing and decay to rapidly adapt to environmental changes. Here, we report that the modulation of hns mRNA stability by the endoribonuclease RNase G plays a key role in Salmonella Typhimurium pathogenicity. We found that RNase G determines the half-life of hns mRNA by cleaving its 5′ untranslated region and that altering its cleavage sites by genome editing stabilizes hns mRNA, thus decreasing S. Typhimurium virulence in mice. Under anaerobic conditions, the FNR-mediated transcriptional repression of rnc encoding RNase III, which degrades rng mRNA, and simultaneous induction of rng transcription resulted in rapid hns mRNA degradation, leading to the derepression of genes involved in the Salmonella pathogenicity island 1 (SPI-1) type III secretion system (T3SS). Together, our findings show that RNase III and RNase G levels-mediated control of hns mRNA abundance acts as a regulatory pathway upstream of a complex feed-forward loop for SPI-1 expression. Recent studies have shown that pathogenic bacteria with ribonuclease mutations display attenuated virulence, impaired mobility, and reduced proliferation in host cells. However, the molecular mechanisms underlying ribonuclease-associated pathogenesis have not yet been characterised. Here, we provide strong experimental evidence that the coordinated modulation of endoribonuclease activity constitutes an additional regulatory layer upstream of a complex feed-forward loop controlling global regulatory systems in the Salmonella pathogenicity island 1 (SPI-1) type III secretion system (T3SS). In addition, we showed that this regulatory pathway plays a key role in the virulence of S. Typhimurium in the host. Thus, our study improves the understanding of the mechanisms through which bacterial pathogens sense the host environment and respond precisely by expressing gene products required for adaptation to that particular niche.
Collapse
Affiliation(s)
- Minho Lee
- Department of Life Science, Chung-Ang University, Dongjak-Gu, Seoul, Republic of Korea
| | - Minkyung Ryu
- Department of Life Science, Chung-Ang University, Dongjak-Gu, Seoul, Republic of Korea
| | - Minju Joo
- Department of Life Science, Chung-Ang University, Dongjak-Gu, Seoul, Republic of Korea
| | - Young-Jin Seo
- Department of Life Science, Chung-Ang University, Dongjak-Gu, Seoul, Republic of Korea
| | - Jaejin Lee
- Department of Life Science, Chung-Ang University, Dongjak-Gu, Seoul, Republic of Korea
| | - Hong-Man Kim
- Department of Life Science, Chung-Ang University, Dongjak-Gu, Seoul, Republic of Korea
| | - Eunkyoung Shin
- Department of Pharmacy, Chung-Ang University, Dongjak-Gu, Seoul, Republic of Korea
| | - Ji-Hyun Yeom
- Department of Life Science, Chung-Ang University, Dongjak-Gu, Seoul, Republic of Korea
| | - Yong-Hak Kim
- Department of Microbiology, Daegu Catholic University School of Medicine, Daegu, Republic of Korea
- * E-mail: (Y-HK); (JB); (KL)
| | - Jeehyeon Bae
- Department of Pharmacy, Chung-Ang University, Dongjak-Gu, Seoul, Republic of Korea
- * E-mail: (Y-HK); (JB); (KL)
| | - Kangseok Lee
- Department of Life Science, Chung-Ang University, Dongjak-Gu, Seoul, Republic of Korea
- * E-mail: (Y-HK); (JB); (KL)
| |
Collapse
|
15
|
Substrate-dependent effects of quaternary structure on RNase E activity. Genes Dev 2021; 35:286-299. [PMID: 33446571 PMCID: PMC7849360 DOI: 10.1101/gad.335828.119] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 12/15/2020] [Indexed: 11/25/2022]
Abstract
RNase E is an essential, multifunctional ribonuclease encoded in E. coli by the rne gene. Structural analysis indicates that the ribonucleolytic activity of this enzyme is conferred by rne-encoded polypeptide chains that (1) dimerize to form a catalytic site at the protein-protein interface, and (2) multimerize further to generate a tetrameric quaternary structure consisting of two dimerized Rne-peptide chains. We identify here a mutation in the Rne protein's catalytic region (E429G), as well as a bacterial cell wall peptidoglycan hydrolase (Amidase C [AmiC]), that selectively affect the specific activity of the RNase E enzyme on long RNA substrates, but not on short synthetic oligonucleotides, by enhancing enzyme multimerization. Unlike the increase in specific activity that accompanies concentration-induced multimerization, enhanced multimerization associated with either the E429G mutation or interaction of the Rne protein with AmiC is independent of the substrate's 5' terminus phosphorylation state. Our findings reveal a previously unsuspected substrate length-dependent regulatory role for RNase E quaternary structure and identify cis-acting and trans-acting factors that mediate such regulation.
Collapse
|
16
|
Angel-Lerma LE, Merino E, Kwon O, Medina-Aparicio L, Hernández-Lucas I, Alvarez AF, Georgellis D. Protein dosage of the lldPRD operon is correlated with RNase E-dependent mRNA processing. J Bacteriol 2020; 203:JB.00555-20. [PMID: 33361194 PMCID: PMC8095457 DOI: 10.1128/jb.00555-20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 12/16/2020] [Indexed: 11/20/2022] Open
Abstract
The ability of Escherichia coli to grow on L-lactate as a sole carbon source depends on the expression of the lldPRD operon. A striking feature of this operon is that the transcriptional regulator (LldR) encoding gene is located between the permease (LldP) and the dehydrogenase (LldD) encoding genes. In this study we report that dosage of the LldP, LldR, and LldD proteins is not modulated on the transcriptional level. Instead, modulation of protein dosage is primarily correlated with RNase E-dependent mRNA processing events that take place within the lldR mRNA, leading to the immediate inactivation of lldR, to differential segmental stabilities of the resulting cleavage products, and to differences in the translation efficiencies of the three cistrons. A model for the processing events controlling the molar quantities of the proteins in the lldPRD operon is presented and discussed.ImportanceAdjustment of gene expression is critical for proper cell function. For the case of polycistronic transcripts, posttranscriptional regulatory mechanisms can be used to fine-tune the expression of individual cistrons. Here, we elucidate how protein dosage of the Escherichia coli lldPRD operon, which presents the paradox of having the gene encoding a regulator protein located between genes that code for a permease and an enzyme, is regulated. Our results demonstrate that the key event in this regulatory mechanism involves the RNase E-dependent cleavage of the primary lldPRD transcript at internal site(s) located within the lldR cistron, resulting in a drastic decrease of intact lldR mRNA, to differential segmental stabilities of the resulting cleavage products, and to differences in the translation efficiencies of the three cistrons.
Collapse
Affiliation(s)
- Lidia E Angel-Lerma
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México City, México
| | - Enrique Merino
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Ohsuk Kwon
- Korea Research Institute of Bioscience & Biotechnology (KRIBB), Daejeon, Republic of Korea; Biosystems and Bioengineering Program, University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Liliana Medina-Aparicio
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Ismael Hernández-Lucas
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Adrián F Alvarez
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México City, México
| | - Dimitris Georgellis
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México City, México
| |
Collapse
|
17
|
Apura P, de Lorenzo V, Arraiano CM, Martínez-García E, Viegas SC. Ribonucleases control distinct traits of Pseudomonas putida lifestyle. Environ Microbiol 2020; 23:174-189. [PMID: 33089610 DOI: 10.1111/1462-2920.15291] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 09/21/2020] [Accepted: 10/19/2020] [Indexed: 11/28/2022]
Abstract
The role of archetypal ribonucleases (RNases) in the physiology and stress endurance of the soil bacterium and metabolic engineering platform Pseudomonas putida KT2440 has been inspected. To this end, variants of this strain lacking each of the most important RNases were constructed. Each mutant lacked either one exoribonuclease (PNPase, RNase R) or one endoribonuclease (RNase E, RNase III, RNase G). The global physiological and metabolic costs of the absence of each of these enzymes were then analysed in terms of growth, motility and morphology. The effects of different oxidative chemicals that mimic the stresses endured by this microorganism in its natural habitats were studied as well. The results highlighted that each ribonuclease is specifically related with different traits of the environmental lifestyle that distinctively characterizes this microorganism. Interestingly, the physiological responses of P. putida to the absence of each enzyme diverged significantly from those known previously in Escherichia coli. This exposed not only species-specific regulatory functions for otherwise known RNase activities but also expanded the panoply of post-transcriptional adaptation devices that P. putida can make use of for facing hostile environments.
Collapse
Affiliation(s)
- Patrícia Apura
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Av. da República, EAN, 2780-157, Portugal
| | - Víctor de Lorenzo
- Systems Biology Program, Centro Nacional de Biotecnologia, CSIC, C/Darwin, 3 (Campus de Cantoblanco), Madrid, 28049, Spain
| | - Cecília M Arraiano
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Av. da República, EAN, 2780-157, Portugal
| | - Esteban Martínez-García
- Systems Biology Program, Centro Nacional de Biotecnologia, CSIC, C/Darwin, 3 (Campus de Cantoblanco), Madrid, 28049, Spain
| | - Sandra C Viegas
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Av. da República, EAN, 2780-157, Portugal
| |
Collapse
|
18
|
Evolution of an Escherichia coli PTS - strain: a study of reproducibility and dynamics of an adaptive evolutive process. Appl Microbiol Biotechnol 2020; 104:9309-9325. [PMID: 32954454 DOI: 10.1007/s00253-020-10885-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 08/12/2020] [Accepted: 09/04/2020] [Indexed: 10/23/2022]
Abstract
Adaptive laboratory evolution (ALE) has been used to study and solve pressing questions about evolution, especially for the study of the development of mutations that confer increased fitness during evolutionary processes. In this contribution, we investigated how the evolutionary process conducted with the PTS- mutant of Escherichia coli PB11 in three parallel batch cultures allowed the restoration of rapid growth with glucose as the carbon source. The significant findings showed that genomic sequence analysis of a set of newly evolved mutants isolated from ALE experiments 2-3 developed some essential mutations, which efficiently improved the fast-growing phenotypes throughout different fitness landscapes. Regulator galR was the target of several mutations such as SNPs, partial and total deletions, and insertion of an IS1 element and thus indicated the relevance of a null mutation of this gene in the adaptation of the evolving population of PB11 during the parallel ALE experiments. These mutations resulted in the selection of MglB and GalP as the primary glucose transporters by the evolving population, but further selection of at least a second adaptive mutation was also necessary. We found that mutations in the yfeO, rppH, and rng genes improved the fitness advantage of evolving PTS- mutants and resulted in amplification of leaky activity in Glk for glucose phosphorylation and upregulation of glycolytic and other growth-related genes. Notably, we determined that these mutations appeared and were fixed in the evolving populations between 48 and 72 h of cultivation, which resulted in the selection of fast-growing mutants during one ALE experiments in batch cultures of 80 h duration.Key points• ALE experiments selected evolved mutants through different fitness landscapes in which galR was the target of different mutations: SNPs, deletions, and insertion of IS.• Key mutations in evolving mutants appeared and fixed at 48-72 h of cultivation.• ALE experiments led to increased understanding of the genetics of cellular adaptation to carbon source limitation.
Collapse
|
19
|
Cavaiuolo M, Chagneau C, Laalami S, Putzer H. Impact of RNase E and RNase J on Global mRNA Metabolism in the Cyanobacterium Synechocystis PCC6803. Front Microbiol 2020; 11:1055. [PMID: 32582060 PMCID: PMC7283877 DOI: 10.3389/fmicb.2020.01055] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 04/29/2020] [Indexed: 01/18/2023] Open
Abstract
mRNA levels result from an equilibrium between transcription and degradation. Ribonucleases (RNases) facilitate the turnover of mRNA, which is an important way of controlling gene expression, allowing the cells to adjust transcript levels to a changing environment. In contrast to the heterotrophic model bacteria Escherichia coli and Bacillus subtilis, RNA decay has not been studied in detail in cyanobacteria. Synechocystis sp. PCC6803 encodes orthologs of both E. coli and B. subtilis RNases, including RNase E and RNase J, respectively. We show that in vitro Sy RNases E and J have an endonucleolytic cleavage specificity that is very similar between them and also compared to orthologous enzymes from E. coli, B. subtilis, and Chlamydomonas. Moreover, Sy RNase J displays a robust 5′-exoribonuclease activity similar to B. subtilis RNase J1, but unlike the evolutionarily related RNase J in chloroplasts. Both nucleases are essential and gene deletions could not be fully segregated in Synechocystis. We generated partially disrupted strains of Sy RNase E and J that were stable enough to allow for their growth and characterization. A transcriptome analysis of these strains partially depleted for RNases E and J, respectively, allowed to observe effects on specific transcripts. RNase E altered the expression of a larger number of chromosomal genes and antisense RNAs compared to RNase J, which rather affects endogenous plasmid encoded transcripts. Our results provide the first description of the main transcriptomic changes induced by the partial depletion of two essential ribonucleases in cyanobacteria.
Collapse
Affiliation(s)
- Marina Cavaiuolo
- UMR 8261, CNRS, Institut de Biologie Physico-Chimique, Université de Paris, Paris, France
| | - Carine Chagneau
- UMR 8261, CNRS, Institut de Biologie Physico-Chimique, Université de Paris, Paris, France
| | - Soumaya Laalami
- UMR 8261, CNRS, Institut de Biologie Physico-Chimique, Université de Paris, Paris, France
| | - Harald Putzer
- UMR 8261, CNRS, Institut de Biologie Physico-Chimique, Université de Paris, Paris, France
| |
Collapse
|
20
|
Trinquier A, Durand S, Braun F, Condon C. Regulation of RNA processing and degradation in bacteria. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2020; 1863:194505. [PMID: 32061882 DOI: 10.1016/j.bbagrm.2020.194505] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 01/13/2020] [Accepted: 02/11/2020] [Indexed: 12/22/2022]
Abstract
Messenger RNA processing and decay is a key mechanism to control gene expression at the post-transcriptional level in response to ever-changing environmental conditions. In this review chapter, we discuss the main ribonucleases involved in these processes in bacteria, with a particular but non-exclusive emphasis on the two best-studied paradigms of Gram-negative and Gram-positive bacteria, E. coli and B. subtilis, respectively. We provide examples of how the activity and specificity of these enzymes can be modulated at the protein level, by co-factor binding and by post-translational modifications, and how they can be influenced by specific properties of their mRNA substrates, such as 5' protective 'caps', nucleotide modifications, secondary structures and translation. This article is part of a Special Issue entitled: RNA and gene control in bacteria edited by Dr. M. Guillier and F. Repoila.
Collapse
Affiliation(s)
- Aude Trinquier
- UMR8261 (CNRS, Université de Paris), Institut de Biologie Physico-Chimique, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | - Sylvain Durand
- UMR8261 (CNRS, Université de Paris), Institut de Biologie Physico-Chimique, 13 rue Pierre et Marie Curie, 75005 Paris, France.
| | - Frédérique Braun
- UMR8261 (CNRS, Université de Paris), Institut de Biologie Physico-Chimique, 13 rue Pierre et Marie Curie, 75005 Paris, France.
| | - Ciarán Condon
- UMR8261 (CNRS, Université de Paris), Institut de Biologie Physico-Chimique, 13 rue Pierre et Marie Curie, 75005 Paris, France.
| |
Collapse
|
21
|
The coordinated action of RNase III and RNase G controls enolase expression in response to oxygen availability in Escherichia coli. Sci Rep 2019; 9:17257. [PMID: 31754158 PMCID: PMC6872547 DOI: 10.1038/s41598-019-53883-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 10/09/2019] [Indexed: 01/25/2023] Open
Abstract
Rapid modulation of RNA function by endoribonucleases during physiological responses to environmental changes is known to be an effective bacterial biochemical adaptation. We report a molecular mechanism underlying the regulation of enolase (eno) expression by two endoribonucleases, RNase G and RNase III, the expression levels of which are modulated by oxygen availability in Escherichia coli. Analyses of transcriptional eno-cat fusion constructs strongly suggested the existence of cis-acting elements in the eno 5' untranslated region that respond to RNase III and RNase G cellular concentrations. Primer extension and S1 nuclease mapping analyses of eno mRNA in vivo identified three eno mRNA transcripts that are generated in a manner dependent on RNase III expression, one of which was found to accumulate in rng-deleted cells. Moreover, our data suggested that RNase III-mediated cleavage of primary eno mRNA transcripts enhanced Eno protein production, a process that involved putative cis-antisense RNA. We found that decreased RNase G protein abundance coincided with enhanced RNase III expression in E. coli grown anaerobically, leading to enhanced eno expression. Thereby, this posttranscriptional up-regulation of eno expression helps E. coli cells adjust their physiological reactions to oxygen-deficient metabolic modes. Our results revealed a molecular network of coordinated endoribonuclease activity that post-transcriptionally modulates the expression of Eno, a key enzyme in glycolysis.
Collapse
|
22
|
RNase G controls tpiA mRNA abundance in response to oxygen availability in Escherichia coli. J Microbiol 2019; 57:910-917. [DOI: 10.1007/s12275-019-9354-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 07/19/2019] [Accepted: 07/19/2019] [Indexed: 01/25/2023]
|
23
|
Updegrove TB, Kouse AB, Bandyra KJ, Storz G. Stem-loops direct precise processing of 3' UTR-derived small RNA MicL. Nucleic Acids Res 2019; 47:1482-1492. [PMID: 30462307 PMCID: PMC6379649 DOI: 10.1093/nar/gky1175] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 10/29/2018] [Accepted: 11/05/2018] [Indexed: 12/14/2022] Open
Abstract
Increasing numbers of 3′UTR-derived small, regulatory RNAs (sRNAs) are being discovered in bacteria, most generated by cleavage from longer transcripts. The enzyme required for these cleavages has been reported to be RNase E, the major endoribonuclease in enterica bacteria. Previous studies investigating RNase E have come to a range of different conclusions regarding the determinants for RNase E processing. To better understand the sequence and structure determinants for the precise processing of a 3′ UTR-derived sRNA, we examined the cleavage of multiple mutant and chimeric derivatives of the 3′ UTR-derived MicL sRNA in vivo and in vitro. Our results revealed that tandem stem–loops 3′ to the cleavage site define optimal, correctly-positioned cleavage of MicL and probably other sRNAs. Moreover, our assays of MicL, ArcZ and CpxQ showed that sRNAs exhibit differential sensitivity to RNase E, likely a consequence of a hierarchy of sRNA features recognized by the endonuclease.
Collapse
Affiliation(s)
- Taylor B Updegrove
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892-5430, USA
| | - Andrew B Kouse
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892-5430, USA
| | - Katarzyna J Bandyra
- Department of Biochemistry, University of Cambridge, Tennis Court road, Cambridge CB2 1GA, UK
| | - Gisela Storz
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892-5430, USA
| |
Collapse
|
24
|
Andreassen PR, Pettersen JS, Szczerba M, Valentin-Hansen P, Møller-Jensen J, Jørgensen MG. sRNA-dependent control of curli biosynthesis in Escherichia coli: McaS directs endonucleolytic cleavage of csgD mRNA. Nucleic Acids Res 2019; 46:6746-6760. [PMID: 29905843 PMCID: PMC6061853 DOI: 10.1093/nar/gky479] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 05/25/2018] [Indexed: 11/22/2022] Open
Abstract
Production of curli, extracellular protein structures important for Escherichia coli biofilm formation, is governed by a highly complex regulatory mechanism that integrates multiple environmental signals through the involvement of numerous proteins and small non-coding RNAs (sRNAs). No less than seven sRNAs (McaS, RprA, GcvB, RydC, RybB, OmrA and OmrB) are known to repress the expression of the curli activator CsgD. Many of the sRNAs repress CsgD production by binding to the csgD mRNA at sites far upstream of the ribosomal binding site. The precise mechanism behind sRNA-mediated regulation of CsgD synthesis is largely unknown. In this study, we identify a conserved A/U-rich region in the csgD mRNA 5′ untranslated region, which is cleaved upon binding of the small RNAs, McaS, RprA or GcvB, to sites located more than 30 nucleotides downstream. Mutational analysis shows that the A/U-rich region as well as an adjacent stem–loop structure are required for McaS-stimulated degradation, also serving as a binding platform for the RNA chaperone Hfq. Prevention of McaS-activated cleavage completely relieves repression, suggesting that endoribonucleolytic cleavage of csgD mRNA is the primary regulatory effect exerted by McaS. Moreover, we find that McaS-mediated degradation of the csgD 5′ untranslated region requires RNase E.
Collapse
Affiliation(s)
- Patrick Rosendahl Andreassen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark. Campusvej 55, 5230 Odense M. Denmark
| | - Jens Sivkær Pettersen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark. Campusvej 55, 5230 Odense M. Denmark
| | - Mateusz Szczerba
- Ira A. Fulton Schools of Engineering and School of Life Sciences, Arizona State University, Tempe, AZ, USA.,Biodesign Center for Immunotherapy, Vaccines, and Virotherapy (B-CIVV), Biodesign Institute, Arizona State University. 727 East Tyler Street, Tempe, AZ 85287-5001, USA
| | - Poul Valentin-Hansen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark. Campusvej 55, 5230 Odense M. Denmark
| | - Jakob Møller-Jensen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark. Campusvej 55, 5230 Odense M. Denmark
| | - Mikkel Girke Jørgensen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark. Campusvej 55, 5230 Odense M. Denmark
| |
Collapse
|
25
|
Bechhofer DH, Deutscher MP. Bacterial ribonucleases and their roles in RNA metabolism. Crit Rev Biochem Mol Biol 2019; 54:242-300. [PMID: 31464530 PMCID: PMC6776250 DOI: 10.1080/10409238.2019.1651816] [Citation(s) in RCA: 117] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 07/22/2019] [Accepted: 07/31/2019] [Indexed: 12/16/2022]
Abstract
Ribonucleases (RNases) are mediators in most reactions of RNA metabolism. In recent years, there has been a surge of new information about RNases and the roles they play in cell physiology. In this review, a detailed description of bacterial RNases is presented, focusing primarily on those from Escherichia coli and Bacillus subtilis, the model Gram-negative and Gram-positive organisms, from which most of our current knowledge has been derived. Information from other organisms is also included, where relevant. In an extensive catalog of the known bacterial RNases, their structure, mechanism of action, physiological roles, genetics, and possible regulation are described. The RNase complement of E. coli and B. subtilis is compared, emphasizing the similarities, but especially the differences, between the two. Included are figures showing the three major RNA metabolic pathways in E. coli and B. subtilis and highlighting specific steps in each of the pathways catalyzed by the different RNases. This compilation of the currently available knowledge about bacterial RNases will be a useful tool for workers in the RNA field and for others interested in learning about this area.
Collapse
Affiliation(s)
- David H. Bechhofer
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Murray P. Deutscher
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
26
|
Richards J, Belasco JG. Obstacles to Scanning by RNase E Govern Bacterial mRNA Lifetimes by Hindering Access to Distal Cleavage Sites. Mol Cell 2019; 74:284-295.e5. [PMID: 30852060 DOI: 10.1016/j.molcel.2019.01.044] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 12/11/2018] [Accepted: 01/29/2019] [Indexed: 12/27/2022]
Abstract
The diversity of mRNA lifetimes in bacterial cells is difficult to reconcile with the relaxed cleavage site specificity of RNase E, the endonuclease most important for governing mRNA degradation. This enzyme has generally been thought to locate cleavage sites by searching freely in three dimensions. However, our results now show that its access to such sites in 5'-monophosphorylated RNA is hindered by obstacles-such as bound proteins or ribosomes or coaxial small RNA (sRNA) base pairing-that disrupt the path from the 5' end to those sites and prolong mRNA lifetimes. These findings suggest that RNase E searches for cleavage sites by scanning linearly from the 5'-terminal monophosphate along single-stranded regions of RNA and that its progress is impeded by structural discontinuities encountered along the way. This discovery has major implications for gene regulation in bacteria and suggests a general mechanism by which other prokaryotic and eukaryotic regulatory proteins can be controlled.
Collapse
Affiliation(s)
- Jamie Richards
- Kimmel Center for Biology and Medicine at the Skirball Institute, New York University School of Medicine, 540 First Avenue, New York, NY 10016, USA; Department of Microbiology, New York University School of Medicine, 430 E. 29th Street, New York, NY 10016, USA
| | - Joel G Belasco
- Kimmel Center for Biology and Medicine at the Skirball Institute, New York University School of Medicine, 540 First Avenue, New York, NY 10016, USA; Department of Microbiology, New York University School of Medicine, 430 E. 29th Street, New York, NY 10016, USA.
| |
Collapse
|
27
|
Smith BA, Gupta N, Denny K, Culver GM. Characterization of 16S rRNA Processing with Pre-30S Subunit Assembly Intermediates from E. coli. J Mol Biol 2018; 430:1745-1759. [PMID: 29660326 DOI: 10.1016/j.jmb.2018.04.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 04/05/2018] [Accepted: 04/06/2018] [Indexed: 01/02/2023]
Abstract
Ribosomal RNA (rRNA) is a major component of ribosomes and is fundamental to the process of translation. In bacteria, 16S rRNA is a component of the small ribosomal subunit and plays a critical role in mRNA decoding. rRNA maturation entails the removal of intervening spacer sequences contained within the pre-rRNA transcript by nucleolytic enzymes. Enzymatic activities involved in maturation of the 5'-end of 16S rRNA have been identified, but those involved in 3'-end maturation of 16S rRNA are more enigmatic. Here, we investigate molecular details of 16S rRNA maturation using purified in vivo-formed small subunit (SSU) assembly intermediates (pre-SSUs) from wild-type Escherichia coli that contain precursor 16S rRNA (17S rRNA). Upon incubation of pre-SSUs with E. coli S100 cell extracts or purified enzymes implicated in 16S rRNA processing, the 17S rRNA is processed into additional intermediates and mature 16S rRNA. These results illustrate that exonucleases RNase R, RNase II, PNPase, and RNase PH can process the 3'-end of pre-SSUs in vitro. However, the endonuclease YbeY did not exhibit nucleolytic activity with pre-SSUs under these conditions. Furthermore, these data demonstrate that multiple pathways facilitate 16S rRNA maturation with pre-SSUs in vitro, with the dominant pathways entailing complete processing of the 5'-end of 17S rRNA prior to 3'-end maturation or partial processing of the 5'-end with concomitant processing of the 3'-end. These results reveal the multifaceted nature of SSU biogenesis and suggest that E. coli may be able to escape inactivation of any one enzyme by using an existing complementary pathway.
Collapse
Affiliation(s)
- Brian A Smith
- Department of Biology, University of Rochester, Rochester, NY 14627, USA
| | - Neha Gupta
- Department of Biology, University of Rochester, Rochester, NY 14627, USA; Laboratory on the Mechanism and Regulation of Protein Synthesis, Eunice Kennedy Shriver National Institute of Child Health and Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kevin Denny
- Department of Biology, University of Rochester, Rochester, NY 14627, USA; Chemistry and Biochemistry Department, Nazareth College, Pittsford, NY 14618, USA
| | - Gloria M Culver
- Department of Biology, University of Rochester, Rochester, NY 14627, USA; Laboratory on the Mechanism and Regulation of Protein Synthesis, Eunice Kennedy Shriver National Institute of Child Health and Development, National Institutes of Health, Bethesda, MD 20892, USA; Center for RNA Biology: from Genome to Therapeutics, University of Rochester Medical Center, Rochester, NY 14627, USA.
| |
Collapse
|
28
|
Mohanty BK, Kushner SR. Enzymes Involved in Posttranscriptional RNA Metabolism in Gram-Negative Bacteria. Microbiol Spectr 2018; 6:10.1128/microbiolspec.rwr-0011-2017. [PMID: 29676246 PMCID: PMC5912700 DOI: 10.1128/microbiolspec.rwr-0011-2017] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Indexed: 02/08/2023] Open
Abstract
Gene expression in Gram-negative bacteria is regulated at many levels, including transcription initiation, RNA processing, RNA/RNA interactions, mRNA decay, and translational controls involving enzymes that alter translational efficiency. In this review, we discuss the various enzymes that control transcription, translation, and RNA stability through RNA processing and degradation. RNA processing is essential to generate functional RNAs, while degradation helps control the steady-state level of each individual transcript. For example, all the pre-tRNAs are transcribed with extra nucleotides at both their 5' and 3' termini, which are subsequently processed to produce mature tRNAs that can be aminoacylated. Similarly, rRNAs that are transcribed as part of a 30S polycistronic transcript are matured to individual 16S, 23S, and 5S rRNAs. Decay of mRNAs plays a key role in gene regulation through controlling the steady-state level of each transcript, which is essential for maintaining appropriate protein levels. In addition, degradation of both translated and nontranslated RNAs recycles nucleotides to facilitate new RNA synthesis. To carry out all these reactions, Gram-negative bacteria employ a large number of endonucleases, exonucleases, RNA helicases, and poly(A) polymerase, as well as proteins that regulate the catalytic activity of particular RNases. Under certain stress conditions, an additional group of specialized endonucleases facilitate the cell's ability to adapt and survive. Many of the enzymes, such as RNase E, RNase III, polynucleotide phosphorylase, RNase R, and poly(A) polymerase I, participate in multiple RNA processing and decay pathways.
Collapse
Affiliation(s)
| | - Sidney R Kushner
- Department of Genetics
- Department of Microbiology, University of Georgia, Athens, GA 30602
| |
Collapse
|
29
|
Bernardini A, Martínez JL. Genome-wide analysis shows that RNase G plays a global role in the stability of mRNAs in Stenotrophomonas maltophilia. Sci Rep 2017; 7:16016. [PMID: 29167539 PMCID: PMC5700063 DOI: 10.1038/s41598-017-16091-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 11/07/2017] [Indexed: 11/28/2022] Open
Abstract
Gene expression is determined by critical processes such as RNA synthesis and degradation. Ribonucleases participate in the coordinated and differential decay of messenger RNAs. We describe a suitable method of normalization and calculation of mRNAs half-life values quantified by RNA-Seq. We determined the mRNA half-lives of more than 2000 genes in Stenotrophomonas maltophilia D457 and in an isogenic RNase G deficient mutant. Median half-lives were 2,74 and 3 min in the wild-type and the rng-deficient strain, respectively. The absence of RNase G resulted in an overall enhancement of mRNA half-life times, showing that many RNAs are targets of RNase G in S. maltophilia. Around 40 genes are likely to be regulated directly by RNase G since their half-lives were more than two-fold higher in the rng-deficient mutant. Gene length, GC content or expression levels did not correlate with mRNAs lifetimes, although groups of genes with different functions showed different RNA half-lives. Further, we predicted 1542 gene pairs to be part of the same operons in S. maltophilia. In contrast to what was described for other bacteria, our data indicate that RNase G has a global role in mRNA stability and consequently in the regulation of S. maltophilia gene expression.
Collapse
Affiliation(s)
| | - José L Martínez
- Centro Nacional de Biotecnología, CSIC, Darwin 3, 28049, Madrid, Spain.
| |
Collapse
|
30
|
Enzymatic activity necessary to restore the lethality due to Escherichia coli RNase E deficiency is distributed among bacteria lacking RNase E homologues. PLoS One 2017; 12:e0177915. [PMID: 28542621 PMCID: PMC5436854 DOI: 10.1371/journal.pone.0177915] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 05/05/2017] [Indexed: 12/20/2022] Open
Abstract
Escherichia coli RNase E (Eco-RNase E), encoded by rne (Eco-rne), is considered the global RNA decay initiator. Although Eco-RNase E is an essential gene product in E. coli, some bacterial species, such as Bacillus subtilis, do not possess Eco-RNase E sequence homologues. B. subtilis instead possesses RNase J1/J2 (Bsu-RNase J1/J2) and RNase Y (Bsu-RNase Y) to execute RNA decay. Here we found that E. coli lacking the Eco-rne gene (Δrne E. coli) was viable conditional on M9 minimal media by introducing Bsu-RNase J1/J2 or Bsu-RNase Y. We also cloned an extremely short Eco-RNase E homologue (Wpi-RNase E) and a canonical sized Bsu-RNase J1/J2 homologue (Wpi-RNase J) from Wolbachia pipientis, an α-proteobacterial endosymbiont of arthropods. We found that Wpi-RNase J restored the colony-forming ability (CFA) of Δrne E. coli, whereas Wpi-RNase E did not. Unexpectedly, Wpi-RNase E restored defective CFA due to lack of Eco-RNase G, a paralogue of Eco-RNase E. Our results indicate that bacterial species that lack Eco-RNase E homologues or bacterial species that possess Eco-RNase E homologues which lack Eco-RNase E-like activities have a modest Eco-RNase E-like function using RNase J and/or RNase Y. These results suggest that Eco-RNase E-like activities might distribute among a wide array of bacteria and that functions of RNases may have changed dynamically during evolutionary divergence of bacterial lineages.
Collapse
|
31
|
Gialama D, Delivoria DC, Michou M, Giannakopoulou A, Skretas G. Functional Requirements for DjlA- and RraA-Mediated Enhancement of Recombinant Membrane Protein Production in the Engineered Escherichia coli Strains SuptoxD and SuptoxR. J Mol Biol 2017; 429:1800-1816. [PMID: 28501587 DOI: 10.1016/j.jmb.2017.05.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 04/30/2017] [Accepted: 05/04/2017] [Indexed: 12/17/2022]
Abstract
In previous work, we have generated the engineered Escherichia coli strains SuptoxD and SuptoxR, which upon co-expression of the effector genes djlA or rraA, respectively, are capable of suppressing the cytotoxicity caused by membrane protein (MP) overexpression and of producing dramatically enhanced yields for a variety of recombinant MPs of both prokaryotic and eukaryotic origin. Here, we investigated the functional requirements for DnaJ-like protein A (DjlA)- and regulator of ribonuclease activity A (RraA)-mediated enhancement of recombinant MP production in these strains and show that: (i) DjlA and RraA act independently, that is, the beneficial effects of each protein on recombinant MP production occur through a mechanism that does not involve the other, and in a non-additive manner; (ii) full-length and membrane-bound DjlA is required for exerting its beneficial effects on recombinant MP production in E. coli SuptoxD; (iii) the MP production-promoting properties of DjlA in SuptoxD involve the action of the molecular chaperone DnaK but do not rely on the activation of the regulation of capsular synthesis response, a well-established consequence of djlA overexpression; (iv) the observed RraA-mediated effects in E. coli SuptoxR involve the ribonucleolytic activity of RNase E, but not that of its paralogous ribonuclease RNase G; and (v) DjlA and RraA are unique among similar E. coli proteins in their ability to promote bacterial recombinant MP production. These observations provide important clues about the molecular requirements for suppressed toxicity and enhanced MP accumulation in SuptoxD/SuptoxR and will guide future studies aiming to decipher the exact mechanism of DjlA- and RraA-mediated enhancement of recombinant MP production in these strains.
Collapse
Affiliation(s)
- Dimitra Gialama
- Institute of Biology, Medicinal Chemistry & Biotechnology, National Hellenic Research Foundation, Athens, 11635, Greece; Laboratory of Biotechnology, School of Chemical Engineering, National Technical University of Athens, Athens, 15780, Greece
| | - Dafni Chrysanthi Delivoria
- Institute of Biology, Medicinal Chemistry & Biotechnology, National Hellenic Research Foundation, Athens, 11635, Greece; Laboratory of Biotechnology, School of Chemical Engineering, National Technical University of Athens, Athens, 15780, Greece
| | - Myrsini Michou
- Institute of Biology, Medicinal Chemistry & Biotechnology, National Hellenic Research Foundation, Athens, 11635, Greece; Department of Biochemistry and Biotechnology, University of Thessaly, Larissa, 41500, Greece
| | - Artemis Giannakopoulou
- Institute of Biology, Medicinal Chemistry & Biotechnology, National Hellenic Research Foundation, Athens, 11635, Greece
| | - Georgios Skretas
- Institute of Biology, Medicinal Chemistry & Biotechnology, National Hellenic Research Foundation, Athens, 11635, Greece.
| |
Collapse
|
32
|
RNA Sequencing Identifies New RNase III Cleavage Sites in Escherichia coli and Reveals Increased Regulation of mRNA. mBio 2017; 8:mBio.00128-17. [PMID: 28351917 PMCID: PMC5371410 DOI: 10.1128/mbio.00128-17] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Ribonucleases facilitate rapid turnover of RNA, providing cells with another mechanism to adjust transcript and protein levels in response to environmental conditions. While many examples have been documented, a comprehensive list of RNase targets is not available. To address this knowledge gap, we compared levels of RNA sequencing coverage of Escherichia coli and a corresponding RNase III mutant to expand the list of known RNase III targets. RNase III is a widespread endoribonuclease that binds and cleaves double-stranded RNA in many critical transcripts. RNase III cleavage at novel sites found in aceEF, proP, tnaC, dctA, pheM, sdhC, yhhQ, glpT, aceK, and gluQ accelerated RNA decay, consistent with previously described targets wherein RNase III cleavage initiates rapid degradation of secondary messages by other RNases. In contrast, cleavage at three novel sites in the ahpF, pflB, and yajQ transcripts led to stabilized secondary transcripts. Two other novel sites in hisL and pheM overlapped with transcriptional attenuators that likely serve to ensure turnover of these highly structured RNAs. Many of the new RNase III target sites are located on transcripts encoding metabolic enzymes. For instance, two novel RNase III sites are located within transcripts encoding enzymes near a key metabolic node connecting glycolysis and the tricarboxylic acid (TCA) cycle. Pyruvate dehydrogenase activity was increased in an rnc deletion mutant compared to the wild-type (WT) strain in early stationary phase, confirming the novel link between RNA turnover and regulation of pathway activity. Identification of these novel sites suggests that mRNA turnover may be an underappreciated mode of regulating metabolism. The concerted action and overlapping functions of endoribonucleases, exoribonucleases, and RNA processing enzymes complicate the study of global RNA turnover and recycling of specific transcripts. More information about RNase specificity and activity is needed to make predictions of transcript half-life and to design synthetic transcripts with optimal stability. RNase III does not have a conserved target sequence but instead recognizes RNA secondary structure. Prior to this study, only a few RNase III target sites in E. coli were known, so we used RNA sequencing to provide a more comprehensive list of cleavage sites and to examine the impact of RNase III on transcript degradation. With this added information on how RNase III participates in transcript regulation and recycling, a more complete picture of RNA turnover can be developed for E. coli. Similar approaches could be used to augment our understanding of RNA turnover in other bacteria.
Collapse
|
33
|
Decreased Expression of Stable RNA Can Alleviate the Lethality Associated with RNase E Deficiency in Escherichia coli. J Bacteriol 2017; 199:JB.00724-16. [PMID: 28167522 DOI: 10.1128/jb.00724-16] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 01/28/2017] [Indexed: 11/20/2022] Open
Abstract
The endoribonuclease RNase E participates in mRNA degradation, rRNA processing, and tRNA maturation in Escherichia coli, but the precise reasons for its essentiality are unclear and much debated. The enzyme is most active on RNA substrates with a 5'-terminal monophosphate, which is sensed by a domain in the enzyme that includes residue R169; E. coli also possesses a 5'-pyrophosphohydrolase, RppH, that catalyzes conversion of 5'-terminal triphosphate to 5'-terminal monophosphate on RNAs. Although the C-terminal half (CTH), beyond residue approximately 500, of RNase E is dispensable for viability, deletion of the CTH is lethal when combined with an R169Q mutation or with deletion of rppH In this work, we show that both these lethalities can be rescued in derivatives in which four or five of the seven rrn operons in the genome have been deleted. We hypothesize that the reduced stable RNA levels under these conditions minimize the need of RNase E to process them, thereby allowing for its diversion for mRNA degradation. In support of this hypothesis, we have found that other conditions that are known to reduce stable RNA levels also suppress one or both lethalities: (i) alterations in relA and spoT, which are expected to lead to increased basal ppGpp levels; (ii) stringent rpoB mutations, which mimic high intracellular ppGpp levels; and (iii) overexpression of DksA. Lethality suppression by these perturbations was RNase R dependent. Our work therefore suggests that its actions on the various substrates (mRNA, rRNA, and tRNA) jointly contribute to the essentiality of RNase E in E. coliIMPORTANCE The endoribonuclease RNase E is essential for viability in many Gram-negative bacteria, including Escherichia coli Different explanations have been offered for its essentiality, including its roles in global mRNA degradation or in the processing of several tRNA and rRNA species. Our work suggests that, rather than its role in the processing of any one particular substrate, its distributed functions on all the different substrates (mRNA, rRNA, and tRNA) are responsible for the essentiality of RNase E in E. coli.
Collapse
|
34
|
Seo S, Kim D, Song W, Heo J, Joo M, Lim Y, Yeom JH, Lee K. RraAS1 inhibits the ribonucleolytic activity of RNase ES by interacting with its catalytic domain in Streptomyces coelicolor. J Microbiol 2016; 55:37-43. [PMID: 28035598 DOI: 10.1007/s12275-017-6518-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 12/15/2016] [Accepted: 12/20/2016] [Indexed: 11/26/2022]
Abstract
RraA is a protein inhibitor of RNase E, which degrades and processes numerous RNAs in Escherichia coli. Streptomyces coelicolor also contains homologs of RNase E and RraA, RNase ES and RraAS1/RraAS2, respectively. Here, we report that, unlike other RraA homologs, RraAS1 directly interacts with the catalytic domain of RNase ES to exert its inhibitory effect. We further show that rraAS1 gene deletion in S. coelicolor results in a higher growth rate and increased production of actinorhodin and undecylprodigiosin, compared with the wild-type strain, suggesting that RraAS1-mediated regulation of RNase ES activity contributes to modulating the cellular physiology of S. coelicolor.
Collapse
Affiliation(s)
- Sojin Seo
- Department of Life Science, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Daeyoung Kim
- Department of Life Science, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Wooseok Song
- Department of Life Science, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Jihune Heo
- Department of Life Science, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Minju Joo
- Department of Life Science, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Yeri Lim
- Department of Life Science, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Ji-Hyun Yeom
- Department of Life Science, Chung-Ang University, Seoul, 06974, Republic of Korea.
| | - Kangseok Lee
- Department of Life Science, Chung-Ang University, Seoul, 06974, Republic of Korea.
| |
Collapse
|
35
|
Heo J, Kim D, Joo M, Lee B, Seo S, Lee J, Song S, Yeom JH, Ha NC, Lee K. RraAS2 requires both scaffold domains of RNase ES for high-affinity binding and inhibitory action on the ribonucleolytic activity. J Microbiol 2016; 54:660-6. [PMID: 27687228 DOI: 10.1007/s12275-016-6417-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 09/07/2016] [Accepted: 09/07/2016] [Indexed: 10/20/2022]
Abstract
RraA is a protein inhibitor of RNase E (Rne), which catalyzes the endoribonucleolytic cleavage of a large proportion of RNAs in Escherichia coli. The antibiotic-producing bacterium Streptomyces coelicolor also contains homologs of RNase E and RraA, designated as RNase ES (Rns), RraAS1, and RraAS2, respectively. Here, we report that RraAS2 requires both scaffold domains of RNase ES for high-affinity binding and inhibitory action on the ribonucleolytic activity. Analyses of the steady-state level of RNase E substrates indicated that coexpression of RraAS2 in E. coli cells overproducing Rns effectively inhibits the ribonucleolytic activity of full-length RNase ES, but its inhibitory effects were moderate or undetectable on other truncated forms of Rns, in which the N- or/and C-terminal scaffold domain was deleted. In addition, RraAS2 more efficiently inhibited the in vitro ribonucleolytic activity of RNase ES than that of a truncated form containing the catalytic domain only. Coimmunoprecipitation and in vivo cross-linking experiments further showed necessity of both scaffold domains of RNase ES for high-affinity binding of RraAS2 to the enzyme, resulting in decreased RNA-binding capacity of RNase ES. Our results indicate that RraAS2 is a protein inhibitor of RNase ES and provide clues to how this inhibitor affects the ribonucleolytic activity of RNase ES.
Collapse
Affiliation(s)
- Jihune Heo
- Department of Life Science, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Daeyoung Kim
- Department of Life Science, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Minju Joo
- Department of Life Science, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Boeun Lee
- Department of Life Science, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Sojin Seo
- Department of Life Science, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Jaejin Lee
- Department of Life Science, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Saemee Song
- Department of Agricultural Biotechnology, Seoul National University, Seoul, 08826, Republic of Korea
| | - Ji-Hyun Yeom
- Department of Life Science, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Nam-Chul Ha
- Department of Agricultural Biotechnology, Seoul National University, Seoul, 08826, Republic of Korea
| | - Kangseok Lee
- Department of Life Science, Chung-Ang University, Seoul, 06974, Republic of Korea.
| |
Collapse
|
36
|
Abstract
Gram-negative and gram-positive bacteria use a variety of enzymatic pathways to degrade mRNAs. Although several recent reviews have outlined these pathways, much less attention has been paid to the regulation of mRNA decay. The functional half-life of a particular mRNA, which affects how much protein is synthesized from it, is determined by a combination of multiple factors. These include, but are not necessarily limited to, (a) stability elements at either the 5' or the 3' terminus, (b) posttranscriptional modifications, (c) ribosome density on individual mRNAs, (d) small regulatory RNA (sRNA) interactions with mRNAs, (e) regulatory proteins that alter ribonuclease binding affinities, (f) the presence or absence of endonucleolytic cleavage sites, (g) control of intracellular ribonuclease levels, and (h) physical location within the cell. Changes in physiological conditions associated with environmental alterations can significantly alter the impact of these factors in the decay of a particular mRNA.
Collapse
Affiliation(s)
- Bijoy K Mohanty
- Department of Genetics, University of Georgia, Athens, Georgia 30602;
| | - Sidney R Kushner
- Department of Genetics, University of Georgia, Athens, Georgia 30602;
| |
Collapse
|
37
|
Functional Analysis of Vibrio vulnificus Orthologs of Escherichia coli RraA and RNase E. Curr Microbiol 2016; 72:716-22. [PMID: 26888524 DOI: 10.1007/s00284-016-1007-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 01/06/2016] [Indexed: 10/22/2022]
Abstract
RNase E plays an important role in the degradation and processing of RNA in Escherichia coli. The enzymatic activity of RNase E is controlled by the protein inhibitors RraA and RraB. The marine pathogenic bacterium Vibrio vulnificus also contains homologs of RNase E and RraA, designated as RNase EV, RraAV1, and RraAV2. Here, we report that RraAV1 actively inhibits the enzymatic activity of RNase EV in vivo and in vitro by interacting with the C-terminal domain of RNase EV. Coexpression of RraAV1 reduced ribonucleolytic activity in the cells overproducing RNase EV and consequently restored normal growth of these cells. An in vitro cleavage assay further demonstrated that RraAV1 efficiently inhibits the ribonucleolytic activity of RNase EV on BR10 + hpT, a synthetic oligonucleotide containing the RNase E cleavage site of RNA I. Our findings suggest that RraAV1 plays an active role in RNase EV-mediated RNA cleavage in V. vulnificus.
Collapse
|
38
|
Tamura M, Honda N, Fujimoto H, Cohen SN, Kato A. PpsA-mediated alternative pathway to complement RNase E essentiality in Escherichia coli. Arch Microbiol 2016; 198:409-21. [PMID: 26883538 DOI: 10.1007/s00203-016-1201-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2015] [Revised: 01/21/2016] [Accepted: 02/01/2016] [Indexed: 12/22/2022]
Abstract
Escherichia coli cells require RNase E, encoded by the essential gene rne, to propagate. The growth properties on different carbon sources of E. coli cells undergoing suppression of RNase E production suggested that reduction in RNase E is associated with decreased expression of phosphoenolpyruvate synthetase (PpsA), which converts pyruvate to phosphoenolpyruvate during gluconeogenesis. Western blotting and genetic complementation confirmed the role of RNase E in PpsA expression. Adventitious ppsA overexpression from a multicopy plasmid was sufficient to restore colony formation of ∆rne E. coli on minimal media containing glycerol or succinate as the sole carbon source. Complementation of ∆rne by ppsA overproduction was observed during growth on solid media but was only partial, and bacteria showed slowed cell division and grew as filamentous chains. We found that restoration of colony-forming ability by ppsA complementation occurred independent of the presence of endogenous RNase G or second-site suppressors of RNase E essentiality. Our investigations demonstrate the role of phosphoryl transfer catalyzable by PpsA as a determinant of RNase E essentiality in E. coli.
Collapse
Affiliation(s)
- Masaru Tamura
- Department of Quality Assurance and Radiological Protection, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo, 162-8640, Japan.
| | - Naoko Honda
- Department of Quality Assurance and Radiological Protection, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo, 162-8640, Japan
| | - Hirofumi Fujimoto
- Department of Quality Assurance and Radiological Protection, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo, 162-8640, Japan
| | - Stanley N Cohen
- Departments of Genetics and Medicine, School of Medicine, Stanford University, Stanford, CA, USA
| | - Atsushi Kato
- Department of Quality Assurance and Radiological Protection, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo, 162-8640, Japan
| |
Collapse
|
39
|
Richards J, Belasco JG. Distinct Requirements for 5'-Monophosphate-assisted RNA Cleavage by Escherichia coli RNase E and RNase G. J Biol Chem 2015; 291:5038-48. [PMID: 26694614 DOI: 10.1074/jbc.m115.702555] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Indexed: 11/06/2022] Open
Abstract
RNase E and RNase G are homologous endonucleases that play important roles in RNA processing and decay in Escherichia coli and related bacterial species. Rapid mRNA degradation is facilitated by the preference of both enzymes for decay intermediates whose 5' end is monophosphorylated. In this report we identify key characteristics of RNA that influence the rate of 5'-monophosphate-assisted cleavage by these two ribonucleases. In vitro, both require at least two and prefer three or more unpaired 5'-terminal nucleotides for such cleavage; however, RNase G is impeded more than RNase E when fewer than four unpaired nucleotides are present at the 5' end. Each can tolerate any unpaired nucleotide (A, G, C, or U) at either of the first two positions, with only modest biases. The optimal spacing between the 5' end and the scissile phosphate appears to be eight nucleotides for RNase E but only six for RNase G. 5'-Monophosphate-assisted cleavage also occurs, albeit more slowly, when that spacing is greater or at most one nucleotide shorter than the optimum, but there is no simple inverse relationship between increased spacing and the rate of cleavage. These properties are also manifested during 5'-end-dependent mRNA degradation in E. coli.
Collapse
Affiliation(s)
- Jamie Richards
- From the Kimmel Center for Biology and Medicine at the Skirball Institute and the Department of Microbiology, New York University School of Medicine, New York, New York 10016
| | - Joel G Belasco
- From the Kimmel Center for Biology and Medicine at the Skirball Institute and the Department of Microbiology, New York University School of Medicine, New York, New York 10016
| |
Collapse
|
40
|
van Nues RW, Castro-Roa D, Yuzenkova Y, Zenkin N. Ribonucleoprotein particles of bacterial small non-coding RNA IsrA (IS61 or McaS) and its interaction with RNA polymerase core may link transcription to mRNA fate. Nucleic Acids Res 2015; 44:2577-92. [PMID: 26609136 PMCID: PMC4824073 DOI: 10.1093/nar/gkv1302] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 11/08/2015] [Indexed: 11/23/2022] Open
Abstract
Coupled transcription and translation in bacteria are tightly regulated. Some small RNAs (sRNAs) control aspects of this coupling by modifying ribosome access or inducing degradation of the message. Here, we show that sRNA IsrA (IS61 or McaS) specifically associates with core enzyme of RNAP in vivo and in vitro, independently of σ factor and away from the main nucleic-acids-binding channel of RNAP. We also show that, in the cells, IsrA exists as ribonucleoprotein particles (sRNPs), which involve a defined set of proteins including Hfq, S1, CsrA, ProQ and PNPase. Our findings suggest that IsrA might be directly involved in transcription or can participate in regulation of gene expression by delivering proteins associated with it to target mRNAs through its interactions with transcribing RNAP and through regions of sequence-complementarity with the target. In this eukaryotic-like model only in the context of a complex with its target, IsrA and its associated proteins become active. In this manner, in the form of sRNPs, bacterial sRNAs could regulate a number of targets with various outcomes, depending on the set of associated proteins.
Collapse
Affiliation(s)
- Rob W van Nues
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, NE2 4AX, UK
| | - Daniel Castro-Roa
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, NE2 4AX, UK
| | - Yulia Yuzenkova
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, NE2 4AX, UK
| | - Nikolay Zenkin
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, NE2 4AX, UK
| |
Collapse
|
41
|
Bernardini A, Corona F, Dias R, Sánchez MB, Martínez JL. The inactivation of RNase G reduces the Stenotrophomonas maltophilia susceptibility to quinolones by triggering the heat shock response. Front Microbiol 2015; 6:1068. [PMID: 26539164 PMCID: PMC4609926 DOI: 10.3389/fmicb.2015.01068] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 09/17/2015] [Indexed: 01/11/2023] Open
Abstract
Quinolone resistance is usually due to mutations in the genes encoding bacterial topoisomerases. However, different reports have shown that neither clinical quinolone resistant isolates nor in vitro obtained Stenotrophomonas maltophilia mutants present mutations in such genes. The mechanisms so far described consist on efflux pumps' overexpression. Our objective is to get information on novel mechanisms of S. maltophilia quinolone resistance. For this purpose, a transposon-insertion mutant library was obtained in S. maltophilia D457. One mutant presenting reduced susceptibility to nalidixic acid was selected. Inverse PCR showed that the inactivated gene encodes RNase G. Complementation of the mutant with wild-type RNase G allele restored the susceptibility to quinolones. Transcriptomic and real-time RT-PCR analyses showed that several genes encoding heat-shock response proteins were expressed at higher levels in the RNase defective mutant than in the wild-type strain. In agreement with this situation, heat-shock reduces the S. maltophilia susceptibility to quinolone. We can then conclude that the inactivation of the RNase G reduces the susceptibility of S. maltophilia to quinolones, most likely by regulating the expression of heat-shock response genes. Heat-shock induces a transient phenotype of quinolone resistance in S. maltophilia.
Collapse
Affiliation(s)
- Alejandra Bernardini
- Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas Madrid, Spain
| | - Fernando Corona
- Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas Madrid, Spain
| | - Ricardo Dias
- Biosystems and Integrative Sciences Institute, Faculty of Sciences, University of Lisbon Lisbon, Portugal
| | - Maria B Sánchez
- Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas Madrid, Spain
| | - Jose L Martínez
- Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas Madrid, Spain
| |
Collapse
|
42
|
Abstract
This review provides a description of the known Escherichia coli ribonucleases (RNases), focusing on their structures, catalytic properties, genes, physiological roles, and possible regulation. Currently, eight E. coli exoribonucleases are known. These are RNases II, R, D, T, PH, BN, polynucleotide phosphorylase (PNPase), and oligoribonuclease (ORNase). Based on sequence analysis and catalytic properties, the eight exoribonucleases have been grouped into four families. These are the RNR family, including RNase II and RNase R; the DEDD family, including RNase D, RNase T, and ORNase; the RBN family, consisting of RNase BN; and the PDX family, including PNPase and RNase PH. Seven well-characterized endoribonucleases are known in E. coli. These are RNases I, III, P, E, G, HI, and HII. Homologues to most of these enzymes are also present in Salmonella. Most of the endoribonucleases cleave RNA in the presence of divalent cations, producing fragments with 3'-hydroxyl and 5'-phosphate termini. RNase H selectively hydrolyzes the RNA strand of RNA?DNA hybrids. Members of the RNase H family are widely distributed among prokaryotic and eukaryotic organisms in three distinct lineages, RNases HI, HII, and HIII. It is likely that E. coli contains additional endoribonucleases that have not yet been characterized. First of all, endonucleolytic activities are needed for certain known processes that cannot be attributed to any of the known enzymes. Second, homologues of known endoribonucleases are present in E. coli. Third, endonucleolytic activities have been observed in cell extracts that have different properties from known enzymes.
Collapse
|
43
|
Lalaouna D, Morissette A, Carrier MC, Massé E. DsrA regulatory RNA represses bothhnsandrbsDmRNAs through distinct mechanisms inEscherichia coli. Mol Microbiol 2015; 98:357-69. [DOI: 10.1111/mmi.13129] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/09/2015] [Indexed: 12/26/2022]
Affiliation(s)
- David Lalaouna
- Université de Sherbrooke; Faculty of Medicine and Health Sciences; Department of Biochemistry; RNA Group; Sherbrooke Québec Canada
| | - Audrey Morissette
- Université de Sherbrooke; Faculty of Medicine and Health Sciences; Department of Biochemistry; RNA Group; Sherbrooke Québec Canada
| | - Marie-Claude Carrier
- Université de Sherbrooke; Faculty of Medicine and Health Sciences; Department of Biochemistry; RNA Group; Sherbrooke Québec Canada
| | - Eric Massé
- Université de Sherbrooke; Faculty of Medicine and Health Sciences; Department of Biochemistry; RNA Group; Sherbrooke Québec Canada
| |
Collapse
|
44
|
Aït-Bara S, Carpousis AJ. RNA degradosomes in bacteria and chloroplasts: classification, distribution and evolution of RNase E homologs. Mol Microbiol 2015; 97:1021-135. [PMID: 26096689 DOI: 10.1111/mmi.13095] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/15/2015] [Indexed: 11/29/2022]
Abstract
Ribonuclease E (RNase E) of Escherichia coli, which is the founding member of a widespread family of proteins in bacteria and chloroplasts, is a fascinating enzyme that still has not revealed all its secrets. RNase E is an essential single-strand specific endoribonuclease that is involved in the processing and degradation of nearly every transcript in E. coli. A striking enzymatic property is a preference for substrates with a 5' monophosphate end although recent work explains how RNase E can overcome the protection afforded by the 5' triphosphate end of a primary transcript. Other features of E. coli RNase E include its interaction with enzymes involved in RNA degradation to form the multienzyme RNA degradosome and its localization to the inner cytoplasmic membrane. The N-terminal catalytic core of the RNase E protomer associates to form a tetrameric holoenzyme. Each RNase E protomer has a large C-terminal intrinsically disordered (ID) noncatalytic region that contains sites for interactions with protein components of the RNA degradosome as well as RNA and phospholipid bilayers. In this review, RNase E homologs have been classified into five types based on their primary structure. A recent analysis has shown that type I RNase E in the γ-proteobacteria forms an orthologous group of proteins that has been inherited vertically. The RNase E catalytic core and a large ID noncatalytic region containing an RNA binding motif and a membrane targeting sequence are universally conserved features of these orthologs. Although the ID noncatalytic region has low composition and sequence complexity, it is possible to map microdomains, which are short linear motifs that are sites of interaction with protein and other ligands. Throughout bacteria, the composition of the multienzyme RNA degradosome varies with species, but interactions with exoribonucleases (PNPase, RNase R), glycolytic enzymes (enolase, aconitase) and RNA helicases (DEAD-box proteins, Rho) are common. Plasticity in RNA degradosome composition is due to rapid evolution of RNase E microdomains. Characterization of the RNase E-PNPase interaction in α-proteobacteria, γ-proteobacteria and cyanobacteria suggests that it arose independently several times during evolution, thus conferring an advantage in control and coordination of RNA processing and degradation.
Collapse
Affiliation(s)
- Soraya Aït-Bara
- Microbes, Intestin, Inflammation et Susceptibilité de l'Hôte, Institut, National de la Santé et de la Recherche Médicale & Université d'Auvergne, Clermont-Ferrand, 63001, France
| | - Agamemnon J Carpousis
- Laboratoire de Microbiologie et Génétique Moléculaires, UMR 5100, Centre National de la Recherche Scientifique et Université de Toulouse 3, Toulouse, 31062, France
| |
Collapse
|
45
|
Ghodge SV, Raushel FM. Discovery of a Previously Unrecognized Ribonuclease from Escherichia coli That Hydrolyzes 5'-Phosphorylated Fragments of RNA. Biochemistry 2015; 54:2911-8. [PMID: 25871919 DOI: 10.1021/acs.biochem.5b00192] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
TrpH or YciV (locus tag b1266) from Escherichia coli is annotated as a protein of unknown function that belongs to the polymerase and histidinol phosphatase (PHP) family of proteins in the UniProt and NCBI databases. Enzymes from the PHP family have been shown to hydrolyze organophosphoesters using divalent metal ion cofactors at the active site. We found that TrpH is capable of hydrolyzing the 3'-phosphate from 3',5'-bis-phosphonucleotides. The enzyme will also sequentially hydrolyze 5'-phosphomononucleotides from 5'-phosphorylated RNA and DNA oligonucleotides, with no specificity toward the identity of the nucleotide base. The enzyme will not hydrolyze RNA or DNA oligonucleotides that are unphosphorylated at the 5'-end of the substrate, but it makes no difference whether the 3'-end of the oligonucleotide is phosphorylated. These results are consistent with the sequential hydrolysis of 5'-phosphorylated mononucleotides from oligonucleotides in the 5' → 3' direction. The catalytic efficiencies for hydrolysis of 3',5'-pAp, p(Ap)A, p(Ap)4A, and p(dAp)4dA were determined to be 1.8 × 10(5), 9.0 × 10(4), 4.6 × 10(4), and 2.9 × 10(3) M(-1) s(-1), respectively. TrpH was found to be more efficient at hydrolyzing RNA oligonucleotides than DNA oligonucleotides. This enzyme can also hydrolyze annealed DNA duplexes, albeit at a catalytic efficiency approximately 10-fold lower than that of the corresponding single-stranded oligonucleotides. TrpH is the first enzyme from E. coli that has been found to possess 5' → 3' exoribonuclease activity. We propose to name this enzyme RNase AM.
Collapse
|
46
|
Kime L, Vincent HA, Gendoo DMA, Jourdan SS, Fishwick CWG, Callaghan AJ, McDowall KJ. The first small-molecule inhibitors of members of the ribonuclease E family. Sci Rep 2015; 5:8028. [PMID: 25619596 PMCID: PMC4306137 DOI: 10.1038/srep08028] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Accepted: 12/16/2014] [Indexed: 11/08/2022] Open
Abstract
The Escherichia coli endoribonuclease RNase E is central to the processing and degradation of all types of RNA and as such is a pleotropic regulator of gene expression. It is essential for growth and was one of the first examples of an endonuclease that can recognise the 5'-monophosphorylated ends of RNA thereby increasing the efficiency of many cleavages. Homologues of RNase E can be found in many bacterial families including important pathogens, but no homologues have been identified in humans or animals. RNase E represents a potential target for the development of new antibiotics to combat the growing number of bacteria that are resistant to antibiotics in use currently. Potent small molecule inhibitors that bind the active site of essential enzymes are proving to be a source of potential drug leads and tools to dissect function through chemical genetics. Here we report the use of virtual high-throughput screening to obtain small molecules predicted to bind at sites in the N-terminal catalytic half of RNase E. We show that these compounds are able to bind with specificity and inhibit catalysis of Escherichia coli and Mycobacterium tuberculosis RNase E and also inhibit the activity of RNase G, a paralogue of RNase E.
Collapse
Affiliation(s)
- Louise Kime
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Helen A. Vincent
- School of Biological Sciences and Institute of Biomedical and Biomolecular Sciences, University of Portsmouth, Portsmouth, PO1 2DY, UK
| | - Deena M. A. Gendoo
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Stefanie S. Jourdan
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Colin W. G. Fishwick
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
- School of Chemistry, University of Leeds, Leeds, LS2 9JT, UK
| | - Anastasia J. Callaghan
- School of Biological Sciences and Institute of Biomedical and Biomolecular Sciences, University of Portsmouth, Portsmouth, PO1 2DY, UK
| | - Kenneth J. McDowall
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
| |
Collapse
|
47
|
Clarke JE, Kime L, Romero A D, McDowall KJ. Direct entry by RNase E is a major pathway for the degradation and processing of RNA in Escherichia coli. Nucleic Acids Res 2014; 42:11733-51. [PMID: 25237058 PMCID: PMC4191395 DOI: 10.1093/nar/gku808] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Revised: 08/20/2014] [Accepted: 08/21/2014] [Indexed: 12/20/2022] Open
Abstract
Escherichia coli endoribonuclease E has a major influence on gene expression. It is essential for the maturation of ribosomal and transfer RNA as well as the rapid degradation of messenger RNA. The latter ensures that translation closely follows programming at the level of transcription. Recently, one of the hallmarks of RNase E, i.e. its ability to bind via a 5'-monophosphorylated end, was shown to be unnecessary for the initial cleavage of some polycistronic tRNA precursors. Here we show using RNA-seq analyses of ribonuclease-deficient strains in vivo and a 5'-sensor mutant of RNase E in vitro that, contrary to current models, 5'-monophosphate-independent, 'direct entry' cleavage is a major pathway for degrading and processing RNA. Moreover, we present further evidence that direct entry is facilitated by RNase E binding simultaneously to multiple unpaired regions. These simple requirements may maximize the rate of degradation and processing by permitting multiple sites to be surveyed directly without being constrained by 5'-end tethering. Cleavage was detected at a multitude of sites previously undescribed for RNase E, including ones that regulate the activity and specificity of ribosomes. A potentially broad role for RNase G, an RNase E paralogue, in the trimming of 5'-monophosphorylated ends was also revealed.
Collapse
Affiliation(s)
- Justin E Clarke
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Louise Kime
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - David Romero A
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Kenneth J McDowall
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| |
Collapse
|
48
|
Abstract
mRNA degradation is an important mechanism for controlling gene expression in bacterial cells. This process involves the orderly action of a battery of cellular endonucleases and exonucleases, some universal and others present only in certain species. These ribonucleases function with the assistance of ancillary enzymes that covalently modify the 5' or 3' end of RNA or unwind base-paired regions. Triggered by initiating events at either the 5' terminus or an internal site, mRNA decay occurs at diverse rates that are transcript specific and governed by RNA sequence and structure, translating ribosomes, and bound sRNAs or proteins. In response to environmental cues, bacteria are able to orchestrate widespread changes in mRNA lifetimes by modulating the concentration or specific activity of cellular ribonucleases or by unmasking the mRNA-degrading activity of cellular toxins.
Collapse
Affiliation(s)
- Monica P Hui
- Kimmel Center for Biology and Medicine at the Skirball Institute and Department of Microbiology, New York University School of Medicine, New York, NY 10016;
| | | | | |
Collapse
|
49
|
TheCorynebacterium glutamicumNCgl2281 Gene Encoding an RNase E/G Family Endoribonuclease Can Complement theEscherichia coli rng::catMutation but Not therne-1Mutation. Biosci Biotechnol Biochem 2014; 73:2281-6. [DOI: 10.1271/bbb.90371] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
50
|
Wurtmann EJ, Ratushny AV, Pan M, Beer KD, Aitchison JD, Baliga NS. An evolutionarily conserved RNase-based mechanism for repression of transcriptional positive autoregulation. Mol Microbiol 2014; 92:369-82. [PMID: 24612392 PMCID: PMC4060883 DOI: 10.1111/mmi.12564] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/19/2014] [Indexed: 01/27/2023]
Abstract
It is known that environmental context influences the degree of regulation at the transcriptional and post-transcriptional levels. However, the principles governing the differential usage and interplay of regulation at these two levels are not clear. Here, we show that the integration of transcriptional and post-transcriptional regulatory mechanisms in a characteristic network motif drives efficient environment-dependent state transitions. Through phenotypic screening, systems analysis, and rigorous experimental validation, we discovered an RNase (VNG2099C) in Halobacterium salinarum that is transcriptionally co-regulated with genes of the aerobic physiologic state but acts on transcripts of the anaerobic state. Through modelling and experimentation we show that this arrangement generates an efficient state-transition switch, within which RNase-repression of a transcriptional positive autoregulation (RPAR) loop is critical for shutting down ATP-consuming active potassium uptake to conserve energy required for salinity adaptation under aerobic, high potassium, or dark conditions. Subsequently, we discovered that many Escherichia coli operons with energy-associated functions are also putatively controlled by RPAR indicating that this network motif may have evolved independently in phylogenetically distant organisms. Thus, our data suggest that interplay of transcriptional and post-transcriptional regulation in the RPAR motif is a generalized principle for efficient environment-dependent state transitions across prokaryotes.
Collapse
Affiliation(s)
| | - Alexander V. Ratushny
- Institute for Systems Biology, Seattle, WA, 98109, USA
- Seattle Biomedical Research Institute, Seattle, WA, 98109, USA
| | - Min Pan
- Institute for Systems Biology, Seattle, WA, 98109, USA
| | | | - John D. Aitchison
- Institute for Systems Biology, Seattle, WA, 98109, USA
- Seattle Biomedical Research Institute, Seattle, WA, 98109, USA
| | | |
Collapse
|