1
|
Zhai L, Mu S, Liu R, Liu R, Lin G, Han Q, Yao S. Identifying the Alkaline Tolerance-Related Genes Through Transcriptome Analysis of Halomonas alkalicola CICC 11012 s. Curr Microbiol 2025; 82:287. [PMID: 40353910 DOI: 10.1007/s00284-025-04178-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 02/22/2024] [Indexed: 05/14/2025]
Abstract
Halomonas alkalicola CICC 11012 s is the strongest alkaliphile in the genus Halomonas. So far, studies have focused on the genome level and functional validation of a single gene, providing an overview and partial analysis of the adaptive mechanisms. As such, the comprehensive adaptations of alkaliphiles to extremely alkaline stress remain largely unclear. Therefore, in this study, the transcriptome profiling of H. alkalicola under neutral and alkaline conditions was compared to explore its global adaptation mechanisms towards pH homeostasis. In addition, the different up-regulated genes of this strain grown at pH 11.0 were compared with those grown at pH 7.0. The results revealed that the up-regulated genes were mainly distributed in six categories, including glycosyl transferase, fimbrial assembly protein, TonB-dependent transport system, C4-dicarboxylate TRAP transport system, transposase, and toxin-antitoxin system. This result indicated that H. alkalicola developed various adaptive strategies to survive under extremely alkaline pressure, from modifying their cell wall structure to enhancing their membrane transport activities and intracellular metabolism homeostasis. Furthermore, the function of the gene cluster tonB-exbB-exbB2-exbD under extreme alkaline stress was verified by the CRISPR-Cas9 gene-editing system, indicating that the TonB-dependent transport system significantly affected the growth of the strain under extreme alkaline stresses.
Collapse
Affiliation(s)
- Lei Zhai
- China Center of Industrial Culture Collection (CICC), China National Research Institute of Food and Fermentation Industries, Beijing, 100015, People's Republic of China.
| | - Shuaicheng Mu
- China Center of Industrial Culture Collection (CICC), China National Research Institute of Food and Fermentation Industries, Beijing, 100015, People's Republic of China
| | - Ruina Liu
- China Center of Industrial Culture Collection (CICC), China National Research Institute of Food and Fermentation Industries, Beijing, 100015, People's Republic of China
| | - Rui Liu
- China Center of Industrial Culture Collection (CICC), China National Research Institute of Food and Fermentation Industries, Beijing, 100015, People's Republic of China
| | - Geer Lin
- China Center of Industrial Culture Collection (CICC), China National Research Institute of Food and Fermentation Industries, Beijing, 100015, People's Republic of China
| | - Qi Han
- China Center of Industrial Culture Collection (CICC), China National Research Institute of Food and Fermentation Industries, Beijing, 100015, People's Republic of China
| | - Su Yao
- China Center of Industrial Culture Collection (CICC), China National Research Institute of Food and Fermentation Industries, Beijing, 100015, People's Republic of China.
| |
Collapse
|
2
|
Zhou P, G C B, Hu B, Wu C. Development of SacB-based counterselection for efficient allelic exchange in Fusobacterium nucleatum. Microbiol Spectr 2025; 13:e0206624. [PMID: 39611826 PMCID: PMC11705814 DOI: 10.1128/spectrum.02066-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 11/04/2024] [Indexed: 11/30/2024] Open
Abstract
Fusobacterium nucleatum, prevalent in the oral cavity, is significantly linked to overall human health. Our molecular comprehension of its role in oral biofilm formation and its interactions with the host under various pathological circumstances has seen considerable advancements in recent years, primarily due to the development of various genetic tools for DNA manipulation in this bacterium. Of these, counterselection-based unmarked in-frame mutation methods have proved notably effective. Under suitable growth conditions, cells carrying a counterselectable gene die, enabling efficient selection of rare, defined allelic exchange mutants. The sacB gene from Bacillus subtilis, encoding levansucrase, is a widely used counterselective marker partly due to the easy availability of sucrose. Yet, its potential application in F. nucleatum genetic study remains untested. We demonstrated that F. nucleatum cells expressing sacB in either a shuttle or suicide plasmid exhibit a lethal sensitivity to supplemental sucrose. Utilizing sucrose counterselection, we created an in-frame deletion of the F. nucleatum tonB gene, a critical gene for energy-dependent transport processes in Gram-negative bacteria, and a precise knock-in of the luciferase gene immediately following the stop codon of the hslO gene, the last gene of a five-gene operon possibly related to the natural competence of F. nucleatum. Post-counterselection with 5% sucrose, chromosomal plasmid loss occurred in all colonies, leading to gene alternations in half of the screened isolates. This sacB-based counterselection technique provides a reliable method for isolating unmarked gene mutations in wild-type F. nucleatum, enriching the toolkit for fusobacterial research.IMPORTANCEInvestigations into Fusobacterium nucleatum's role in related diseases significantly benefit from the strategies of creating unmarked gene mutations, which hinge on using a counterselective marker. Previously, the galk-based allelic exchange method, although effective, faced an inherent limitation-the need for a modified host. This study aims to surmount this limitation by substituting galK with sacB for gene modification in F. nucleatum. Our application of the sacB-based methodology successfully yielded a tonB in-frame deletion mutant and a luciferase gene knock-in at the precise chromosomal location in the wild-type background. The new method augments the existing toolkit for F. nucleatum research and has far-reaching implications due to the easy accessibility to the counterselection compound sucrose. We anticipate its broader adoption in further exploration, thereby reinforcing its critical role in propelling our understanding of F. nucleatum.
Collapse
Affiliation(s)
- Peng Zhou
- Department of Microbiology & Molecular Genetics, The University of Texas Health Science Center, Houston, Texas, USA
| | - Bibek G C
- Department of Microbiology & Molecular Genetics, The University of Texas Health Science Center, Houston, Texas, USA
| | - Bo Hu
- Department of Microbiology & Molecular Genetics, The University of Texas Health Science Center, Houston, Texas, USA
| | - Chenggang Wu
- Department of Microbiology & Molecular Genetics, The University of Texas Health Science Center, Houston, Texas, USA
| |
Collapse
|
3
|
Zhou P, Bibek GC, Hu B, Wu C. Development of SacB-based Counterselection for Efficient Allelic Exchange in Fusobacterium nucleatum. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.16.608263. [PMID: 39229080 PMCID: PMC11370447 DOI: 10.1101/2024.08.16.608263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Fusobacterium nucleatum , prevalent in the oral cavity, is significantly linked to overall human health. Our molecular comprehension of its role in oral biofilm formation and its interactions with the host under various pathological circumstances has seen considerable advancements in recent years, primarily due to the development of various genetic tools for DNA manipulation in this bacterium. Of these, counterselection-based unmarked in-frame mutation methods have proved notably effective. Under suitable growth conditions, cells carrying a counterselectable gene die, enabling efficient selection of rare defined allelic exchange mutants. The sacB gene from Bacillus subtilis , encoding levansucrase, is a widely used counterselective marker partly due to the easy availability of sucrose. Yet, its potential application in F. nucleatum genetic study remains untested. We demonstrated that F. nucleatum cells expressing sacB in either a shuttle or suicide plasmid exhibit a lethal sensitivity to supplemental sucrose. Utilizing sucrose counterselection, we created an in-frame deletion of the F. nucleatum tonB gene, a critical gene for energy-dependent transport processes in Gram-negative bacteria, and a precise knockin of the luciferase gene immediately following the stop codon of the hslO gene, the last gene of a five-gene operon possible related to the natural competence of F. nucleatum . Post counterselection with 5% sucrose, chromosomal plasmid loss occurred in all colonies, leading to gene alternations in half of the screened isolates. This sacB -based counterselection technique provides a reliable method for isolating unmarked gene mutations in wild-type F. nucleatum , enriching the toolkit for fusobacterial research. IMPORTANCE Investigations into Fusobacterium nucleatum 's role in related diseases significantly benefit from the strategies of creating unmarked gene mutations, which hinge on using a counterselective marker. Previously, the galk -based allelic exchange method, while effective, faced an inherent limitation - the need for a modified host. This study aims to surmount this limitation by substituting galK with sacB for gene modification in F. nucleatum . Our application of the sacB -based methodology successfully yielded a tonB in-frame deletion mutant and a luciferase gene knockin at the precise chromosomal location in the wild-type background. The new method augments the existing toolkit for F. nucleatum research and has far-reaching implications due to the easy accessibility to the counterselection compound sucrose. We anticipate its broader adoption in further exploration, thereby reinforcing its critical role in propelling our understanding of F. nucleatum .
Collapse
|
4
|
Izquierdo Lafuente B, Verboom T, Coenraads S, Ummels R, Bitter W, Speer A. Vitamin B 12 uptake across the mycobacterial outer membrane is influenced by membrane permeability in Mycobacterium marinum. Microbiol Spectr 2024; 12:e0316823. [PMID: 38722177 PMCID: PMC11237697 DOI: 10.1128/spectrum.03168-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 04/12/2024] [Indexed: 06/06/2024] Open
Abstract
Vitamin B12 (B12) serves as a critical cofactor within mycobacterial metabolism. While some pathogenic strains can synthesize B12 de novo, others rely on host-acquired B12. In this investigation, we studied the transport of vitamin B12 in Mycobacterium marinum using B12-auxotrophic and B12-sensitive strains by deleting metH or metE, respectively. These two enzymes rely on B12 in different ways to function as methionine synthases. We used these strains to select mutants affecting B12 scavenging and confirmed their phenotypes during growth experiments in vitro. Our analysis of B12 uptake mechanisms revealed that membrane lipids and cell wall integrity play an essential role in cell envelope transport. Furthermore, we identified a potential transcription regulator that responds to B12. Our study demonstrates that M. marinum can take up exogenous B12 and that altering mycobacterial membrane integrity affects B12 uptake. Finally, during zebrafish infection using B12-auxotrophic and B12-sensitive strains, we found that B12 is available for virulent mycobacteria in vivo.IMPORTANCEOur study investigates how mycobacteria acquire essential vitamin B12. These microbes, including those causing tuberculosis, face challenges in nutrient uptake due to their strong outer layer. We focused on Mycobacterium marinum, similar to TB bacteria, to uncover its vitamin B12 absorption. We used modified strains unable to produce their own B12 and discovered that M. marinum can indeed absorb it from the environment, even during infections. Changes in the outer layer composition affect this process, and genes related to membrane integrity play key roles. These findings illuminate the interaction between mycobacteria and their environment, offering insights into combatting diseases like tuberculosis through innovative strategies. Our concise research underscores the pivotal role of vitamin B12 in microbial survival and its potential applications in disease control.
Collapse
Affiliation(s)
- Beatriz Izquierdo Lafuente
- Section Molecular Microbiology, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Theo Verboom
- Department of Medical Microbiology and Infection Control, Amsterdam UMC, Amsterdam, The Netherlands
| | - Sita Coenraads
- Section Molecular Microbiology, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Roy Ummels
- Department of Medical Microbiology and Infection Control, Amsterdam UMC, Amsterdam, The Netherlands
| | - Wilbert Bitter
- Section Molecular Microbiology, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Department of Medical Microbiology and Infection Control, Amsterdam UMC, Amsterdam, The Netherlands
| | - Alexander Speer
- Department of Medical Microbiology and Infection Control, Amsterdam UMC, Amsterdam, The Netherlands
| |
Collapse
|
5
|
Loll PJ, Grasty KC, Shultis DD, Guzman NJ, Wiener MC. Discovery and structural characterization of the D-box, a conserved TonB motif that couples an inner-membrane motor to outer-membrane transport. J Biol Chem 2024; 300:105723. [PMID: 38311172 PMCID: PMC10907165 DOI: 10.1016/j.jbc.2024.105723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 01/26/2024] [Accepted: 01/28/2024] [Indexed: 02/10/2024] Open
Abstract
Gram-negative bacteria use TonB-dependent transport to take up nutrients from the external environment, employing the Ton complex to import a variety of nutrients that are either scarce or too large to cross the outer membrane unaided. The Ton complex contains an inner-membrane motor (ExbBD) that generates force, as well as nutrient-specific transport proteins on the outer membrane. These two components are coupled by TonB, which transmits the force from the inner to the outer membrane. TonB contains an N-terminus anchored in the inner membrane, a C-terminal domain that binds the outer-membrane transporter, and a proline-rich linker connecting the two. While much is known about the interaction between TonB and outer-membrane transporters, the critical interface between TonB and ExbBD is less well understood. Here, we identify a conserved motif within TonB that we term the D-box, which serves as an attachment point for ExbD. We characterize the interaction between ExbD and the D-box both functionally and structurally, showing that a homodimer of ExbD captures one copy of the D-box peptide via beta-strand recruitment. We additionally show that both the D-box motif and ExbD are conserved in a range of Gram-negative bacteria, including members of the ESKAPE group of pathogens. The ExbD:D-box interaction is likely to represent an important aspect of force transduction between the inner and outer membranes. Given that TonB-dependent transport is an important contributor to virulence, this interaction is an intriguing potential target for novel antibacterial therapies.
Collapse
Affiliation(s)
- Patrick J Loll
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA.
| | - Kimberly C Grasty
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| | - David D Shultis
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia, USA
| | - Nicholas J Guzman
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| | - Michael C Wiener
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia, USA.
| |
Collapse
|
6
|
Rivera Vazquez J, Trujillo E, Williams J, She F, Getahun F, Callaghan MM, Coon JJ, Amador-Noguez D. Lipid membrane remodeling and metabolic response during isobutanol and ethanol exposure in Zymomonas mobilis. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2024; 17:14. [PMID: 38281959 PMCID: PMC10823705 DOI: 10.1186/s13068-023-02450-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 12/16/2023] [Indexed: 01/30/2024]
Abstract
BACKGROUND Recent engineering efforts have targeted the ethanologenic bacterium Zymomonas mobilis for isobutanol production. However, significant hurdles remain due this organism's vulnerability to isobutanol toxicity, adversely affecting its growth and productivity. The limited understanding of the physiological impacts of isobutanol on Z. mobilis constrains our ability to overcome these production barriers. RESULTS We utilized a systems-level approach comprising LC-MS/MS-based lipidomics, metabolomics, and shotgun proteomics, to investigate how exposure to ethanol and isobutanol impact the lipid membrane composition and overall physiology of Z. mobilis. Our analysis revealed significant and distinct alterations in membrane phospholipid and fatty acid composition resulting from ethanol and isobutanol exposure. Notably, ethanol exposure increased membrane cyclopropane fatty acid content and expression of cyclopropane fatty acid (CFA) synthase. Surprisingly, isobutanol decreased cyclopropane fatty acid content despite robust upregulation of CFA synthase. Overexpression of the native Z. mobilis' CFA synthase increased cyclopropane fatty acid content in all phospholipid classes and was associated with a significant improvement in growth rates in the presence of added ethanol and isobutanol. Heterologous expression of CFA synthase from Clostridium acetobutylicum resulted in a near complete replacement of unsaturated fatty acids with cyclopropane fatty acids, affecting all lipid classes. However, this did not translate to improved growth rates under isobutanol exposure. Correlating with its greater susceptibility to isobutanol, Z. mobilis exhibited more pronounced alterations in its proteome, metabolome, and overall cell morphology-including cell swelling and formation of intracellular protein aggregates -when exposed to isobutanol compared to ethanol. Isobutanol triggered a broad stress response marked by the upregulation of heat shock proteins, efflux transporters, DNA repair systems, and the downregulation of cell motility proteins. Isobutanol also elicited widespread dysregulation of Z. mobilis' primary metabolism evidenced by increased levels of nucleotide degradation intermediates and the depletion of biosynthetic and glycolytic intermediates. CONCLUSIONS This study provides a comprehensive, systems-level evaluation of the impact of ethanol and isobutanol exposure on the lipid membrane composition and overall physiology of Z. mobilis. These findings will guide engineering of Z. mobilis towards the creation of isobutanol-tolerant strains that can serve as robust platforms for the industrial production of isobutanol from lignocellulosic sugars.
Collapse
Affiliation(s)
- Julio Rivera Vazquez
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, 53726, USA
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
| | - Edna Trujillo
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, 53726, USA
- Genome Center of Wisconsin, Madison, WI, USA
| | - Jonathan Williams
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, 53726, USA
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
| | - Fukang She
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
| | - Fitsum Getahun
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, 53726, USA
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
| | - Melanie M Callaghan
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, 53726, USA
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
| | - Joshua J Coon
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, 53726, USA
- Morgridge Institute for Research, Madison, WI, USA
- National Center for Quantitative Biology of Complex Systems, University of Wisconsin-Madison, Madison, WI, USA
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Daniel Amador-Noguez
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, 53726, USA.
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
7
|
Naka H, Haygood MG. The dual role of TonB genes in turnerbactin uptake and carbohydrate utilization in the shipworm symbiont Teredinibacter turnerae. Appl Environ Microbiol 2023; 89:e0074423. [PMID: 38009998 PMCID: PMC10734418 DOI: 10.1128/aem.00744-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 10/01/2023] [Indexed: 11/29/2023] Open
Abstract
IMPORTANCE This study highlights diversity in iron acquisition and regulation in bacteria. The mechanisms of iron acquisition and its regulation in Teredinibacter turnerae, as well as its connection to cellulose utilization, a hallmark phenotype of T. turnerae, expand the paradigm of bacterial iron acquisition. Two of the four TonB genes identified in T. turnerae exhibit functional redundancy and play a crucial role in siderophore-mediated iron transport. Unlike typical TonB genes in bacteria, none of the TonB genes in T. turnerae are clearly iron regulated. This unusual regulation could be explained by another important finding in this study, namely, that the two TonB genes involved in iron transport are also essential for cellulose utilization as a carbon source, leading to the expression of TonB genes even under iron-rich conditions.
Collapse
Affiliation(s)
- Hiroaki Naka
- Department of Medicinal Chemistry, The University of Utah, Salt Lake City, Utah, USA
- Division of Genetics, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, USA
| | - Margo G. Haygood
- Department of Medicinal Chemistry, The University of Utah, Salt Lake City, Utah, USA
| |
Collapse
|
8
|
Goettelmann F, Koebnik R, Roman-Reyna V, Studer B, Kölliker R. High genomic plasticity and unique features of Xanthomonas translucens pv. graminis revealed through comparative analysis of complete genome sequences. BMC Genomics 2023; 24:741. [PMID: 38053038 DOI: 10.1186/s12864-023-09855-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 11/28/2023] [Indexed: 12/07/2023] Open
Abstract
BACKGROUND Xanthomonas translucens pv. graminis (Xtg) is a major bacterial pathogen of economically important forage grasses, causing severe yield losses. So far, genomic resources for this pathovar consisted mostly of draft genome sequences, and only one complete genome sequence was available, preventing comprehensive comparative genomic analyses. Such comparative analyses are essential in understanding the mechanisms involved in the virulence of pathogens and to identify virulence factors involved in pathogenicity. RESULTS In this study, we produced high-quality, complete genome sequences of four strains of Xtg, complementing the recently obtained complete genome sequence of the Xtg pathotype strain. These genomic resources allowed for a comprehensive comparative analysis, which revealed a high genomic plasticity with many chromosomal rearrangements, although the strains were highly related. A high number of transposases were exclusively found in Xtg and corresponded to 413 to 457 insertion/excision transposable elements per strain. These mobile genetic elements are likely to be involved in the observed genomic plasticity and may play an important role in the adaptation of Xtg. The pathovar was found to lack a type IV secretion system, and it possessed the smallest set of type III effectors in the species. However, three XopE and XopX family effectors were found, while in the other pathovars of the species two or less were present. Additional genes that were specific to the pathovar were identified, including a unique set of minor pilins of the type IV pilus, 17 TonB-dependent receptors (TBDRs), and 11 plant cell wall degradative enzymes. CONCLUSION These results suggest a high adaptability of Xtg, conferred by the abundance of mobile genetic elements, which could play a crucial role in pathogen adaptation. The large amount of such elements in Xtg compared to other pathovars of the species could, at least partially, explain its high virulence and broad host range. Conserved features that were specific to Xtg were identified, and further investigation will help to determine genes that are essential to pathogenicity and host adaptation of Xtg.
Collapse
Affiliation(s)
- Florian Goettelmann
- Molecular Plant Breeding, Institute of Agricultural Sciences, ETH Zurich, Zurich, Switzerland
| | - Ralf Koebnik
- Plant Health Institute of Montpellier, University of Montpellier, CIRAD, INRAE, Institut Agro, IRD, Montpellier, France
| | - Veronica Roman-Reyna
- Department of Plant Pathology and Environmental Microbiology, The Pennsylvania State University, University Park, PA, USA
| | - Bruno Studer
- Molecular Plant Breeding, Institute of Agricultural Sciences, ETH Zurich, Zurich, Switzerland
| | - Roland Kölliker
- Molecular Plant Breeding, Institute of Agricultural Sciences, ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
9
|
Sharma B, Ganotra J, Biswal B, Sharma K, Gandhi S, Bhardwaj D, Tuteja N. An atypical heterotrimeric Gα and its interactome suggest an extra-large role in overcoming abiotic and biotic stress. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2023; 29:1543-1561. [PMID: 38076761 PMCID: PMC10709287 DOI: 10.1007/s12298-023-01378-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/11/2023] [Accepted: 10/19/2023] [Indexed: 10/04/2024]
Abstract
Canonical heterotrimeric G-proteins (G-proteins) are comprised of Gα, Gβ, and Gγ subunits. G-proteins regulate multiple crucial plant growth and development processes, incorporating environmental responses. Besides Gα, Gβ and Gγ, the discovery of atypical Gα subunits termed as extra-large G-proteins or extra-large GTP-binding proteins (XLGs) makes G-protein signaling unique in plants. The C-terminus of XLG shares similarities with the canonical Gα subunits; the N-terminus harbors a nuclear localization signal (NLS) and is rich in cysteine. The earlier explorations suggest XLG's role in flowering, the development of embryos and seedlings, root morphogenesis, stamen development, cytokinin-induced development, stomatal opening and regulation of rice grain filling. The XLGs are also known to initiate signaling cascades that prime plants against a variety of abiotic and biotic stresses. They are also engaged in controlling several agronomic parameters such as rice panicle length, grain filling, grain size, and biomass, highlighting their potential contribution to crop improvement. The present review explores the remarkable properties of non-canonical Gα subunits (XLGs) and reflects on the various developmental, abiotic and biotic stress signaling pathways controlled by them. Moreover, the bottleneck dilemma of how a tiny handful of XLGs control a multiplicity of stress-responsive activities is partially resolved in this review by addressing the interaction of XLGs with different interacting proteins. XLG proteins presented in this review can be exploited to gain access to highly productive and stress-tolerant plants.
Collapse
Affiliation(s)
- Bhawana Sharma
- Department of Botany, Central University of Jammu, Jammu, Jammu and Kashmir 181143 India
| | - Jahanvi Ganotra
- Department of Botany, Central University of Jammu, Jammu, Jammu and Kashmir 181143 India
| | - Brijesh Biswal
- Department of Botany, Central University of Jammu, Jammu, Jammu and Kashmir 181143 India
| | - Kanishka Sharma
- Department of Botany, Central University of Jammu, Jammu, Jammu and Kashmir 181143 India
| | - Sumit Gandhi
- Infectious Diseases Division, CSIR – Indian Institute of Integrative Medicine, Canal Road, Jammu, Jammu and Kashmir 180001 India
| | - Deepak Bhardwaj
- Department of Botany, Central University of Jammu, Jammu, Jammu and Kashmir 181143 India
| | - Narendra Tuteja
- Plant Molecular Biology Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067 India
| |
Collapse
|
10
|
Braun V, Ratliff AC, Celia H, Buchanan SK. Energization of Outer Membrane Transport by the ExbB ExbD Molecular Motor. J Bacteriol 2023; 205:e0003523. [PMID: 37219427 PMCID: PMC10294619 DOI: 10.1128/jb.00035-23] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2023] Open
Abstract
The outer membranes (OM) of Gram-negative bacteria contain a class of proteins (TBDTs) that require energy for the import of nutrients and to serve as receptors for phages and protein toxins. Energy is derived from the proton motif force (pmf) of the cytoplasmic membrane (CM) through the action of three proteins, namely, TonB, ExbB, and ExbD, which are located in the CM and extend into the periplasm. The leaky phenotype of exbB exbD mutants is caused by partial complementation by homologous tolQ tolR. TonB, ExbB, and ExbD are genuine components of an energy transmission system from the CM into the OM. Mutant analyses, cross-linking experiments, and most recently X-ray and cryo-EM determinations were undertaken to arrive at a model that describes the energy transfer from the CM into the OM. These results are discussed in this paper. ExbB forms a pentamer with a pore inside, in which an ExbD dimer resides. This complex harvests the energy of the pmf and transmits it to TonB. TonB interacts with the TBDT at the TonB box, which triggers a conformational change in the TBDT that releases bound nutrients and opens the pore, through which nutrients pass into the periplasm. The structurally altered TBDT also changes the interactions of its periplasmic signaling domain with anti-sigma factors, with the consequence being that the sigma factors initiate transcription.
Collapse
Affiliation(s)
- Volkmar Braun
- Max-Planck-Institute for Biology, Department of Protein Evolution, Tübingen, Germany
| | - Anna C. Ratliff
- Laboratory of Molecular Biology, National Institute of Diabetes & Digestive & Kidney Diseases, NIH, Maryland, Bethesda, USA
| | - Herve Celia
- Laboratory of Molecular Biology, National Institute of Diabetes & Digestive & Kidney Diseases, NIH, Maryland, Bethesda, USA
| | - Susan K. Buchanan
- Laboratory of Molecular Biology, National Institute of Diabetes & Digestive & Kidney Diseases, NIH, Maryland, Bethesda, USA
| |
Collapse
|
11
|
Ong A, O’Brian MR. The Bradyrhizobium japonicum fsrB gene is essential for utilization of structurally diverse ferric siderophores to fulfill its nutritional iron requirement. Mol Microbiol 2023; 119:340-349. [PMID: 36648393 PMCID: PMC10411499 DOI: 10.1111/mmi.15028] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/10/2023] [Accepted: 01/11/2023] [Indexed: 01/18/2023]
Abstract
In Bradyrhizobium japonicum, iron uptake from ferric siderophores involves selective outer membrane proteins and non-selective periplasmic and cytoplasmic membrane components that accommodate numerous structurally diverse siderophores. Free iron traverses the cytoplasmic membrane through the ferrous (Fe2+ ) transporter system FeoAB, but the other non-selective components have not been described. Here, we identify fsrB as an iron-regulated gene required for growth on iron chelates of catecholate- and hydroxymate-type siderophores, but not on inorganic iron. Utilization of the non-physiological iron chelator EDDHA as an iron source was also dependent on fsrB. Uptake activities of 55 Fe3+ bound to ferrioxamine B, ferrichrome or enterobactin were severely diminished in the fsrB mutant compared with the wild type. Growth of the fsrB or feoB strains on ferrichrome were rescued with plasmid-borne E. coli fhuCDB ferrichrome transport genes, suggesting that FsrB activity occurs in the periplasm rather than the cytoplasm. Whole cells of an fsrB mutant are defective in ferric reductase activity. Both whole cells and spheroplasts catalyzed the demetallation of ferric siderophores that were defective in an fsrB mutant. Collectively, the data support a model whereby FsrB is required for reduction of iron and its dissociation from the siderophore in the periplasm, followed by transport of the ferrous ion into the cytoplasm by FeoAB.
Collapse
Affiliation(s)
- Alasteir Ong
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, The University at Buffalo, 955 Main Street, Room 4102, Buffalo, New York 14203-1121
| | - Mark R. O’Brian
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, The University at Buffalo, 955 Main Street, Room 4102, Buffalo, New York 14203-1121
| |
Collapse
|
12
|
Naka H, Haygood MG. The dual role of TonB genes in turnerbactin uptake and carbohydrate utilization in the shipworm symbiont Teredinibacter turnerae. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.23.529781. [PMID: 36865190 PMCID: PMC9980095 DOI: 10.1101/2023.02.23.529781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Teredinibacter turnerae is an intracellular bacterial symbiont that resides in the gills of shipworms, wood-eating bivalve mollusks. This bacterium produces a catechol siderophore, turnerbactin, required for the survival of this bacterium under iron limiting conditions. The turnerbactin biosynthetic genes are contained in one of the secondary metabolite clusters conserved among T. turnerae strains. However, Fe(III)-turnerbactin uptake mechanisms are largely unknown. Here, we show that the first gene of the cluster, fttA a homologue of Fe(III)-siderophore TonB-dependent outer membrane receptor (TBDR) genes is indispensable for iron uptake via the endogenous siderophore, turnerbactin, as well as by an exogenous siderophore, amphi-enterobactin, ubiquitously produced by marine vibrios. Furthermore, three TonB clusters containing four tonB genes were identified, and two of these genes, tonB1b and tonB2, functioned not only for iron transport but also for carbohydrate utilization when cellulose was a sole carbon source. Gene expression analysis revealed that none of the tonB genes and other genes in those clusters were clearly regulated by iron concentration while turnerbactin biosynthesis and uptake genes were up-regulated under iron limiting conditions, highlighting the importance of tonB genes even in iron rich conditions, possibly for utilization of carbohydrates derived from cellulose.
Collapse
Affiliation(s)
- Hiroaki Naka
- Department of Medicinal Chemistry, the University of Utah
- Division of Genetics, Oregon National Primate Research Center, Oregon Health & Science University
| | | |
Collapse
|
13
|
Jung W, Lee DY, Moon E, Jon S. Nanoparticles derived from naturally occurring metal chelators for theranostic applications. Adv Drug Deliv Rev 2022; 191:114620. [PMID: 36379406 DOI: 10.1016/j.addr.2022.114620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/31/2022] [Accepted: 11/07/2022] [Indexed: 11/15/2022]
Abstract
Metals are indispensable for the activities of all living things, from single-celled organisms to higher organisms, including humans. Beyond their intrinsic quality as metal ions, metals help creatures to maintain requisite biological processes by forming coordination complexes with endogenous ligands that are broadly distributed in nature. These types of naturally occurring chelating reactions are found through the kingdoms of life, including bacteria, plants and animals. Mimicking these naturally occurring coordination complexes with intrinsic biocompatibility may offer an opportunity to develop nanomedicine toward clinical applications. Herein, we introduce representative examples of naturally occurring coordination complexes in a selection of model organisms and highlight such bio-inspired metal-chelating nanomaterials for theranostic applications.
Collapse
Affiliation(s)
- Wonsik Jung
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Daejeon 34141, Republic of Korea; Center for Precision Bio-Nanomedicine, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Daejeon 34141, Republic of Korea
| | - Dong Yun Lee
- Department of Nuclear Medicine, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Seoul 05505, Republic of Korea; Translational Biomedical Research Group, Biomedical Research Center, Asan Institute for Life Science, Asan Medical Center, 88 Olympic-ro 43-gil, Seoul 05505, Republic of Korea.
| | - Eugene Moon
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Daejeon 34141, Republic of Korea; Center for Precision Bio-Nanomedicine, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Daejeon 34141, Republic of Korea
| | - Sangyong Jon
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Daejeon 34141, Republic of Korea; Center for Precision Bio-Nanomedicine, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Daejeon 34141, Republic of Korea.
| |
Collapse
|
14
|
Iron Acquisition Mechanisms and Their Role in the Virulence of Acinetobacter baumannii. Infect Immun 2022; 90:e0022322. [PMID: 36066263 PMCID: PMC9584212 DOI: 10.1128/iai.00223-22] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Iron is an essential element for survival of most organisms. One mechanism of host defense is to tightly chelate iron to several proteins to limit its extracellular availability. This has forced pathogens such as Acinetobacter baumannii to adapt mechanisms for the acquisition and utilization of iron even in iron-limiting conditions. A. baumannii uses a variety of iron acquisition strategies to meet its iron requirements. It can lyse erythrocytes to harvest the heme molecules, use iron-chelating siderophores, and use outer membrane vesicles to acquire iron. Iron acquisition pathways, in general, have been seen to affect many other virulence factors such as cell adherence, cell motility, and biofilm formation. The knowledge gained from research on iron acquisition led to the synthesis of the antibiotic cefiderocol, which uses iron uptake pathways for entry into the cell with some success as a novel cephalosporin. Understanding the mechanisms of iron acquisition of A. baumannii allows for insight into clinical infections and offer potential targets for novel antibiotics or potentiators of current drugs.
Collapse
|
15
|
Design and Production of Hybrid Antigens for Targeting Integral Outer Membrane Proteins in Gram-Negative Bacteria. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2021; 2414:115-140. [PMID: 34784035 DOI: 10.1007/978-1-0716-1900-1_8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Metal ion transporters in the outer membrane of gram-negative bacteria that are responsible for acquiring iron and zinc are attractive vaccine targets due to their essential function. The core function is mediated by an integral outer membrane TonB-dependent transporter (TBDT) that mediates the transport of the metal ion across the outer membrane. Some TBDTs also have a surface lipoprotein (SLP) that assists in the efficient capture of the metal ion-containing host protein from which the metal ion is extracted. The challenges in producing the integral outer membrane protein for a commercial subunit vaccine prompted us to develop a hybrid antigen strategy in which surface loops of the TBDT are displayed on the lipoprotein, which can readily be produced as a soluble protein. The focus of this chapter will be on the methods for production of hybrid antigens and evaluating the immune response they elicit.
Collapse
|
16
|
Sharma M, Singh DN, Budhraja R, Sood U, Rawat CD, Adrian L, Richnow HH, Singh Y, Negi RK, Lal R. Comparative proteomics unravelled the hexachlorocyclohexane (HCH) isomers specific responses in an archetypical HCH degrading bacterium Sphingobium indicum B90A. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:41380-41395. [PMID: 33783707 DOI: 10.1007/s11356-021-13073-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Accepted: 02/17/2021] [Indexed: 06/12/2023]
Abstract
Hexachlorocyclohexane (HCH) is a persistent organochlorine pesticide that poses threat to different life forms. Sphingobium indicum B90A that belong to sphingomonad is well-known for its ability to degrade HCH isomers (α-, β-, γ-, δ-), but effects of HCH isomers and adaptive mechanisms of strain B90A under HCH load remain obscure. To investigate the responses of strain B90A to HCH isomers, we followed the proteomics approach as this technique is considered as the powerful tool to study the microbial response to environmental stress. Strain B90A culture was exposed to α-, β-, γ-, δ-HCH (5 mgL-1) and control (without HCH) taken for comparison and changes in whole cell proteome were analyzed. In β- and δ-HCH-treated cultures growth decreased significantly when compared to control, α-, and γ-HCH-treated cultures. HCH residue analysis corroborated previous observations depicting the complete depletion of α- and γ-HCH, while only 66% β-HCH and 34% δ-HCH were depleted from culture broth. Comparative proteome analyses showed that β- and δ-HCH induced utmost systemic changes in strain B90A proteome, wherein stress-alleviating proteins such as histidine kinases, molecular chaperons, DNA binding proteins, ABC transporters, TonB proteins, antioxidant enzymes, and transcriptional regulators were significantly affected. Besides study confirmed constitutive expression of linA, linB, and linC genes that are crucial for the initiation of HCH isomers degradation, while increased abundance of LinM and LinN in presence of β- and δ-HCH suggested the important role of ABC transporter in depletion of these isomers. These results will help to understand the HCH-induced damages and adaptive strategies of strain B90A under HCH load which remained unravelled to date.
Collapse
Affiliation(s)
- Monika Sharma
- Fish Molecular Biology Laboratory, Department of Zoology, University of Delhi, Delhi, 110007, India
| | | | - Rohit Budhraja
- Helmholtz Centre for Environmental Research-UFZ, 04318, Leipzig, Germany
| | - Utkarsh Sood
- Department of Zoology, University of Delhi, Delhi, 110007, India
- The Energy and Resources Institute, Darbari Seth Block, IHC Complex, Lodhi Road, New Delhi, 110003, India
| | - Charu Dogra Rawat
- Department of Zoology, Ramjas College, University of Delhi, Delhi, 110007, India
| | - Lorenz Adrian
- Helmholtz Centre for Environmental Research-UFZ, 04318, Leipzig, Germany
| | | | - Yogendra Singh
- Department of Zoology, University of Delhi, Delhi, 110007, India
| | - Ram Krishan Negi
- Fish Molecular Biology Laboratory, Department of Zoology, University of Delhi, Delhi, 110007, India.
| | - Rup Lal
- Department of Zoology, University of Delhi, Delhi, 110007, India.
- The Energy and Resources Institute, Darbari Seth Block, IHC Complex, Lodhi Road, New Delhi, 110003, India.
| |
Collapse
|
17
|
Kraut-Cohen J, Shapiro OH, Dror B, Cytryn E. Pectin Induced Colony Expansion of Soil-Derived Flavobacterium Strains. Front Microbiol 2021; 12:651891. [PMID: 33889143 PMCID: PMC8056085 DOI: 10.3389/fmicb.2021.651891] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 02/22/2021] [Indexed: 11/20/2022] Open
Abstract
The genus Flavobacterium is characterized by the capacity to metabolize complex organic compounds and a unique gliding motility mechanism. Flavobacteria are often abundant in root microbiomes of various plants, but the factors contributing to this high abundance are currently unknown. In this study, we evaluated the effect of various plant-associated poly- and mono-saccharides on colony expansion of two Flavobacterium strains. Both strains were able to spread on pectin and other polysaccharides such as microcrystalline cellulose. However, only pectin (but not pectin monomers), a component of plant cell walls, enhanced colony expansion on solid surfaces in a dose- and substrate-dependent manner. On pectin, flavobacteria exhibited bi-phasic motility, with an initial phase of rapid expansion, followed by growth within the colonized area. Proteomic and gene expression analyses revealed significant induction of carbohydrate metabolism related proteins when flavobacteria were grown on pectin, including selected SusC/D, TonB-dependent glycan transport operons. Our results show a positive correlation between colony expansion and the upregulation of proteins involved in sugar uptake, suggesting an unknown linkage between specific operons encoding for glycan uptake and metabolism and flavobacterial expansion. Furthermore, within the context of flavobacterial-plant interactions, they suggest that pectin may facilitate flavobacterial expansion on plant surfaces in addition to serving as an essential carbon source.
Collapse
Affiliation(s)
- Judith Kraut-Cohen
- Institute of Soil, Water and Environmental Sciences, Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel
| | - Orr H Shapiro
- Institute of Postharvest and Food Sciences, Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel
| | - Barak Dror
- Institute of Soil, Water and Environmental Sciences, Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel.,Department of Plant Pathology and Microbiology, The R.H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Eddie Cytryn
- Institute of Soil, Water and Environmental Sciences, Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel
| |
Collapse
|
18
|
Zhai L, Xie J, Feng H, Sun S, Cheng K, Yao S. Mechanism of TonB-dependent transport system in Halomonas alkalicola CICC 11012s in response to alkaline stress. Extremophiles 2020; 25:39-49. [PMID: 33123748 DOI: 10.1007/s00792-020-01209-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Accepted: 10/14/2020] [Indexed: 11/25/2022]
Abstract
Halomonas alkalicola CICC 11012s can grow at pH 12.5, the highest pH at which the organisms in the genus Halomonas can grow. Genomic analysis reveals that H. alkalicola adapts to alkaline stress using a variety of adaptive strategies; however, the detailed mechanism for its growth at high-alkaline conditions has not been elucidated. Therefore, in this study, the adaptations of H. alkalicola in response to extreme alkaline stress were investigated. A sharp decrease of alkaliphilic tolerance was observed in mutants E. coli ΔEctonB and H. alkalicola ΔHatonB. Expressions of the gene clusters encoding TonB-dependent transport system and iron complex transport system in H. alkalicola grown under extreme alkaline conditions were markedly up-regulated. We then compared the intracellular ionic iron content and iron-chelating ability of mutant strain with those of wild-type strain to understand the influence of TonB-dependent transport system on the alkaline responses. The results indicated that the presence of TonB-dependent transport system increased the alkaline tolerance of H. alkalicola grown at high-alkaline conditions, but had no effects when the strain was grown at neutral pH and low-alkaline conditions. Meanwhile, the presence of this system increased the transport and accumulation of ionic irons to maintain intracellular metabolic homeostasis, which in turn could increase the tolerance of the strain to extreme alkaline conditions. Based on the results, we established a model representing the interactions between TonB-dependent transport system, alkaline tolerance, and intracellular ionic iron that could help deepen the understanding of the alkaline response mechanism of alkaliphilic bacteria.
Collapse
Affiliation(s)
- Lei Zhai
- China Center of Industrial Culture Collection (CICC), China National Research Institute of Food and Fermentation Industries, Building 6, No. 24 Yard, Jiuxianqiao Middle Road, Chaoyang District, Beijing, China
| | - Jiuyan Xie
- China Center of Industrial Culture Collection (CICC), China National Research Institute of Food and Fermentation Industries, Building 6, No. 24 Yard, Jiuxianqiao Middle Road, Chaoyang District, Beijing, China
| | - Huijun Feng
- China Center of Industrial Culture Collection (CICC), China National Research Institute of Food and Fermentation Industries, Building 6, No. 24 Yard, Jiuxianqiao Middle Road, Chaoyang District, Beijing, China
| | - Sijia Sun
- China Center of Industrial Culture Collection (CICC), China National Research Institute of Food and Fermentation Industries, Building 6, No. 24 Yard, Jiuxianqiao Middle Road, Chaoyang District, Beijing, China
| | - Kun Cheng
- China Center of Industrial Culture Collection (CICC), China National Research Institute of Food and Fermentation Industries, Building 6, No. 24 Yard, Jiuxianqiao Middle Road, Chaoyang District, Beijing, China
| | - Su Yao
- China Center of Industrial Culture Collection (CICC), China National Research Institute of Food and Fermentation Industries, Building 6, No. 24 Yard, Jiuxianqiao Middle Road, Chaoyang District, Beijing, China.
| |
Collapse
|
19
|
Kalam S, Basu A, Ahmad I, Sayyed RZ, El-Enshasy HA, Dailin DJ, Suriani NL. Recent Understanding of Soil Acidobacteria and Their Ecological Significance: A Critical Review. Front Microbiol 2020; 11:580024. [PMID: 33193209 PMCID: PMC7661733 DOI: 10.3389/fmicb.2020.580024] [Citation(s) in RCA: 256] [Impact Index Per Article: 51.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Accepted: 10/08/2020] [Indexed: 11/13/2022] Open
Abstract
Acidobacteria represents an underrepresented soil bacterial phylum whose members are pervasive and copiously distributed across nearly all ecosystems. Acidobacterial sequences are abundant in soils and represent a significant fraction of soil microbial community. Being recalcitrant and difficult-to-cultivate under laboratory conditions, holistic, polyphasic approaches are required to study these refractive bacteria extensively. Acidobacteria possesses an inventory of genes involved in diverse metabolic pathways, as evidenced by their pan-genomic profiles. Because of their preponderance and ubiquity in the soil, speculations have been made regarding their dynamic roles in vital ecological processes viz., regulation of biogeochemical cycles, decomposition of biopolymers, exopolysaccharide secretion, and plant growth promotion. These bacteria are expected to have genes that might help in survival and competitive colonization in the rhizosphere, leading to the establishment of beneficial relationships with plants. Exploration of these genetic attributes and more in-depth insights into the belowground mechanics and dynamics would lead to a better understanding of the functions and ecological significance of this enigmatic phylum in the soil-plant environment. This review is an effort to provide a recent update into the diversity of genes in Acidobacteria useful for characterization, understanding ecological roles, and future biotechnological perspectives.
Collapse
Affiliation(s)
- Sadaf Kalam
- Department of Biochemistry, St. Ann's College for Women, Hyderabad, India
| | - Anirban Basu
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Iqbal Ahmad
- Department of Agricultural Microbiology, Aligarh Muslim University, Aligarh, India
| | - R Z Sayyed
- Department of Microbiology, PSGVP Mandal's, Arts, Science and Commerce College, Shahada, India
| | - Hesham Ali El-Enshasy
- Institute of Bioproduct Development, Universiti Teknologi Malaysia (UTM), Skudai, Malaysia.,School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia (UTM), Skudai, Malaysia.,City of Scientific Research and Technological Applications, New Borg El-Arab, Egypt
| | - Daniel Joe Dailin
- Institute of Bioproduct Development, Universiti Teknologi Malaysia (UTM), Skudai, Malaysia.,School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia (UTM), Skudai, Malaysia
| | - Ni Luh Suriani
- Biology Department, Faculty of Mathematics and Natural Science, Udayana University, Bali, Indonesia
| |
Collapse
|
20
|
"Asymmetry Is the Rhythmic Expression of Functional Design," a Quotation from Jan Tschichold. J Bacteriol 2020; 202:JB.00370-20. [PMID: 32631947 DOI: 10.1128/jb.00370-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The outer membranes of Gram-negative bacteria provide a permeability barrier to antibiotics and other harmful chemicals. The integrity of this barrier relies on the maintenance of the lipid asymmetry of the outer membrane, and studies of suppressors of a decades-old mutant reveal that YejM plays a key regulatory role and provide a model for the maintenance of this asymmetry.
Collapse
|
21
|
Koch H, Germscheid N, Freese HM, Noriega-Ortega B, Lücking D, Berger M, Qiu G, Marzinelli EM, Campbell AH, Steinberg PD, Overmann J, Dittmar T, Simon M, Wietz M. Genomic, metabolic and phenotypic variability shapes ecological differentiation and intraspecies interactions of Alteromonas macleodii. Sci Rep 2020; 10:809. [PMID: 31964928 PMCID: PMC6972757 DOI: 10.1038/s41598-020-57526-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 12/23/2019] [Indexed: 01/28/2023] Open
Abstract
Ecological differentiation between strains of bacterial species is shaped by genomic and metabolic variability. However, connecting genotypes to ecological niches remains a major challenge. Here, we linked bacterial geno- and phenotypes by contextualizing pangenomic, exometabolomic and physiological evidence in twelve strains of the marine bacterium Alteromonas macleodii, illuminating adaptive strategies of carbon metabolism, microbial interactions, cellular communication and iron acquisition. In A. macleodii strain MIT1002, secretion of amino acids and the unique capacity for phenol degradation may promote associations with Prochlorococcus cyanobacteria. Strain 83-1 and three novel Pacific isolates, featuring clonal genomes despite originating from distant locations, have profound abilities for algal polysaccharide utilization but without detrimental implications for Ecklonia macroalgae. Degradation of toluene and xylene, mediated via a plasmid syntenic to terrestrial Pseudomonas, was unique to strain EZ55. Benzoate degradation by strain EC673 related to a chromosomal gene cluster shared with the plasmid of A. mediterranea EC615, underlining that mobile genetic elements drive adaptations. Furthermore, we revealed strain-specific production of siderophores and homoserine lactones, with implications for nutrient acquisition and cellular communication. Phenotypic variability corresponded to different competitiveness in co-culture and geographic distribution, indicating linkages between intraspecific diversity, microbial interactions and biogeography. The finding of "ecological microdiversity" helps understanding the widespread occurrence of A. macleodii and contributes to the interpretation of bacterial niche specialization, population ecology and biogeochemical roles.
Collapse
Affiliation(s)
- Hanna Koch
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Oldenburg, Germany
- Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Nora Germscheid
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Oldenburg, Germany
| | - Heike M Freese
- Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Beatriz Noriega-Ortega
- ICBM-MPI Bridging Group for Marine Geochemistry, University of Oldenburg, Oldenburg, Germany
- Leibniz Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany
| | - Dominik Lücking
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Oldenburg, Germany
| | - Martine Berger
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Oldenburg, Germany
| | - Galaxy Qiu
- Centre for Marine Science and Innovation, University of New South Wales, Kensington, Australia
- Western Sydney University, Hawkesbury, Australia
| | - Ezequiel M Marzinelli
- Centre for Marine Science and Innovation, University of New South Wales, Kensington, Australia
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
- Sydney Institute of Marine Science, Mosman, Australia
- University of Sydney, Camperdown, Australia
| | - Alexandra H Campbell
- Centre for Marine Science and Innovation, University of New South Wales, Kensington, Australia
- University of Sunshine Coast, Sunshine Coast, Australia
| | - Peter D Steinberg
- Centre for Marine Science and Innovation, University of New South Wales, Kensington, Australia
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
- Sydney Institute of Marine Science, Mosman, Australia
| | - Jörg Overmann
- Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
- Braunschweig University of Technology, Braunschweig, Germany
| | - Thorsten Dittmar
- ICBM-MPI Bridging Group for Marine Geochemistry, University of Oldenburg, Oldenburg, Germany
| | - Meinhard Simon
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Oldenburg, Germany
| | - Matthias Wietz
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Oldenburg, Germany.
- Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany.
| |
Collapse
|
22
|
Identification and detection of iha subtypes in LEE-negative Shiga toxin-producing Escherichia coli (STEC) strains isolated from humans, cattle and food. Heliyon 2019; 5:e03015. [PMID: 31879713 PMCID: PMC6920203 DOI: 10.1016/j.heliyon.2019.e03015] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 11/18/2019] [Accepted: 12/06/2019] [Indexed: 01/30/2023] Open
Abstract
LEE-negative Shiga toxin-producing Escherichia coli (STEC) strains are important cause of infection in humans and they should be included in the public health surveillance systems. Some isolates have been associated with haemolytic uremic syndrome (HUS) but the mechanisms of pathogenicity are is a field continuos broadening of knowledge. The IrgA homologue adhesin (Iha), encoded by iha, is an adherence-conferring protein and also a siderophore receptor distributed among LEE-negative STEC strains. This study reports the presence of different subtypes of iha in LEE-negative STEC strains. We used genomic analyses to design PCR assays for detecting each of the different iha subtypes and also, all the subtypes simultaneously. LEE-negative STEC strains were designed and different localizations of this gene in STEC subgroups were examinated. Genomic analysis detected iha in a high percentage of LEE-negative STEC strains. These strains generally carried iha sequences similar to those harbored by the Locus of Adhesion and Autoaggregation (LAA) or by the plasmid pO113. Besides, almost half of the strains carried both subtypes. Similar results were observed by PCR, detecting iha LAA in 87% of the strains (117/135) and iha pO113 in 32% of strains (43/135). Thus, we designed PCR assays that allow rapid detection of iha subtypes harbored by LEE-negative strains. These results highlight the need to investigate the individual and orchestrated role of virulence genes that determine the STEC capacity of causing serious disease, which would allow for identification of target candidates to develop therapies against HUS.
Collapse
|
23
|
Shisaka Y, Iwai Y, Yamada S, Uehara H, Tosha T, Sugimoto H, Shiro Y, Stanfield JK, Ogawa K, Watanabe Y, Shoji O. Hijacking the Heme Acquisition System of Pseudomonas aeruginosa for the Delivery of Phthalocyanine as an Antimicrobial. ACS Chem Biol 2019; 14:1637-1642. [PMID: 31287285 DOI: 10.1021/acschembio.9b00373] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
To survive in the iron-devoid environment of their host, pathogenic bacteria have devised multifarious cunning tactics such as evolving intricate heme transport systems to pirate extracellular heme. Yet, the potential of heme transport systems as antimicrobial targets has not been explored. Herein we developed a strategy to deliver antimicrobials by exploiting the extracellular heme acquisition system protein A (HasA) of Pseudomonas aeruginosa. We demonstrated that, analogous to heme uptake, HasA can specifically traffic an antimicrobial, gallium phthalocyanine (GaPc), into the intracellular space of P. aeruginosa via the interaction of HasA with its outer membrane receptor HasR. HasA enables water-insoluble GaPc to be mistakenly acquired by P. aeruginosa, permitting its sterilization (>99.99%) by irradiation with near-infrared (NIR) light, irrespective of antibiotic resistance. Our findings substantiate that bacterial heme uptake via protein-protein recognition is an attractive target for antimicrobials, enabling specific and effective sterilization.
Collapse
Affiliation(s)
- Yuma Shisaka
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
| | - Yusuke Iwai
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
| | - Shiho Yamada
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
| | - Hiromu Uehara
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
| | - Takehiko Tosha
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan
- Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, 5 Sanbancho, Chiyoda-ku, Tokyo 102-0075, Japan
| | - Hiroshi Sugimoto
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan
- Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, 5 Sanbancho, Chiyoda-ku, Tokyo 102-0075, Japan
| | - Yoshitsugu Shiro
- Graduate School of Life Science, University of Hyogo, 3-2-1 Kouto, Kamigori, Ako, Hyogo 678-1297, Japan
| | - Joshua K. Stanfield
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
| | - Kazuya Ogawa
- Department of Science for Advanced Materials, Faculty of Engineering, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi 400-8511, Japan
| | - Yoshihito Watanabe
- Research Center for Materials Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
| | - Osami Shoji
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
- Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, 5 Sanbancho, Chiyoda-ku, Tokyo 102-0075, Japan
| |
Collapse
|
24
|
Jacek P, Ryngajłło M, Bielecki S. Structural changes of bacterial nanocellulose pellicles induced by genetic modification of Komagataeibacter hansenii ATCC 23769. Appl Microbiol Biotechnol 2019; 103:5339-5353. [PMID: 31037382 PMCID: PMC6570709 DOI: 10.1007/s00253-019-09846-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 04/09/2019] [Accepted: 04/10/2019] [Indexed: 01/08/2023]
Abstract
Bacterial nanocellulose (BNC) synthesized by Komagataeibacter hansenii is a polymer that recently gained an attention of tissue engineers, since its features make it a suitable material for scaffolds production. Nevertheless, it is still necessary to modify BNC to improve its properties in order to make it more suitable for biomedical use. One approach to address this issue is to genetically engineer K. hansenii cells towards synthesis of BNC with modified features. One of possible ways to achieve that is to influence the bacterial movement or cell morphology. In this paper, we described for the first time, K. hansenii ATCC 23769 motA+ and motB+ overexpression mutants, which displayed elongated cell phenotype, increased motility, and productivity. Moreover, the mutant cells produced thicker ribbons of cellulose arranged in looser network when compared to the wild-type strain. In this paper, we present a novel development in obtaining BNC membranes with improved properties using genetic engineering tools.
Collapse
Affiliation(s)
- Paulina Jacek
- Institute of Technical Biochemistry, Lodz University of Technology, B. Stefanowskiego 4/10, 90-924 Lodz, Poland
| | - Małgorzata Ryngajłło
- Institute of Technical Biochemistry, Lodz University of Technology, B. Stefanowskiego 4/10, 90-924 Lodz, Poland
| | - Stanisław Bielecki
- Institute of Technical Biochemistry, Lodz University of Technology, B. Stefanowskiego 4/10, 90-924 Lodz, Poland
| |
Collapse
|
25
|
Becerra G, Igeño MI, Merchán F, Sánchez-Clemente R, Blasco R. New evolving strategies revealed by transcriptomic analysis of a fur - mutant of the cyanotrophic bacterium Pseudomonas pseudoalcaligenes CECT 5344. Microb Biotechnol 2019; 13:148-161. [PMID: 31006999 PMCID: PMC6922518 DOI: 10.1111/1751-7915.13408] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 03/26/2019] [Accepted: 03/27/2019] [Indexed: 12/14/2022] Open
Abstract
The transcriptomic analysis (RNA-seq) of a fur mutant of P. pseudoalcaligenes CECT 5344 has revealed that Fur regulates the expression of more than 100 genes in this bacterial strain, most of them negatively. The highest upregulated genes in response to fur deletion, with respect to the wild type, both cultivated in LB medium, corresponded to genes implicated in iron uptake. They include both TonB-dependent siderophore transporters for the active transport across the outer membrane, and ABC-type and MSF-type transporters for the active transport across the cytoplasmic membrane. Therefore, the main response of this bacterium to iron limitation is expressing genes necessary for metabolism of Fe siderophores produced by other microorganisms (xenosiderophores). The number of genes whose expression decreased in the fur- mutant, as well as its normalized expression (fold change), was lower. Among them, it is remarkable the presence of one of the two cas operons of the two CRISP/Cas clusters was detected in the genome of this bacterium. The transcriptome was validated by qPCR, including the decrease in the expression of cas genes (cse1). The expression of cse1 was also decreased by limiting the amount of iron, carbon or nitrogen in the medium, or by adding menadione, a compound that causes oxidative stress. The higher decrease in cse1 expression was triggered by the addition of cyanide in minimal medium. These results suggest that this bacterium responds to stress conditions, and especially to cyanide, taking a reasonable risk with respect to both the uptake of (TonB-dependent receptors gates) and the tolerance to (reduced immunity) foreign nucleic acids. In conjunction, this can be considered a yet unknown molecular mechanism forcing bacterial evolution.
Collapse
Affiliation(s)
- Gracia Becerra
- Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Veterinaria, Universidad de Extremadura, Caceres, Spain
| | - María Isabel Igeño
- Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Veterinaria, Universidad de Extremadura, Caceres, Spain.,Meat and Meat Products Research Institute (IProCar), BioMic Research Group, Universidad de Extremadura, Caceres, Spain
| | - Faustino Merchán
- Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Veterinaria, Universidad de Extremadura, Caceres, Spain.,Meat and Meat Products Research Institute (IProCar), BioMic Research Group, Universidad de Extremadura, Caceres, Spain
| | - Rubén Sánchez-Clemente
- Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Veterinaria, Universidad de Extremadura, Caceres, Spain.,Meat and Meat Products Research Institute (IProCar), BioMic Research Group, Universidad de Extremadura, Caceres, Spain
| | - Rafael Blasco
- Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Veterinaria, Universidad de Extremadura, Caceres, Spain.,Meat and Meat Products Research Institute (IProCar), BioMic Research Group, Universidad de Extremadura, Caceres, Spain
| |
Collapse
|
26
|
Dong Y, Geng J, Liu J, Pang M, Awan F, Lu C, Liu Y. Roles of three TonB systems in the iron utilization and virulence of the Aeromonas hydrophila Chinese epidemic strain NJ-35. Appl Microbiol Biotechnol 2019; 103:4203-4215. [PMID: 30972460 DOI: 10.1007/s00253-019-09757-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 03/08/2019] [Indexed: 12/19/2022]
Abstract
The TonB system functions in iron transport and has been identified in certain Gram-negative bacteria. Recently, we reported three TonB systems in the Aeromonas hydrophila Chinese epidemic strain NJ-35, but the functions of these systems have not been thoroughly elucidated to date. In this study, we investigated the role of these TonB systems in A. hydrophila iron utilization and virulence. We found that tonB1 and tonB2 were preferentially transcribed in iron-chelated conditions, where gene expression levels were approximately 8- and 68-fold higher compared with iron-rich conditions, respectively; tonB3 was consistently transcribed at a low level under iron-repleted and iron-depleted conditions. Only the TonB2 system was required to utilize iron-binding proteins. The tonB123 mutant showed increased susceptibility to erythromycin and roxithromycin. In addition, all three tonB genes were involved in A. hydrophila virulence in zebrafish, and various phenotypes associated with environmental survival were changed with varying degrees in each tonB mutant. TonB2 plays a relatively major role in adhesion, motility, and biofilm formation, while TonB3 is more involved in the anti-phagocytosis of A. hydrophila. In each observed phenotype, no significant difference was found between the single- and double-deletion mutants, whereas the triple-deletion mutant exhibited the most serious defects, indicating that all three TonB systems of A. hydrophila coordinately complement one another. In conclusion, this study elucidates the importance of TonB in iron acquisition and virulence of A. hydrophila, which lays the foundation for future studies regarding the survival mechanisms of this bacterium in iron-restricted environments.
Collapse
Affiliation(s)
- Yuhao Dong
- Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Jinzhu Geng
- Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Jin Liu
- Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Maoda Pang
- Key Lab of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, Jiangsu, China
| | - Furqan Awan
- Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Chengping Lu
- Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Yongjie Liu
- Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China.
| |
Collapse
|
27
|
Contribution of Active Iron Uptake to Acinetobacter baumannii Pathogenicity. Infect Immun 2019; 87:IAI.00755-18. [PMID: 30718286 DOI: 10.1128/iai.00755-18] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 01/25/2019] [Indexed: 11/20/2022] Open
Abstract
Acinetobacter baumannii is an important nosocomial pathogen. Mechanisms that allow A. baumannii to cause human infection are still poorly understood. Iron is an essential nutrient for bacterial growth in vivo, and the multiplicity of iron uptake systems in A. baumannii suggests that iron acquisition contributes to the ability of A. baumannii to cause infection. In Gram-negative bacteria, active transport of ferrisiderophores and heme relies on the conserved TonB-ExbB-ExbD energy-transducing complex, while active uptake of ferrous iron is mediated by the Feo system. The A. baumannii genome invariably contains three tonB genes (tonB1, tonB2, and tonB3), whose role in iron uptake is poorly understood. Here, we generated A. baumannii mutants with knockout mutations in the feo and/or tonB gene. We report that tonB3 is essential for A. baumannii growth under iron-limiting conditions, whereas tonB1, tonB2, and feoB appear to be dispensable for ferric iron uptake. tonB3 deletion resulted in reduced intracellular iron content despite siderophore overproduction, supporting a key role of TonB3 in iron uptake. In contrast to the case for tonB1 and tonB2, the promoters of tonB3 and feo contain functional Fur boxes and are upregulated in iron-poor media. Both TonB3 and Feo systems are required for growth in complement-free human serum and contribute to resistance to the bactericidal activity of normal human serum, but only TonB3 appears to be essential for virulence in insect and mouse models of infection. Our findings highlight a central role of the TonB3 system for A. baumannii pathogenicity. Hence, TonB3 represents a promising target for novel antibacterial therapies and for the generation of attenuated vaccine strains.
Collapse
|
28
|
Gómez-Santos N, Glatter T, Koebnik R, Świątek-Połatyńska MA, Søgaard-Andersen L. A TonB-dependent transporter is required for secretion of protease PopC across the bacterial outer membrane. Nat Commun 2019; 10:1360. [PMID: 30911012 PMCID: PMC6434023 DOI: 10.1038/s41467-019-09366-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 03/05/2019] [Indexed: 01/02/2023] Open
Abstract
TonB-dependent transporters (TBDTs) are ubiquitous outer membrane β-barrel proteins that import nutrients and bacteriocins across the outer membrane in a proton motive force-dependent manner, by directly connecting to the ExbB/ExbD/TonB system in the inner membrane. Here, we show that the TBDT Oar in Myxococcus xanthus is required for secretion of a protein, protease PopC, to the extracellular milieu. PopC accumulates in the periplasm before secretion across the outer membrane, and the proton motive force has a role in secretion to the extracellular milieu. Reconstitution experiments in Escherichia coli demonstrate that secretion of PopC across the outer membrane not only depends on Oar but also on the ExbB/ExbD/TonB system. Our results indicate that TBDTs and the ExbB/ExbD/TonB system may have roles not only in import processes but also in secretion of proteins. TonB-dependent transporters (TBDTs) are outer membrane proteins that import nutrients and bacteriocins in bacteria. Here, Gómez-Santos et al. show that a TBDT is required for secretion of a protease in Myxococcus xanthus, suggesting that some TBDTs may be involved in protein secretion.
Collapse
Affiliation(s)
- Nuria Gómez-Santos
- Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch Str. 10, 35043, Marburg, Germany
| | - Timo Glatter
- Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch Str. 10, 35043, Marburg, Germany
| | - Ralf Koebnik
- IRD, Cirad, Interactions Plantes Microorganismes Environnement, University of Montpellier, 34394, Montpellier, France
| | | | - Lotte Søgaard-Andersen
- Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch Str. 10, 35043, Marburg, Germany.
| |
Collapse
|
29
|
Menikpurage IP, Barraza D, Meléndez AB, Strebe S, Mera PE. The B12 receptor BtuB alters the membrane integrity of Caulobacter crescentus. MICROBIOLOGY-SGM 2019; 165:311-323. [PMID: 30628887 DOI: 10.1099/mic.0.000753] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Vitamin B12 is one of the most complex biomolecules in nature. Since few organisms can synthesize B12de novo, most bacteria utilize highly sensitive and specialized transporters to scavenge B12 and its precursors. In Gram-negative bacteria, BtuB is the outer membrane TonB-dependent receptor for B12. In the fresh water bacterium Caulobacter crescentus, btuB is among the most highly expressed genes. In this study, we characterized the function of BtuB in C. crescentus and unveiled a potential new function of this receptor involved in cellular fitness. Under standard minimal or rich growth conditions, we found that supplements of vitamin B12 to cultures of C. crescentus provided no significant advantage in growth rate. Using a B12 methionine auxotroph, we showed that BtuB in C. crescentus is capable of transporting B12 at low pico-molar range. A btuB knockout strain displayed higher sensitivity to detergents and to changes in osmotic pressure compared to the wild-type. Electron micrographs of this knockout strain revealed a morphology defect. The sensitivity observed in the btuB knockout strain was not due to changes in membrane permeability or altered S-layer levels. Our results demonstrate that btuB deletion mutants exhibit increased susceptibility to membrane stressors, suggesting a potential role of this receptor in membrane homeostasis. Because we only tested BtuB's function under laboratory conditions, we cannot eliminate the possibility that BtuB also plays a key role as a B12 scavenger in C. crescentus when growing in its highly variable and nutrient-limited natural environment.
Collapse
Affiliation(s)
- Inoka P Menikpurage
- Department of Chemistry and Biochemistry, New Mexico State University, Las Cruces, NM 88003, USA
| | - Daniela Barraza
- Department of Chemistry and Biochemistry, New Mexico State University, Las Cruces, NM 88003, USA
| | - Ady B Meléndez
- Department of Chemistry and Biochemistry, New Mexico State University, Las Cruces, NM 88003, USA
| | - Sierra Strebe
- Department of Chemistry and Biochemistry, New Mexico State University, Las Cruces, NM 88003, USA
| | - Paola E Mera
- Department of Chemistry and Biochemistry, New Mexico State University, Las Cruces, NM 88003, USA
| |
Collapse
|
30
|
Gregson BH, Metodieva G, Metodiev MV, Golyshin PN, McKew BA. Differential Protein Expression During Growth on Medium Versus Long-Chain Alkanes in the Obligate Marine Hydrocarbon-Degrading Bacterium Thalassolituus oleivorans MIL-1. Front Microbiol 2018; 9:3130. [PMID: 30619200 PMCID: PMC6304351 DOI: 10.3389/fmicb.2018.03130] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 12/04/2018] [Indexed: 02/02/2023] Open
Abstract
The marine obligate hydrocarbonoclastic bacterium Thalassolituus oleivorans MIL-1 metabolizes a broad range of aliphatic hydrocarbons almost exclusively as carbon and energy sources. We used LC-MS/MS shotgun proteomics to identify proteins involved in aerobic alkane degradation during growth on medium- (n-C14) or long-chain (n-C28) alkanes. During growth on n-C14, T. oleivorans expresses an alkane monooxygenase system involved in terminal oxidation including two alkane 1-monooxygenases, a ferredoxin, a ferredoxin reductase and an aldehyde dehydrogenase. In contrast, during growth on long-chain alkanes (n-C28), T. oleivorans may switch to a subterminal alkane oxidation pathway evidenced by significant upregulation of Baeyer-Villiger monooxygenase and an esterase, proteins catalyzing ketone and ester metabolism, respectively. The metabolite (primary alcohol) generated from terminal oxidation of an alkane was detected during growth on n-C14 but not on n-C28 also suggesting alternative metabolic pathways. Expression of both active and passive transport systems involved in uptake of long-chain alkanes was higher when compared to the non-hydrocarbon control, including a TonB-dependent receptor, a FadL homolog and a specialized porin. Also, an inner membrane transport protein involved in the export of an outer membrane protein was expressed. This study has demonstrated the substrate range of T. oleivorans is larger than previously reported with growth from n-C10 up to n-C32. It has also greatly enhanced our understanding of the fundamental physiology of T. oleivorans, a key bacterium that plays a significant role in natural attenuation of marine oil pollution, by identifying key enzymes expressed during the catabolism of n-alkanes.
Collapse
Affiliation(s)
- Benjamin H Gregson
- School of Biological Sciences, University of Essex, Colchester, United Kingdom
| | - Gergana Metodieva
- School of Biological Sciences, University of Essex, Colchester, United Kingdom
| | - Metodi V Metodiev
- School of Biological Sciences, University of Essex, Colchester, United Kingdom
| | - Peter N Golyshin
- School of Biological Sciences, Bangor University, Bangor, United Kingdom.,School of Natural Sciences, College of Environmental Sciences and Engineering, Bangor University, Bangor, United Kingdom
| | - Boyd A McKew
- School of Biological Sciences, University of Essex, Colchester, United Kingdom
| |
Collapse
|
31
|
Rosenberg T, Salam BB, Burdman S. Association Between Loss of Type IV Pilus Synthesis Ability and Phenotypic Variation in the Cucurbit Pathogenic Bacterium Acidovorax citrulli. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2018; 31:548-559. [PMID: 29298127 DOI: 10.1094/mpmi-12-17-0324-r] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Acidovorax citrulli is the causal agent of bacterial fruit blotch of cucurbits. We have shown that functional type IV pili (T4P) are required for full virulence of this bacterium. To identify A. citrulli genes required for T4P activity, we screened a library of about 10,000 transposon mutants of A. citrulli M6 for altered T4P-mediated twitching motility. This screen led to the identification of 50 mutants impaired in twitching ability due to transposon insertions into 20 different genes. Representative mutants with disruptions in these genes were further characterized. All mutants were compromised in their virulence in seed transmission and stem inoculation assays and had reduced biofilm formation ability relative to wild-type M6. When grown on nutrient agar, most mutants produced colonies with a translucent and fuzzy appearance, in contrast to the opaque and smooth appearance of wild-type colonies. The colony morphology of these mutants was identical to that of previously reported phenotypic variants of strain M6. The exceptions were M6 mutants disrupted in genes tonB, pilT, pilW, and pilX that exhibited typical wild-type colony morphology, although lacking twitching haloes surrounding the colony. Transmission electron microscopy revealed that most mutants lacked the ability to produce T4P. The exceptions were mutants with disruptions in tonB, pilT, pilW, and pilX genes that were shown to produce these appendages. These findings support the idea that colony phenotypic variation in A. citrulli is determined by the lack of ability to synthesize T4P but not by lack of T4P functionality.
Collapse
Affiliation(s)
- Tally Rosenberg
- Department of Plant Pathology and Microbiology, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Bolaji Babajide Salam
- Department of Plant Pathology and Microbiology, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Saul Burdman
- Department of Plant Pathology and Microbiology, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| |
Collapse
|
32
|
An in silico structural and physicochemical characterization of TonB-dependent copper receptor in A. baumannii. Microb Pathog 2018. [DOI: 10.1016/j.micpath.2018.03.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
33
|
Abdollahi S, Rasooli I, Mousavi Gargari SL. The role of TonB-dependent copper receptor in virulence of Acinetobacter baumannii. INFECTION GENETICS AND EVOLUTION 2018; 60:181-190. [PMID: 29505819 DOI: 10.1016/j.meegid.2018.03.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 02/11/2018] [Accepted: 03/01/2018] [Indexed: 12/15/2022]
Abstract
Acinetobacter baumannii is an opportunistic gram negative pathogen that can adhere to different surfaces and cause different nosocomial infections. To investigate the role of TonB-dependent copper receptor, an outer membrane protein, in virulence of A. baumannii, we deleted this receptor from A. baumannii chromosome. There was a significant decrease in biofilm formation by copper receptor deficient mutant strain. Similarly, the adherence to human epithelial cell and the hydrophobicity were declined. The survival rate of the mutant strain in human sera was reduced while no change was observed in motility of strains. In murine pneumonia model, the bacterial lethal dose 0 (LD0), LD50 and LD100 were increased for mutant strain. Moreover, in vivo and in vitro experiments revealed changes in growth rate and dissemination of mutant strain; so that the bacterial load of the mutant was significantly reduced in the spleen and lung. The findings suggest a critical role for TonB-dependent copper receptor in virulence of A. baumannii.
Collapse
Affiliation(s)
| | - Iraj Rasooli
- Department of Biology, Shahed University, Tehran, Iran; Molecular Microbiology Research Center, Shahed University, Tehran, Iran.
| | | |
Collapse
|
34
|
Chatterjee A, O'Brian MR. Rapid evolution of a bacterial iron acquisition system. Mol Microbiol 2018; 108:90-100. [PMID: 29381237 DOI: 10.1111/mmi.13918] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 01/24/2018] [Accepted: 01/24/2018] [Indexed: 12/13/2022]
Abstract
Under iron limitation, bacteria scavenge ferric (Fe3+ ) iron bound to siderophores or other chelates from the environment to fulfill their nutritional requirement. In gram-negative bacteria, the siderophore uptake system prototype consists of an outer membrane transporter, a periplasmic binding protein and a cytoplasmic membrane transporter, each specific for a single ferric siderophore or siderophore family. Here, we show that spontaneous single gain-of-function missense mutations in outer membrane transporter genes of Bradyrhizobium japonicum were sufficient to confer on cells the ability to use synthetic or natural iron siderophores, suggesting that selectivity is limited primarily to the outer membrane and can be readily modified. Moreover, growth on natural or synthetic chelators required the cytoplasmic membrane ferrous (Fe2+ ) iron transporter FeoB, suggesting that iron is both dissociated from the chelate and reduced to the ferrous form within the periplasm prior to cytoplasmic entry. The data suggest rapid adaptation to environmental iron by facile mutation of selective outer membrane transporter genes and by non-selective uptake components that do not require mutation to accommodate new iron sources.
Collapse
Affiliation(s)
- Anushila Chatterjee
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, The University at Buffalo, 955 Main Street, Room 4102, Buffalo, NY, 14203-1121, USA
| | - Mark R O'Brian
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, The University at Buffalo, 955 Main Street, Room 4102, Buffalo, NY, 14203-1121, USA
| |
Collapse
|
35
|
Sarver JL, Zhang M, Liu L, Nyenhuis D, Cafiso DS. A Dynamic Protein-Protein Coupling between the TonB-Dependent Transporter FhuA and TonB. Biochemistry 2018; 57:1045-1053. [PMID: 29338257 DOI: 10.1021/acs.biochem.7b01223] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Bacterial outer membrane TonB-dependent transporters function by executing cycles of binding and unbinding to the inner membrane protein TonB. In the vitamin B12 transporter BtuB and the ferric citrate transporter FecA, substrate binding increases the periplasmic exposure of the Ton box, an energy-coupling segment. This increased exposure appears to enhance the affinity of the transporter for TonB. Here, continuous wave and pulse EPR spectroscopy were used to examine the state of the Ton box in the Escherichia coli ferrichrome transporter FhuA. In its apo state, the Ton box of FhuA samples a broad range of positions and multiple conformational substates. When bound to ferrichrome, the Ton box does not extend further into the periplasm, although the structural states sampled by the FhuA Ton box are altered. When bound to a soluble fragment of TonB, the TonB-FhuA complex remains heterogeneous and dynamic, indicating that TonB does not make strong, specific contacts with either the FhuA barrel or the core region of the transporter. This result differs from that seen in the crystal structure of the TonB-FhuA complex. These data indicate that unlike BtuB and FecA, the periplasmic exposure of the Ton box in FhuA does not change significantly in the presence of substrate and that allosteric control of transporter-TonB interactions functions by a different mechanism than that seen in either BtuB or FecA. Moreover, the data indicate that models involving a rotation of TonB relative to the transporter are unlikely to underlie the mechanism that drives TonB-dependent transport.
Collapse
Affiliation(s)
- Jessica L Sarver
- Department of Chemistry and Center for Membrane Biology, University of Virginia , McCormick Road, Charlottesville, Virginia 22904, United States
| | - Michael Zhang
- Department of Chemistry and Center for Membrane Biology, University of Virginia , McCormick Road, Charlottesville, Virginia 22904, United States
| | - Lishan Liu
- Department of Chemistry and Center for Membrane Biology, University of Virginia , McCormick Road, Charlottesville, Virginia 22904, United States
| | - David Nyenhuis
- Department of Chemistry and Center for Membrane Biology, University of Virginia , McCormick Road, Charlottesville, Virginia 22904, United States
| | - David S Cafiso
- Department of Chemistry and Center for Membrane Biology, University of Virginia , McCormick Road, Charlottesville, Virginia 22904, United States
| |
Collapse
|
36
|
Mydy LS, Mashhadi Z, Knight TW, Fenske T, Hagemann T, Hoppe RW, Han L, Miller TR, Schwabacher AW, Silvaggi NR. Swit_4259, an acetoacetate decarboxylase-like enzyme from Sphingomonas wittichii RW1. Acta Crystallogr F Struct Biol Commun 2017; 73:672-681. [PMID: 29199988 PMCID: PMC5713672 DOI: 10.1107/s2053230x17015862] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 10/31/2017] [Indexed: 11/10/2022] Open
Abstract
The Gram-negative bacterium Sphingomonas wittichii RW1 is notable for its ability to metabolize a variety of aromatic hydrocarbons. Not surprisingly, the S. wittichii genome contains a number of putative aromatic hydrocarbon-degrading gene clusters. One of these includes an enzyme of unknown function, Swit_4259, which belongs to the acetoacetate decarboxylase-like superfamily (ADCSF). Here, it is reported that Swit_4259 is a small (28.8 kDa) tetrameric ADCSF enzyme that, unlike the prototypical members of the superfamily, does not have acetoacetate decarboxylase activity. Structural characterization shows that the tertiary structure of Swit_4259 is nearly identical to that of the true decarboxylases, but there are important differences in the fine structure of the Swit_4259 active site that lead to a divergence in function. In addition, it is shown that while it is a poor substrate, Swit_4259 can catalyze the hydration of 2-oxo-hex-3-enedioate to yield 2-oxo-4-hydroxyhexanedioate. It is also demonstrated that Swit_4259 has pyruvate aldolase-dehydratase activity, a feature that is common to all of the family V ADCSF enzymes studied to date. The enzymatic activity, together with the genomic context, suggests that Swit_4259 may be a hydratase with a role in the metabolism of an as-yet-unknown hydrocarbon. These data have implications for engineering bioremediation pathways to degrade specific pollutants, as well as structure-function relationships within the ADCSF in general.
Collapse
Affiliation(s)
- Lisa S. Mydy
- Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, USA
| | - Zahra Mashhadi
- Clinical Pharmacology Division, Vanderbilt University, TN 37232, USA
| | - T. William Knight
- Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, USA
| | - Tyler Fenske
- Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, USA
| | - Trevor Hagemann
- Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, USA
| | - Robert W. Hoppe
- Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, USA
| | - Lanlan Han
- Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, USA
| | - Todd R. Miller
- Joseph J. Zilber School of Public Health, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, USA
| | - Alan W. Schwabacher
- Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, USA
| | - Nicholas R. Silvaggi
- Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, USA
| |
Collapse
|
37
|
Guo Y, Hu D, Guo J, Li X, Guo J, Wang X, Xiao Y, Jin H, Liu M, Li Z, Bi D, Zhou Z. The Role of the Regulator Fur in Gene Regulation and Virulence of Riemerella anatipestifer Assessed Using an Unmarked Gene Deletion System. Front Cell Infect Microbiol 2017; 7:382. [PMID: 28971067 PMCID: PMC5609570 DOI: 10.3389/fcimb.2017.00382] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 08/09/2017] [Indexed: 11/29/2022] Open
Abstract
Riemerella anatipestifer, an avian pathogen, has resulted in enormous economic losses to the duck industry globally. Notwithstanding, little is known regarding the physiological, pathogenic and virulence mechanisms of Riemerella anatipestifer (RA) infection. However, the role of Ferric uptake regulator (Fur) in the virulence of R. anatipestifer has not, to date, been demonstrated. Using a genetic approach, unmarked gene deletion system, we evaluated the function of fur gene in the virulence of R. anatipestifer. For this purpose, we constructed a suicide vector containing pheS as a counter selectable marker for unmarked deletion of fur gene to investigate its role in the virulence. After successful transformation of the newly constructed vector, a mutant strain was characterized for genes regulated by iron and Fur using RNA-sequencing and a comparison was made between wild type and mutant strains in both iron restricted and enriched conditions. RNA-seq analysis of the mutant strain in a restricted iron environment showed the downregulation and upregulation of genes which were involved in either important metabolic pathways, transport processes, growth or cell membrane synthesis. Electrophoretic mobility shift assay was performed to identify the putative sequences recognized by Fur. The putative Fur-box sequence was 5′-GATAATGATAATCATTATC-3′. Lastly, the median lethal dose and histopathological investigations of animal tissues also illustrated mild pathological lesions produced by the mutant strain as compared to the wild type RA strain, hence showing declined virulence. Conclusively, an unmarked gene deletion system was successfully developed for RA and the role of the fur gene in virulence was explored comprehensively.
Collapse
Affiliation(s)
- Yunqing Guo
- College of Veterinary Medicine, Huazhong Agricultural UniversityWuhan, China.,Key Lab of Preventive Veterinary Medicine of Hubei Province, Huazhong Agricultural UniversityWuhan, China
| | - Di Hu
- College of Veterinary Medicine, Huazhong Agricultural UniversityWuhan, China.,Key Lab of Preventive Veterinary Medicine of Hubei Province, Huazhong Agricultural UniversityWuhan, China
| | - Jie Guo
- College of Veterinary Medicine, Huazhong Agricultural UniversityWuhan, China.,Key Lab of Preventive Veterinary Medicine of Hubei Province, Huazhong Agricultural UniversityWuhan, China
| | - Xiaowen Li
- College of Veterinary Medicine, Huazhong Agricultural UniversityWuhan, China.,Key Lab of Preventive Veterinary Medicine of Hubei Province, Huazhong Agricultural UniversityWuhan, China
| | - Jinyue Guo
- College of Veterinary Medicine, Huazhong Agricultural UniversityWuhan, China.,Key Lab of Preventive Veterinary Medicine of Hubei Province, Huazhong Agricultural UniversityWuhan, China
| | - Xiliang Wang
- College of Veterinary Medicine, Huazhong Agricultural UniversityWuhan, China.,Key Lab of Preventive Veterinary Medicine of Hubei Province, Huazhong Agricultural UniversityWuhan, China
| | - Yuncai Xiao
- College of Veterinary Medicine, Huazhong Agricultural UniversityWuhan, China.,Key Lab of Preventive Veterinary Medicine of Hubei Province, Huazhong Agricultural UniversityWuhan, China
| | - Hui Jin
- College of Veterinary Medicine, Huazhong Agricultural UniversityWuhan, China.,State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural UniversityWuhan, China
| | - Mei Liu
- College of Veterinary Medicine, Huazhong Agricultural UniversityWuhan, China.,Key Lab of Preventive Veterinary Medicine of Hubei Province, Huazhong Agricultural UniversityWuhan, China
| | - Zili Li
- College of Veterinary Medicine, Huazhong Agricultural UniversityWuhan, China.,Key Lab of Preventive Veterinary Medicine of Hubei Province, Huazhong Agricultural UniversityWuhan, China
| | - Dingren Bi
- College of Veterinary Medicine, Huazhong Agricultural UniversityWuhan, China.,Key Lab of Preventive Veterinary Medicine of Hubei Province, Huazhong Agricultural UniversityWuhan, China.,State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural UniversityWuhan, China
| | - Zutao Zhou
- College of Veterinary Medicine, Huazhong Agricultural UniversityWuhan, China.,Key Lab of Preventive Veterinary Medicine of Hubei Province, Huazhong Agricultural UniversityWuhan, China
| |
Collapse
|
38
|
Meneghini LM, Tripathi S, Woodworth MA, Majumdar S, Poulos TL, Weiss GA. Dissecting binding of a β-barrel membrane protein by phage display. MOLECULAR BIOSYSTEMS 2017; 13:1438-1447. [PMID: 28627567 PMCID: PMC5564213 DOI: 10.1039/c7mb00163k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Membrane proteins (MPs) constitute a third of all proteomes, and contribute to a myriad of cellular functions including intercellular communication, nutrient transport and energy generation. For example, TonB-dependent transporters (TBDTs) in the outer membrane of Gram-negative bacteria play an essential role transporting iron and other nutrients into the bacterial cell. The inherently hydrophobic surfaces of MPs complicates protein expression, purification, and characterization. Thus, dissecting the functional contributions of individual amino acids or structural features through mutagenesis can be a challenging ordeal. Here, we apply a new approach for the expedited protein characterization of the TBDT ShuA from Shigella dysenteriae, and elucidate the protein's initial steps during heme-uptake. ShuA variants were displayed on the surface of an M13 bacteriophage as fusions to the P8 coat protein. Each ShuA variant was analyzed for its ability to display on the bacteriophage surface, and functionally bind to hemoglobin. This technique streamlines isolation of stable MP variants for rapid characterization of binding to various ligands. Site-directed mutagenesis studies targeting each extracellular loop region of ShuA demonstrate no specific extracellular loop is required for hemoglobin binding. Instead two residues, His420 and His86 mediate this interaction. The results identify a loop susceptible to antibody binding, and also a small molecule motif capable of disrupting ShuA from S. dysenteriae. The approach is generalizable to the dissection of other phage-displayed TBDTs and MPs.
Collapse
Affiliation(s)
- Luz M Meneghini
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, USA.
| | - Sarvind Tripathi
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, USA.
| | - Marcus A Woodworth
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, USA.
| | - Sudipta Majumdar
- Department of Chemistry, University of California, Irvine, CA, USA
| | - Thomas L Poulos
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, USA. and Department of Chemistry, University of California, Irvine, CA, USA
| | - Gregory A Weiss
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, USA. and Department of Chemistry, University of California, Irvine, CA, USA
| |
Collapse
|
39
|
Sikora A, Joseph B, Matson M, Staley JR, Cafiso DS. Allosteric Signaling Is Bidirectional in an Outer-Membrane Transport Protein. Biophys J 2017; 111:1908-1918. [PMID: 27806272 DOI: 10.1016/j.bpj.2016.09.038] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 09/14/2016] [Accepted: 09/23/2016] [Indexed: 11/19/2022] Open
Abstract
In BtuB, the Escherichia coli TonB-dependent transporter for vitamin B12, substrate binding to the extracellular surface unfolds a conserved energy coupling motif termed the Ton box into the periplasm. This transmembrane signaling event facilitates an interaction between BtuB and the inner-membrane protein TonB. In this study, continuous-wave and pulse electron paramagnetic resonance in a native outer-membrane preparation demonstrate that signaling also occurs from the periplasmic to the extracellular surface in BtuB. The binding of a TonB fragment to the periplasmic interface alters the configuration of the second extracellular loop and partially dissociates a spin-labeled substrate analog. Moreover, mutants in the periplasmic Ton box that are transport-defective alter the binding site for vitamin B12 in BtuB. This work demonstrates that the Ton box and the extracellular substrate binding site are allosterically coupled in BtuB, and that TonB binding may initiate a partial round of transport.
Collapse
Affiliation(s)
- Arthur Sikora
- Department of Chemistry and Center for Membrane Biology, University of Virginia, Charlottesville, Virginia
| | - Benesh Joseph
- Institute of Physical and Theoretical Chemistry and Center for Biomolecular Magnetic Resonance, University of Frankfurt, Frankfurt am Main, Germany
| | - Morgan Matson
- Department of Chemistry and Center for Membrane Biology, University of Virginia, Charlottesville, Virginia
| | - Jacob R Staley
- Department of Chemistry and Center for Membrane Biology, University of Virginia, Charlottesville, Virginia
| | - David S Cafiso
- Department of Chemistry and Center for Membrane Biology, University of Virginia, Charlottesville, Virginia.
| |
Collapse
|
40
|
Hickman SJ, Cooper REM, Bellucci L, Paci E, Brockwell DJ. Gating of TonB-dependent transporters by substrate-specific forced remodelling. Nat Commun 2017; 8:14804. [PMID: 28429713 PMCID: PMC5413942 DOI: 10.1038/ncomms14804] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 01/31/2017] [Indexed: 12/21/2022] Open
Abstract
Membrane proteins play vital roles in inside-out and outside-in signal transduction by responding to inputs that include mechanical stimuli. Mechanical gating may be mediated by the membrane or by protein(s) but evidence for the latter is scarce. Here we use force spectroscopy, protein engineering and bacterial growth assays to investigate the effects of force on complexes formed between TonB and TonB-dependent transporters (TBDT) from Gram-negative bacteria. We confirm the feasibility of protein-only mediated mechanical gating by demonstrating that the interaction between TonB and BtuB (a TBDT) is sufficiently strong under force to create a channel through the TBDT. In addition, by comparing the dimensions of the force-induced channel in BtuB and a second TBDT (FhuA), we show that the mechanical properties of the interaction are perfectly tuned to their function by inducing formation of a channel whose dimensions are tailored to the ligand.
Collapse
Affiliation(s)
- Samuel J Hickman
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK.,Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Rachael E M Cooper
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Luca Bellucci
- NEST, Istituto Nanoscienze-CNR, Piazza San Silvestro, 12-56127 Pisa, Italy
| | - Emanuele Paci
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK.,Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - David J Brockwell
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK.,Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
| |
Collapse
|
41
|
Thyagarajan SL, Ramanathan G, Singaravelu S, Kandhasamy S, Perumal P, Sivagnanam UT. Microbial Siderophore as MMP inhibitor:An interactive approach on wound healing application. ACTA ACUST UNITED AC 2017. [DOI: 10.1016/j.wndm.2016.12.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
42
|
Kröger C, Kary SC, Schauer K, Cameron ADS. Genetic Regulation of Virulence and Antibiotic Resistance in Acinetobacter baumannii. Genes (Basel) 2016; 8:genes8010012. [PMID: 28036056 PMCID: PMC5295007 DOI: 10.3390/genes8010012] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 12/18/2016] [Accepted: 12/20/2016] [Indexed: 01/14/2023] Open
Abstract
Multidrug resistant microorganisms are forecast to become the single biggest challenge to medical care in the 21st century. Over the last decades, members of the genus Acinetobacter have emerged as bacterial opportunistic pathogens, in particular as challenging nosocomial pathogens because of the rapid evolution of antimicrobial resistances. Although we lack fundamental biological insight into virulence mechanisms, an increasing number of researchers are working to identify virulence factors and to study antibiotic resistance. Here, we review current knowledge regarding the regulation of virulence genes and antibiotic resistance in Acinetobacter baumannii. A survey of the two-component systems AdeRS, BaeSR, GacSA and PmrAB explains how each contributes to antibiotic resistance and virulence gene expression, while BfmRS regulates cell envelope structures important for pathogen persistence. A. baumannii uses the transcription factors Fur and Zur to sense iron or zinc depletion and upregulate genes for metal scavenging as a critical survival tool in an animal host. Quorum sensing, nucleoid-associated proteins, and non-classical transcription factors such as AtfA and small regulatory RNAs are discussed in the context of virulence and antibiotic resistance.
Collapse
Affiliation(s)
- Carsten Kröger
- Department of Microbiology, School of Genetics and Microbiology, Moyne Institute of Preventive Medicine, Trinity College Dublin, Dublin 2, Ireland.
| | - Stefani C Kary
- Department of Microbiology, School of Genetics and Microbiology, Moyne Institute of Preventive Medicine, Trinity College Dublin, Dublin 2, Ireland.
| | - Kristina Schauer
- Department of Veterinary Science, Faculty of Veterinary Medicine, Ludwig-Maximilians-Universität München, Oberschleißheim 85764, Germany.
| | - Andrew D S Cameron
- Department of Biology, University of Regina, Regina, SK S4S 042, Canada.
| |
Collapse
|
43
|
Celia H, Noinaj N, Zakharov SD, Bordignon E, Botos I, Santamaria M, Barnard TJ, Cramer WA, Lloubes R, Buchanan SK. Structural insight into the role of the Ton complex in energy transduction. Nature 2016; 538:60-65. [PMID: 27654919 PMCID: PMC5161667 DOI: 10.1038/nature19757] [Citation(s) in RCA: 107] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Accepted: 08/15/2016] [Indexed: 01/07/2023]
Abstract
In Gram-negative bacteria, outer membrane transporters import nutrients by coupling to an inner membrane protein complex called the Ton complex. The Ton complex consists of TonB, ExbB, and ExbD, and uses the proton motive force at the inner membrane to transduce energy to the outer membrane via TonB. Here, we structurally characterize the Ton complex from Escherichia coli using X-ray crystallography, electron microscopy, double electron-electron resonance (DEER) spectroscopy, and crosslinking. Our results reveal a stoichiometry consisting of a pentamer of ExbB, a dimer of ExbD, and at least one TonB. Electrophysiology studies show that the Ton subcomplex forms pH-sensitive cation-selective channels and provide insight into the mechanism by which it may harness the proton motive force to produce energy.
Collapse
Affiliation(s)
- Hervé Celia
- Laboratoire d’Ingénierie des Systèmes Macromoléculaires, UMR7255 CNRS/Aix-Marseille Université, Institut de Microbiologie de la Méditerranée, 13402 Marseille Cedex 20, France,National Institute of Diabetes & Digestive & Kidney Diseases, Bethesda, Maryland, 20892
| | - Nicholas Noinaj
- Markey Center for Structural Biology, Department of Biological Sciences, and the Purdue Institute for Inflammation, Immunology and Infectious Diseases, Purdue University, West Lafayette, Indiana, 47907,Correspondence and requests for materials should be addressed to N.N. (), R.L. () or S.K.B. ()
| | - Stanislav D. Zakharov
- Markey Center for Structural Biology, Department of Biological Sciences, and the Purdue Institute for Inflammation, Immunology and Infectious Diseases, Purdue University, West Lafayette, Indiana, 47907
| | - Enrica Bordignon
- Fachbereich Physik, Freie Universität, 14195 Berlin, Germany,Faculty of Chemistry and Biochemistry, Ruhr-Universität Bochum, 45810 Bochum, Germany
| | - Istvan Botos
- National Institute of Diabetes & Digestive & Kidney Diseases, Bethesda, Maryland, 20892
| | - Monica Santamaria
- Departamento de Cirugia Experimental, Instituto de Investigacion Hospital La Paz (IdiPAZ), Paseo de la Castellana 261, 28046 Madrid, Spain
| | - Travis J. Barnard
- National Institute of Diabetes & Digestive & Kidney Diseases, Bethesda, Maryland, 20892
| | - William A. Cramer
- Markey Center for Structural Biology, Department of Biological Sciences, and the Purdue Institute for Inflammation, Immunology and Infectious Diseases, Purdue University, West Lafayette, Indiana, 47907
| | - Roland Lloubes
- Laboratoire d’Ingénierie des Systèmes Macromoléculaires, UMR7255 CNRS/Aix-Marseille Université, Institut de Microbiologie de la Méditerranée, 13402 Marseille Cedex 20, France,Correspondence and requests for materials should be addressed to N.N. (), R.L. () or S.K.B. ()
| | - Susan K. Buchanan
- National Institute of Diabetes & Digestive & Kidney Diseases, Bethesda, Maryland, 20892,Correspondence and requests for materials should be addressed to N.N. (), R.L. () or S.K.B. ()
| |
Collapse
|
44
|
Wang R, Xu H, Du L, Chou SH, Liu H, Liu Y, Liu F, Qian G. A TonB-dependent receptor regulates antifungal HSAF biosynthesis in Lysobacter. Sci Rep 2016; 6:26881. [PMID: 27241275 PMCID: PMC4886534 DOI: 10.1038/srep26881] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 04/25/2016] [Indexed: 11/25/2022] Open
Abstract
Lysobacter species are Gram-negative bacteria that are emerging as new sources of antibiotics, including HSAF (Heat Stable Antifungal Factor), which was identified from L. enzymogenes with a new mode of action. LesR, a LuxR solo, was recently shown to regulate the HSAF biosynthesis via an unidentified mechanism in L. enzymogenes OH11. Here, we used a comparative proteomic approach to identify the LesR targets and found that LesR influenced the expression of 33 proteins belonging to 10 functional groups, with 9 proteins belonging to the TBDR (TonB-Dependent Receptor) family. The fundamental role of bacterial TBDR in nutrient uptake motivates us to explore their potential regulation on HSAF biosynthesis which is also modulated by nutrient condition. Six out of 9 TBDR coding genes were individually in-frame deleted. Phenotypic and gene-expression assays showed that TBDR7, whose level was lower in a strain overexpressing lesR, was involved in regulating HSAF yield. TBDR7 was not involved in the growth, but played a vital role in transcribing the key HSAF biosynthetic gene. Taken together, the current lesR-based proteomic study provides the first report that TBDR7 plays a key role in regulating antibiotic (HSAF) biosynthesis, a function which has never been found for TBDRs in bacteria.
Collapse
Affiliation(s)
- Ruping Wang
- College of Plant Protection (Key Laboratory of Integrated Management of Crop Diseases and Pests), Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Huiyong Xu
- College of Plant Protection (Key Laboratory of Integrated Management of Crop Diseases and Pests), Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Liangcheng Du
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, United States
| | - Shan-Ho Chou
- Institute of Biochemistry, and NCHU Agricultural Biotechnology Center, National Chung Hsing University, Taichung, Taiwan, ROC
| | - Hongxia Liu
- College of Plant Protection (Key Laboratory of Integrated Management of Crop Diseases and Pests), Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Youzhou Liu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Science, Nanjing 210014, P.R. China
| | - Fengquan Liu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Science, Nanjing 210014, P.R. China
| | - Guoliang Qian
- College of Plant Protection (Key Laboratory of Integrated Management of Crop Diseases and Pests), Nanjing Agricultural University, Nanjing 210095, P.R. China
| |
Collapse
|
45
|
Ni X, Jiang P, Xing L, Ou C, Yu H, Qi J, Sun B, Cui J, Wang G, Hu Q. Genome-wide mining of potential virulence-associated genes in Riemerella anatipestifer using random transposon mutagenesis. Vet Microbiol 2016; 189:52-8. [PMID: 27259827 DOI: 10.1016/j.vetmic.2016.04.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 04/10/2016] [Accepted: 04/18/2016] [Indexed: 02/04/2023]
Abstract
Riemerella anatipestifer infection is a severe disease confronting the duck industry worldwide. However, little is known about the molecular basis of R. anatipestifer pathogenesis. In this study, we screened 3580 transposon Tn4351 insertion mutagenesis mutants of the highly virulent strain YZb1 in a duckling infection experiment and found 29 of them to be attenuated and 28 potential virulence-associated genes were identified. Molecular characterization of transposon insertion sites showed that of the 28 screened genes, two were predicted to encode TonB-dependent outer membrane receptor (plugs), sixteen encoded enzymes, and seven encoded hypothetical proteins. In addition, of the 28 affected genes, 19 were only found in bacteria belonging to the phylum Bacteroidetes and 10 were only found in the family Flavobacteriaceae. The median lethal dose of the mutants M11 and M29, which was affected in Riean_0060 and Riean_1537 respectively, were about 1700-fold and 210-fold higher than that of the wild-type strain YZb1, and those of the complemented strains M11(pRES-Riean_0060) and M29(pRES-Riean_1537) were decreased by 25- and 3-fold respectively compared to those of the mutants M11 and M29. Additional analysis indicated that the blood bacterial loading of ducklings infected with M11 or M29 was decreased significantly, as compared with that in ducklings infected with the wild-type strain YZb1. Thus, our results indicate that Riean_0060 and Riean_1537 were involved in R. anatipestifer pathogenesis.
Collapse
Affiliation(s)
- Xintao Ni
- Shanghai Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, 518 Ziyue Road, Shanghai 200241, China
| | - Pan Jiang
- Shanghai Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, 518 Ziyue Road, Shanghai 200241, China
| | - Linlin Xing
- Shanghai Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, 518 Ziyue Road, Shanghai 200241, China
| | - Changcan Ou
- Shanghai Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, 518 Ziyue Road, Shanghai 200241, China
| | - Hui Yu
- Shanghai Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, 518 Ziyue Road, Shanghai 200241, China
| | - Jingjing Qi
- Shanghai Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, 518 Ziyue Road, Shanghai 200241, China
| | - Bingqing Sun
- Shanghai Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, 518 Ziyue Road, Shanghai 200241, China
| | - Junsheng Cui
- Shanghai Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, 518 Ziyue Road, Shanghai 200241, China
| | - Guijun Wang
- Anhui Agricultural University, College of Animal Science and Technology, 130 West Changjiang Road, Hefei 230036, China.
| | - Qinghai Hu
- Shanghai Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, 518 Ziyue Road, Shanghai 200241, China.
| |
Collapse
|
46
|
Escherichia coli O104:H4 Pathogenesis: an Enteroaggregative E. coli/Shiga Toxin-Producing E. coli Explosive Cocktail of High Virulence. Microbiol Spectr 2016; 2. [PMID: 26104460 DOI: 10.1128/microbiolspec.ehec-0008-2013] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
A major outbreak caused by Escherichia coli of serotype O104:H4 spread throughout Europe in 2011. This large outbreak was caused by an unusual strain that is most similar to enteroaggregative E. coli (EAEC) of serotype O104:H4. A significant difference, however, is the presence of a prophage encoding the Shiga toxin, which is characteristic of enterohemorrhagic E. coli (EHEC) strains. This combination of genomic features, associating characteristics from both EAEC and EHEC, represents a new pathotype. The 2011 E. coli O104:H4 outbreak of hemorrhagic diarrhea in Germany is an example of the explosive cocktail of high virulence and resistance that can emerge in this species. A total of 46 deaths, 782 cases of hemolytic-uremic syndrome, and 3,128 cases of acute gastroenteritis were attributed to this new clone of EAEC/EHEC. In addition, recent identification in France of similar O104:H4 clones exhibiting the same virulence factors suggests that the EHEC O104:H4 pathogen has become endemically established in Europe after the end of the outbreak. EAEC strains of serotype O104:H4 contain a large set of virulence-associated genes regulated by the AggR transcription factor. They include, among other factors, the pAA plasmid genes encoding the aggregative adherence fimbriae, which anchor the bacterium to the intestinal mucosa (stacked-brick adherence pattern on epithelial cells). Furthermore, sequencing studies showed that horizontal genetic exchange allowed for the emergence of the highly virulent Shiga toxin-producing EAEC O104:H4 strain that caused the German outbreak. This article discusses the role these virulence factors could have in EAEC/EHEC O104:H4 pathogenesis.
Collapse
|
47
|
Pavlova A, Hwang H, Lundquist K, Balusek C, Gumbart JC. Living on the edge: Simulations of bacterial outer-membrane proteins. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1858:1753-9. [PMID: 26826270 DOI: 10.1016/j.bbamem.2016.01.020] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Revised: 01/19/2016] [Accepted: 01/20/2016] [Indexed: 01/06/2023]
Abstract
Gram-negative bacteria are distinguished in part by a second, outer membrane surrounding them. This membrane is distinct from others, possessing an outer leaflet composed not of typical phospholipids but rather large, highly charged molecules known as lipopolysaccharides. Therefore, modeling the structure and dynamics of proteins embedded in the outer membrane requires careful consideration of their native environment. In this review, we examine how simulations of such outer-membrane proteins have evolved over the last two decades, culminating most recently in detailed, highly accurate atomistic models of the outer membrane. We also draw attention to how the simulations have coupled with experiments to produce novel insights unattainable through a single approach. This article is part of a Special Issue entitled: Membrane Proteins edited by J.C. Gumbart and Sergei Noskov.
Collapse
Affiliation(s)
- Anna Pavlova
- School of Physics, Georgia Institute of Technology, Atlanta, GA 30332, United States
| | - Hyea Hwang
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332, United States
| | - Karl Lundquist
- School of Physics, Georgia Institute of Technology, Atlanta, GA 30332, United States
| | - Curtis Balusek
- School of Physics, Georgia Institute of Technology, Atlanta, GA 30332, United States
| | - James C Gumbart
- School of Physics, Georgia Institute of Technology, Atlanta, GA 30332, United States.
| |
Collapse
|
48
|
Whitby PW, Seale TW, Morton DJ, Stull TL. Antisera Against Certain Conserved Surface-Exposed Peptides of Nontypeable Haemophilus influenzae Are Protective. PLoS One 2015; 10:e0136867. [PMID: 26390432 PMCID: PMC4577129 DOI: 10.1371/journal.pone.0136867] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Accepted: 08/09/2015] [Indexed: 12/19/2022] Open
Abstract
Nontypeable Haemophilus influenzae (NTHi) cause significant disease, including otitis media in children, exacerbations of chronic obstructive pulmonary disease, and invasive disease in susceptible populations. No vaccine is currently available to prevent NTHi disease. The interactions of NTHi and the human host are primarily mediated by lipooligosaccharide and a complex array of surface-exposed proteins (SEPs) that act as receptors, sensors and secretion systems. We hypothesized that certain SEPs are present in all NTHi strains and that a subset of these may be antibody accessible and represent protective epitopes. Initially we used 15 genomic sequences available in the GenBank database along with an additional 11 genomic sequences generated by ourselves to identify the core set of putative SEPs present in all strains. Using bioinformatics, 56 core SEPs were identified. Molecular modeling generated putative structures of the SEPs from which potential surface exposed regions were defined. Synthetic peptides corresponding to ten of these highly conserved surface-exposed regions were used to raise antisera in rats. These antisera were used to assess passive protection in the infant rat model of invasive NTHi infection. Five of the antisera were protective, thus demonstrating their in vivo antibody accessibility. These five peptide regions represent potential targets for peptide vaccine candidates to protect against NTHi infection.
Collapse
Affiliation(s)
- Paul W. Whitby
- Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
- * E-mail:
| | - Thomas W. Seale
- Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
| | - Daniel J. Morton
- Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
| | - Terrence L. Stull
- Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
| |
Collapse
|
49
|
Pieretti I, Cociancich S, Bolot S, Carrère S, Morisset A, Rott P, Royer M. Full Genome Sequence Analysis of Two Isolates Reveals a Novel Xanthomonas Species Close to the Sugarcane Pathogen Xanthomonas albilineans. Genes (Basel) 2015; 6:714-33. [PMID: 26213974 PMCID: PMC4584326 DOI: 10.3390/genes6030714] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 07/03/2015] [Accepted: 07/14/2015] [Indexed: 12/28/2022] Open
Abstract
Xanthomonas albilineans is the bacterium responsible for leaf scald, a lethal disease of sugarcane. Within the Xanthomonas genus, X. albilineans exhibits distinctive genomic characteristics including the presence of significant genome erosion, a non-ribosomal peptide synthesis (NRPS) locus involved in albicidin biosynthesis, and a type 3 secretion system (T3SS) of the Salmonella pathogenicity island-1 (SPI-1) family. We sequenced two X. albilineans-like strains isolated from unusual environments, i.e., from dew droplets on sugarcane leaves and from the wild grass Paspalum dilatatum, and compared these genomes sequences with those of two strains of X. albilineans and three of Xanthomonas sacchari. Average nucleotide identity (ANI) and multi-locus sequence analysis (MLSA) showed that both X. albilineans-like strains belong to a new species close to X. albilineans that we have named "Xanthomonas pseudalbilineans". X. albilineans and "X. pseudalbilineans" share many genomic features including (i) the lack of genes encoding a hypersensitive response and pathogenicity type 3 secretion system (Hrp-T3SS), and (ii) genome erosion that probably occurred in a common progenitor of both species. Our comparative analyses also revealed specific genomic features that may help X. albilineans interact with sugarcane, e.g., a PglA endoglucanase, three TonB-dependent transporters and a glycogen metabolism gene cluster. Other specific genomic features found in the "X. pseudalbilineans" genome may contribute to its fitness and specific ecological niche.
Collapse
Affiliation(s)
- Isabelle Pieretti
- CIRAD UMR BGPI, TA A-54/K, Campus International de Baillarguet, F-34398 Montpellier Cedex 5, France.
| | - Stéphane Cociancich
- CIRAD UMR BGPI, TA A-54/K, Campus International de Baillarguet, F-34398 Montpellier Cedex 5, France.
| | - Stéphanie Bolot
- INRA, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR441, 24 Chemin de Borde Rouge-Auzeville CS52627, F-31326 Castanet Tolosan Cedex, France.
- CNRS, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR2594, 24 Chemin de Borde Rouge-Auzeville CS52627, F-31326 Castanet Tolosan Cedex, France.
| | - Sébastien Carrère
- INRA, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR441, 24 Chemin de Borde Rouge-Auzeville CS52627, F-31326 Castanet Tolosan Cedex, France.
- CNRS, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR2594, 24 Chemin de Borde Rouge-Auzeville CS52627, F-31326 Castanet Tolosan Cedex, France.
| | - Alexandre Morisset
- CIRAD UMR BGPI, TA A-54/K, Campus International de Baillarguet, F-34398 Montpellier Cedex 5, France.
| | - Philippe Rott
- CIRAD UMR BGPI, TA A-54/K, Campus International de Baillarguet, F-34398 Montpellier Cedex 5, France.
| | - Monique Royer
- CIRAD UMR BGPI, TA A-54/K, Campus International de Baillarguet, F-34398 Montpellier Cedex 5, France.
| |
Collapse
|
50
|
Characterization of the Burkholderia mallei tonB Mutant and Its Potential as a Backbone Strain for Vaccine Development. PLoS Negl Trop Dis 2015; 9:e0003863. [PMID: 26114445 PMCID: PMC4482651 DOI: 10.1371/journal.pntd.0003863] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 06/01/2015] [Indexed: 01/24/2023] Open
Abstract
Background In this study, a Burkholderia mallei tonB mutant (TMM001) deficient in iron acquisition was constructed, characterized, and evaluated for its protective properties in acute inhalational infection models of murine glanders and melioidosis. Methodology/Principal Findings Compared to the wild-type, TMM001 exhibits slower growth kinetics, siderophore hyper-secretion and the inability to utilize heme-containing proteins as iron sources. A series of animal challenge studies showed an inverse correlation between the percentage of survival in BALB/c mice and iron-dependent TMM001 growth. Upon evaluation of TMM001 as a potential protective strain against infection, we found 100% survival following B. mallei CSM001 challenge of mice previously receiving 1.5 x 104 CFU of TMM001. At 21 days post-immunization, TMM001-treated animals showed significantly higher levels of B. mallei-specific IgG1, IgG2a and IgM when compared to PBS-treated controls. At 48 h post-challenge, PBS-treated controls exhibited higher levels of serum inflammatory cytokines and more severe pathological damage to target organs compared to animals receiving TMM001. In a cross-protection study of acute inhalational melioidosis with B. pseudomallei, TMM001-treated mice were significantly protected. While wild type was cleared in all B. mallei challenge studies, mice failed to clear TMM001. Conclusions/Significance Although further work is needed to prevent chronic infection by TMM001 while maintaining immunogenicity, our attenuated strain demonstrates great potential as a backbone strain for future vaccine development against both glanders and melioidosis. Burkholderia mallei and B. pseudomallei are the causative agents of glanders and melioidosis, respectively. In addition to the recent rise in cases of glanders and the endemicity of melioidosis worldwide, these pathogens have gained attention as potential bioweapons. Further, these pathogens have huge potential for aerosol delivery and often produce fatal infection amongst untreated individuals. Both pathogens are difficult to treat, and even with antibiotic intervention, patients relapse or get re-infected. A big challenge for vaccine development against these pathogens includes identification of broadly protective antigens and a better understanding of the correlates of protection from both acute and chronic infections. Our study is the first to demonstrate significant protection against a lethal challenge with both Burkholderia species. Because TMM001 persists in immunized mice, we propose that this attenuated organism is a promising backbone-based strain from which a legitimate vaccine candidate can be generated.
Collapse
|