1
|
Wang JY, Wang Q, Peng YX, Jiang LG, Lu ZZ, Zheng LM, Li XH, Liu J, Long JC, Liu JH, He Y. ZmSSRP1 facilitates the progression of RNA polymerase II and is essential for kernel development in maize. THE PLANT CELL 2025; 37:koaf071. [PMID: 40166832 PMCID: PMC11983281 DOI: 10.1093/plcell/koaf071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Accepted: 03/02/2025] [Indexed: 04/02/2025]
Abstract
Transcript elongation controlled by RNA polymerase II (RNAP II) represents a key regulatory event in numerous cellular processes. However, the precise mechanisms underlying the regulation of RNAP II distribution and progression in plants remain largely elusive. Here, we positionally cloned the causal mutation in the defective kernel 59 (dek59) maize (Zea mays) mutant and demonstrated that Dek59 encodes Structure-Specific Recognition Protein 1 (ZmSSRP1), a subunit of the FAcilitates Chromatin Transcription (FACT) complex that regulates RNAP II. Using genome-wide mapping assays, we determined that ZmSSRP1-binding sites co-localize with those of RNAP II phosphorylated at its serine 2 residue (Ser2P) and are highly enriched within actively transcribed genes. Mutation of ZmSSRP1 resulted in Ser2P accumulation around the +1 nucleosome of genes, affecting gene expression in a gene length-dependent manner. The reduced amount of RNAP II in the dek59 mutant was rescued to wild-type-like levels by inhibiting the proteasome, indicating that arrested RNAP II degradation is proteasome-dependent. These findings reveal the indispensable role of ZmSSRP1 in regulating RNAP II-mediated transcription, which is critical for the proper expression of thousands of genes during maize seed development.
Collapse
Affiliation(s)
- Jin-Yu Wang
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Qi Wang
- State Key Laboratory of Maize Bio-Breeding, National Maize Improvement Center of China, China Agricultural University, Beijing 100094, China
| | - Ye-Xiang Peng
- State Key Laboratory of Maize Bio-Breeding, National Maize Improvement Center of China, China Agricultural University, Beijing 100094, China
| | - Lu-Guang Jiang
- State Key Laboratory of Maize Bio-Breeding, National Maize Improvement Center of China, China Agricultural University, Beijing 100094, China
| | - Zi-Zheng Lu
- State Key Laboratory of Maize Bio-Breeding, National Maize Improvement Center of China, China Agricultural University, Beijing 100094, China
| | - Lei-Ming Zheng
- State Key Laboratory of Maize Bio-Breeding, National Maize Improvement Center of China, China Agricultural University, Beijing 100094, China
| | - Xiao-Han Li
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| | - Juan Liu
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jin-Cheng Long
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Jing-Han Liu
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yan He
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- State Key Laboratory of Maize Bio-Breeding, National Maize Improvement Center of China, China Agricultural University, Beijing 100094, China
| |
Collapse
|
2
|
Zhang Z, Zhang F, Xiong T. Evolution of the chromatin remodeling complex FACT: Functional analysis of SSRP1 and SPT16 in early anther development. Int J Biol Macromol 2025; 284:138167. [PMID: 39615716 DOI: 10.1016/j.ijbiomac.2024.138167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 11/19/2024] [Accepted: 11/27/2024] [Indexed: 12/16/2024]
Abstract
Facilitates chromatin transcription (FACT) is a histone chaperone composed of SSRP1 and SPT16, which regulates both vegetative and reproductive development in plants. However, its evolutionary history and specific role in anther development remain unexplored. We conducted a comprehensive molecular evolutionary analysis of the SSRP1 and SPT16 genes across eukaryotes, revealing their redundant functions in anther development. SSRP1 and SPT16 have similar evolutionary patterns that originated before plants, animals, and fungi split. Both SSRP1 and SPT16 genes maintained single-copy numbers in animals and fungi, while in plants they were expanded. One gene duplication has occurred in poaceae for SPT16, and one gene duplication has occurred in both monocot and eudicot for SSRP1, respectively. Segmental duplication was the main mechanism for amplifying of SSRP1 and SPT16 in plants. SSRP1 and SPT16 showed similar spatial-temporal expression patterns in anthers. Both the single mutants of ssrp1 and spt16 reduced the numbers of stamens and anther lobes, and the double mutant exhibited more severe anther phenotypes, indicating their redundant functions in male fertility. Our studies provide a deeper understanding of the phylogenetic relationships of SSRP1 and SPT16 genes in eukaryotes and indicate that SSRP1 and SPT16 function in the same pathway to regulate anther lobe formation and anther cell differentiation.
Collapse
Affiliation(s)
- Zaibao Zhang
- School of Life and Health Science, Huzhou College, Huzhou, Zhejiang, China.
| | - Fang Zhang
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, Shandong, China
| | - Tao Xiong
- College of Life Science, Xinyang Normal University, Xinyang, Henan, China
| |
Collapse
|
3
|
Wang P, Fan N, Yang W, Cao P, Liu G, Zhao Q, Guo P, Li X, Lin X, Jiang N, Nashun B. Transcriptional regulation of FACT involves Coordination of chromatin accessibility and CTCF binding. J Biol Chem 2024; 300:105538. [PMID: 38072046 PMCID: PMC10808957 DOI: 10.1016/j.jbc.2023.105538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 11/14/2023] [Accepted: 11/28/2023] [Indexed: 01/09/2024] Open
Abstract
Histone chaperone FACT (facilitates chromatin transcription) is well known to promote chromatin recovery during transcription. However, the mechanism how FACT regulates genome-wide chromatin accessibility and transcription factor binding has not been fully elucidated. Through loss-of-function studies, we show here that FACT component Ssrp1 is required for DNA replication and DNA damage repair and is also essential for progression of cell phase transition and cell proliferation in mouse embryonic fibroblast cells. On the molecular level, absence of the Ssrp1 leads to increased chromatin accessibility, enhanced CTCF binding, and a remarkable change in dynamic range of gene expression. Our study thus unequivocally uncovers a unique mechanism by which FACT complex regulates transcription by coordinating genome-wide chromatin accessibility and CTCF binding.
Collapse
Affiliation(s)
- Peijun Wang
- Inner Mongolia Key Laboratory for Molecular Regulation of the Cell, Inner Mongolia University, Hohhot, China; State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China; School of Life Science and Technology, Inner Mongolia University of Science and Technology, Baotou, China
| | - Na Fan
- Inner Mongolia Key Laboratory for Molecular Regulation of the Cell, Inner Mongolia University, Hohhot, China; State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Wanting Yang
- Inner Mongolia Key Laboratory for Molecular Regulation of the Cell, Inner Mongolia University, Hohhot, China
| | - Pengbo Cao
- Inner Mongolia Key Laboratory for Molecular Regulation of the Cell, Inner Mongolia University, Hohhot, China
| | - Guojun Liu
- School of Life Science and Technology, Inner Mongolia University of Science and Technology, Baotou, China
| | - Qi Zhao
- Inner Mongolia Key Laboratory for Molecular Regulation of the Cell, Inner Mongolia University, Hohhot, China; State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Pengfei Guo
- Inner Mongolia Key Laboratory for Molecular Regulation of the Cell, Inner Mongolia University, Hohhot, China; State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Xihe Li
- Inner Mongolia Key Laboratory for Molecular Regulation of the Cell, Inner Mongolia University, Hohhot, China; Inner Mongolia Saikexing Institute of Breeding and Reproductive Biotechnology in Domestic Animals, Hohhot, China
| | - Xinhua Lin
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Ning Jiang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China.
| | - Buhe Nashun
- Inner Mongolia Key Laboratory for Molecular Regulation of the Cell, Inner Mongolia University, Hohhot, China; State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China.
| |
Collapse
|
4
|
Michl-Holzinger P, Obermeyer S, Markusch H, Pfab A, Ettner A, Bruckmann A, Babl S, Längst G, Schwartz U, Tvardovskiy A, Jensen ON, Osakabe A, Berger F, Grasser KD. Phosphorylation of the FACT histone chaperone subunit SPT16 affects chromatin at RNA polymerase II transcriptional start sites in Arabidopsis. Nucleic Acids Res 2022; 50:5014-5028. [PMID: 35489065 PMCID: PMC9122599 DOI: 10.1093/nar/gkac293] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 04/12/2022] [Accepted: 04/19/2022] [Indexed: 12/15/2022] Open
Abstract
The heterodimeric histone chaperone FACT, consisting of SSRP1 and SPT16, contributes to dynamic nucleosome rearrangements during various DNA-dependent processes including transcription. In search of post-translational modifications that may regulate the activity of FACT, SSRP1 and SPT16 were isolated from Arabidopsis cells and analysed by mass spectrometry. Four acetylated lysine residues could be mapped within the basic C-terminal region of SSRP1, while three phosphorylated serine/threonine residues were identified in the acidic C-terminal region of SPT16. Mutational analysis of the SSRP1 acetylation sites revealed only mild effects. However, phosphorylation of SPT16 that is catalysed by protein kinase CK2, modulates histone interactions. A non-phosphorylatable version of SPT16 displayed reduced histone binding and proved inactive in complementing the growth and developmental phenotypes of spt16 mutant plants. In plants expressing the non-phosphorylatable SPT16 version we detected at a subset of genes enrichment of histone H3 directly upstream of RNA polymerase II transcriptional start sites (TSSs) in a region that usually is nucleosome-depleted. This suggests that some genes require phosphorylation of the SPT16 acidic region for establishing the correct nucleosome occupancy at the TSS of active genes.
Collapse
Affiliation(s)
- Philipp Michl-Holzinger
- Department of Cell Biology & Plant Biochemistry, Centre for Biochemistry, University of Regensburg, Universitätsstr. 31, D-93053 Regensburg, Germany
| | - Simon Obermeyer
- Department of Cell Biology & Plant Biochemistry, Centre for Biochemistry, University of Regensburg, Universitätsstr. 31, D-93053 Regensburg, Germany
| | - Hanna Markusch
- Department of Cell Biology & Plant Biochemistry, Centre for Biochemistry, University of Regensburg, Universitätsstr. 31, D-93053 Regensburg, Germany
| | - Alexander Pfab
- Department of Cell Biology & Plant Biochemistry, Centre for Biochemistry, University of Regensburg, Universitätsstr. 31, D-93053 Regensburg, Germany
| | - Andreas Ettner
- Department of Cell Biology & Plant Biochemistry, Centre for Biochemistry, University of Regensburg, Universitätsstr. 31, D-93053 Regensburg, Germany
| | - Astrid Bruckmann
- Institute for Biochemistry I, Centre for Biochemistry, University of Regensburg, Universitätsstr. 31, D-93053 Regensburg, Germany
| | - Sabrina Babl
- Institute for Biochemistry III, Centre for Biochemistry, University of Regensburg, Universitätsstr. 31, D-93053 Regensburg, Germany
| | - Gernot Längst
- Institute for Biochemistry III, Centre for Biochemistry, University of Regensburg, Universitätsstr. 31, D-93053 Regensburg, Germany
| | - Uwe Schwartz
- NGS Analysis Centre, Biology and Pre-Clinical Medicine, University of Regensburg, Universitätsstr. 31, D-93053 Regensburg, Germany
| | - Andrey Tvardovskiy
- Department of Biochemistry and Molecular Biology, VILLUM Center for Bioanalytical Sciences, University of Southern Denmark, Odense, Denmark
| | - Ole N Jensen
- Department of Biochemistry and Molecular Biology, VILLUM Center for Bioanalytical Sciences, University of Southern Denmark, Odense, Denmark
| | - Akihisa Osakabe
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna BioCenter (VBC), Dr. Bohr-Gasse 3, 1030 Vienna, Austria
| | - Frédéric Berger
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna BioCenter (VBC), Dr. Bohr-Gasse 3, 1030 Vienna, Austria
| | - Klaus D Grasser
- Department of Cell Biology & Plant Biochemistry, Centre for Biochemistry, University of Regensburg, Universitätsstr. 31, D-93053 Regensburg, Germany
| |
Collapse
|
5
|
Jeronimo C, Robert F. The histone chaperone FACT: a guardian of chromatin structure integrity. Transcription 2022; 13:16-38. [PMID: 35485711 PMCID: PMC9467567 DOI: 10.1080/21541264.2022.2069995] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The identification of FACT as a histone chaperone enabling transcription through chromatin in vitro has strongly shaped how its roles are envisioned. However, FACT has been implicated in essentially all aspects of chromatin biology, from transcription to DNA replication, DNA repair, and chromosome segregation. In this review, we focus on recent literature describing the role and mechanisms of FACT during transcription. We highlight the prime importance of FACT in preserving chromatin integrity during transcription and challenge its role as an elongation factor. We also review evidence for FACT's role as a cell-type/gene-specificregulator of gene expression and briefly summarize current efforts at using FACT inhibition as an anti-cancerstrategy.
Collapse
Affiliation(s)
- Célia Jeronimo
- Institut de recherches cliniques de Montréal, Montréal, Québec, Canada
| | - François Robert
- Institut de recherches cliniques de Montréal, Montréal, Québec, Canada.,Département de Médecine, Faculté de Médecine, Université de Montréal, Montréal, Québec, Canada.,Faculty of Medicine, Division of Experimental Medicine, McGill University, Montréal, Québec, Canada
| |
Collapse
|
6
|
The Current Status of SSRP1 in Cancer: Tribulation and Road Ahead. JOURNAL OF HEALTHCARE ENGINEERING 2022; 2022:3528786. [PMID: 35463672 PMCID: PMC9020922 DOI: 10.1155/2022/3528786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 03/21/2022] [Indexed: 12/03/2022]
Abstract
Methods We search PubMed and Web of Sciences with keywords “SSRP1” and “Cancer.” Only English literature was included, and conference papers and abstract were all excluded. Results Transcription factors are classified into three groups based on their DNA binding motifs: simple helix-loop-helix (bHLH), classical zinc fingers (ZF-TFs), and homeodomains. The tumor-suppressive miR-497 (microRNA-497) acted as an undesirable regulator of SSRP1 upregulation, which led to tumor growth. The siRNA (small interfering RNA) knockdown of SSRP1 hindered cell proliferation along with incursion and glioma cell migration. Through the AKT (also known as protein kinase B) signaling pathway, SSRP1 silencing affected cancer apoptosis and cell proliferation. Conclusion The MAPK (mitogen-activated protein kinase) signaling pathway's phosphorylation was suppressed when SSRP1 was depleted. The effect of curaxins on p53 and NF-B (nuclear factor-κB), and their toxicity to cancer cells, is attributable to the FACT (facilitates chromatin transcription) complex's chromatin trapping.
Collapse
|
7
|
Li X, Li H, Jing Q, Wang M, Hu T, Li L, Zhang Q, Liu M, Fu YV, Han J, Su D. Structural insights into multifunctionality of human FACT complex subunit hSSRP1. J Biol Chem 2021; 297:101360. [PMID: 34756889 PMCID: PMC8639466 DOI: 10.1016/j.jbc.2021.101360] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 10/14/2021] [Accepted: 10/26/2021] [Indexed: 02/05/2023] Open
Abstract
Human structure-specific recognition protein 1 (hSSRP1) is an essential component of the facilitates chromatin transcription complex, which participates in nucleosome disassembly and reassembly during gene transcription and DNA replication and repair. Many functions, including nuclear localization, histone chaperone activity, DNA binding, and interaction with cellular proteins, are attributed to hSSRP1, which contains multiple well-defined domains, including four pleckstrin homology (PH) domains and a high-mobility group domain with two flanking disordered regions. However, little is known about the mechanisms by which these domains cooperate to carry out hSSRP1’s functions. Here, we report the biochemical characterization and structure of each functional domain of hSSRP1, including the N-terminal PH1, PH2, PH3/4 tandem PH, and DNA-binding high-mobility group domains. Furthermore, two casein kinase II binding sites in hSSRP1 were identified in the PH3/4 domain and in a disordered region (Gly617–Glu709) located in the C-terminus of hSSRP1. In addition, a histone H2A–H2B binding motif and a nuclear localization signal (Lys677‒Asp687) of hSSRP1 are reported for the first time. Taken together, these studies provide novel insights into the structural basis for hSSRP1 functionality.
Collapse
Affiliation(s)
- Xuehui Li
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, Sichuan, China
| | - Huiyan Li
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, Sichuan, China
| | - Qian Jing
- Research Laboratory of Tumor Epigenetics and Genomics, Department of General Surgery, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy, and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Mengxue Wang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Tingting Hu
- College of Life Sciences, Neijiang Normal University, Neijiang, Sichuan, China
| | - Li Li
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, Sichuan, China
| | - Qiuping Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, Sichuan, China
| | - Mengxin Liu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, Sichuan, China
| | - Yu Vincent Fu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Junhong Han
- Research Laboratory of Tumor Epigenetics and Genomics, Department of General Surgery, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy, and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China.
| | - Dan Su
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, Sichuan, China; Infectious Disease Drug Discovery Institute, Tianjin International Joint Academy of Biotechnology and Medicine, Tianjin, China.
| |
Collapse
|
8
|
Jin G, Zhao R, Zhang J, Cao T, Tang T. SSRP1 Affects Growth and Apoptosis of Gastric Cancer Cells Through AKT Pathway. J Med Biochem 2021; 41:100-107. [PMID: 35291495 PMCID: PMC8882012 DOI: 10.5937/jomb0-33374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Accepted: 08/28/2021] [Indexed: 11/02/2022] Open
Abstract
Background: We aimed to figure out the SSRP1's potential influence on the apoptosis and proliferation of gastric cancer (GC) cells and its regulatory mechanism.
Methods: SSRP1 expression in GC cells and tissues was detected via quantitative reverse transcription-polymerase chain reaction (qRT-PCR). The interrelation between clinicopathological characteristics of GC patients and SSRP1 expression was analyzed via χ2 test, and the correlation between SSRP1 expression and overall survival rate was analyzed using Kaplan-Meier survival analysis. After knockdown of SSRP1 in AGS cells, the SSRP1 expression, colony formation ability, cell viability, cell cycle changes, apoptosis rate, and migration and invasion ability were detected through qRT-PCR, colony formation assay, CCK8 assay, flow cytometry and transwell test, respectively. Finally, the effects of down-regulation of SSRP1 on the expressions of phosphorylated-protein kinase B (p-AKT), B-cell lymphoma-2 (Bcl-2) and Bcl-2 associated X protein (Bax) were explored using Western blotting.
Results: SSRP1 displayed a high expression in GC cells and tissues. SSRP1 expression was closely interrelated to the TNM stage, lymph node metastasis and tumor size. The survival rate of patients was markedly shorter in high expression group than the lower expression group. After the knockdown of SSRP1 in cells, the viability and colony formation ability of AGS cells were inhibited. In addition, cell ration in the G1 phase was increased, while that in the S phase declined, and the cell invasion and migration were obviously weakened. It was found from Western blotting that the knockdown of SSRP1 could evidently suppress the protein levels of Bcl-2 and p-AKT, but promote the protein expression of Bax, indicating that silencing SSRP1 can inhibit the proliferative capacity and increase the number of GC cells through incativating AKT signaling pathway.
Conclusion: SSRP1 rose up in GC tissues and cells. Reduction of SSRP1 can inhibit the proliferative capacity and increase the number of GC cells through inactiving AKT signaling pathway.
Collapse
Affiliation(s)
- Guohua Jin
- First Hospital of Jilin University, Department of Gastroenterology, Changchun, Jilin, China
| | - Ruihong Zhao
- First Hospital of Jilin University, Department of Gastroenterology, Changchun, Jilin, China
| | - Jianguang Zhang
- First Hospital of Jilin University, Department of Gastroenterology, Changchun, Jilin, China
| | - Tingting Cao
- First Hospital of Jilin University, Department of Gastroenterology, Changchun, Jilin, China
| | - Tongyu Tang
- First Hospital of Jilin University, Department of Gastroenterology, Changchun, Jilin, China
| |
Collapse
|
9
|
Kumar A, Vasudevan D. Structure-function relationship of H2A-H2B specific plant histone chaperones. Cell Stress Chaperones 2020; 25:1-17. [PMID: 31707537 PMCID: PMC6985425 DOI: 10.1007/s12192-019-01050-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 10/15/2019] [Accepted: 10/28/2019] [Indexed: 10/25/2022] Open
Abstract
Studies on chromatin structure and function have gained a revived popularity. Histone chaperones are significant players in chromatin organization. They play a significant role in vital nuclear functions like transcription, DNA replication, DNA repair, DNA recombination, and epigenetic regulation, primarily by aiding processes such as histone shuttling and nucleosome assembly/disassembly. Like the other eukaryotes, plants also have a highly orchestrated and dynamic chromatin organization. Plants seem to have more isoforms within the same family of histone chaperones, as compared with other organisms. As some of these are specific to plants, they must have evolved to perform functions unique to plants. However, it appears that only little effort has gone into understanding the structural features of plant histone chaperones and their structure-function relationships. Studies on plant histone chaperones are essential for understanding their role in plant chromatin organization and how plants respond during stress conditions. This review is on the structural and functional aspects of plant histone chaperone families, specifically those which bind to H2A-H2B, viz nucleosome assembly protein (NAP), nucleoplasmin (NPM), and facilitates chromatin transcription (FACT). Here, we also present comparative analyses of these plant histone chaperones with available histone chaperone structures. The review hopes to incite interest among researchers to pursue further research in the area of plant chromatin and the associated histone chaperones.
Collapse
Affiliation(s)
- Ashish Kumar
- Institute of Life Sciences, Bhubaneswar, Odisha, 751023, India
- Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | | |
Collapse
|
10
|
Grasser KD. The FACT Histone Chaperone: Tuning Gene Transcription in the Chromatin Context to Modulate Plant Growth and Development. FRONTIERS IN PLANT SCIENCE 2020; 11:85. [PMID: 32140163 PMCID: PMC7042381 DOI: 10.3389/fpls.2020.00085] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 01/21/2020] [Indexed: 05/20/2023]
Abstract
FACT is a heterodimeric histone chaperone consisting of the SSRP1 and SPT16 proteins and is conserved among eukaryotes. It interacts with the histones H2A-H2B and H3-H4 as well as with DNA. Based on in vitro and in vivo studies mainly in yeast and mammalian cells, FACT can mediate nucleosome disassembly and reassembly and thus facilitates in the chromatin context DNA-dependent processes including transcription, replication and repair. In plants, primarily the role of FACT related to RNA polymerase II transcription has been examined. FACT was found to associate with elongating Arabidopsis RNA polymerase II (RNAPII) as part of the transcript elongation complex and it was identified as repressor of aberrant intragenic transcriptional initiation. Arabidopsis mutants depleted in FACT subunits exhibit various defects in vegetative and reproductive development. Strikingly, FACT modulates important developmental transitions by promoting expression of key repressors of these processes. Thus, FACT facilitates expression of DOG1 and FLC adjusting the switch from seed dormancy to germination and from vegetative to reproductive development, respectively. In the central cell of the female gametophyte, FACT can facilitate DNA demethylation especially within heterochromatin, and thereby contributes to gene imprinting during Arabidopsis reproduction. This review discusses results particularly from the plant perspective about the contribution of FACT to processes that involve reorganisation of nucleosomes with a main focus on RNAPII transcription and its implications for diverse areas of plant biology.
Collapse
|
11
|
|
12
|
Pfab A, Grønlund JT, Holzinger P, Längst G, Grasser KD. The Arabidopsis Histone Chaperone FACT: Role of the HMG-Box Domain of SSRP1. J Mol Biol 2018; 430:2747-2759. [PMID: 29966609 DOI: 10.1016/j.jmb.2018.06.046] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 06/18/2018] [Accepted: 06/22/2018] [Indexed: 11/15/2022]
Abstract
Histone chaperones play critical roles in regulated structural transitions of chromatin in eukaryotic cells that involve nucleosome disassembly and reassembly. The histone chaperone FACT is a heterodimeric complex consisting in plants and metazoa of SSRP1/SPT16 and is involved in dynamic nucleosome reorganization during various DNA-dependent processes including transcription, replication and repair. The C-terminal HMG-box domain of the SSRP1 subunit mediates interactions with DNA and nucleosomes in vitro, but its relevance in vivo is unclear. Here, we demonstrate that Arabidopsis ssrp1-2 mutant plants express a C-terminally truncated SSRP1 protein. Although the structure of the truncated HMG-box domain is distinctly disturbed, it still exhibits residual DNA-binding activity, but has lost DNA-bending activity. Since ssrp1-2 plants are phenotypically affected but viable, the HMG-box domain may be functionally non-essential. To examine this possibility, SSRP1∆HMG completely lacking the HMG-box domain was studied. SSRP1∆HMG in vitro did not bind to DNA and its interactions with nucleosomes were severely reduced. Nevertheless, the protein showed a nuclear mobility and protein interactions similar to SSRP1. Interestingly, expression of SSRP1∆HMG is almost as efficient as that of full-length SSRP1 in supporting normal growth and development of the otherwise non-viable Arabidopsis ssrp1-1 mutant. SSRP1∆HMG is structurally similar to the fungal ortholog termed Pob3 that shares clear similarity with SSRP1, but it lacks the C-terminal HMG-box. Therefore, our findings indicate that the HMG-box domain conserved among SSRP1 proteins is not critical in Arabidopsis, and thus, the functionality of SSRP1/SPT16 in plants/metazoa and Pob3/Spt16 in fungi is perhaps more similar than anticipated.
Collapse
Affiliation(s)
- Alexander Pfab
- Department of Cell Biology & Plant Biochemistry, Biochemistry Centre, University of Regensburg, Universitätsstr. 31, D-93053 Regensburg, Germany
| | - Jesper T Grønlund
- Department of Life Sciences, Aalborg University, Sohngaardsholmsvej 49, DK-9000 Aalborg, Denmark
| | - Philipp Holzinger
- Department of Cell Biology & Plant Biochemistry, Biochemistry Centre, University of Regensburg, Universitätsstr. 31, D-93053 Regensburg, Germany
| | - Gernot Längst
- Department of Biochemistry III, Biochemistry Centre, University of Regensburg, Universitätsstr. 31, D-93053 Regensburg, Germany
| | - Klaus D Grasser
- Department of Cell Biology & Plant Biochemistry, Biochemistry Centre, University of Regensburg, Universitätsstr. 31, D-93053 Regensburg, Germany.
| |
Collapse
|
13
|
Liao J, Tao X, Ding Q, Liu J, Yang X, Yuan FE, Yang JA, Liu B, Xiang GA, Chen Q. SSRP1 silencing inhibits the proliferation and malignancy of human glioma cells via the MAPK signaling pathway. Oncol Rep 2017; 38:2667-2676. [PMID: 29048646 PMCID: PMC5780019 DOI: 10.3892/or.2017.5982] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 08/18/2017] [Indexed: 12/15/2022] Open
Abstract
Structure-specific recognition protein 1 (SSRP1) has been considered as a potential biomarker, since aberrant high expression of SSRP1 has been detected in numerous malignant tumors. However, the correlation between the expression level of SSRP1 and glioma remains unclear. The present study attempted to investigate the role of SSRP1 in the pathogenesis of glioma. In the present study, our data revealed that SSRP1 overexpression was detected in glioma tissues at both the mRNA and protein levels using quantitative real-time RT-PCR and immunohistochemical analysis. We also demonstrated that the upregulated expression of SSRP1 was correlated with the World Health Organization (WHO) grade of glioma. The knockdown of SSRP1 by siRNA not only resulted in the inhibition of cell proliferation, but also significantly inhibited glioma cell migration and invasion. Mechanistic analyses revealed that SSRP1 depletion suppressed the activity of the phosphorylation of the MAPK signaling pathway. In conclusion, the present study indicated that SSRP1 regulated the proliferation and metastasis of glioma cells via the MAPK signaling pathway.
Collapse
Affiliation(s)
- Jianming Liao
- Department of Neurosurgery, Institute for Gastroenterology and Hepatology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Xiang Tao
- Department of Neurosurgery, Institute for Gastroenterology and Hepatology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Qianshan Ding
- Department of Gastroenterology, Institute for Gastroenterology and Hepatology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Junhui Liu
- Department of Neurosurgery, Institute for Gastroenterology and Hepatology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Xue Yang
- Department of Neurosurgery, Institute for Gastroenterology and Hepatology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Fan-En Yuan
- Department of Neurosurgery, Institute for Gastroenterology and Hepatology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Ji-An Yang
- Department of Neurosurgery, Institute for Gastroenterology and Hepatology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Baohui Liu
- Department of Neurosurgery, Institute for Gastroenterology and Hepatology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Guo-An Xiang
- Department of General Surgery, The Second People's Hospital of Guangdong Province, The Third Clinical Medicine School, Southern Medical University, Guangzhou, Guangdong 510317, P.R. China
| | - Qianxue Chen
- Department of Neurosurgery, Institute for Gastroenterology and Hepatology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| |
Collapse
|
14
|
Bonnot T, Bancel E, Chambon C, Boudet J, Branlard G, Martre P. Changes in the nuclear proteome of developing wheat (Triticum aestivum L.) grain. FRONTIERS IN PLANT SCIENCE 2015; 6:905. [PMID: 26579155 PMCID: PMC4623401 DOI: 10.3389/fpls.2015.00905] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2015] [Accepted: 10/10/2015] [Indexed: 05/24/2023]
Abstract
Wheat grain end-use value is determined by complex molecular interactions that occur during grain development, including those in the cell nucleus. However, our knowledge of how the nuclear proteome changes during grain development is limited. Here, we analyzed nuclear proteins of developing wheat grains collected during the cellularization, effective grain-filling, and maturation phases of development, respectively. Nuclear proteins were extracted and separated by two-dimensional gel electrophoresis. Image analysis revealed 371 and 299 reproducible spots in gels with first dimension separation along pH 4-7 and pH 6-11 isoelectric gradients, respectively. The relative abundance of 464 (67%) protein spots changed during grain development. Abundance profiles of these proteins clustered in six groups associated with the major phases and phase transitions of grain development. Using nano liquid chromatography-tandem mass spectrometry to analyse 387 variant and non-variant protein spots, 114 different proteins were identified that were classified into 16 functional classes. We noted that some proteins involved in the regulation of transcription, like HMG1/2-like protein and histone deacetylase HDAC2, were most abundant before the phase transition from cellularization to grain-filling, suggesting that major transcriptional changes occur during this key developmental phase. The maturation period was characterized by high relative abundance of proteins involved in ribosome biogenesis. Data are available via ProteomeXchange with identifier PXD002999.
Collapse
Affiliation(s)
- Titouan Bonnot
- UMR1095 Genetics, Diversity and Ecophysiology of Cereals, Institut National de la Recherche AgronomiqueClermont-Ferrand, France
- UMR1095 Genetics, Diversity and Ecophysiology of Cereals, Blaise Pascal UniversityAubière, France
| | - Emmanuelle Bancel
- UMR1095 Genetics, Diversity and Ecophysiology of Cereals, Institut National de la Recherche AgronomiqueClermont-Ferrand, France
- UMR1095 Genetics, Diversity and Ecophysiology of Cereals, Blaise Pascal UniversityAubière, France
| | - Christophe Chambon
- Metabolism Exploration Platform Proteomic Component, Institut National de la Recherche AgronomiqueSaint-Genès Champanelle, France
| | - Julie Boudet
- UMR1095 Genetics, Diversity and Ecophysiology of Cereals, Institut National de la Recherche AgronomiqueClermont-Ferrand, France
- UMR1095 Genetics, Diversity and Ecophysiology of Cereals, Blaise Pascal UniversityAubière, France
| | - Gérard Branlard
- UMR1095 Genetics, Diversity and Ecophysiology of Cereals, Institut National de la Recherche AgronomiqueClermont-Ferrand, France
- UMR1095 Genetics, Diversity and Ecophysiology of Cereals, Blaise Pascal UniversityAubière, France
| | - Pierre Martre
- UMR1095 Genetics, Diversity and Ecophysiology of Cereals, Institut National de la Recherche AgronomiqueClermont-Ferrand, France
- UMR1095 Genetics, Diversity and Ecophysiology of Cereals, Blaise Pascal UniversityAubière, France
| |
Collapse
|
15
|
Zhou W, Zhu Y, Dong A, Shen WH. Histone H2A/H2B chaperones: from molecules to chromatin-based functions in plant growth and development. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 83:78-95. [PMID: 25781491 DOI: 10.1111/tpj.12830] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2015] [Revised: 03/10/2015] [Accepted: 03/11/2015] [Indexed: 05/06/2023]
Abstract
Nucleosomal core histones (H2A, H2B, H3 and H4) must be assembled, replaced or exchanged to preserve or modify chromatin organization and function according to cellular needs. Histone chaperones escort histones, and play key functions during nucleosome assembly/disassembly and in nucleosome structure configuration. Because of their location at the periphery of nucleosome, histone H2A-H2B dimers are remarkably dynamic. Here we focus on plant histone H2A/H2B chaperones, particularly members of the NUCLEOSOME ASSEMBLY PROTEIN-1 (NAP1) and FACILITATES CHROMATIN TRANSCRIPTION (FACT) families, discussing their molecular features, properties, regulation and function. Covalent histone modifications (e.g. ubiquitination, phosphorylation, methylation, acetylation) and H2A variants (H2A.Z, H2A.X and H2A.W) are also discussed in view of their crucial importance in modulating nucleosome organization and function. We further discuss roles of NAP1 and FACT in chromatin-based processes, such as transcription, DNA replication and repair. Specific functions of NAP1 and FACT are evident when their roles are considered with respect to regulation of plant growth and development and in plant responses to environmental stresses. Future major challenges remain in order to define in more detail the overlapping and specific roles of various members of the NAP1 family as well as differences and similarities between NAP1 and FACT family members, and to identify and characterize their partners as well as new families of chaperones to understand histone variant incorporation and chromatin target specificity.
Collapse
Affiliation(s)
- Wangbin Zhou
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, International Associated Laboratory of CNRS-Fudan-HUNAU on Plant Epigenome Research, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 20043, China
| | - Yan Zhu
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, International Associated Laboratory of CNRS-Fudan-HUNAU on Plant Epigenome Research, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 20043, China
| | - Aiwu Dong
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, International Associated Laboratory of CNRS-Fudan-HUNAU on Plant Epigenome Research, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 20043, China
| | - Wen-Hui Shen
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, International Associated Laboratory of CNRS-Fudan-HUNAU on Plant Epigenome Research, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 20043, China
- Institut de Biologie Moléculaire des Plantes, Centre National de la Recherche Scientifique, Université de Strasbourg, 12 rue du Général Zimmer, 67084, Strasbourg, France
| |
Collapse
|
16
|
Kammel C, Thomaier M, Sørensen BB, Schubert T, Längst G, Grasser M, Grasser KD. Arabidopsis DEAD-box RNA helicase UAP56 interacts with both RNA and DNA as well as with mRNA export factors. PLoS One 2013; 8:e60644. [PMID: 23555998 PMCID: PMC3608606 DOI: 10.1371/journal.pone.0060644] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Accepted: 03/01/2013] [Indexed: 01/30/2023] Open
Abstract
The DEAD-box protein UAP56 (U2AF65-associcated protein) is an RNA helicase that in yeast and metazoa is critically involved in mRNA splicing and export. In Arabidopsis, two adjacent genes code for an identical UAP56 protein, and both genes are expressed. In case one of the genes is inactivated by a T-DNA insertion, wild type transcript level is maintained by the other intact gene. In contrast to other organisms that are severely affected by elevated UAP56 levels, Arabidopsis plants that overexpress UAP56 have wild type appearance. UAP56 localises predominantly to euchromatic regions of Arabidopsis nuclei, and associates with genes transcribed by RNA polymerase II independently from the presence of introns, while it is not detected at non-transcribed loci. Biochemical characterisation revealed that in addition to ssRNA and dsRNA, UAP56 interacts with dsDNA, but not with ssDNA. Moreover, the enzyme displays ATPase activity that is stimulated by RNA and dsDNA and it has ATP-dependent RNA helicase activity unwinding dsRNA, whereas it does not unwind dsDNA. Protein interaction studies showed that UAP56 directly interacts with the mRNA export factors ALY2 and MOS11, suggesting that it is involved in mRNA export from plant cell nuclei.
Collapse
Affiliation(s)
- Christine Kammel
- Department of Cell Biology and Plant Biochemistry, Biochemie-Zentrum Regensburg, University of Regensburg, Regensburg, Germany
| | - Maren Thomaier
- Department of Cell Biology and Plant Biochemistry, Biochemie-Zentrum Regensburg, University of Regensburg, Regensburg, Germany
| | - Brian B. Sørensen
- Department of Cell Biology and Plant Biochemistry, Biochemie-Zentrum Regensburg, University of Regensburg, Regensburg, Germany
| | - Thomas Schubert
- Institute for Biochemistry III, Biochemie-Zentrum Regensburg, University of Regensburg, Regensburg, Germany
| | - Gernot Längst
- Institute for Biochemistry III, Biochemie-Zentrum Regensburg, University of Regensburg, Regensburg, Germany
| | - Marion Grasser
- Department of Cell Biology and Plant Biochemistry, Biochemie-Zentrum Regensburg, University of Regensburg, Regensburg, Germany
- * E-mail: (MG); (KDG)
| | - Klaus D. Grasser
- Department of Cell Biology and Plant Biochemistry, Biochemie-Zentrum Regensburg, University of Regensburg, Regensburg, Germany
- * E-mail: (MG); (KDG)
| |
Collapse
|
17
|
Antosch M, Mortensen SA, Grasser KD. Plant proteins containing high mobility group box DNA-binding domains modulate different nuclear processes. PLANT PHYSIOLOGY 2012; 159:875-83. [PMID: 22585776 PMCID: PMC3387713 DOI: 10.1104/pp.112.198283] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
|
18
|
Pedersen DS, Coppens F, Ma L, Antosch M, Marktl B, Merkle T, Beemster GTS, Houben A, Grasser KD. The plant-specific family of DNA-binding proteins containing three HMG-box domains interacts with mitotic and meiotic chromosomes. THE NEW PHYTOLOGIST 2011; 192:577-89. [PMID: 21781122 DOI: 10.1111/j.1469-8137.2011.03828.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
• The high mobility group (HMG)-box represents a DNA-binding domain that is found in various eukaryotic DNA-interacting proteins. Proteins that contain three copies of the HMG-box domain, termed 3 × HMG-box proteins, appear to be specific to plants. The Arabidopsis genome encodes two 3 × HMG-box proteins that were studied here. • DNA interactions were examined using electrophoretic mobility shift assays, whereas expression, subcellular localization and chromosome association were mainly analysed by different types of fluorescence microscopy. • The 3 × HMG-box proteins bind structure specifically to DNA, display DNA bending activity and, in addition to the three HMG-box domains, the basic N-terminal domain contributes to DNA binding. The expression of the two Arabidopsis genes encoding 3 × HMG-box proteins is linked to cell proliferation. In synchronized cells, expression is cell cycle dependent and peaks in cells undergoing mitosis. 3 × HMG-box proteins are excluded from the nuclei of interphase cells and localize to the cytosol, but, during mitosis, they associate with condensed chromosomes. The 3 × HMG-box2 protein generally associates with mitotic chromosomes, while 3 × HMG-box1 is detected specifically at 45S rDNA loci. • In addition to mitotic chromosomes the 3 × HMG-box proteins associate with meiotic chromosomes, suggesting that they are involved in a general process of chromosome function related to cell division, such as chromosome condensation and/or segregation.
Collapse
Affiliation(s)
- Dorthe S Pedersen
- Cell Biology and Plant Biochemistry, Regensburg University, Regensburg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Merkle T, Grasser KD. Unexpected mobility of plant chromatin-associated HMGB proteins. PLANT SIGNALING & BEHAVIOR 2011; 6:878-80. [PMID: 21543902 PMCID: PMC3218493 DOI: 10.4161/psb.6.6.15255] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
High mobility group (HMG) proteins of the HMGB family containing a highly conserved HMG box are chromatin-associated proteins that interact with DNA and nucleosomes and catalyze changes in DNA topology, thereby facilitating important DNA-dependent processes. The genome of Arabidopsis thaliana encodes 15 different HMG-box proteins that are further subdivided into four groups: HMGB-type proteins, ARID-HMG proteins, 3xHMG proteins that contain three HMG boxes and the structure-specific recognition protein 1 (SSRP1). Typically, HMGB proteins are localized exclusively to the nucleus, like Arabidopsis HMGB1 and B5. However, these Arabidopsis HMGB proteins showed a very high mobility within the nuclear compartment. Recent studies revealed that Arabidopsis HMGB2/3 and B4 proteins are predominantly nuclear but also exist in the cytoplasm, suggesting an as yet unknown cytoplasmic function of these chromosomal HMG proteins.
Collapse
Affiliation(s)
- Thomas Merkle
- Faculty of Biology & Institute for Genome Research and Systems Biology, Bielefeld University, Bielefeld, Germany.
| | | |
Collapse
|
20
|
Van Lijsebettens M, Grasser KD. The role of the transcript elongation factors FACT and HUB1 in leaf growth and the induction of flowering. PLANT SIGNALING & BEHAVIOR 2010; 5:715-7. [PMID: 20404555 PMCID: PMC3001568 DOI: 10.4161/psb.5.6.11646] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2010] [Accepted: 02/22/2010] [Indexed: 05/23/2023]
Abstract
In the cell nucleus, the packaging of the DNA into chromatin represses transcription by restricting the access of transcriptional regulators to their binding sites and inhibiting the progression of RNA polymerases during transcript elongation. To efficiently transcribe genes in the context of chromatin, eukaryotes have a variety of transcript elongation factors promoting transcription in vivo. The facilitates chromatin transcription (FACT) complex consisting of the SSRP1 and SPT16 proteins, is a histone chaperone that assists transcription by destabilising nucleosomes in the path of RNA polymerases. In a recent study, we report that Arabidopsis FACT is critically involved in different aspects of development including leaf growth and the transition to flowering. Moreover, FACT was found to interact genetically with HUB1 that mono-ubiquitinates histone H2B. Depending on the underlying process that is regulated by the two complexes, there appear to be different levels of interaction.
Collapse
Affiliation(s)
- Mieke Van Lijsebettens
- Department of Plant Systems Biology, Flanders Institute for Biotechnology, VIB, Ghent, Belgium
| | | |
Collapse
|
21
|
Lolas IB, Himanen K, Grønlund JT, Lynggaard C, Houben A, Melzer M, Van Lijsebettens M, Grasser KD. The transcript elongation factor FACT affects Arabidopsis vegetative and reproductive development and genetically interacts with HUB1/2. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2010; 61:686-97. [PMID: 19947984 DOI: 10.1111/j.1365-313x.2009.04096.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The facilitates chromatin transcription (FACT) complex, consisting of the SSRP1 and SPT16 proteins, is a histone chaperone that assists the progression of transcribing RNA polymerase on chromatin templates by destabilizing nucleosomes. Here, we examined plants that harbour mutations in the genes encoding the subunits of Arabidopsis FACT. These experiments revealed that (i) SSRP1 is critical for plant viability, and (ii) plants with reduced amounts of SSRP1 and SPT16 display various defects in vegetative and reproductive development. Thus, mutant plants display an increased number of leaves and inflorescences, show early bolting, have abnormal flower and leaf architecture, and their seed production is severely affected. The early flowering of the mutant plants is associated with reduced expression of the floral repressor FLC in ssrp1 and spt16 plants. Compared to control plants, reduced amounts of FACT in mutant plants are detected at the FLC locus as well as at the locations of housekeeping genes (whose expression is not affected in the mutants), suggesting that expression of FLC is particularly sensitive to reduced FACT activity. Analysis of double mutants that are affected in the expression of both FACT subunits and factors catalysing the mono-ubiquitination of histone H2B (HUB1/2) demonstrates that they genetically interact to regulate various developmental processes (i.e. branching, leaf venation pattern, silique development) but independently regulate the growth of leaves and the induction of flowering.
Collapse
Affiliation(s)
- Ihab B Lolas
- Department of Life Sciences, Aalborg University, Sohngaardsholmsvej 49, DK-9000 Aalborg, Denmark
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Mohanty A, Yang Y, Luo A, Sylvester AW, Jackson D. Methods for generation and analysis of fluorescent protein-tagged maize lines. Methods Mol Biol 2009; 526:71-89. [PMID: 19378001 DOI: 10.1007/978-1-59745-494-0_6] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
The use of fluorescent proteins to localize gene products in living cells has revolutionized cell biology. Although maize has excellent genetics resources, the use of fluorescent proteins in maize cell biology has not been well developed. To date, protein localization in this species has mostly been performed using immunolocalization with specific antibodies, when available, or by overexpression of fluorescent protein fusions. Localization of tagged proteins using native regulatory elements has the advantage that it is less likely to generate artifactual results, and also reports tissue-specific expression patterns for the gene of interest. Fluorescent protein tags can also be used for other applications, such as protein-protein interaction studies and purification of protein complexes. This chapter describes methods to generate and characterize fluorescent protein-tagged maize lines driven by their native regulatory elements.
Collapse
|
23
|
Hansen FT, Madsen CK, Nordland AM, Grasser M, Merkle T, Grasser KD. A Novel Family of Plant DNA-Binding Proteins Containing both HMG-Box and AT-Rich Interaction Domains. Biochemistry 2008; 47:13207-14. [DOI: 10.1021/bi801772k] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Frederik T. Hansen
- Department of Life Sciences, Aalborg University, Sohngaardsholmsvej 49, DK-9000 Aalborg, Denmark, and Genome Research, Faculty of Biology, University of Bielefeld, Universitätsstrasse 25, D-33594 Bielefeld, Germany
| | - Claus K. Madsen
- Department of Life Sciences, Aalborg University, Sohngaardsholmsvej 49, DK-9000 Aalborg, Denmark, and Genome Research, Faculty of Biology, University of Bielefeld, Universitätsstrasse 25, D-33594 Bielefeld, Germany
| | - Anne Mette Nordland
- Department of Life Sciences, Aalborg University, Sohngaardsholmsvej 49, DK-9000 Aalborg, Denmark, and Genome Research, Faculty of Biology, University of Bielefeld, Universitätsstrasse 25, D-33594 Bielefeld, Germany
| | - Marion Grasser
- Department of Life Sciences, Aalborg University, Sohngaardsholmsvej 49, DK-9000 Aalborg, Denmark, and Genome Research, Faculty of Biology, University of Bielefeld, Universitätsstrasse 25, D-33594 Bielefeld, Germany
| | - Thomas Merkle
- Department of Life Sciences, Aalborg University, Sohngaardsholmsvej 49, DK-9000 Aalborg, Denmark, and Genome Research, Faculty of Biology, University of Bielefeld, Universitätsstrasse 25, D-33594 Bielefeld, Germany
| | - Klaus D. Grasser
- Department of Life Sciences, Aalborg University, Sohngaardsholmsvej 49, DK-9000 Aalborg, Denmark, and Genome Research, Faculty of Biology, University of Bielefeld, Universitätsstrasse 25, D-33594 Bielefeld, Germany
| |
Collapse
|
24
|
Grasser M, Lentz A, Lichota J, Merkle T, Grasser KD. The Arabidopsis Genome Encodes Structurally and Functionally Diverse HMGB-type Proteins. J Mol Biol 2006; 358:654-64. [PMID: 16563436 DOI: 10.1016/j.jmb.2006.02.068] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2005] [Revised: 02/16/2006] [Accepted: 02/25/2006] [Indexed: 11/18/2022]
Abstract
The high mobility group (HMG) proteins of the HMGB family are chromatin-associated proteins that act as architectural factors in nucleoprotein structures, which regulate DNA-dependent processes including transcription and recombination. In addition to the previously identified HMGB1-HMGB6 proteins, the Arabidopsis genome encodes at least two other candidate family members (encoded by the loci At2g34450 and At5g23405) having the typical overall structure of a central domain displaying sequence similarity to HMG-box DNA binding domains, which is flanked by basic N-terminal and acidic C-terminal regions. Subcellular localisation experiments demonstrate that the At2g34450 protein is a nuclear protein, whereas the At5g23405 protein is found mainly in the cytoplasm. In line with this finding, At5g23405 displays specific interaction with the nuclear export receptor AtXPO1a. According to CD measurements, the HMG-box domains of both proteins have an alpha-helical structure. The HMG-box domain of At2g34450 interacts with linear DNA and binds structure-specifically to DNA minicircles, whereas the HMG-box domain of At5g23405 does not interact with DNA at all. In ligation experiments with short DNA fragments, the At2g34450 HMG-box domain can facilitate the formation of linear oligomers, but it does not promote the formation of DNA minicircles. Therefore, the At2g34450 protein shares several features with HMGB proteins, whereas the At5g23405 protein has different characteristics. Despite the presence of a region with similarity to the nucleosome-binding domain typical of HMGN proteins, At2g34450 does not bind nucleosome particles. In summary, our data demonstrate (i) that plant HMGB-type proteins are functionally variable and (ii) that it is difficult to predict HMG-box function solely based on sequence similarity.
Collapse
Affiliation(s)
- Marion Grasser
- Department of Life Sciences, Aalborg University, Sohn-gaardsholmsvej 49, DK-9000 Aalborg, Denmark
| | | | | | | | | |
Collapse
|
25
|
Xue GP. A CELD-fusion method for rapid determination of the DNA-binding sequence specificity of novel plant DNA-binding proteins. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2005; 41:638-49. [PMID: 15686526 DOI: 10.1111/j.1365-313x.2004.02323.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The current focus of many functional genomic studies is on the elucidation of gene regulatory networks. The functional analyses of transcription factors and their DNA-binding sites, in conjunction with genome-wide expression profiling, are crucial in understanding of gene regulatory networks. This paper describes an efficient and easy method for characterizing the DNA-binding sequence specificity of novel plant transcription factors. This new method is based on the fusion of a DNA-binding protein (DBP) to 6xHis-tagged cellulase D (CELD), which serves both as a means for affinity purification of DBP-DNA complex in the selection of binding sites from a pool of biotinylated random-sequence oligonucleotides and as a reporter for measurement of DNA-binding activity. Thus, it eliminates the use of radioactivity and gel electrophoresis techniques currently used for purification of DBP-DNA complexes and assays of DNA-binding activity. The effectiveness of this method was demonstrated by the success of simultaneous selection of the binding sites of nine plant DBPs from four superfamilies (AP2, bHLH, NAC and MYB). The high-throughput capacity of CELD-based DNA-binding assays allows the quantitative analysis of the binding sequence specificity from a large number of DBP-selected oligonucleotides. The binding sequence specificity of three novel transcription factors (rice OsbHLH66, wheat TaNAC69 and TaMYB80), determined with this method, is presented. This new method provides the capacity of high-throughput analysis on the DNA-binding sequence specificity of a large number of putative transcription factors, predicted on the basis of conserved DNA-binding domains.
Collapse
Affiliation(s)
- Gang-Ping Xue
- CSIRO Plant Industry, 306 Carmody Rd, St Lucia, Brisbane, Qld 4067, Australia.
| |
Collapse
|
26
|
Duroux M, Houben A, Růzicka K, Friml J, Grasser KD. The chromatin remodelling complex FACT associates with actively transcribed regions of the Arabidopsis genome. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2004; 40:660-71. [PMID: 15546350 DOI: 10.1111/j.1365-313x.2004.02242.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The packaging of the genomic DNA into chromatin in the cell nucleus requires machineries that facilitate DNA-dependent processes such as transcription in the presence of repressive chromatin structures. Using co-immunoprecipitation we have identified in Arabidopsis thaliana cells the FAcilitates Chromatin Transcription (FACT) complex, consisting of the 120-kDa Spt16 and the 71-kDa SSRP1 proteins. Indirect immunofluorescence analyses revealed that both FACT subunits co-localize to nuclei of the majority of cell types in embryos, shoots and roots, whereas FACT is not present in terminally differentiated cells such as mature trichoblasts or cells of the root cap. In the nucleus, Spt16 and SSRP1 are found in the cytologically defined euchromatin of interphase cells independent of the status of DNA replication, but the proteins are not associated with heterochromatic chromocentres and condensed mitotic chromosomes. FACT can be detected by chromatin immunoprecipitation over the entire transcribed region (5'-UTR, coding sequence, 3'-UTR) of actively transcribed genes, whereas it does not occur at transcriptionally inactive heterochromatic regions and intergenic regions. FACT localizes to inducible genes only after induction of transcription, and the association of the complex with the genes correlates with the level of transcription. Collectively, these results indicate that FACT assists transcription elongation through plant chromatin.
Collapse
Affiliation(s)
- Meg Duroux
- Department of Life Sciences, Aalborg University, Sohngaardsholmsvej 49, DK-9000 Aalborg, Denmark
| | | | | | | | | |
Collapse
|
27
|
Grasser KD, Grill S, Duroux M, Launholt D, Thomsen MS, Nielsen BV, Nielsen HK, Merkle T. HMGB6 from Arabidopsis thaliana specifies a novel type of plant chromosomal HMGB protein. Biochemistry 2004; 43:1309-14. [PMID: 14756567 DOI: 10.1021/bi035931c] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The high-mobility group (HMG) proteins of the HMGB family are chromatin-associated proteins that act as architectural factors in various nucleoprotein structures, which regulate DNA-dependent processes such as transcription and recombination. Database analyses revealed that in addition to the previously identified HMGB1-HMGB5 proteins, the Arabidopsis genome encodes at least three other family members having the typical overall structure of a central HMG-box DNA binding domain, which is flanked by basic and acidic regions. These novel HMGB proteins display some structural differences, when compared to HMGB1-HMGB5. Therefore, a representative of the identified proteins, now termed HMGB6, was further analyzed. The HMGB6 protein of approximately 27 kDa is the largest plant HMGB protein identified so far. This is essentially due to its unusually extended N-terminal domain of 109 amino acid residues. Subcellular localization experiments demonstrate that it is a nuclear protein. According to CD measurements, HMGB6 has an alpha-helical HMG-box domain. HMGB6 can bind DNA structure-specifically, and it is a substrate for the protein kinase CK2alpha. Because of these features, HMGB6, and presumably its relatives, can be considered members of the plant HMGB protein family. Hence, eight different chromosomal HMGB proteins are expressed in Arabidopsis, and they may serve specialized architectural functions assisting various DNA-dependent processes.
Collapse
Affiliation(s)
- Klaus D Grasser
- Institute of Life Sciences, Aalborg University, Sohngaardsholmsvej 49, DK-9000 Aalborg, Denmark.
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Sutton T, Whitford R, Baumann U, Dong C, Able JA, Langridge P. The Ph2 pairing homoeologous locus of wheat (Triticum aestivum): identification of candidate meiotic genes using a comparative genetics approach. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2003; 36:443-56. [PMID: 14617076 DOI: 10.1046/j.1365-313x.2003.01891.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Colinearity in gene content and order between rice and closely related grass species has emerged as a powerful tool for gene identification. Using a comparative genetics approach, we have identified the rice genomic region syntenous to the region deleted in the wheat chromosome pairing mutant ph2a, with a view to identifying genes at the Ph2 locus that control meiotic processes. Utilising markers known to reside within the region deleted in ph2a, and data from wheat, barley and rice genetic maps, markers delimiting the region deleted on wheat chromosome 3DS in the ph2a mutant were used to locate the syntenous region on the short arm of rice chromosome 1. A contig of rice genomic sequence was identified from publicly available sequence information and used in blast searches to identify wheat expressed sequence tags (ESTs) exhibiting significant similarity. Southern analysis using a subset of identified wheat ESTs confirmed a syntenous relationship between the rice and wheat genomic regions and defined precisely the extent of the deleted segment in the ph2a mutant. A 6.58-Mb rice contig generated from 60 overlapping rice chromosome 1 P1 artificial chromosome (PAC) clones spanning the syntenous rice region has enabled identification of 218 wheat ESTs putatively located in the region deleted in ph2a. What seems to be a terminal deletion on chromosome 3DS is estimated to be 80 Mb in length. Putative candidate genes that may contribute to the altered meiotic phenotype of ph2a are discussed.
Collapse
Affiliation(s)
- Tim Sutton
- Molecular Plant Breeding Cooperative Research Centre, School of Agriculture and Wine, The University of Adelaide, PMB1, Glen Osmond, SA 5064, Australia.
| | | | | | | | | | | |
Collapse
|
29
|
Krohn NM, Stemmer C, Fojan P, Grimm R, Grasser KD. Protein kinase CK2 phosphorylates the high mobility group domain protein SSRP1, inducing the recognition of UV-damaged DNA. J Biol Chem 2003; 278:12710-5. [PMID: 12571244 DOI: 10.1074/jbc.m300250200] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The structure-specific recognition protein SSRP1 plays a role in transcription and replication in the chromatin context. Mediated by its C-terminal high mobility group (HMG) box domain, SSRP1 binds DNA non-sequence specifically but recognizes certain DNA structures. Using acetic acid urea polyacrylamide gel electrophoresis and mass spectrometry, we have examined the phosphorylation of maize SSRP1 by protein kinase CK2 alpha. The kinase phosphorylated several amino acid residues in the C-terminal part of the SSRP1 protein. Two phosphorylation sites were mapped in the very C-terminal region next to the HMG box domain, and about seven sites are localized within the acidic domain. Circular dichroism showed that the phosphorylation of the two C-terminal sites by CK2 alpha resulted in a structural change in the region of HMG box domain, because the negative peak of the CD spectrum at 222 nm was decreased by approximately 10%. In parallel, the phosphorylation induced the recognition of UV-damaged DNA, whereas the non-phosphorylated protein does not discriminate between UV-damaged DNA and control DNA. The affinity of CK2 alpha-phosphorylated SSRP1 for the DNA correlates with the degree of UV-induced DNA damage. Moreover, maize SSRP1 can restore the increased UV-sensitivity of a yeast strain lacking the NHP6A/B HMG domain proteins to levels of the control strain. Collectively, these findings indicate a role for SSRP1 in the UV response of eukaryotic cells.
Collapse
Affiliation(s)
- Nicholas M Krohn
- Institute of Life Sciences, Aalborg University, Sohngaardsholmsvej 49, DK-9000 Aalborg, Denmark
| | | | | | | | | |
Collapse
|
30
|
Zeng SX, Dai MS, Keller DM, Lu H. SSRP1 functions as a co-activator of the transcriptional activator p63. EMBO J 2002; 21:5487-97. [PMID: 12374749 PMCID: PMC129072 DOI: 10.1093/emboj/cdf540] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2002] [Revised: 06/13/2002] [Accepted: 08/21/2002] [Indexed: 12/22/2022] Open
Abstract
The p53 homolog p63 is a transcriptional activator. Here, we describe the identification of an HMG1-like protein SSRP1 as a co-activator of p63. Over expression of wild-type, but not deletion mutant, SSRP1 remarkably enhanced p63gamma-dependent luciferase activity, G1 arrest, apoptosis and expression of endogenous PIG3, p21(Waf1/cip1) and MDM2 in human p53-deficient lung carcinoma H1299 cells and mouse embryonic fibroblasts. Also, SSRP1 interacted to p63gamma in vitro and in cells, and resided with p63gamma at the p53-responsive DNA element sites of the cellular endogenous MDM2 and p21(Waf1/cip1) promoters. Moreover, N-terminus-deleted p63 (DeltaN-p63) bound to neither SSRP1 nor its central domain in vitro. Accordingly, SSRP1 was unable to stimulate DeltaN-p63-mediated residual luciferase activity and apoptosis in cells. Finally, the ectopic expression of the central p63-binding domain of SSRP1 inhibited p63-dependent transcription in cells. Thus, these results suggest that SSRP1 stimulates p63 activity by associating with this activator at the promoter.
Collapse
Affiliation(s)
- Shelya X Zeng
- Department of Biochemistry and Molecular Biology, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97201, USA
| | | | | | | |
Collapse
|
31
|
Stemmer C, Fernández S, Lopez G, Alonso JC, Grasser KD. Plant chromosomal HMGB proteins efficiently promote the bacterial site-specific beta-mediated recombination in vitro and in vivo. Biochemistry 2002; 41:7763-70. [PMID: 12056908 DOI: 10.1021/bi020153u] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In the presence of an accessory DNA bending protein, the bacterial site-specific beta recombinase catalyzes resolution and DNA inversion. Five different maize high mobility group B (HMGB) proteins were examined for their potential to facilitate beta recombination in vitro using DNA substrates with different intervening distances (73-913 bp) between two directly oriented recombination (six) sites. All analyzed HMGB proteins (HMGB1 to HMGB5) could promote beta recombination, but depending on the DNA substrate with different efficiencies. The HMGB1 protein displayed an activity comparable to that of the natural promoting protein Hbsu, whereas the other HMGB proteins were less effective. Phosphorylation of the HMGB1 protein resulted in an increased efficiency of HMGB1 to promote beta recombination. Analyses of DNA substrates with closely spaced six sites demonstrated that in the presence of HMGB1 the recombination rate was correlated to the distance between the six sites, but independent of the helical orientation of the six sites. Using a Bacillus subtilis strain defective in Hbsu, the coexpression of beta recombinase and HMGB1 (or a truncated HMGB1 derivative) revealed that a plant HMG-box domain protein is sufficient for assisting beta to catalyze recombination in vivo. Our results using beta recombination as a model system suggest that the various plant HMGB proteins (and their posttranslationally modified versions) have the potential of forming a repertoire of different DNA structures, which is compatible with the idea that the HMGB proteins can act as architectural factors in a variety of nucleoprotein structures.
Collapse
Affiliation(s)
- Christian Stemmer
- Department of Biotechnology, Institute of Life Sciences, Aalborg University, Sohngaardsholmsvej 49, DK-9000 Aalborg, Denmark
| | | | | | | | | |
Collapse
|
32
|
Lichota J, Grasser KD. Differential chromatin association and nucleosome binding of the maize HMGA, HMGB, and SSRP1 proteins. Biochemistry 2001; 40:7860-7. [PMID: 11425313 DOI: 10.1021/bi010548y] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In plants, chromosomal high mobility group (HMG) proteins have been identified in the HMGA family, containing A/T-hook DNA binding motifs, and in the HMGB family, containing an HMG-box DNA binding domain, that are considered architectural factors in chromatin. We have characterized the association of the HMGA protein, five different HMGB proteins, and the structure-specific recognition protein 1 (SSRP1) with maize chromatin by extraction experiments using NaCl, ethidium bromide, spermine, and distamycin A. The difference in the release of the proteins from chromatin by these reagents indicates that they are differentially associated with chromatin. This was confirmed by treatment of chromatin with micrococcal nuclease, demonstrating that the HMGA, HMGB2/3, and SSRP1 proteins are enriched in the highly nuclease-sensitive fraction of chromatin, which is likely to be transcriptionally competent. As examined by electrophoretic mobility shift analyses, the HMGA protein and the proteins containing an HMG domain (HMGB proteins and SSRP1) bind specifically to purified maize mononucleosomes that contain a histone octamer and approximately 165 bp of DNA. The mode of interaction with the nucleosomes differs for HMGA and HMGB proteins. In the case of the HMGB1 protein, the full-length protein is required for specific nucleosome binding, as the individual HMG-box DNA binding domain (which is sufficient for DNA interactions) interacts nonspecifically with the nucleosomes. Collectively, these findings indicate that HMGA, the various HMGB proteins, and SSPR1 are differentially associated with plant chromatin and may act as architectural factors in different nucleoprotein structures.
Collapse
Affiliation(s)
- J Lichota
- Department of Life Science, Aalborg University, Sohngaardsholmsvej 49, DK-9000 Aalborg, Denmark
| | | |
Collapse
|