1
|
Guo X, Wang Y, Zhao C, Tan C, Yan W, Xiang S, Zhang D, Zhang H, Zhang M, Yang L, Yan M, Xie P, Wang Y, Li L, Fang D, Guang X, Shao W, Wang F, Wang H, Sahu SK, Liu M, Wei T, Peng Y, Qiu Y, Peng T, Zhang Y, Ni X, Xu Z, Lu H, Li Z, Yang H, Wang E, Lisby M, Liu H, Guo H, Xu X. An Arabidopsis single-nucleus atlas decodes leaf senescence and nutrient allocation. Cell 2025; 188:2856-2871.e16. [PMID: 40220755 DOI: 10.1016/j.cell.2025.03.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 07/30/2024] [Accepted: 03/12/2025] [Indexed: 04/14/2025]
Abstract
With rapid advancements in single-cell RNA sequencing (scRNA-seq) technologies, exploration of the systemic coordination of critical physiological processes has entered a new era. Here, we generated a comprehensive Arabidopsis single-nucleus transcriptomic atlas using over 1 million nuclei from 20 tissues encompassing multiple developmental stages. Our analyses identified cell types that have not been characterized in previous single-protoplast studies and revealed cell-type conservation and specificity across different organs. Through time-resolved sampling, we revealed highly coordinated onset and progression of senescence among the major leaf cell types. We originally formulated two molecular indexes to quantify the aging state of leaf cells at single-cell resolution. Additionally, facilitated by weighted gene co-expression network analysis, we identified hundreds of promising hub genes that may integratively regulate leaf senescence. Inspired by the functional validation of identified hub genes, we built a systemic scenario of carbon and nitrogen allocation among different cell types from source leaves to sink organs.
Collapse
Affiliation(s)
- Xing Guo
- BGI Research, Wuhan 430047, China
| | - Yichuan Wang
- New Cornerstone Science Laboratory, Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
| | | | - Cong Tan
- State Key Laboratory of Genome and Multi-omics Technologies, BGI Research, Shenzhen 518083, China
| | - Wei Yan
- New Cornerstone Science Laboratory, Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
| | - Sunhuan Xiang
- State Key Laboratory of Genome and Multi-omics Technologies, BGI Research, Shenzhen 518083, China
| | - Dan Zhang
- New Cornerstone Science Laboratory, Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
| | - Hui Zhang
- State Key Laboratory of Genome and Multi-omics Technologies, BGI Research, Shenzhen 518083, China
| | - Mengting Zhang
- State Key Laboratory of Genome and Multi-omics Technologies, BGI Research, Shenzhen 518083, China; BGI Life Science Joint Research Center, Northeast Forestry University, Harbin, Heilongjiang 150040, China
| | - Liujing Yang
- State Key Laboratory of Genome and Multi-omics Technologies, BGI Research, Shenzhen 518083, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Meng Yan
- School of Agriculture, Yunnan University, Kunming 650500, China
| | - Pingli Xie
- School of Agriculture, Yunnan University, Kunming 650500, China
| | - Yi Wang
- School of Agriculture, Yunnan University, Kunming 650500, China
| | - Li Li
- BGI Research, Wuhan 430047, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dongming Fang
- State Key Laboratory of Genome and Multi-omics Technologies, BGI Research, Shenzhen 518083, China
| | - Xuanmin Guang
- State Key Laboratory of Genome and Multi-omics Technologies, BGI Research, Shenzhen 518083, China
| | - Wenwen Shao
- BGI Research, Wuhan 430047, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fang Wang
- BGI Research, Wuhan 430047, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Haoxuan Wang
- State Key Laboratory of Genome and Multi-omics Technologies, BGI Research, Shenzhen 518083, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Sunil Kumar Sahu
- BGI Research, Wuhan 430047, China; State Key Laboratory of Genome and Multi-omics Technologies, BGI Research, Shenzhen 518083, China
| | - Min Liu
- State Key Laboratory of Genome and Multi-omics Technologies, BGI Research, Shenzhen 518083, China
| | - Tong Wei
- BGI Research, Wuhan 430047, China; State Key Laboratory of Genome and Multi-omics Technologies, BGI Research, Shenzhen 518083, China
| | - Yang Peng
- New Cornerstone Science Laboratory, Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yuping Qiu
- New Cornerstone Science Laboratory, Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
| | - Tao Peng
- New Cornerstone Science Laboratory, Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yi Zhang
- New Cornerstone Science Laboratory, Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xuemei Ni
- State Key Laboratory of Genome and Multi-omics Technologies, BGI Research, Shenzhen 518083, China
| | - Zhicheng Xu
- China National GeneBank, Shenzhen 518083, China
| | - Haorong Lu
- China National GeneBank, Shenzhen 518083, China
| | - Zhonghai Li
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Huanming Yang
- State Key Laboratory of Genome and Multi-omics Technologies, BGI Research, Shenzhen 518083, China
| | - Ertao Wang
- New Cornerstone Science Laboratory, Key Laboratory of Plant Carbon Capture, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, SIBS, Chinese Academy of Sciences, Shanghai 200032, China
| | - Michael Lisby
- Department of Biology, University of Copenhagen, Copenhagen 2100, Denmark
| | - Huan Liu
- State Key Laboratory of Genome and Multi-omics Technologies, BGI Research, Shenzhen 518083, China; BGI Life Science Joint Research Center, Northeast Forestry University, Harbin, Heilongjiang 150040, China.
| | - Hongwei Guo
- New Cornerstone Science Laboratory, Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China.
| | - Xun Xu
- State Key Laboratory of Genome and Multi-omics Technologies, BGI Research, Shenzhen 518083, China; Guangdong Provincial Key Laboratory of Genome Read and Write, Shenzhen 518083, China.
| |
Collapse
|
2
|
Zhao H, Song Y, Zhang C, Mu L, Li X, Zhang J. AtALMT9 Modulates Leaf Development and Disease Resistance in Arabidopsis thaliana. PLANT, CELL & ENVIRONMENT 2025. [PMID: 40391552 DOI: 10.1111/pce.15630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 05/07/2025] [Accepted: 05/09/2025] [Indexed: 05/21/2025]
Abstract
Delaying plant aging and death and enhancing immune defenses of plant have beneficial effects on crop production and the continued development of the agricultural economy. In this study, we focused on AtALMT9, which is located in the vacuolar membrane. Specifically, we investigated its functions in Arabidopsis thaliana leaf development and disease resistance. Our physiological analysis revealed that AtALMT9 negatively regulates leaf development and the immune response to pathogenic microorganisms. Moreover, RNA-seq and qRT-PCR analyses indicated leaf aging- and immunity-related genes were significantly differentially expressed in almt9 mutant plants. Furthermore, the impaired leaf development and accelerated disease resistance of the almt9 mutant were due to the decreased contents of chlorophyll and malic acid as well as the increased levels of salicylic acid and jasmonic acid. This study provides new findings in the molecular mechanism underlying the involvements of AtALMT9 in leaf development and disease resistance, potentially providing a theoretical basis for enhancing agricultural productivity.
Collapse
Affiliation(s)
- Hanshu Zhao
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, China Agricultural University, Beijing, China
| | - Yajing Song
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, China Agricultural University, Beijing, China
| | - Chaonan Zhang
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, China Agricultural University, Beijing, China
| | - Lijun Mu
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, China Agricultural University, Beijing, China
| | - Xujian Li
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, China Agricultural University, Beijing, China
| | - Jingbo Zhang
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, China Agricultural University, Beijing, China
| |
Collapse
|
3
|
Salinas P, Velozo S, Herrera-Vásquez A. Salicylic acid accumulation: emerging molecular players and novel perspectives on plant development and nutrition. JOURNAL OF EXPERIMENTAL BOTANY 2025; 76:1950-1969. [PMID: 39028261 PMCID: PMC12066125 DOI: 10.1093/jxb/erae309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 07/17/2024] [Indexed: 07/20/2024]
Abstract
Salicylic acid (SA) is a central phytohormone that orchestrates genetic and physiological responses involving defense mechanisms against pathogens. This review presents cutting-edge research on emerging molecular players identified within the past 5 years contributing to SA accumulation. Furthermore, we delve into two relatively underexplored domains: the dynamic production of SA throughout the plant life cycle, with a specific focus on senescence, and the intricate interplay between SA, nutrition, and its multifaceted implications on plant development and defense response. This synthesis aims to provide a contemporary and comprehensive understanding of the diverse roles of SA in plant biology.
Collapse
Affiliation(s)
- Paula Salinas
- Facultad de Ciencias, Escuela de Biotecnología, Universidad Santo Tomás, Santiago 8370003, Chile
| | - Sebastián Velozo
- Centro de Biotecnología Vegetal, Facultad de ciencias de la Vida, Universidad Andres Bello, Santiago 8370146, Chile
| | - Ariel Herrera-Vásquez
- Centro de Biotecnología Vegetal, Facultad de ciencias de la Vida, Universidad Andres Bello, Santiago 8370146, Chile
- Millennium Science Initiative Program (ANID), Millennium Institute for Integrative Biology (iBio), Santiago 8331150, Chile
- Millennium Science Initiative Program (ANID), Millennium nucleus for the Development of Super Adaptable Plants (MS-SAP), Santiago 8331150, Chile
| |
Collapse
|
4
|
Fan B, Li Z, Jannasch A, Xiao S, Chen Z. N-hydroxypipecolic acid and salicylic acid play key roles in autoimmunity induced by loss of the callose synthase PMR4. PLANT PHYSIOLOGY 2025; 198:kiaf163. [PMID: 40372133 DOI: 10.1093/plphys/kiaf163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2025] [Accepted: 03/23/2025] [Indexed: 05/16/2025]
Abstract
In Arabidopsis thaliana, the POWDERY MILDEW RESISTANT4 (PMR4)/GLUCAN SYNTHASE LIKE5 (GSL5) callose synthase is required for pathogen-induced callose deposition in cell wall defense. Paradoxically, pmr4/gsl5 mutants exhibit strong resistance to both powdery and downy mildew. The powdery mildew resistance of pmr4/gsl5 has been attributed to upregulated salicylic acid (SA) signaling based on its dependance on PHYTOALEXIN DEFICIENT4 (PAD4), which controls SA accumulation, and its abolishment by bacterial NahG salicylate hydroxylase. Our study revealed that disruption of PMR4/GSL5 also leads to early senescence. Suppressor analysis uncovered that PAD4 and N-hydroxypipecolic acid (NHP) biosynthetic genes ABERRANT GROWTH AND DEATH2-LIKE DEFENSE RESPONSE PROTEIN1 (ALD1) and FLAVIN-DEPENDENT MONOXYGENASE1 (FMO1) are required for early senescence of pmr4/gsl5 mutants. The critical role of NHP in the early senescence of pmr4/gsl5 was supported by greatly increased accumulation of pipecolic acid in pmr4/gsl5 mutants. In contrast, disruption of the SA biosynthetic gene ISOCHORISMATE SYNTHASE1/SA-INDUCTION DIFFICIENT 2 (ICS1/SID2), which greatly reduces SA accumulation, had little effect on impaired growth of pmr4/gsl5. Furthermore, while disruption of PAD4 completely abolished the powdery mildew resistance in pmr4/gsl5, mutations in ICS1/SID2, ALD1, or FMO1 had only a minor effect on the resistance of the mutant plants. However, disruption of both ICS1/SID2 and FMO1 abolished the enhanced immunity of the callose synthase mutants against the fungal pathogen. Therefore, while NHP plays a crucial role in the early senescence of pmr4/gsl5 mutants, both SA and NHP have important roles in the strong powdery mildew resistance induced by the loss of the callose synthase.
Collapse
Affiliation(s)
- Baofang Fan
- Department of Botany and Plant Pathology, Purdue University, 915 Mitch Daniels Boulevard, West Lafayette, IN 47907, USA
| | - Zizhang Li
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD 20850, USA
| | - Amber Jannasch
- Metabolomics Profiling Facility, Bindley Bioscience Center, Purdue University, 1203 Mitch Daniels Boulevard, West Lafayette, IN 47907, USA
| | - Shunyuan Xiao
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD 20850, USA
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD 20742, USA
| | - Zhixiang Chen
- Department of Botany and Plant Pathology, Purdue University, 915 Mitch Daniels Boulevard, West Lafayette, IN 47907, USA
| |
Collapse
|
5
|
Hu K, Geng M, Ma L, Yao G, Zhang M, Zhang H. The H2S-responsive transcription factor ERF.D3 regulates tomato abscisic acid metabolism, leaf senescence, and fruit ripening. PLANT PHYSIOLOGY 2025; 197:kiae560. [PMID: 39431534 DOI: 10.1093/plphys/kiae560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 09/23/2024] [Accepted: 09/23/2024] [Indexed: 10/22/2024]
Abstract
Hydrogen sulfide (H2S) is a signaling molecule that regulates plant senescence. In this study, we found that H2S delays dark-induced senescence in tomato (Solanum lycopersicum) leaves. Transcriptome and reverse transcription quantitative PCR (RT-qPCR) analyses revealed an ethylene response factor ERF.D3 is quickly induced by H2S. H2S also persulfidated ERF.D3 at amino acid residues C115 and C118. CRISPR/Cas9-mediated gene editing, and gene overexpression analyses showed that ERF.D3 negatively regulates leaf senescence and fruit ripening. Abscisic acid (ABA) levels were reduced by ERF.D3 overexpression, suggesting ERF.D3 might regulate ABA metabolism. Additionally, the ABA 8'-hydroxylase-encoding gene CYP707A2, which is required for ABA degradation, was identified as an ERF.D3 target gene through transcriptome data, RT-qPCR, dual-luciferase reporter assays, and electrophoretic mobility shift assays. ERF.D3 persulfidation enhanced its transcriptional activity toward CYP707A2. Moreover, the E3 ligase RNF217 ubiquitinated ERF.D3, which may accelerate fruit ripening during the late stage of fruit development. Overall, our study provides valuable insights into the roles of a H2S-responsive ERF.D3 and its persulfidation state in delaying leaf senescence and fruit ripening and provides a link between H2S and ABA degradation.
Collapse
Affiliation(s)
- Kangdi Hu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Meihui Geng
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Lin Ma
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Gaifang Yao
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Min Zhang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Hua Zhang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| |
Collapse
|
6
|
Hu B, Shen E, Zhou F, Sun B, Wang X, Zhou F, Lin Y. An osmesl mutant delayed rice leaf senescence through inhibiting cell death by OsBI-1. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 349:112271. [PMID: 39321876 DOI: 10.1016/j.plantsci.2024.112271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 09/20/2024] [Accepted: 09/21/2024] [Indexed: 09/27/2024]
Abstract
Leaf senescence following heading in rice is subject to rigorous regulation, with many of the underlying control mechanisms remaining largely unknown. In this study, we identified a novel gene, OsMESL, which exerts a positive regulatory effect on leaf senescence in rice. The T-DNA insertion mutant known as osmesl and RNA interference plants displayed a phenotype characterized by stay-green after heading. Genetic analysis indicated that the mutant phenotype could be rescued through complementation, while the overexpression of OsMESL accelerated leaf senescence after heading, underscoring OsMESL's positive regulatory role in rice leaf senescence. Subsequent investigations revealed that OsMESL modulates the process of cell death by influencing the stability of its interacting protein, the cell death suppressor OsBI-1, thereby governing leaf senescence. Furthermore, the leaves of the osmesl mutant exhibited a delayed reduction in photosynthesis, along with increased grain length and 1000-grain weight. In conclusion, we identified OsMESL as a novel positive regulator of leaf senescence in rice, which likely participates in leaf senescence through the mediation of cell death by OsBI-1, resulting in the phenotype of stay-green in the osmesl mutant after heading.
Collapse
Affiliation(s)
- Bin Hu
- National Key Laboratory for Tropical Crop Breeding/Ministry of Agriculture Key Laboratory of Biology and Genetic Resources of Rubber Tree/State Key Laboratory Breeding Base of Cultivation and Physiology for Tropical Crops, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, PR China
| | - Enlong Shen
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, PR China
| | - Fengling Zhou
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, PR China
| | - Bo Sun
- Wuhan Towin Biotechnology Company Limited, Wuhan 430070, PR China
| | - Xingchao Wang
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, PR China
| | - Fei Zhou
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, PR China.
| | - Yongjun Lin
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, PR China.
| |
Collapse
|
7
|
Ortega MA, Celoy RM, Chacon F, Yuan Y, Xue LJ, Pandey SP, Drowns MR, Kvitko BH, Tsai CJ. Altering cold-regulated gene expression decouples the salicylic acid-growth trade-off in Arabidopsis. THE PLANT CELL 2024; 36:4293-4308. [PMID: 39056470 PMCID: PMC11448890 DOI: 10.1093/plcell/koae210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/10/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024]
Abstract
In Arabidopsis (Arabidopsis thaliana), overproduction of salicylic acid (SA) increases disease resistance and abiotic stress tolerance but penalizes growth. This growth-defense trade-off has hindered the adoption of SA-based disease management strategies in agriculture. However, investigation of how SA inhibits plant growth has been challenging because many SA-hyperaccumulating Arabidopsis mutants have developmental defects due to the pleiotropic effects of the underlying genes. Here, we heterologously expressed a bacterial SA synthase gene in Arabidopsis and observed that elevated SA levels decreased plant growth and reduced the expression of cold-regulated (COR) genes in a dose-dependent manner. Growth suppression was exacerbated at below-ambient temperatures. Severing the SA-responsiveness of individual COR genes was sufficient to overcome the growth inhibition caused by elevated SA at ambient and below-ambient temperatures while preserving disease- and abiotic-stress-related benefits. Our results show the potential of decoupling SA-mediated growth and defense trade-offs for improving crop productivity.
Collapse
Affiliation(s)
- María A Ortega
- Warnell School of Forestry and Natural Resources, University of Georgia, Athens, GA 30602, USA
- Department of Genetics, University of Georgia, Athens, GA 30602, USA
- Department of Plant Biology, University of Georgia, Athens, GA 30602, USA
| | - Rhodesia M Celoy
- Warnell School of Forestry and Natural Resources, University of Georgia, Athens, GA 30602, USA
- Department of Genetics, University of Georgia, Athens, GA 30602, USA
| | - Francisco Chacon
- Warnell School of Forestry and Natural Resources, University of Georgia, Athens, GA 30602, USA
- Department of Genetics, University of Georgia, Athens, GA 30602, USA
| | - Yinan Yuan
- College of Forest Resources and Environmental Science, Michigan Technological University, Houghton, MI 49931, USA
| | - Liang-Jiao Xue
- Warnell School of Forestry and Natural Resources, University of Georgia, Athens, GA 30602, USA
- Department of Genetics, University of Georgia, Athens, GA 30602, USA
- State Key Laboratory of Tree Genetics and Breeding, College of Forestry, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Saurabh P Pandey
- Warnell School of Forestry and Natural Resources, University of Georgia, Athens, GA 30602, USA
- Department of Genetics, University of Georgia, Athens, GA 30602, USA
- Department of Plant Biology, University of Georgia, Athens, GA 30602, USA
| | - MaKenzie R Drowns
- Warnell School of Forestry and Natural Resources, University of Georgia, Athens, GA 30602, USA
- Department of Genetics, University of Georgia, Athens, GA 30602, USA
- Department of Plant Biology, University of Georgia, Athens, GA 30602, USA
| | - Brian H Kvitko
- Department of Plant Pathology, University of Georgia, Athens, GA 30603, USA
| | - Chung-Jui Tsai
- Warnell School of Forestry and Natural Resources, University of Georgia, Athens, GA 30602, USA
- Department of Genetics, University of Georgia, Athens, GA 30602, USA
- Department of Plant Biology, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
8
|
Hou J, Ai M, Li J, Cui X, Liu Y, Yang Q. Exogenous salicylic acid treatment enhances the disease resistance of Panax vietnamensis by regulating secondary metabolite production. FRONTIERS IN PLANT SCIENCE 2024; 15:1428272. [PMID: 39220009 PMCID: PMC11362055 DOI: 10.3389/fpls.2024.1428272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 07/30/2024] [Indexed: 09/04/2024]
Abstract
Introduction Salicylic acid (SA) is a phenolic compound widely found in plants. It plays a key role in exerting plant disease resistance. Panax vietnamensis Ha & Grushv., a valuable medicinal plant, contains high levels of phenolic compounds, which contribute significantly to the resilience of the plant against stress. However, the precise role of SA in regulating the synthesis of secondary metabolites in P.vietnamensis remains elusive. Methods Two-year-old P. vietnamensis seedlings were treated with exogenous SA. We systematically assessed the changes in the physiological parameters of SA-treated P. vietnamensis leaves, employing transcriptome and metabolome analyses to elucidate the underlying mechanisms. Results Our results revealed a significant improvement of the plant's antioxidant capacity at 6 h post-treatment. Furthermore, exogenous SA treatment promoted the biosynthesis of lignin and flavonoids such as rutin, coumarin, and cyanidin. In addition, it increased the levels of endogenous SA and jasmonic acid (JA), promoting the disease resistance of the plants. Thus, SA pretreatment enhanced the defense of P. vietnamensis against pathogens. Conclusions Our study provided novel insights into the potential molecular mechanisms underlying SA-mediated biosynthesis of secondary metabolites. Furthermore, our results provided a theoretical foundation for optimizing the cultivation practices of P.vietnamensis and the application of SA as a plant immunomodulator.
Collapse
Affiliation(s)
- Jiae Hou
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
- Key Laboratory of Panax notoginseng Resources Sustainable Development and Utilization of State Administration of Traditional Chinese Medicine, Kunming, China
| | - Mingtao Ai
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
- Key Laboratory of Panax notoginseng Resources Sustainable Development and Utilization of State Administration of Traditional Chinese Medicine, Kunming, China
| | - Jianbin Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
- Key Laboratory of Panax notoginseng Resources Sustainable Development and Utilization of State Administration of Traditional Chinese Medicine, Kunming, China
| | - Xiuming Cui
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
- Key Laboratory of Panax notoginseng Resources Sustainable Development and Utilization of State Administration of Traditional Chinese Medicine, Kunming, China
- Yunnan Provincial Key Laboratory of Panax notoginseng
, Kunming, China
- Kunming Key Laboratory of Sustainable Development and Utilization of Famous-Region Drug, Kunming, China
- Sanqi Research Institute of Yunnan Province, Kunming, China
| | - Yuan Liu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
- Key Laboratory of Panax notoginseng Resources Sustainable Development and Utilization of State Administration of Traditional Chinese Medicine, Kunming, China
- Yunnan Provincial Key Laboratory of Panax notoginseng
, Kunming, China
- Kunming Key Laboratory of Sustainable Development and Utilization of Famous-Region Drug, Kunming, China
- Sanqi Research Institute of Yunnan Province, Kunming, China
| | - Qian Yang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
- Key Laboratory of Panax notoginseng Resources Sustainable Development and Utilization of State Administration of Traditional Chinese Medicine, Kunming, China
- Yunnan Provincial Key Laboratory of Panax notoginseng
, Kunming, China
- Kunming Key Laboratory of Sustainable Development and Utilization of Famous-Region Drug, Kunming, China
- Sanqi Research Institute of Yunnan Province, Kunming, China
| |
Collapse
|
9
|
Zhang W, Tang S, Li X, Chen Y, Li J, Wang Y, Bian R, Jin Y, Zhu X, Zhang K. Arabidopsis WRKY1 promotes monocarpic senescence by integrative regulation of flowering, leaf senescence, and nitrogen remobilization. MOLECULAR PLANT 2024; 17:1289-1306. [PMID: 39003499 DOI: 10.1016/j.molp.2024.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 06/17/2024] [Accepted: 07/10/2024] [Indexed: 07/15/2024]
Abstract
Monocarpic senescence, characterized by whole-plant senescence following a single flowering phase, is widespread in seed plants, particularly in crops, determining seed harvest time and quality. However, how external and internal signals are systemically integrated into monocarpic senescence remains largely unknown. Here, we report that the Arabidopsis thaliana transcription factor WRKY1 plays essential roles in multiple key steps of monocarpic senescence. WRKY1 expression is induced by age, salicylic acid (SA), and nitrogen (N) deficiency. Flowering and leaf senescence are accelerated in the WRKY1 overexpression lines but are delayed in the wrky1 mutants. The combined DNA affinity purification sequencing and RNA sequencing analyses uncover the direct target genes of WRKY1. Further studies show that WRKY1 coordinately regulates three processes in monocarpic senescence: (1) suppressing FLOWERING LOCUS C gene expression to initiate flowering, (2) inducing SA biosynthesis genes to promote leaf senescence, and (3) activating the N assimilation and transport genes to trigger N remobilization. In summary, our study reveals how one stress-responsive transcription factor, WRKY1, integrates flowering, leaf senescence, and N remobilization processes into monocarpic senescence, providing important insights into plant lifetime regulation.
Collapse
Affiliation(s)
- Wei Zhang
- Zhejiang Provincial Key Laboratory of Biotechnology on Specialty Economic Plants, College of Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang 321004, P.R. China
| | - Shufei Tang
- Zhejiang Provincial Key Laboratory of Biotechnology on Specialty Economic Plants, College of Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang 321004, P.R. China
| | - Xuying Li
- Zhejiang Provincial Key Laboratory of Biotechnology on Specialty Economic Plants, College of Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang 321004, P.R. China
| | - Yuanyuan Chen
- Zhejiang Provincial Key Laboratory of Biotechnology on Specialty Economic Plants, College of Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang 321004, P.R. China
| | - Jiajia Li
- Zhejiang Provincial Key Laboratory of Biotechnology on Specialty Economic Plants, College of Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang 321004, P.R. China
| | - Yuyang Wang
- Zhejiang Provincial Key Laboratory of Biotechnology on Specialty Economic Plants, College of Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang 321004, P.R. China
| | - Ruichao Bian
- Zhejiang Provincial Key Laboratory of Biotechnology on Specialty Economic Plants, College of Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang 321004, P.R. China
| | - Ying Jin
- Zhejiang Provincial Key Laboratory of Biotechnology on Specialty Economic Plants, College of Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang 321004, P.R. China
| | - Xiaoxian Zhu
- Zhejiang Provincial Key Laboratory of Biotechnology on Specialty Economic Plants, College of Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang 321004, P.R. China
| | - Kewei Zhang
- Zhejiang Provincial Key Laboratory of Biotechnology on Specialty Economic Plants, College of Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang 321004, P.R. China.
| |
Collapse
|
10
|
Hu L, Mijatovic J, Kong F, Kvitko B, Yang L. Ontogenic stage-associated SA response contributes to leaf age-dependent resistance in Arabidopsis and cotton. FRONTIERS IN PLANT SCIENCE 2024; 15:1398770. [PMID: 39135651 PMCID: PMC11317444 DOI: 10.3389/fpls.2024.1398770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 06/24/2024] [Indexed: 08/15/2024]
Abstract
Introduction As leaves grow, they transition from a low-microbe environment embedded in shoot apex to a more complex one exposed to phyllosphere microbiomes. Such change requires a coordinated reprogramming of cellular responses to biotic stresses. It remains unclear how plants shift from fast growth to robust resistance during organ development. Results Here, we reported that salicylic acid (SA) accumulation and response were temporarily increased during leaf maturation in herbaceous annual Arabidopsis. Leaf primordia undergoing active cell division were insensitive to the elicitor-induced SA response. This age-dependent increase in SA response was not due to prolonged exposure to environmental microbes. Autoimmune mutants with elevated SA levels did not alter the temporal pattern dependent on ontogenic stage. Young Arabidopsis leaves were more susceptible than mature leaves to Pseudomonas syringae pv. tomato (Pto) DC3000 cor- infection. Finally, we showed a broadly similar pattern in cotton, a woody perennial, where young leaves with reduced SA signaling were preferentially invaded by a Xanthomonas pathogen after leaf surface infection. Discussion Through this work, we provided insights in the SA-mediated ontogenic resistance in Arabidopsis and tomato.
Collapse
Affiliation(s)
| | | | | | - Brian Kvitko
- Department of Plant Pathology, College of Agricultural and Environmental Sciences, University of Georgia, Athens, GA, United States
| | - Li Yang
- Department of Plant Pathology, College of Agricultural and Environmental Sciences, University of Georgia, Athens, GA, United States
| |
Collapse
|
11
|
Zhu Y, Zeng X, Zhu T, Jiang H, Lei P, Zhang H, Chen H. Plant Hormone Pathway Is Involved in Regulating the Embryo Development Mechanism of the Hydrangea macrophylla Hybrid. Int J Mol Sci 2024; 25:7812. [PMID: 39063054 PMCID: PMC11276702 DOI: 10.3390/ijms25147812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/07/2024] [Accepted: 07/13/2024] [Indexed: 07/28/2024] Open
Abstract
The research is aimed to elucidate the role of plant hormones in regulating the development of hybrid embryos in Hydrangea macrophylla. Fruits from the intraspecific cross of H. macrophylla 'Otaksa' × 'Coerulea' were selected at the globular, heart, and torpedo stages of embryo development. Transcriptome sequencing and differential gene expression analysis were conducted. The results showed that fruit growth followed a single "S-shaped growth curve, with globular, heart, and torpedo embryos appearing at 30, 40, and 50 d post-pollination, respectively, and the embryo maintaining the torpedo shape from 60 to 90 d. A total of 12,933 genes was quantified across the three developmental stages, with 3359, 3803, and 3106 DEGs in the S1_vs_S2, S1_vs_S3, and S2_vs_S3 comparisons, respectively. Among these, 133 genes related to plant hormone biosynthesis and metabolism were differentially expressed, regulating the synthesis and metabolism of eight types of plant hormones, including cytokinin, auxin, gibberellin, abscisic acid, and jasmonic acid. The pathways with the most differentially expressed genes were cytokinin, auxin, and gibberellin, suggesting these hormones may play crucial roles in embryo development. In the cytokinin pathway, CKX (Hma1.2p1_0579F.1_g182670.gene, Hma1.2p1_1194F.1_g265700.gene, and NewGene_12164) genes were highly expressed during the globular embryo stage, promoting rapid cell division in the embryo. In the auxin pathway, YUC (Hma1.2p1_0271F.1_g109005.gene and Hma1.2p1_0271F.1_g109020.gene) genes were progressively up-regulated during embryo growth; the early response factor AUX/IAA (Hma1.2p1_0760F.1_g214260.gene) was down-regulated, while the later transcriptional activator ARF (NewGene_21460, NewGene_21461, and Hma1.2p1_0209F.1_g089090.gene) was up-regulated, sustaining auxin synthesis and possibly preventing the embryo from transitioning to maturity. In the gibberellin pathway, GA3ox (Hma1.2p1_0129F.1_g060100.gene) expression peaked during the heart embryo stage and then declined, while the negative regulator GA2ox (Hma1.2p1_0020F.1_g013915.gene) showed the opposite trend; and the gibberellin signaling repressor DELLA (Hma1.2p1_1054F.1_g252590.gene) increased over time, potentially inhibiting embryo development and maintaining the torpedo shape until fruit maturity. These findings preliminarily uncover the factors affecting the development of hybrid H. macrophylla embryos, laying a foundation for further research into the regulatory mechanisms of H. macrophylla hybrid embryo development.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Haixia Chen
- College of Horticulture, Hunan Agricultural University, Changsha 410128, China; (Y.Z.); (X.Z.); (T.Z.); (H.J.); (P.L.); (H.Z.)
| |
Collapse
|
12
|
Garcia A, Talavera-Mateo L, Petrik I, Oklestkova J, Novak O, Santamaria ME. Spider mite infestation triggers coordinated hormonal trade-offs enabling plant survival with a fitness cost. PHYSIOLOGIA PLANTARUM 2024; 176:e14479. [PMID: 39187434 DOI: 10.1111/ppl.14479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/24/2024] [Accepted: 07/01/2024] [Indexed: 08/28/2024]
Abstract
Tetranychus urticae is an important pest that causes severe damage to a wide variety of plants and crops, leading to a substantial productivity loss. Previous research has been focused on plant defence response to T. urticae to improve plant resistance. However, plant growth, development and reproduction throughout the infestation process have not been previously studied. Through physiological, biochemical, transcriptomic and hormonomic evaluation, we uncover the molecular mechanisms directing the defence-growth trade-off established in Arabidopsis upon T. urticae infestation. Upon mite attack, plants suffer an adaptation process characterized by a temporal separation between the defence and growth responses. Jasmonic and salicylic acids regulate the main defence responses in combination with auxin and abscisic acid. However, while the reduction of both auxin signalling and gibberellin, cytokinin and brassinosteroid biosynthesis lead to initial growth arrest, increasing levels of growth hormones at later stages enables growth restart. These alterations lead to a plant developmental delay that impacts both seed production and longevity. We demonstrate that coordinated trade-offs determine plant adaptation and survival, revealing mite infestation has a long-lasting effect negatively impacting seed viability. This study provides additional tools to design pest management strategies that improve resistance without penalty in plant fitness.
Collapse
Affiliation(s)
- Alejandro Garcia
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC) Campus de Montegancedo, Pozuelo de Alarcón, Madrid, Spain
| | - Lucia Talavera-Mateo
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC) Campus de Montegancedo, Pozuelo de Alarcón, Madrid, Spain
| | - Ivan Petrik
- Laboratory of Growth Regulators, Faculty of Science, Palacký University Olomouc & Institute of Experimental Botany, The Czech Academy of Science, Olomouc, Czech Republic
| | - Jana Oklestkova
- Laboratory of Growth Regulators, Faculty of Science, Palacký University Olomouc & Institute of Experimental Botany, The Czech Academy of Science, Olomouc, Czech Republic
| | - Ondrej Novak
- Laboratory of Growth Regulators, Faculty of Science, Palacký University Olomouc & Institute of Experimental Botany, The Czech Academy of Science, Olomouc, Czech Republic
| | - M Estrella Santamaria
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC) Campus de Montegancedo, Pozuelo de Alarcón, Madrid, Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Madrid, Spain
| |
Collapse
|
13
|
Jing Y, Yang Z, Yang Z, Bai W, Yang R, Zhang Y, Zhang K, Zhang Y, Sun J. Sequential activation of strigolactone and salicylate biosynthesis promotes leaf senescence. THE NEW PHYTOLOGIST 2024; 242:2524-2540. [PMID: 38641854 DOI: 10.1111/nph.19760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 03/22/2024] [Indexed: 04/21/2024]
Abstract
Leaf senescence is a complex process strictly regulated by various external and endogenous factors. However, the key signaling pathway mediating leaf senescence remains unknown. Here, we show that Arabidopsis SPX1/2 negatively regulate leaf senescence genetically downstream of the strigolactone (SL) pathway. We demonstrate that the SL receptor AtD14 and MAX2 mediate the age-dependent degradation of SPX1/2. Intriguingly, we uncover an age-dependent accumulation of SLs in leaves via transcriptional activation of SL biosynthetic genes by the transcription factors (TFs) SPL9/15. Furthermore, we reveal that SPX1/2 interact with the WRKY75 subclade TFs to inhibit their DNA-binding ability and thus repress transcriptional activation of salicylic acid (SA) biosynthetic gene SA Induction-Deficient 2, gating the age-dependent SA accumulation in leaves at the leaf senescence onset stage. Collectively, our new findings reveal a signaling pathway mediating sequential activation of SL and salicylate biosynthesis for the onset of leaf senescence in Arabidopsis.
Collapse
Affiliation(s)
- Yexing Jing
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Ziyi Yang
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Zongju Yang
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Agricultural College of Yangzhou University, Yangzhou, 225009, China
| | - Wanqing Bai
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Ruizhen Yang
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yanjun Zhang
- Zhejiang Provincial Key Laboratory of Biotechnology on Specialty Economic Plants, College of Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang, 321004, China
| | - Kewei Zhang
- Zhejiang Provincial Key Laboratory of Biotechnology on Specialty Economic Plants, College of Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang, 321004, China
| | - Yunwei Zhang
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jiaqiang Sun
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| |
Collapse
|
14
|
Tan Q, Zhao M, Gao J, Li K, Zhang M, Li Y, Liu Z, Song Y, Lu X, Zhu Z, Lin R, Yin P, Zhou C, Wang G. AtVQ25 promotes salicylic acid-related leaf senescence by fine-tuning the self-repression of AtWRKY53. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:1126-1147. [PMID: 38629459 DOI: 10.1111/jipb.13659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 03/14/2024] [Indexed: 06/21/2024]
Abstract
Most mechanistic details of chronologically ordered regulation of leaf senescence are unknown. Regulatory networks centered on AtWRKY53 are crucial for orchestrating and integrating various senescence-related signals. Notably, AtWRKY53 binds to its own promoter and represses transcription of AtWRKY53, but the biological significance and mechanism underlying this self-repression remain unclear. In this study, we identified the VQ motif-containing protein AtVQ25 as a cooperator of AtWRKY53. The expression level of AtVQ25 peaked at mature stage and was specifically repressed after the onset of leaf senescence. AtVQ25-overexpressing plants and atvq25 mutants displayed precocious and delayed leaf senescence, respectively. Importantly, we identified AtWRKY53 as an interacting partner of AtVQ25. We determined that interaction between AtVQ25 and AtWRKY53 prevented AtWRKY53 from binding to W-box elements on the AtWRKY53 promoter and thus counteracted the self-repression of AtWRKY53. In addition, our RNA-sequencing data revealed that the AtVQ25-AtWRKY53 module is related to the salicylic acid (SA) pathway. Precocious leaf senescence and SA-induced leaf senescence in AtVQ25-overexpressing lines were inhibited by an SA pathway mutant, atsid2, and NahG transgenic plants; AtVQ25-overexpressing/atwrky53 plants were also insensitive to SA-induced leaf senescence. Collectively, we demonstrated that AtVQ25 directly attenuates the self-repression of AtWRKY53 during the onset of leaf senescence, which is substantially helpful for understanding the timing of leaf senescence onset modulated by AtWRKY53.
Collapse
Affiliation(s)
- Qi Tan
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| | - Mingming Zhao
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
- College of Chemical Engineering, Shijiazhuang University, Shijiazhuang, 050035, China
| | - Jingwei Gao
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| | - Ke Li
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| | - Mengwei Zhang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| | - Yunjia Li
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| | - Zeting Liu
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| | - Yujia Song
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| | - Xiaoyue Lu
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| | - Zhengge Zhu
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| | - Rongcheng Lin
- Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Pengcheng Yin
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| | - Chunjiang Zhou
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| | - Geng Wang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| |
Collapse
|
15
|
Luo J, Havé M, Soulay F, Balliau T, Clément G, Tellier F, Zivy M, Avice JC, Masclaux-Daubresse C. Multi-omics analyses of sid2 mutant reflect the need of isochorismate synthase ICS1 to cope with sulfur limitation in Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 118:1635-1651. [PMID: 38498624 DOI: 10.1111/tpj.16702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 02/07/2024] [Accepted: 02/20/2024] [Indexed: 03/20/2024]
Abstract
The SID2 (SA INDUCTION-DEFICIENT2) gene that encodes ICS1 (isochorismate synthase), plays a central role in salicylic acid biosynthesis in Arabidopsis. The sid2 and NahG (encoding a bacterial SA hydroxylase) overexpressing mutants (NahG-OE) have currently been shown to outperform wild type, presenting delayed leaf senescence, higher plant biomass and better seed yield. When grown under sulfate-limited conditions (low-S), sid2 mutants exhibited early leaf yellowing compared to the NahG-OE, the npr1 mutant affected in SA signaling pathway, and WT. This indicated that the hypersensitivity of sid2 to sulfate limitation was independent of the canonical npr1 SA-signaling pathway. Transcriptomic and proteomic analyses revealed that major changes occurred in sid2 when cultivated under low-S, changes that were in good accordance with early senescence phenotype and showed the exacerbation of stress responses. The sid2 mutants displayed a lower sulfate uptake capacity when cultivated under low-S and lower S concentrations in their rosettes. Higher glutathione concentrations in sid2 rosettes under low-S were in good accordance with the higher abundance of proteins involved in glutathione and ascorbate redox metabolism. Amino acid and lipid metabolisms were also strongly modified in sid2 under low-S. Depletion of total fatty acids in sid2 under low-S was consistent with the fact that S-metabolism plays a central role in lipid synthesis. Altogether, our results show that functional ICS1 is important for plants to cope with S limiting conditions.
Collapse
Affiliation(s)
- Jie Luo
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000, Versailles, France
| | - Marien Havé
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000, Versailles, France
| | - Fabienne Soulay
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000, Versailles, France
| | - Thierry Balliau
- UMR GQE- le Moulon, INRA, Université Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, 91190, Gif-sur-Yvette, France
| | - Gilles Clément
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000, Versailles, France
| | - Frédérique Tellier
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000, Versailles, France
| | - Michel Zivy
- UMR GQE- le Moulon, INRA, Université Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, 91190, Gif-sur-Yvette, France
| | - Jean-Christophe Avice
- UMR 950 EVA (Ecophysiologie Végétale & Agronomie), INRAE, Normandie Université (UNICAEN), Federation of Research Normandie Végétal (Fed4277 NORVEGE), 14032, Caen, France
| | - Céline Masclaux-Daubresse
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000, Versailles, France
| |
Collapse
|
16
|
Zhang D, Zhu Z, Yang B, Li X, Zhang H, Zhu H. CsWRKY11 cooperates with CsNPR1 to regulate SA-triggered leaf de-greening and reactive oxygen species burst in cucumber. MOLECULAR HORTICULTURE 2024; 4:21. [PMID: 38773570 PMCID: PMC11110285 DOI: 10.1186/s43897-024-00092-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 04/02/2024] [Indexed: 05/24/2024]
Abstract
Salicylic acid (SA) is a multi-functional phytohormone, regulating diverse processes of plant growth and development, especially triggering plant immune responses and initiating leaf senescence. However, the early SA signaling events remain elusive in most plant species apart from Arabidopsis, and even less is known about the multi-facet mechanism underlying SA-regulated processes. Here, we report the identification of a novel regulatory module in cucumber, CsNPR1-CsWRKY11, which mediates the regulation of SA-promoted leaf senescence and ROS burst. Our analyses demonstrate that under SA treatment, CsNPR1 recruits CsWRKY11 to bind to the promoter of CsWRKY11 to activate its expression, thus amplifying the primary SA signal. Then, CsWRKY11 cooperates with CsNPR1 to directly regulate the expression of both chlorophyll degradation and ROS biosynthesis related genes, thereby inducing leaf de-greening and ROS burst. Our study provides a solid line of evidence that CsNPR1 and CsWRKY11 constitute a key module in SA signaling pathway in cucumber, and gains an insight into the interconnected regulation of SA-triggered processes.
Collapse
Affiliation(s)
- Dingyu Zhang
- Shanghai Key Laboratory of Protected Horticultural Technology, Horticultural Research Institute, Shanghai Academy of Agricultural Sciences, 1000 Jinqi Road, Shanghai, 201403, China
- State Key Laboratory of Genetic Engineering and Fudan Center for Genetic Diversity and Designing Agriculture, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Ziwei Zhu
- State Key Laboratory of Genetic Engineering and Fudan Center for Genetic Diversity and Designing Agriculture, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Bing Yang
- Shanghai Key Laboratory of Protected Horticultural Technology, Horticultural Research Institute, Shanghai Academy of Agricultural Sciences, 1000 Jinqi Road, Shanghai, 201403, China
| | - Xiaofeng Li
- Shanghai Key Laboratory of Protected Horticultural Technology, Horticultural Research Institute, Shanghai Academy of Agricultural Sciences, 1000 Jinqi Road, Shanghai, 201403, China
| | - Hongmei Zhang
- Shanghai Key Laboratory of Protected Horticultural Technology, Horticultural Research Institute, Shanghai Academy of Agricultural Sciences, 1000 Jinqi Road, Shanghai, 201403, China
| | - Hongfang Zhu
- Shanghai Key Laboratory of Protected Horticultural Technology, Horticultural Research Institute, Shanghai Academy of Agricultural Sciences, 1000 Jinqi Road, Shanghai, 201403, China.
| |
Collapse
|
17
|
Zhu C, Bai Y, Jiang Y, Zhang Y, Wang S, Wang F, Sun Z. Integrated transcriptomic and metabolomic analysis reveals the regulation mechanism of early bolting and flowering in two cultivars of Angelica sinensis. Heliyon 2024; 10:e28636. [PMID: 38576577 PMCID: PMC10990851 DOI: 10.1016/j.heliyon.2024.e28636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 03/12/2024] [Accepted: 03/21/2024] [Indexed: 04/06/2024] Open
Abstract
The root of Angelica sinensis is utilized in Traditional Chinese medicine to enhance blood replenishment and facilitate blood circulation. The early bolting and flowering (EBF) of A. sinensis, however, compromises the quality of the roots and restricts the yield of medicinal substances. The study was conducted to compare the transcriptomic and metabolomic profiles between EBF plants and normal plants of two cultivars of A. sinensis, followed by validation of the transcriptome results using qRT-PCR. There were 3677 DEGs in EBF plants compared to normal plants of cultivar 2 (Mingui No.2), and cultivar 4 (Mingui No.4) was 3354. The main differential metabolites in the EBF and normal plants were phenolic acids, flavonoids, lignans, and coumarins. The analysis of 5 EBF-related pathways revealed 28 genes exhibiting differential expression and 5 metabolites showing differential accumulation. The expression of the Lhcb5, Lhcb2, Lhcb6, Lhcb1, Lhca4, ATPG1, EGLC, CELB, AMY, glgA, CYCD3, SnRK2, PYL, AHK2, AUX1, BSK, FabI/K, ACACA and FabV decreased and the expression of the PsbR, PsbA, LHY, FT, CO, malQ, HK, GPI and DELLA increased in EBF plants. In addition, the Abscisic acid, d-Glucose-6P, α-d-Glucose-1P, NADP+, and ADP were more significantly enriched in EBF plants. The findings offer novel perspectives on the EBF mechanisms in A. sinensis and other medicinal plants of the Apiaceae family.
Collapse
Affiliation(s)
- Chenghao Zhu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Yu Bai
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Yuan Jiang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Yuanfan Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Shangtao Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Fusheng Wang
- Dingxi Academy of Agricultural Sciences, Dingxi, 743000, Gansu, China
| | - Zhirong Sun
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China
| |
Collapse
|
18
|
Palukaitis P, Yoon JY. Defense signaling pathways in resistance to plant viruses: Crosstalk and finger pointing. Adv Virus Res 2024; 118:77-212. [PMID: 38461031 DOI: 10.1016/bs.aivir.2024.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2024]
Abstract
Resistance to infection by plant viruses involves proteins encoded by plant resistance (R) genes, viz., nucleotide-binding leucine-rich repeats (NLRs), immune receptors. These sensor NLRs are activated either directly or indirectly by viral protein effectors, in effector-triggered immunity, leading to induction of defense signaling pathways, resulting in the synthesis of numerous downstream plant effector molecules that inhibit different stages of the infection cycle, as well as the induction of cell death responses mediated by helper NLRs. Early events in this process involve recognition of the activation of the R gene response by various chaperones and the transport of these complexes to the sites of subsequent events. These events include activation of several kinase cascade pathways, and the syntheses of two master transcriptional regulators, EDS1 and NPR1, as well as the phytohormones salicylic acid, jasmonic acid, and ethylene. The phytohormones, which transit from a primed, resting states to active states, regulate the remainder of the defense signaling pathways, both directly and by crosstalk with each other. This regulation results in the turnover of various suppressors of downstream events and the synthesis of various transcription factors that cooperate and/or compete to induce or suppress transcription of either other regulatory proteins, or plant effector molecules. This network of interactions results in the production of defense effectors acting alone or together with cell death in the infected region, with or without the further activation of non-specific, long-distance resistance. Here, we review the current state of knowledge regarding these processes and the components of the local responses, their interactions, regulation, and crosstalk.
Collapse
Affiliation(s)
- Peter Palukaitis
- Graduate School of Plant Protection and Quarantine, Jeonbuk National University, Jeonju, Jeollabuk-do, Republic of Korea.
| | - Ju-Yeon Yoon
- Graduate School of Plant Protection and Quarantine, Jeonbuk National University, Jeonju, Jeollabuk-do, Republic of Korea.
| |
Collapse
|
19
|
Lemke MD, Woodson JD. A genetic screen for dominant chloroplast reactive oxygen species signaling mutants reveals life stage-specific singlet oxygen signaling networks. FRONTIERS IN PLANT SCIENCE 2024; 14:1331346. [PMID: 38273946 PMCID: PMC10809407 DOI: 10.3389/fpls.2023.1331346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 12/18/2023] [Indexed: 01/27/2024]
Abstract
Introduction Plants employ intricate molecular mechanisms to respond to abiotic stresses, which often lead to the accumulation of reactive oxygen species (ROS) within organelles such as chloroplasts. Such ROS can produce stress signals that regulate cellular response mechanisms. One ROS, singlet oxygen (1O2), is predominantly produced in the chloroplast during photosynthesis and can trigger chloroplast degradation, programmed cell death (PCD), and retrograde (organelle-to-nucleus) signaling. However, little is known about the molecular mechanisms involved in these signaling pathways or how many different signaling 1O2 pathways may exist. Methods The Arabidopsis thaliana plastid ferrochelatase two (fc2) mutant conditionally accumulates chloroplast 1O2, making fc2 a valuable genetic system for studying chloroplast 1O2-initiated signaling. Here, we have used activation tagging in a new forward genetic screen to identify eight dominant fc2 activation-tagged (fas) mutations that suppress chloroplast 1O2-initiated PCD. Results While 1O2-triggered PCD is blocked in all fc2 fas mutants in the adult stage, such cellular degradation in the seedling stage is blocked in only two mutants. This differential blocking of PCD suggests that life-stage-specific 1O2-response pathways exist. In addition to PCD, fas mutations generally reduce 1O2-induced retrograde signals. Furthermore, fas mutants have enhanced tolerance to excess light, a natural mechanism to produce chloroplast 1O2. However, general abiotic stress tolerance was only observed in one fc2 fas mutant (fc2 fas2). Together, this suggests that plants can employ general stress tolerance mechanisms to overcome 1O2 production but that this screen was mostly specific to 1O2 signaling. We also observed that salicylic acid (SA) and jasmonate (JA) stress hormone response marker genes were induced in 1O2-stressed fc2 and generally reduced by fas mutations, suggesting that SA and JA signaling is correlated with active 1O2 signaling and PCD. Discussion Together, this work highlights the complexity of 1O2 signaling by demonstrating that multiple pathways may exist and introduces a suite of new 1O2 signaling mutants to investigate the mechanisms controlling chloroplast-initiated degradation, PCD, and retrograde signaling.
Collapse
Affiliation(s)
| | - Jesse D. Woodson
- The School of Plant Sciences, University of Arizona, Tucson, AZ, United States
| |
Collapse
|
20
|
Shumilina J, Soboleva A, Abakumov E, Shtark OY, Zhukov VA, Frolov A. Signaling in Legume-Rhizobia Symbiosis. Int J Mol Sci 2023; 24:17397. [PMID: 38139226 PMCID: PMC10743482 DOI: 10.3390/ijms242417397] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/19/2023] [Accepted: 12/02/2023] [Indexed: 12/24/2023] Open
Abstract
Legumes represent an important source of food protein for human nutrition and animal feed. Therefore, sustainable production of legume crops is an issue of global importance. It is well-known that legume-rhizobia symbiosis allows an increase in the productivity and resilience of legume crops. The efficiency of this mutualistic association strongly depends on precise regulation of the complex interactions between plant and rhizobia. Their molecular dialogue represents a complex multi-staged process, each step of which is critically important for the overall success of the symbiosis. In particular, understanding the details of the molecular mechanisms behind the nodule formation and functioning might give access to new legume cultivars with improved crop productivity. Therefore, here we provide a comprehensive literature overview on the dynamics of the signaling network underlying the development of the legume-rhizobia symbiosis. Thereby, we pay special attention to the new findings in the field, as well as the principal directions of the current and prospective research. For this, here we comprehensively address the principal signaling events involved in the nodule inception, development, functioning, and senescence.
Collapse
Affiliation(s)
- Julia Shumilina
- Laboratory of Analytical Biochemistry and Biotechnology, Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, 127276 Moscow, Russia; (J.S.); (A.S.)
| | - Alena Soboleva
- Laboratory of Analytical Biochemistry and Biotechnology, Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, 127276 Moscow, Russia; (J.S.); (A.S.)
- Biological Faculty, Saint Petersburg State University, 199034 St. Petersburg, Russia;
| | - Evgeny Abakumov
- Biological Faculty, Saint Petersburg State University, 199034 St. Petersburg, Russia;
| | - Oksana Y. Shtark
- Laboratory of Genetics of Plant-Microbe Interactions, All-Russia Research Institute for Agricultural Microbiology, 196608 St. Petersburg, Russia; (O.Y.S.); (V.A.Z.)
| | - Vladimir A. Zhukov
- Laboratory of Genetics of Plant-Microbe Interactions, All-Russia Research Institute for Agricultural Microbiology, 196608 St. Petersburg, Russia; (O.Y.S.); (V.A.Z.)
| | - Andrej Frolov
- Laboratory of Analytical Biochemistry and Biotechnology, Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, 127276 Moscow, Russia; (J.S.); (A.S.)
- Biological Faculty, Saint Petersburg State University, 199034 St. Petersburg, Russia;
| |
Collapse
|
21
|
Asim M, Zhang Y, Sun Y, Guo M, Khan R, Wang XL, Hussain Q, Shi Y. Leaf senescence attributes: the novel and emerging role of sugars as signaling molecules and the overlap of sugars and hormones signaling nodes. Crit Rev Biotechnol 2023; 43:1092-1110. [PMID: 35968918 DOI: 10.1080/07388551.2022.2094215] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 05/08/2022] [Indexed: 11/03/2022]
Abstract
Sugars are the primary products of photosynthesis and play multiple roles in plants. Although sugars are usually considered to be the building blocks of energy storage and carbon transport molecules, they have also gradually come to be acknowledged as signaling molecules that can initiate senescence. Senescence is an active and essential process that occurs at the last developmental stage and corresponds to programmed degradation of: cells, tissues, organs, and entire organisms. It is a complex process involving: numerous biochemical changes, transporters, genes, and transcription factors. The process is controlled by multiple developmental signals, among which sugar signals are considered to play a vital role; however, the regulatory pathways involved are not fully understood. The dynamic mechanistic framework of sugar accumulation has an inconsistent effect on senescence through the sugar signaling pathway. Key metabolizing enzymes produce different sugar signals in response to the onset of senescence. Diverse sugar signal transduction pathways and a variety of sugar sensors are involved in controlling leaf senescence. This review highlights the processes underlying initiation of sugar signaling and crosstalk between sugars and hormones signal transduction pathways affecting leaf senescence. This summary of the state of current knowledge across different plants aids in filling knowledge gaps and raises key questions that remain to be answered with respect to regulation of leaf senescence by sugar signaling pathways.
Collapse
Affiliation(s)
- Muhammad Asim
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Tobacco Biology and Processing, Ministry of Agriculture and Rural Affairs, Qingdao, China
| | - Yan Zhang
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Tobacco Biology and Processing, Ministry of Agriculture and Rural Affairs, Qingdao, China
- Graduate School of Chinese Academy of Agricultural Science, Beijing, China
| | - Yanguo Sun
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Tobacco Biology and Processing, Ministry of Agriculture and Rural Affairs, Qingdao, China
| | - Mei Guo
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Tobacco Biology and Processing, Ministry of Agriculture and Rural Affairs, Qingdao, China
- Graduate School of Chinese Academy of Agricultural Science, Beijing, China
| | - Rayyan Khan
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Tobacco Biology and Processing, Ministry of Agriculture and Rural Affairs, Qingdao, China
| | - Xiao Lin Wang
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Tobacco Biology and Processing, Ministry of Agriculture and Rural Affairs, Qingdao, China
| | - Quaid Hussain
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
| | - Yi Shi
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Tobacco Biology and Processing, Ministry of Agriculture and Rural Affairs, Qingdao, China
| |
Collapse
|
22
|
Zhang B, Huang S, Guo Z, Meng Y, Li X, Tian Y, Chen W. Salicylic acid accelerates carbon starvation-induced leaf senescence in Arabidopsis thaliana by inhibiting autophagy through Nonexpressor of pathogenesis-related genes 1. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 336:111859. [PMID: 37673221 DOI: 10.1016/j.plantsci.2023.111859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 08/09/2023] [Accepted: 09/01/2023] [Indexed: 09/08/2023]
Abstract
In plants, leaf senescence is regulated by several factors, including age and carbon starvation. The molecular mechanism of age-regulated developmental leaf senescence differs from that of carbon starvation-induced senescence. Salicylic acid (SA) and Nonexpressor of pathogenesis-related genes 1 (NPR1) play important roles in promoting developmental leaf senescence. However, the relationship between SA signaling and carbon starvation-induced leaf senescence is not currently well understood. Here, we used Arabidopsis thaliana as material and found that carbon starvation-induced leaf senescence was accelerated in the SA dihydroxylase mutants s3hs5h compared to the Columbia ecotype (Col). Exogenous SA treatment significantly promoted carbon starvation-induced leaf senescence, especially in NPR1-GFP. Increasing the endogenous SA and overexpression of NPR1 inhibited carbon starvation-induced autophagy. However, mutation of NPR1 delayed carbon starvation-induced leaf senescence, increased autophagosome production and accelerated autophagic degradation of the Neighbor of BRCA1 gene 1 (NBR1). In conclusion, SA promotes carbon starvation-induced leaf senescence by inhibiting autophagy via NPR1.
Collapse
Affiliation(s)
- Baihong Zhang
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China; Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Shuqin Huang
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China; Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Zetian Guo
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China; Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Yixuan Meng
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China; Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Xue Li
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China; Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Yuzhen Tian
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China; Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Wenli Chen
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China; Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China.
| |
Collapse
|
23
|
Meng X, Lu M, Xia Z, Li H, Liu D, Li K, Yin P, Wang G, Zhou C. Wheat VQ Motif-Containing Protein VQ25-A Facilitates Leaf Senescence via the Abscisic Acid Pathway. Int J Mol Sci 2023; 24:13839. [PMID: 37762142 PMCID: PMC10531066 DOI: 10.3390/ijms241813839] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/04/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023] Open
Abstract
Leaf senescence is an important factor affecting the functional transition from nutrient assimilation to nutrient remobilization in crops. The senescence of wheat leaves is of great significance for its yield and quality. In the leaf senescence process, transcriptional regulation is a committed step in integrating various senescence-related signals. Although the plant-specific transcriptional regulation factor valine-glutamine (VQ) gene family is known to participate in different physiological processes, its role in leaf senescence is poorly understood. We isolated TaVQ25-A and studied its function in leaf senescence regulation. TaVQ25-A was mainly expressed in the roots and leaves of wheat. The TaVQ25-A-GFP fusion protein was localized in the nuclei and cytoplasm of wheat protoplasts. A delayed senescence phenotype was observed after dark and abscisic acid (ABA) treatment in TaVQ25-A-silenced wheat plants. Conversely, overexpression of TaVQ25-A accelerated leaf senescence and led to hypersensitivity in ABA-induced leaf senescence in Arabidopsis. A WRKY type transcription factor, TaWRKY133, which is tightly related to the ABA pathway and affects the expression of some ABA-related genes, was found to interact with TaVQ25-A both in vitro and in vivo. Results of this study indicate that TaVQ25-A is a positive regulator of ABA-related leaf senescence and can be used as a candidate gene for wheat molecular breeding.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Geng Wang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Research Center of the Basic Discipline Cell Biology, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China; (X.M.); (M.L.); (Z.X.); (H.L.); (D.L.); (K.L.); (P.Y.)
| | - Chunjiang Zhou
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Research Center of the Basic Discipline Cell Biology, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China; (X.M.); (M.L.); (Z.X.); (H.L.); (D.L.); (K.L.); (P.Y.)
| |
Collapse
|
24
|
Lihavainen J, Šimura J, Bag P, Fataftah N, Robinson KM, Delhomme N, Novák O, Ljung K, Jansson S. Salicylic acid metabolism and signalling coordinate senescence initiation in aspen in nature. Nat Commun 2023; 14:4288. [PMID: 37463905 DOI: 10.1038/s41467-023-39564-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 06/20/2023] [Indexed: 07/20/2023] Open
Abstract
Deciduous trees exhibit a spectacular phenomenon of autumn senescence driven by the seasonality of their growth environment, yet there is no consensus which external or internal cues trigger it. Senescence starts at different times in European aspen (Populus tremula L.) genotypes grown in same location. By integrating omics studies, we demonstrate that aspen genotypes utilize similar transcriptional cascades and metabolic cues to initiate senescence, but at different times during autumn. The timing of autumn senescence initiation appeared to be controlled by two consecutive "switches"; 1) first the environmental variation induced the rewiring of the transcriptional network, stress signalling pathways and metabolic perturbations and 2) the start of senescence process was defined by the ability of the genotype to activate and sustain stress tolerance mechanisms mediated by salicylic acid. We propose that salicylic acid represses the onset of leaf senescence in stressful natural conditions, rather than promoting it as often observed in annual plants.
Collapse
Affiliation(s)
- Jenna Lihavainen
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, 90189, Umeå, Sweden
| | - Jan Šimura
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, 901 83, Umeå, Sweden
| | - Pushan Bag
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, 90189, Umeå, Sweden
- Section of Molecular Plant Biology, Department of Biology, University of Oxford, Oxford, UK
| | - Nazeer Fataftah
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, 90189, Umeå, Sweden
| | - Kathryn Megan Robinson
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, 90189, Umeå, Sweden
| | - Nicolas Delhomme
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, 901 83, Umeå, Sweden
| | - Ondřej Novák
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, 901 83, Umeå, Sweden
- Laboratory of Growth Regulators, Faculty of Science, Palacký University and Institute of Experimental Botany of the Czech Academy of Sciences, Šlechtitelů 27, CZ-783 71, Olomouc, Czech Republic
| | - Karin Ljung
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, 901 83, Umeå, Sweden
| | - Stefan Jansson
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, 90189, Umeå, Sweden.
| |
Collapse
|
25
|
Zhao L, Wang HJ, Martins PD, van Dongen JT, Bolger AM, Schmidt RR, Jing HC, Mueller-Roeber B, Schippers JHM. The Arabidopsis thaliana onset of leaf death 12 mutation in the lectin receptor kinase P2K2 results in an autoimmune phenotype. BMC PLANT BIOLOGY 2023; 23:294. [PMID: 37264342 DOI: 10.1186/s12870-023-04300-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 05/20/2023] [Indexed: 06/03/2023]
Abstract
BACKGROUND Plant immunity relies on the perception of immunogenic signals by cell-surface and intracellular receptors and subsequent activation of defense responses like programmed cell death. Under certain circumstances, the fine-tuned innate immune system of plants results in the activation of autoimmune responses that cause constitutive defense responses and spontaneous cell death in the absence of pathogens. RESULTS Here, we characterized the onset of leaf death 12 (old12) mutant that was identified in the Arabidopsis accession Landsberg erecta. The old12 mutant is characterized by a growth defect, spontaneous cell death, plant-defense gene activation, and early senescence. In addition, the old12 phenotype is temperature reversible, thereby exhibiting all characteristics of an autoimmune mutant. Mapping the mutated locus revealed that the old12 phenotype is caused by a mutation in the Lectin Receptor Kinase P2-TYPE PURINERGIC RECEPTOR 2 (P2K2) gene. Interestingly, the P2K2 allele from Landsberg erecta is conserved among Brassicaceae. P2K2 has been implicated in pathogen tolerance and sensing extracellular ATP. The constitutive activation of defense responses in old12 results in improved resistance against Pseudomonas syringae pv. tomato DC3000. CONCLUSION We demonstrate that old12 is an auto-immune mutant and that allelic variation of P2K2 contributes to diversity in Arabidopsis immune responses.
Collapse
Affiliation(s)
- Liming Zhao
- Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Straße 24-25, Haus 20, 14476, Potsdam, Germany
- Max Planck Institute of Molecular Plant Physiology, 14476, Potsdam-Golm, Germany
- Beijng Academy, Beijing, 100028, China
| | - Hao-Jie Wang
- Department of Molecular Genetics, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, 06466, Seeland, Germany
- Institute of Biology I, Rheinisch-Westfälische Technische Hochschule Aachen University, 52074, Aachen, Germany
| | - Patricia Dalcin Martins
- Institute of Biology I, Rheinisch-Westfälische Technische Hochschule Aachen University, 52074, Aachen, Germany
| | - Joost T van Dongen
- Institute of Biology I, Rheinisch-Westfälische Technische Hochschule Aachen University, 52074, Aachen, Germany
| | - Anthony M Bolger
- Institute of Biology I, Rheinisch-Westfälische Technische Hochschule Aachen University, 52074, Aachen, Germany
- IBG-4: Bioinformatik,Forschungszentrum Jülich, 52425, Jülich, Germany
| | - Romy R Schmidt
- Institute of Biology I, Rheinisch-Westfälische Technische Hochschule Aachen University, 52074, Aachen, Germany
- Plant Biotechnology Group, Faculty of Biology, Bielefeld University, Universitätsstrasse 25, 33615, Bielefeld, Germany
- Center for Biotechnology, Bielefeld University, Universitätsstrasse 25, 33615, Bielefeld, Germany
| | - Hai-Chun Jing
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Bernd Mueller-Roeber
- Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Straße 24-25, Haus 20, 14476, Potsdam, Germany
- Max Planck Institute of Molecular Plant Physiology, 14476, Potsdam-Golm, Germany
- Center of Plant Systems Biology and Biotechnology (CPSBB), Ruski 139 Blvd, Plovdiv, 4000, Bulgaria
| | - Jos H M Schippers
- Department of Molecular Genetics, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, 06466, Seeland, Germany.
| |
Collapse
|
26
|
He F, Kong D, Feng Z, Xu Y, Yuan Q, Liu D, Wang X, Feng X, Li F. Genome-Wide Identification of the NPR1-like Gene Family in Solanum tuberosum and Functional Characterization of StNPR1 in Resistance to Ralstonia solanacearum. Genes (Basel) 2023; 14:1170. [PMID: 37372350 DOI: 10.3390/genes14061170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 05/20/2023] [Accepted: 05/24/2023] [Indexed: 06/29/2023] Open
Abstract
The NPR1 (nonexpressor of pathogenesis-related genes 1) gene is an activator of the systemic acquisition of resistance (SAR) in plants and is one of the central factors in their response to pathogenic bacterial infestation, playing an important role in plant disease resistance. Potato (Solanum tuberosum) is a crucial non-grain crop that has been extensively studied. However, the identification and analysis of the NPR1-like gene within potato have not been understood well. In this study, a total of six NPR1-like proteins were identified in potato, and phylogenetic analysis showed that the six NPR1-like proteins in Solanum tuberosum could be divided into three major groups with NPR1-related proteins from Arabidopsis thaliana and other plants. Analysis of the exon-intron patterns and protein domains of the six NPR1-like genes from potato showed that the exon-intron patterns and protein domains of the NPR1-like genes belonging to the same Arabidopsis thaliana subfamily were similar. By performing quantitative real-time PCR (qRT-PCR) analysis, we found that six NPR1-like proteins have different expression patterns in different potato tissues. In addition, the expression of three StNPR1 genes was significantly downregulated after being infected by Ralstonia solanacearum (RS), while the difference in the expression of StNPR2/3 was insignificant. We also established potato StNPR1 overexpression lines that showed a significantly increased resistance to R. solanacearum and elevated activities of chitinase, β-1,3-glucanase, and phenylalanine deaminase. Increased peroxidase (POD), superoxide dismutase (SOD), and catalase (CAT) activities, as well as decreased hydrogen peroxide, regulated the dynamic balance of reactive oxygen species (ROS) in the StNPR1 overexpression lines. The transgenic plants activated the expression of the genes associated with the Salicylic acid (SA) defense response but suppressed the expression of the genes associated with Jasmonic acid (JA) signaling. This resulted in resistance to Ralstonia solanacearum.
Collapse
Affiliation(s)
- Fumeng He
- College of Life Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Dexing Kong
- College of Life Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Zhe Feng
- Pharmacology & Toxicology Department, Saint Joseph's University Philadelphia College of Pharmacy, Philadelphia, PA 19104, USA
| | - Yongqing Xu
- College of Life Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Qiang Yuan
- College of Life Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Dan Liu
- College of Life Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Xue Wang
- College of Life Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Xu Feng
- College of Life Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Fenglan Li
- College of Life Sciences, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
27
|
Li Z, Zhao T, Liu J, Li H, Liu B. Shade-Induced Leaf Senescence in Plants. PLANTS (BASEL, SWITZERLAND) 2023; 12:1550. [PMID: 37050176 PMCID: PMC10097262 DOI: 10.3390/plants12071550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/08/2023] [Accepted: 03/15/2023] [Indexed: 06/19/2023]
Abstract
Leaf senescence is a vital developmental process that involves the orderly breakdown of macromolecules to transfer nutrients from mature leaves to emerging and reproductive organs. This process is essential for a plant's overall fitness. Multiple internal and external factors, such as leaf age, plant hormones, stresses, and light environment, regulate the onset and progression of leaf senescence. When plants grow close to each other or are shaded, it results in significant alterations in light quantity and quality, such as a decrease in photosynthetically active radiation (PAR), a drop in red/far-red light ratios, and a reduction in blue light fluence rate, which triggers premature leaf senescence. Recently, studies have identified various components involved in light, phytohormone, and other signaling pathways that regulate the leaf senescence process in response to shade. This review summarizes the current knowledge on the molecular mechanisms that control leaf senescence induced by shade.
Collapse
Affiliation(s)
| | | | | | - Hongyu Li
- The National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Bin Liu
- The National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
28
|
Liu N, Wang Y, Li K, Li C, Liu B, Zhao L, Zhang X, Qu F, Gao L, Xia T, Wang P. Transcriptional Analysis of Tea Plants ( Camellia sinensis) in Response to Salicylic Acid Treatment. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:2377-2389. [PMID: 36695193 DOI: 10.1021/acs.jafc.2c07046] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Salicylic acid (SA) is an important plant hormone and signal required for establishing resistance to diverse pathogens and plant diseases. The abundant polyphenols in tea plants also defend plants from biotic and abiotic stresses. However, whether exogenous SA would increase the resistance of tea plants to adversity and the relationship between SA and polyphenols are still poorly understood. Here, we carried out SA treatment on tea seedlings and performed transcriptome sequencing. SA treatment inhibited the phenylpropanoid and flavonoid metabolic pathways but promoted the lignin metabolic pathways. The increased accumulation of lignin in tea leaves after treating with SA indicated that lignin might coordinate SA, enhance, and improve plant defense and disease resistance. Simultaneously, an SA-inducible flavonoid glucosyltransferase (CsUGT0554) specifically involved in 7-OH site glycosylation was characterized in vitro. These results provided valuable information about the effects of SA on tea seedlings and the molecular basis for SA-mediated immune responses.
Collapse
Affiliation(s)
- Nana Liu
- College of Horticulture, Laboratory of Quality & Safety Risk Assessment for Fruit (Qingdao), Ministry of Agriculture and Rural Affairs, Qingdao Agricultural University, Qingdao, Shandong 266109, China
| | - Yueyue Wang
- College of Horticulture, Laboratory of Quality & Safety Risk Assessment for Fruit (Qingdao), Ministry of Agriculture and Rural Affairs, Qingdao Agricultural University, Qingdao, Shandong 266109, China
| | - Kaiyuan Li
- College of Horticulture, Laboratory of Quality & Safety Risk Assessment for Fruit (Qingdao), Ministry of Agriculture and Rural Affairs, Qingdao Agricultural University, Qingdao, Shandong 266109, China
| | - Caiyun Li
- College of Horticulture, Laboratory of Quality & Safety Risk Assessment for Fruit (Qingdao), Ministry of Agriculture and Rural Affairs, Qingdao Agricultural University, Qingdao, Shandong 266109, China
| | - Bin Liu
- Qingdao Laoshan Tea Association, Qingdao, Shandong 266109, China
| | - Lei Zhao
- College of Horticulture, Laboratory of Quality & Safety Risk Assessment for Fruit (Qingdao), Ministry of Agriculture and Rural Affairs, Qingdao Agricultural University, Qingdao, Shandong 266109, China
| | - Xinfu Zhang
- College of Horticulture, Laboratory of Quality & Safety Risk Assessment for Fruit (Qingdao), Ministry of Agriculture and Rural Affairs, Qingdao Agricultural University, Qingdao, Shandong 266109, China
| | - Fengfeng Qu
- College of Horticulture, Laboratory of Quality & Safety Risk Assessment for Fruit (Qingdao), Ministry of Agriculture and Rural Affairs, Qingdao Agricultural University, Qingdao, Shandong 266109, China
| | - Liping Gao
- School of Life Science, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Tao Xia
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Peiqiang Wang
- College of Horticulture, Laboratory of Quality & Safety Risk Assessment for Fruit (Qingdao), Ministry of Agriculture and Rural Affairs, Qingdao Agricultural University, Qingdao, Shandong 266109, China
| |
Collapse
|
29
|
Feng G, Zhong Y, Zou W. Lipid transporter LSR1 positively regulates leaf senescence in Arabidopsis. PLANT SIGNALING & BEHAVIOR 2022; 17:2007328. [PMID: 34806532 PMCID: PMC8896191 DOI: 10.1080/15592324.2021.2007328] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/12/2021] [Accepted: 11/12/2021] [Indexed: 06/13/2023]
Abstract
Senescence is the final stage in the life history of a leaf, whereby plants relocate nutrients from leaves to other developing organs. Recent efforts have begun to focus on understanding the network-based molecular mechanism that incorporates various environmental signals and leaf age information and involves a complex process with the coordinated actions of multiple pathways. Here, we identified a novel participant, named LSR1 (Leaf Senescence Related 1), that involved in the regulation of leaf senescence. Loss-of-function lsr1-1 mutant showed delayed leaf senescence whereas the overexpression of LSR1 accelerated senescence. LSR1 encodes a lipid transfer protein, and the results show that the protein is located in chloroplast and intercellular space. The LSR1 may be involved in the regulation of leaf senescence by transporting lipids in plants.
Collapse
Affiliation(s)
- Guanping Feng
- School of Life Sciences, Jinggangshan University, Ji’an, Jiangxi, PR China
| | - Yihui Zhong
- School of Life Sciences, Jinggangshan University, Ji’an, Jiangxi, PR China
| | - Wenying Zou
- School of Life Sciences, Jinggangshan University, Ji’an, Jiangxi, PR China
| |
Collapse
|
30
|
Botton A, Girardi F, Ruperti B, Brilli M, Tijero V, Eccher G, Populin F, Schievano E, Riello T, Munné-Bosch S, Canton M, Rasori A, Cardillo V, Meggio F. Grape Berry Responses to Sequential Flooding and Heatwave Events: A Physiological, Transcriptional, and Metabolic Overview. PLANTS (BASEL, SWITZERLAND) 2022; 11:3574. [PMID: 36559686 PMCID: PMC9788187 DOI: 10.3390/plants11243574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/06/2022] [Accepted: 12/13/2022] [Indexed: 06/17/2023]
Abstract
Grapevine cultivation, such as the whole horticulture, is currently challenged by several factors, among which the extreme weather events occurring under the climate change scenario are the most relevant. Within this context, the present study aims at characterizing at the berry level the physiological response of Vitis vinifera cv. Sauvignon Blanc to sequential stresses simulated under a semi-controlled environment: flooding at bud-break followed by multiple summer stress (drought plus heatwave) occurring at pre-vèraison. Transcriptomic and metabolomic assessments were performed through RNASeq and NMR, respectively. A comprehensive hormone profiling was also carried out. Results pointed out a different response to the heatwave in the two situations. Flooding caused a developmental advance, determining a different physiological background in the berry, thus affecting its response to the summer stress at both transcriptional levels, with the upregulation of genes involved in oxidative stress responses, and metabolic level, with the increase in osmoprotectants, such as proline and other amino acids. In conclusion, sequential stress, including a flooding event at bud-break followed by a summer heatwave, may impact phenological development and berry ripening, with possible consequences on berry and wine quality. A berry physiological model is presented that may support the development of sustainable vineyard management solutions to improve the water use efficiency and adaptation capacity of actual viticultural systems to future scenarios.
Collapse
Affiliation(s)
- Alessandro Botton
- Department of Agronomy, Food, Natural Resources, Animals and Environment—DAFNAE, University of Padova, Agripolis, Viale dell’università 16, Legnaro, 35020 Padova, Italy
- Interdepartmental Research Centre for Viticulture and Enology—CIRVE, University of Padova, Via XXVIII Aprile 14, Conegliano, 31015 Treviso, Italy
| | - Francesco Girardi
- Department of Agronomy, Food, Natural Resources, Animals and Environment—DAFNAE, University of Padova, Agripolis, Viale dell’università 16, Legnaro, 35020 Padova, Italy
| | - Benedetto Ruperti
- Department of Agronomy, Food, Natural Resources, Animals and Environment—DAFNAE, University of Padova, Agripolis, Viale dell’università 16, Legnaro, 35020 Padova, Italy
- Interdepartmental Research Centre for Viticulture and Enology—CIRVE, University of Padova, Via XXVIII Aprile 14, Conegliano, 31015 Treviso, Italy
| | - Matteo Brilli
- Department of Biosciences, University of Milan, Via Celoria 26, 20133 Milan, Italy
| | - Veronica Tijero
- Department of Agronomy, Food, Natural Resources, Animals and Environment—DAFNAE, University of Padova, Agripolis, Viale dell’università 16, Legnaro, 35020 Padova, Italy
| | - Giulia Eccher
- Department of Agronomy, Food, Natural Resources, Animals and Environment—DAFNAE, University of Padova, Agripolis, Viale dell’università 16, Legnaro, 35020 Padova, Italy
| | - Francesca Populin
- Unit of Fruit Crop Genetics and Breeding, Research and Innovation Centre—CRI, Edmund Mach Foundation—FEM, Via E. Mach 1, San Michele all’Adige, 38098 Trento, Italy
| | - Elisabetta Schievano
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131 Padova, Italy
| | - Tobia Riello
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131 Padova, Italy
| | - Sergi Munné-Bosch
- Department of Evolutionary Biology, Ecology and Environmental Sciences, University of Barcelona, Diagonal 643, 08017 Barcelona, Spain
| | - Monica Canton
- Department of Agronomy, Food, Natural Resources, Animals and Environment—DAFNAE, University of Padova, Agripolis, Viale dell’università 16, Legnaro, 35020 Padova, Italy
| | - Angela Rasori
- Department of Agronomy, Food, Natural Resources, Animals and Environment—DAFNAE, University of Padova, Agripolis, Viale dell’università 16, Legnaro, 35020 Padova, Italy
| | - Valerio Cardillo
- Department of Agronomy, Food, Natural Resources, Animals and Environment—DAFNAE, University of Padova, Agripolis, Viale dell’università 16, Legnaro, 35020 Padova, Italy
| | - Franco Meggio
- Department of Agronomy, Food, Natural Resources, Animals and Environment—DAFNAE, University of Padova, Agripolis, Viale dell’università 16, Legnaro, 35020 Padova, Italy
- Interdepartmental Research Centre for Viticulture and Enology—CIRVE, University of Padova, Via XXVIII Aprile 14, Conegliano, 31015 Treviso, Italy
| |
Collapse
|
31
|
Li S, Xie H, Zhou L, Dong D, Liu Y, Jia C, Han L, Chao Y, Chen Y. Overexpression of MsSAG113 gene promotes leaf senescence in alfalfa via participating in the hormone regulatory network. FRONTIERS IN PLANT SCIENCE 2022; 13:1085497. [PMID: 36570962 PMCID: PMC9774027 DOI: 10.3389/fpls.2022.1085497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 11/25/2022] [Indexed: 06/17/2023]
Abstract
Introduction Alfalfa (Medicago sativa) is a kind of high quality leguminous forage species, which was widely cultivated in the world. Leaf senescence is an essential process in plant development and life cycle. Here, we reported the isolation and functional analysis of an alfalfa SENESCENCE-ASSOCIATED GENE113 (MsSAG113), which belongs to the PP2C family and mainly plays a role in promoting plant senescence. Methods In the study, Agrobacterium-mediated, gene expression analysis, next generation sequencing, DNA pull-down, yeast single hybridization and transient expression were used to identify the function of MsSAG113 gene. Results The MsSAG113 gene was isolated from alfalfa, and the transgenic plants were obtained by Agrobacterium-mediated method. Compared with the wildtype, transgenic plants showed premature senescence in leaves, especially when cultivated under dark conditions. Meanwhile, application of exogenous hormones ABA, SA, MeJA, obviously acclerated leaf senescence of transgenic plants. Furthermore, the detached leaves from transgenic plants turned yellow earlier with lower chlorophyll content. Transcriptome analysis identified a total of 1,392 differentially expressed genes (DEGs), involving 13 transcription factor families. Of which, 234 genes were related to phytohormone synthesis, metabolism and transduction. Pull-down assay and yeast one-hybrid assay confirmed that alfalfa zinc finger CCCH domain-containing protein 39 (MsC3H-39) could directly bind the upstream of MsSAG113 gene. In conclusion, the MsSAG113 gene plays a crucial role in promoting leaf senescence in alfalfa via participating in the hormone regulatory network. Discussion This provides an essential basis for further analysis on the regulatory network involving senescence-associated genes in alfalfa.
Collapse
Affiliation(s)
- Shuwen Li
- School of Grassland Science, Beijing Forestry University, Beijing, China
| | - Hong Xie
- School of Grassland Science, Beijing Forestry University, Beijing, China
| | - Lingfang Zhou
- School of Grassland Science, Beijing Forestry University, Beijing, China
| | - Di Dong
- School of Grassland Science, Beijing Forestry University, Beijing, China
| | - Yaling Liu
- Inner Mongolia M-Grass Ecology And Environment (Group) Co., Ltd, Hohhot, China
| | - Chenyan Jia
- Inner Mongolia M-Grass Ecology And Environment (Group) Co., Ltd, Hohhot, China
| | - Liebao Han
- School of Grassland Science, Beijing Forestry University, Beijing, China
| | - Yuehui Chao
- School of Grassland Science, Beijing Forestry University, Beijing, China
| | - Yinglong Chen
- The University of Western Australia (UWA) Institute of Agriculture, and University of Western Australia School of Agriculture and Environment, The University of Western Australia, Perth, WA, Australia
| |
Collapse
|
32
|
Payá C, Minguillón S, Hernández M, Miguel SM, Campos L, Rodrigo I, Bellés JM, López-Gresa MP, Lisón P. SlS5H silencing reveals specific pathogen-triggered salicylic acid metabolism in tomato. BMC PLANT BIOLOGY 2022; 22:549. [PMID: 36443652 PMCID: PMC9706870 DOI: 10.1186/s12870-022-03939-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 11/11/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Salicylic acid (SA) is a major plant hormone that mediates the defence pathway against pathogens. SA accumulates in highly variable amounts depending on the plant-pathogen system, and several enzyme activities participate in the restoration of its levels. Gentisic acid (GA) is the product of the 5-hydroxylation of SA, which is catalysed by S5H, an enzyme activity regarded as a major player in SA homeostasis. GA accumulates at high levels in tomato plants infected by Citrus Exocortis Viroid (CEVd), and to a lesser extend upon Pseudomonas syringae DC3000 pv. tomato (Pst) infection. RESULTS We have studied the induction of tomato SlS5H gene by different pathogens, and its expression correlates with the accumulation of GA. Transient over-expression of SlS5H in Nicotiana benthamiana confirmed that SA is processed by SlS5H in vivo. SlS5H-silenced tomato plants were generated, displaying a smaller size and early senescence, together with hypersusceptibility to the necrotrophic fungus Botrytis cinerea. In contrast, these transgenic lines exhibited an increased defence response and resistance to both CEVd and Pst infections. Alternative SA processing appears to occur for each specific pathogenic interaction to cope with SA levels. In SlS5H-silenced plants infected with CEVd, glycosylated SA was the most discriminant metabolite found. Instead, in Pst-infected transgenic plants, SA appeared to be rerouted to other phenolics such as feruloyldopamine, feruloylquinic acid, feruloylgalactarate and 2-hydroxyglutarate. CONCLUSION Using SlS5H-silenced plants as a tool to unbalance SA levels, we have studied the re-routing of SA upon CEVd and Pst infections and found that, despite the common origin and role for SA in plant pathogenesis, there appear to be different pathogen-specific, alternate homeostasis pathways.
Collapse
Affiliation(s)
- C. Payá
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas (CSIC), Universitat Politècnica de València (UPV), Ciudad Politécnica de la Innovación (CPI) 8 E, Ingeniero Fausto Elio s/n, 46011 Valencia, Spain
| | - S. Minguillón
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas (CSIC), Universitat Politècnica de València (UPV), Ciudad Politécnica de la Innovación (CPI) 8 E, Ingeniero Fausto Elio s/n, 46011 Valencia, Spain
| | - M. Hernández
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas (CSIC), Universitat Politècnica de València (UPV), Ciudad Politécnica de la Innovación (CPI) 8 E, Ingeniero Fausto Elio s/n, 46011 Valencia, Spain
| | - S. M. Miguel
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas (CSIC), Universitat Politècnica de València (UPV), Ciudad Politécnica de la Innovación (CPI) 8 E, Ingeniero Fausto Elio s/n, 46011 Valencia, Spain
| | - L. Campos
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas (CSIC), Universitat Politècnica de València (UPV), Ciudad Politécnica de la Innovación (CPI) 8 E, Ingeniero Fausto Elio s/n, 46011 Valencia, Spain
| | - I. Rodrigo
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas (CSIC), Universitat Politècnica de València (UPV), Ciudad Politécnica de la Innovación (CPI) 8 E, Ingeniero Fausto Elio s/n, 46011 Valencia, Spain
| | - J. M. Bellés
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas (CSIC), Universitat Politècnica de València (UPV), Ciudad Politécnica de la Innovación (CPI) 8 E, Ingeniero Fausto Elio s/n, 46011 Valencia, Spain
| | - M. P. López-Gresa
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas (CSIC), Universitat Politècnica de València (UPV), Ciudad Politécnica de la Innovación (CPI) 8 E, Ingeniero Fausto Elio s/n, 46011 Valencia, Spain
| | - P. Lisón
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas (CSIC), Universitat Politècnica de València (UPV), Ciudad Politécnica de la Innovación (CPI) 8 E, Ingeniero Fausto Elio s/n, 46011 Valencia, Spain
| |
Collapse
|
33
|
Yang T, Zhang M, Yang Q, Liu K, Cui J, Chen J, Ren Y, Shao Y, Wang R, Li G. The S40 family members delay leaf senescence by promoting cytokinin synthesis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 191:99-109. [PMID: 36201884 DOI: 10.1016/j.plaphy.2022.09.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 09/08/2022] [Accepted: 09/16/2022] [Indexed: 06/16/2023]
Abstract
Leaf senescence is regulated by both endogenous hormones and environmental stimuli in a programmed and concerted way. The members of the S40 family have been reported to play roles in leaf senescence. Here we identified an S40 family member, CiS40-11, from Caragana intermedia. Phylogenetic analysis revealed that the CiS40-11 protein had the highest identity with AtS40-5 (AT1G11700) and AtS40-6 (AT1G61930) of Arabidopsis thaliana. CiS40-11 was highly expressed in leaves and was down-regulated after dark treatment. The subcellular localization analysis showed that CiS40-11 was a cytoplasm-nucleus dual-localized protein. Leaf senescence was delayed in both the CiS40-11 overexpressed A. thaliana and its transiently expressed C. intermedia. Transcriptomic analysis and endogenous hormones assay revealed that CiS40-11 inhibited leaf senescence via promoting the biosynthesis of cytokinins by blocking AtMYB2 expression in the CiS40-11 overexpression lines. Furthermore, overexpression of either AtS40-5 or AtS40-6 showed similar phenotype as the CiS40-11 overexpressing lines, while in the ats40-5a or ats40-6a mutants, the AtMYB2 expression was increased and their leaves exhibited a premature senescence phenotype. These results provide a new molecular mechanism of the S40 family in leaf senescence regulation of plants.
Collapse
Affiliation(s)
- Tianrui Yang
- Inner Mongolia Key Laboratory of Plant Stress Physiology and Molecular Biology, Inner Mongolia Agricultural University, Hohhot, 010018, PR China
| | - Minna Zhang
- Inner Mongolia Key Laboratory of Plant Stress Physiology and Molecular Biology, Inner Mongolia Agricultural University, Hohhot, 010018, PR China
| | - Qi Yang
- Inner Mongolia Key Laboratory of Plant Stress Physiology and Molecular Biology, Inner Mongolia Agricultural University, Hohhot, 010018, PR China
| | - Kun Liu
- Inner Mongolia Key Laboratory of Plant Stress Physiology and Molecular Biology, Inner Mongolia Agricultural University, Hohhot, 010018, PR China
| | - Jiaming Cui
- Inner Mongolia Key Laboratory of Plant Stress Physiology and Molecular Biology, Inner Mongolia Agricultural University, Hohhot, 010018, PR China
| | - Jia Chen
- Inner Mongolia Key Laboratory of Plant Stress Physiology and Molecular Biology, Inner Mongolia Agricultural University, Hohhot, 010018, PR China
| | - Yufan Ren
- Inner Mongolia Key Laboratory of Plant Stress Physiology and Molecular Biology, Inner Mongolia Agricultural University, Hohhot, 010018, PR China
| | - Yunjie Shao
- Inner Mongolia Key Laboratory of Plant Stress Physiology and Molecular Biology, Inner Mongolia Agricultural University, Hohhot, 010018, PR China
| | - Ruigang Wang
- Inner Mongolia Key Laboratory of Plant Stress Physiology and Molecular Biology, Inner Mongolia Agricultural University, Hohhot, 010018, PR China; Inner Mongolia Enterprise Key Laboratory of Tree Breeding, Mengshu Ecological Construction Group Co., Ltd., Hohhot, 011517, PR China
| | - Guojing Li
- Inner Mongolia Key Laboratory of Plant Stress Physiology and Molecular Biology, Inner Mongolia Agricultural University, Hohhot, 010018, PR China; Key Laboratory of Grassland Resources, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, 010021, PR China; Key Laboratory of Forage Cultivation, Processing and High Efficient Utilization, Ministry of Agriculture, Inner Mongolia Agricultural University, Hohhot, 010021, PR China.
| |
Collapse
|
34
|
Overexpression of a Senescence-Related Gene CpSRG1 from Wintersweet ( Chimonanthus praecox) Promoted Growth and Flowering, and Delayed Senescence in Transgenic Arabidopsis. Int J Mol Sci 2022; 23:ijms232213971. [PMID: 36430449 PMCID: PMC9696086 DOI: 10.3390/ijms232213971] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 11/04/2022] [Accepted: 11/05/2022] [Indexed: 11/16/2022] Open
Abstract
Plant senescence is a complex process that is controlled by developmental regulation and genetic programs. A senescence-related gene CpSRG1, which belongs to the 2OG-Fe(II) dioxygenase superfamily, was characterized from wintersweet, and the phylogenetic relationship of CpSRG1 with homologs from other species was investigated. The expression analysis by qRT-PCR (quantitative real-time PCR) indicated that CpSRG1 is abundant in flower organs, especially in petals and stamens, and the highest expression of CpSRG1 was detected in stage 6 (withering period). The expression patterns of the CpSRG1 gene were further confirmed in CpSRG1pro::GUS (β-glucuronidase) plants, and the activity of the CpSRG1 promoter was enhanced by exogenous Eth (ethylene), SA (salicylic acid), and GA3 (gibberellin). Heterologous overexpression of CpSRG1 in Arabidopsis promoted growth and flowering, and delayed senescence. Moreover, the survival rates were significantly higher and the root lengths were significantly longer in the transgenic lines than in the wild-type plants, both under low nitrogen stress and GA3 treatment. This indicated that the CpSRG1 gene may promote the synthesis of assimilates in plants through the GA pathway, thereby improving growth and flowering, and delaying senescence in transgenic Arabidopsis. Our study has laid a satisfactory foundation for further analysis of senescence-related genes in wintersweet and wood plants. It also enriched our knowledge of the 2OG-Fe(II) dioxygenase superfamily, which plays a variety of important roles in plants.
Collapse
|
35
|
Yang F, Wu C, Zhu G, Yang Q, Wang K, Li Y. An integrated transcriptomic and metabolomic analysis for changes in rose plant induced by rose powdery mildew and exogenous salicylic acid. Genomics 2022; 114:110516. [PMID: 36306956 DOI: 10.1016/j.ygeno.2022.110516] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/10/2022] [Accepted: 10/24/2022] [Indexed: 01/15/2023]
Abstract
We explored the transcriptomic and metabolomic changes in Rosa chinensis after the infection with Podosphaera pannosa and after the treatment with exogenous salicylic acid (SA), separately. The rose responses to the mildew-infection were clearly similar to the responses to the SA-treatment. Based on the combined omics analysis, after the induction by both P. pannosa and SA, R. chinensis responded consistently by MAPK cascades, plant-pathogen interaction pathway activation, and resistance (R) genes expression, and further, triterpenoid biosynthesis, glutathione metabolism, and linoleic acid metabolism were significantly enriched when compared with the control. The levels of the triterpenoids with the largest fold change values were significantly up-regulated such as dehydro (11,12) ursolic acid lactone and maslinic acid, suggesting that these pathways and metabolites were involved in the resistance to P. pannosa. The contents of salicylic acid beta-D-glucoside, methyl salicylate, and methyl jasmonate increased significantly resulting from both P. pannosa-infection and exogenous SA-treatment.
Collapse
Affiliation(s)
- Fazhong Yang
- Key Laboratory of State Forestry and Grassland Administration on Highly-Efficient Utilization of Forestry Biomass Resources in Southwest China, Southwest Forestry University, Kunming 650224, Yunnan, PR China; Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming 650224, Yunnan, PR China
| | - Chunhua Wu
- Key Laboratory of State Forestry and Grassland Administration on Highly-Efficient Utilization of Forestry Biomass Resources in Southwest China, Southwest Forestry University, Kunming 650224, Yunnan, PR China
| | - Guolei Zhu
- Key Laboratory of State Forestry and Grassland Administration on Highly-Efficient Utilization of Forestry Biomass Resources in Southwest China, Southwest Forestry University, Kunming 650224, Yunnan, PR China
| | - Qi Yang
- Key Laboratory of State Forestry and Grassland Administration on Highly-Efficient Utilization of Forestry Biomass Resources in Southwest China, Southwest Forestry University, Kunming 650224, Yunnan, PR China
| | - Kejian Wang
- Key Laboratory of State Forestry and Grassland Administration on Highly-Efficient Utilization of Forestry Biomass Resources in Southwest China, Southwest Forestry University, Kunming 650224, Yunnan, PR China
| | - Yunxian Li
- Key Laboratory of State Forestry and Grassland Administration on Highly-Efficient Utilization of Forestry Biomass Resources in Southwest China, Southwest Forestry University, Kunming 650224, Yunnan, PR China.
| |
Collapse
|
36
|
Meng L, Yang H, Xiang L, Wang Y, Chan Z. NAC transcription factor TgNAP promotes tulip petal senescence. PLANT PHYSIOLOGY 2022; 190:1960-1977. [PMID: 35900170 PMCID: PMC9614467 DOI: 10.1093/plphys/kiac351] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 06/29/2022] [Indexed: 06/15/2023]
Abstract
Petal senescence is a crucial determinant for ornamental quality and economic value of floral crops. Salicylic acid (SA) and reactive oxygen species (ROS) are two prominent factors involved in plant senescence regulation. In this study, tulip TgNAP (NAC-like, activated by APETALA3/PISTILLATA) was characterized as positively regulating tulip petal senescence through dually regulating SA biosynthesis and ROS detoxification pathways. TgNAP was upregulated in senescing petals of tulip while exogenous SA and H2O2 treatments substantially promoted petal senescence in tulip. Silencing of TgNAP by VIGS assay delayed SA and H2O2-induced petal senescence in tulip, whereas overexpression of TgNAP promoted the senescence process in Arabidopsis (Arabidopsis thaliana) plants. Additionally, inhibition of SA biosynthesis prolonged the lifespan of TgNAP-silenced petal discs. Further evidence indicated that TgNAP activates the transcriptions of two key SA biosynthetic genes ISOCHORISMATE SYNTHASE 1 (TgICS1) and PHENYLALANINE AMMONIA-LYASE 1 (TgPAL1) through directly binding to their promoter regions. Meanwhile, TgNAP repressed ROS scavenging by directly inhibiting PEROXIDASE 12 (POD12) and POD17 expression. Taken together, these results indicate that TgNAP enhances SA biosynthesis and ROS accumulation to positively regulate petal senescence in tulip.
Collapse
Affiliation(s)
- Lin Meng
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, PR China
- National R&D Centre for Citrus Preservation, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Haipo Yang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, PR China
- National R&D Centre for Citrus Preservation, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Lin Xiang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Yanping Wang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, PR China
- National R&D Centre for Citrus Preservation, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Zhulong Chan
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, PR China
| |
Collapse
|
37
|
Sasi JM, Gupta S, Singh A, Kujur A, Agarwal M, Katiyar-Agarwal S. Know when and how to die: gaining insights into the molecular regulation of leaf senescence. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2022; 28:1515-1534. [PMID: 36389097 PMCID: PMC9530073 DOI: 10.1007/s12298-022-01224-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 08/17/2022] [Accepted: 08/21/2022] [Indexed: 06/16/2023]
Abstract
Senescence is the ultimate phase in the life cycle of leaves which is crucial for recycling of nutrients to maintain plant fitness and reproductive success. The earliest visible manifestation of leaf senescence is their yellowing, which usually commences with the breakdown of chlorophyll. The degradation process involves a gradual and highly coordinated disassembly of macromolecules resulting in the accumulation of nutrients, which are subsequently mobilized from the senescing leaves to the developing organs. Leaf senescence progresses under overly tight genetic and molecular control involving a well-orchestrated and intricate network of regulators that coordinate spatio-temporally with the influence of both internal and external cues. Owing to the advancements in omics technologies, the availability of mutant resources, scalability of molecular analyses methodologies and the advanced capacity to integrate multidimensional data, our understanding of the genetic and molecular basis of leaf ageing has greatly expanded. The review provides a compilation of the multitier regulation of senescence process and the interrelation between the environment and the terminal phase of leaf development. The knowledge gained would benefit in devising the strategies for manipulation of leaf senescence process to improve crop quality and productivity.
Collapse
Affiliation(s)
- Jyothish Madambikattil Sasi
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021 India
| | - Shitij Gupta
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021 India
| | - Apurva Singh
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021 India
| | - Alice Kujur
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021 India
- USDA-ARS Plant Genetics Research Unit, The Donald Danforth Plant Science Center, St. Louis, MO 63132 USA
- Centre of Excellence in Genomics and Systems Biology (CEGSB), International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Hyderabad, Telangana 502324 India
| | - Manu Agarwal
- Department of Botany, University of Delhi North Campus, Delhi, 110007 India
| | - Surekha Katiyar-Agarwal
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021 India
| |
Collapse
|
38
|
Omidi M, Khandan-Mirkohi A, Kafi M, Zamani Z, Ajdanian L, Babaei M. Biochemical and molecular responses of Rosa damascena mill. cv. Kashan to salicylic acid under salinity stress. BMC PLANT BIOLOGY 2022; 22:373. [PMID: 35896978 PMCID: PMC9327194 DOI: 10.1186/s12870-022-03754-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 07/13/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Today, salinity stress is one of the most important abiotic stresses in the world, because it causes damage to many agricultural products and reduces their yields. Oxidative stress causes tissue damages in plants, which occurs with the production of reactive oxygen species (ROS) when plants are exposed to environmental stresses such as salinity. Today, it is recommended to use compounds that increase the resistance of plants to environmental stresses and improve plant metabolic activities. Salicylic acid (SA), as an intracellular and extracellular regulator of the plant response, is known as one of these effective compounds. Damask rose (Rosa damascena Mill.) is a medicinal plant from the Rosaceae, and its essential oils and aromatic compounds are used widely in the cosmetic and food industries in the world. Therefore, considering the importance of this plant from both medicinal and ornamental aspects, for the first time, we investigated one of the native cultivars of Iran (Kashan). Since one of the most important problems in Damask rose cultivation is the occurrence of salinity stress, for the first time, we investigated the interaction of several levels of NaCl salinity (0, 4, 8, and 12 ds m- 1) with SA (0, 0.5, 1, and 2 mM) as a stress reducer. RESULTS Since salinity stress reduces plant growth and yield, in this experiment, the results showed that the increase in NaCl concentration caused a gradual decrease in photosynthetic and morphological parameters and an increase in ion leakage. Also, increasing the level of salinity stress up to 12 ds m- 1 affected the amount of chlorophyll, root length and leaf total area, all of which reduced significantly compared to plants under no stress. However, many studies have highlighted the application of compounds that reduce the negative effects of stress and increase plant resistance and tolerance against stresses. In this study, the application of SA even at low concentration (0.5 mM) could neutralize the negative effects of salinity stress in the Rosa damascena. In this regard, the results showed that salinity increases the activity of antioxidant enzymes catalase (CAT) and superoxide dismutase (SOD) and the concentration of proline, protein and glycine betaine (GB). Overexpression of antioxidant genes (Ascorbate Peroxidase (APX), CAT, Peroxidase (POD), Fe-SOD and Cu-SOD) showed an important role in salt tolerance in Damascus rose. In addition, 0.5 mm SA increased the activity of enzymatic and non-enzymatic systems and increased salinity tolerance. CONCLUSIONS The change in weather conditions due to global warming and increased dryness contributes to the salinization of the earth's surface soils. Therefore, it is of particular importance to measure the threshold of tolerance of roses to salinity stress and the effect of stress-reducing substances in plants. In this context, SA has various roles such as increasing the content of pigments, preventing ethylene biosynthesis, increasing growth, and activating genes involved in stress, which modifies the negative effects of salinity stress. Also, according to the results of this research, even in the concentration of low values, positive results can be obtained from SA, so it can be recommended as a relatively cheap and available material to improve production in saline lands.
Collapse
Affiliation(s)
- Mohammad Omidi
- Department of Horticulture Science, College of Agriculture and Natural Resources, University of Tehran, Karaj, 31587, Iran.
| | - Azizollah Khandan-Mirkohi
- Department of Horticulture Science, College of Agriculture and Natural Resources, University of Tehran, Karaj, 31587, Iran
| | - Mohsen Kafi
- Department of Horticulture Science, College of Agriculture and Natural Resources, University of Tehran, Karaj, 31587, Iran
| | - Zabihollah Zamani
- Department of Horticulture Science, College of Agriculture and Natural Resources, University of Tehran, Karaj, 31587, Iran
| | - Ladan Ajdanian
- Department of Horticultural Sciences, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Mehdi Babaei
- Department of Horticultural Sciences, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
39
|
An JP, Zhang CL, Li HL, Wang GL, You CX. Apple SINA E3 ligase MdSINA3 negatively mediates JA-triggered leaf senescence by ubiquitinating and degrading the MdBBX37 protein. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 111:457-472. [PMID: 35560993 DOI: 10.1111/tpj.15808] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 05/05/2022] [Accepted: 05/11/2022] [Indexed: 06/15/2023]
Abstract
Jasmonic acid (JA) induces chlorophyll degradation and leaf senescence. B-box (BBX) proteins play important roles in the modulation of leaf senescence, but the molecular mechanism of BBX protein-mediated leaf senescence remains to be further studied. Here, we identified the BBX protein MdBBX37 as a positive regulator of JA-induced leaf senescence in Malus domestica (apple). Further studies showed that MdBBX37 interacted with the senescence regulatory protein MdbHLH93 to enhance its transcriptional activation on the senescence-associated gene MdSAG18, thereby promoting leaf senescence. Moreover, the JA signaling repressor MdJAZ2 interacted with MdBBX37 and interfered with the interaction between MdBBX37 and MdbHLH93, thereby negatively mediating MdBBX37-promoted leaf senescence. In addition, the E3 ubiquitin ligase MdSINA3 delayed MdBBX37-promoted leaf senescence through targeting MdBBX37 for degradation. The MdJAZ2-MdBBX37-MdbHLH93-MdSAG18 and MdSINA3-MdBBX37 modules realized the precise modulation of JA on leaf senescence. In parallel, our data demonstrate that MdBBX37 was involved in abscisic acid (ABA)- and ethylene-mediated leaf senescence through interacting with the ABA signaling regulatory protein MdABI5 and ethylene signaling regulatory protein MdEIL1, respectively. Taken together, our results not only reveal the role of MdBBX37 as an integration node in JA-, ABA- and ethylene-mediated leaf senescence, but also provide new insights into the post-translational modification of BBX proteins.
Collapse
Affiliation(s)
- Jian-Ping An
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
| | - Chun-Ling Zhang
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
| | - Hong-Liang Li
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
| | - Gui-Luan Wang
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
| | - Chun-Xiang You
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
| |
Collapse
|
40
|
Huang P, Li Z, Guo H. New Advances in the Regulation of Leaf Senescence by Classical and Peptide Hormones. FRONTIERS IN PLANT SCIENCE 2022; 13:923136. [PMID: 35837465 PMCID: PMC9274171 DOI: 10.3389/fpls.2022.923136] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 06/02/2022] [Indexed: 06/15/2023]
Abstract
Leaf senescence is the last stage of leaf development, manifested by leaf yellowing due to the loss of chlorophyll, along with the degradation of macromolecules and facilitates nutrient translocation from the sink to the source tissues, which is essential for the plants' fitness. Leaf senescence is controlled by a sophisticated genetic network that has been revealed through the study of the molecular mechanisms of hundreds of senescence-associated genes (SAGs), which are involved in multiple layers of regulation. Leaf senescence is primarily regulated by plant age, but also influenced by a variety of factors, including phytohormones and environmental stimuli. Phytohormones, as important signaling molecules in plant, contribute to the onset and progression of leaf senescence. Recently, peptide hormones have been reported to be involved in the regulation of leaf senescence, enriching the significance of signaling molecules in controlling leaf senescence. This review summarizes recent advances in the regulation of leaf senescence by classical and peptide hormones, aiming to better understand the coordinated network of different pathways during leaf senescence.
Collapse
Affiliation(s)
- Peixin Huang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Research Center for Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Zhonghai Li
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Research Center for Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Hongwei Guo
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Research Center for Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Department of Biology, Southern University of Science and Technology, Shenzhen, China
| |
Collapse
|
41
|
Cai Z, Guo H, Shen S, Yu Q, Wang J, Zhu E, Zhang P, Song L, Zhang Y, Zhang K. Generation of the salicylic acid deficient Arabidopsis via a synthetic salicylic acid hydroxylase expression cassette. PLANT METHODS 2022; 18:89. [PMID: 35765077 PMCID: PMC9238041 DOI: 10.1186/s13007-022-00922-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 06/19/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Salicylic acid (SA) is one of the plant hormones, which plays crucial roles in signaling transduction in plant growth, disease resistance, and leaf senescence. Arabidopsis (Arabidopsis thaliana) SA 3-hydroxylase (S3H) and 5-hydroxylase (S5H) are key enzymes which maintain SA homeostasis by catalyzing SA to 2,3-dihydroxybenzoic acid (DHBA) and 2,5-DHBA, respectively. RESULTS SA deficient transgenic Arabidopsis lines were generated by introducing two binary vectors S5Hpro::EGFP-S3H and 35Spro::EGFP-S3H respectively, in which the expression of S3H is under the control of the S5H promoter or CaMV 35S promoter. Compared with the constitutive expression of S3H gene under the control of 35S promoter, the S3H gene under the native S5H promoter is activated by endogenous SA and results in a dynamic control of SA catabolism in a feedback mode. The SA accumulation, growth, leaf senescence, and pathogen resistance of the S5Hpro::GFP-S3H transgenic plants were investigated in parallel with NahG transgenic plants. The SA levels in the S5Hpro::EGFP-S3H transgenic plants were similar to or slightly lower than those of NahG transgenic Arabidopsis and resulted in SA deficient phenotypes. The low-SA trait of the S5Hpro::EGFP-S3H transgenic lines was inherited stably in the later generations. CONCLUSIONS Compared with NahG transgenic lines producing by-product catechol, S5Hpro::EGFP-S3H transgenic lines reduce SA levels by converting SA to a native product 2,3-DHBA for catabolism. Together, we provide new SA-deficient germplasms for the investigations of SA signaling in plant development, leaf senescence, and disease resistance.
Collapse
Affiliation(s)
- Zilin Cai
- Zhejiang Provincial Key Laboratory of Biotechnology on Specialty Economic Plants, College of Chemistry and Life Sciences, Institute of Plant Stress Adaptation and Genetic Enhancement, Zhejiang Normal University, Jinhua, 321004, Zhejiang, People's Republic of China
| | - Hao Guo
- Zhejiang Provincial Key Laboratory of Biotechnology on Specialty Economic Plants, College of Chemistry and Life Sciences, Institute of Plant Stress Adaptation and Genetic Enhancement, Zhejiang Normal University, Jinhua, 321004, Zhejiang, People's Republic of China
| | - Shijing Shen
- Zhejiang Provincial Key Laboratory of Biotechnology on Specialty Economic Plants, College of Chemistry and Life Sciences, Institute of Plant Stress Adaptation and Genetic Enhancement, Zhejiang Normal University, Jinhua, 321004, Zhejiang, People's Republic of China
| | - Qilu Yu
- Zhejiang Provincial Key Laboratory of Biotechnology on Specialty Economic Plants, College of Chemistry and Life Sciences, Institute of Plant Stress Adaptation and Genetic Enhancement, Zhejiang Normal University, Jinhua, 321004, Zhejiang, People's Republic of China
| | - Jinbin Wang
- Zhejiang Provincial Key Laboratory of Biotechnology on Specialty Economic Plants, College of Chemistry and Life Sciences, Institute of Plant Stress Adaptation and Genetic Enhancement, Zhejiang Normal University, Jinhua, 321004, Zhejiang, People's Republic of China
| | - Engao Zhu
- Zhejiang Provincial Key Laboratory of Biotechnology on Specialty Economic Plants, College of Chemistry and Life Sciences, Institute of Plant Stress Adaptation and Genetic Enhancement, Zhejiang Normal University, Jinhua, 321004, Zhejiang, People's Republic of China
| | - Pinghua Zhang
- Zhejiang Provincial Key Laboratory of Biotechnology on Specialty Economic Plants, College of Chemistry and Life Sciences, Institute of Plant Stress Adaptation and Genetic Enhancement, Zhejiang Normal University, Jinhua, 321004, Zhejiang, People's Republic of China
| | - Lili Song
- State Key Laboratory of Subtropical Silviculture, Sino-Australia Plant Cell Wall Research Centre, School of Forestry and Biotechnology, Zhejiang A&F University, Lin'an, Hangzhou, 311300, Zhejiang, People's Republic of China
| | - Yanjun Zhang
- Zhejiang Provincial Key Laboratory of Biotechnology on Specialty Economic Plants, College of Chemistry and Life Sciences, Institute of Plant Stress Adaptation and Genetic Enhancement, Zhejiang Normal University, Jinhua, 321004, Zhejiang, People's Republic of China.
| | - Kewei Zhang
- Zhejiang Provincial Key Laboratory of Biotechnology on Specialty Economic Plants, College of Chemistry and Life Sciences, Institute of Plant Stress Adaptation and Genetic Enhancement, Zhejiang Normal University, Jinhua, 321004, Zhejiang, People's Republic of China.
| |
Collapse
|
42
|
Wang Y, Liu B, Hu Y, Gan SS. A positive feedback regulatory loop, SA-AtNAP-SAG202/SARD1-ICS1-SA, in SA biosynthesis involved in leaf senescence but not defense response. MOLECULAR HORTICULTURE 2022; 2:15. [PMID: 37789442 PMCID: PMC10515000 DOI: 10.1186/s43897-022-00036-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 05/28/2022] [Indexed: 10/05/2023]
Abstract
Salicylic acid (SA) is an important plant hormone that regulates defense responses and leaf senescence. It is imperative to understand upstream factors that regulate genes of SA biosynthesis. SAG202/SARD1 is a key regulator for isochorismate synthase 1 (ICS1) induction and SA biosynthesis in defense responses. The regulatory mechanism of SA biosynthesis during leaf senescence is not well understood. Here we show that AtNAP, a senescence-specific NAC family transcription factor, directly regulates a senescence-associated gene named SAG202 as revealed in yeast one-hybrid and in planta assays. Inducible overexpreesion of AtNAP and SAG202 lead to high levels of SA and precocious senescence in leaves. Individual knockout mutants of sag202 and ics1 have markedly reduced SA levels and display a significantly delayed leaf senescence phenotype. Furthermore, SA positively feedback regulates AtNAP and SAG202. Our research has uncovered a unique positive feedback regulatory loop, SA-AtNAP-SAG202-ICS1-SA, that operates to control SA biosynthesis associated with leaf senescence but not defense response.
Collapse
Affiliation(s)
- Yaxin Wang
- Sections of Plant Biology, School of Integrative Plant Science, Cornell University, Ithaca, New York, 14853, USA
- Present address: Nobell Foods, South San Francisco, California, 94080, USA
| | - Bin Liu
- Sections of Plant Biology, School of Integrative Plant Science, Cornell University, Ithaca, New York, 14853, USA
| | - Youzhen Hu
- Sections of Plant Biology, School of Integrative Plant Science, Cornell University, Ithaca, New York, 14853, USA
- Present address: College of Food Science, Shihezi University, Xinjiang, 832000, China
| | - Su-Sheng Gan
- Sections of Plant Biology, School of Integrative Plant Science, Cornell University, Ithaca, New York, 14853, USA.
| |
Collapse
|
43
|
Bresson J, Doll J, Vasseur F, Stahl M, von Roepenack-Lahaye E, Kilian J, Stadelhofer B, Kremer JM, Kolb D, Wenkel S, Zentgraf U. The genetic interaction of REVOLUTA and WRKY53 links plant development, senescence, and immune responses. PLoS One 2022; 17:e0254741. [PMID: 35333873 PMCID: PMC8956159 DOI: 10.1371/journal.pone.0254741] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Accepted: 03/09/2022] [Indexed: 01/09/2023] Open
Abstract
In annual plants, tight coordination of successive developmental events is of primary importance to optimize performance under fluctuating environmental conditions. The recent finding of the genetic interaction of WRKY53, a key senescence-related gene with REVOLUTA, a master regulator of early leaf patterning, raises the question of how early and late developmental events are connected. Here, we investigated the developmental and metabolic consequences of an alteration of the REVOLUTA and WRKY53 gene expression, from seedling to fruiting. Our results show that REVOLUTA critically controls late developmental phases and reproduction while inversely WRKY53 determines vegetative growth at early developmental stages. We further show that these regulators of distinct developmental phases frequently, but not continuously, interact throughout ontogeny and demonstrated that their genetic interaction is mediated by the salicylic acid (SA). Moreover, we showed that REVOLUTA and WRKY53 are keys regulatory nodes of development and plant immunity thought their role in SA metabolic pathways, which also highlights the role of REV in pathogen defence. Together, our findings demonstrate how late and early developmental events are tightly intertwined by molecular hubs. These hubs interact with each other throughout ontogeny, and participate in the interplay between plant development and immunity.
Collapse
Affiliation(s)
- Justine Bresson
- ZMBP, General Genetics, University of Tübingen, Tübingen, Germany
- * E-mail: (JB); (UZ)
| | - Jasmin Doll
- ZMBP, General Genetics, University of Tübingen, Tübingen, Germany
| | - François Vasseur
- INRAE, Montpellier, France
- LEPSE, Univ Montpellier, INRAE, Institut Agro, Montpellier, France
| | - Mark Stahl
- ZMBP, General Genetics, University of Tübingen, Tübingen, Germany
| | | | - Joachim Kilian
- ZMBP, General Genetics, University of Tübingen, Tübingen, Germany
| | | | - James M. Kremer
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, United States of America
| | - Dagmar Kolb
- ZMBP, General Genetics, University of Tübingen, Tübingen, Germany
| | - Stephan Wenkel
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Ulrike Zentgraf
- ZMBP, General Genetics, University of Tübingen, Tübingen, Germany
- * E-mail: (JB); (UZ)
| |
Collapse
|
44
|
Mittal L, Tayyeba S, Sinha AK. Finding a breather for Oryza sativa: Understanding hormone signalling pathways involved in rice plants to submergence stress. PLANT, CELL & ENVIRONMENT 2022; 45:279-295. [PMID: 34971465 DOI: 10.1111/pce.14250] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 11/23/2021] [Accepted: 12/09/2021] [Indexed: 06/14/2023]
Abstract
During the course of evolution, different ecotypes of rice (Oryza sativa L.) have evolved distinct strategies to cope with submergence stress. Such contrasting responses are mediated by plant hormones that are principle regulators of growth, development and responses to various biotic and abiotic stresses. These hormones act cooperatively and show extensive crosstalk which is mediated by key regulatory genes that serve as nodes of molecular communication. The presence or absence of such genes leads to significant changes in hormone signalling pathways and hence, governs the type of response that the plant will exhibit. As flooding is one of the leading causes of crop loss across all the major rice-producing countries, it is crucial to deeply understand the molecular nexus governing the response to submergence to produce flood resilient varieties. This review focuses on the hormonal signalling pathways that mediate two contrasting responses of the rice plant to submergence stress namely, rapid internode elongation to escape flood waters and quiescence response that enables the plant to survive under complete submergence. The significance of several key genes such as Sub1A-1, SLR1, SD1 and SK1/SK2, in defining the ultimate response to submergence has also been discussed.
Collapse
Affiliation(s)
- Lavanya Mittal
- National Institute of Plant Genome Research, New Delhi, India
| | - Sumaira Tayyeba
- National Institute of Plant Genome Research, New Delhi, India
| | - Alok K Sinha
- National Institute of Plant Genome Research, New Delhi, India
| |
Collapse
|
45
|
Zhang B, Yang J, Gu G, Jin L, Chen C, Lin Z, Song J, Xie X. Integrative Analyses of Biochemical Properties and Transcriptome Reveal the Dynamic Changes in Leaf Senescence of Tobacco ( Nicotiana tabacum L.). Front Genet 2022; 12:790167. [PMID: 35003224 PMCID: PMC8727547 DOI: 10.3389/fgene.2021.790167] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 12/03/2021] [Indexed: 11/13/2022] Open
Abstract
Leaf senescence is an important process of growth and development in plant, and it is a programmed decline controlled by a series of genes. In this study, the biochemical properties and transcriptome at five maturity stages (M1∼M5) of tobacco leaves were analyzed to reveal the dynamic changes in leaf senescence of tobacco. A total of 722, 1,534, 3,723, and 6,933 genes were differentially expressed (DEG) between M1 and M2, M1 and M3, M1 and M4, and M1 and M5, respectively. Significant changes of nitrogen, sugars, and the DEGs related to metabolite accumulation were identified, suggesting the importance of energy metabolism during leaf senescence. Gene Ontology (GO) analysis found that DEGs were enriched in biosynthetic, metabolic, photosynthesis, and redox processes, and especially, the nitrogen metabolic pathways were closely related to the whole leaf senescence process (M1∼M5). All the DEGs were grouped into 12 expression profiles according to their distinct expression patterns based on Short Time-series Expression Miner (STEM) software analysis. Furthermore, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis found that these DEGs were enriched in pathways of carbon metabolism, starch and sucrose metabolism, nitrogen metabolism, and photosynthesis among these expression profiles. A total of 30 core genes were examined by Weight Gene Co-expression Network Analysis (WGCNA), and they appeared to play a crucial role in the regulatory of tobacco senescence. Our results provided valuable information for further functional investigation of leaf senescence in plants.
Collapse
Affiliation(s)
- Binghui Zhang
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China.,Institute of Tobacco Science, Fujian Provincial Tobacco Company, Fuzhou, China
| | - Jiahan Yang
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Gang Gu
- Institute of Tobacco Science, Fujian Provincial Tobacco Company, Fuzhou, China
| | - Liao Jin
- Yanping Branch of Nanping Tobacco Company, Nanping, China
| | | | - Zhiqiang Lin
- Yanping Branch of Nanping Tobacco Company, Nanping, China
| | | | - Xiaofang Xie
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
46
|
Pathogen infection influences the relationship between spring and autumn phenology at the seedling and leaf level. Oecologia 2021; 197:447-457. [PMID: 34553245 DOI: 10.1007/s00442-021-05044-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 09/14/2021] [Indexed: 01/08/2023]
Abstract
Seasonal life history events are often interdependent, but we know relatively little about how the relationship between different events is influenced by the abiotic and biotic environment. Such knowledge is important for predicting the immediate and evolutionary phenological response of populations to changing conditions. We manipulated germination timing and shade in a multi-factorial experiment to investigate the relationship between spring and autumn phenology in seedlings of the pedunculate oak, Quercus robur, and whether this relationship was mediated by natural colonization of leaves by specialist fungal pathogens (i.e., the oak powdery mildew complex). Each week delay in germination corresponded to about 2 days delay in autumn leaf senescence, and heavily shaded seedlings senesced 5-8 days later than seedlings in light shade or full sun. Within seedlings, leaves on primary-growth shoots senesced later than those on secondary-growth shoots in some treatments. Path analyses demonstrated that germination timing and shade affected autumn phenology both directly and indirectly via pathogen load, though the specific pattern differed among and within seedlings. Pathogen load increased with later germination and greater shade. Greater pathogen load was in turn associated with later senescence for seedlings, but with earlier senescence for individual leaves. Our findings show that relationships between seasonal events can be partly mediated by the biotic environment and suggest that these relationships may differ between the plant and leaf level. The influence of biotic interactions on phenological correlations across scales has implications for understanding phenotypic variation in phenology and for predicting how populations will respond to climatic perturbation.
Collapse
|
47
|
A Ubiquitously Expressed UDP-Glucosyltransferase, UGT74J1, Controls Basal Salicylic Acid Levels in Rice. PLANTS 2021; 10:plants10091875. [PMID: 34579409 PMCID: PMC8469147 DOI: 10.3390/plants10091875] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 08/26/2021] [Accepted: 09/08/2021] [Indexed: 11/28/2022]
Abstract
Salicylic acid (SA) is a phytohormone that regulates a variety of physiological and developmental processes, including disease resistance. SA is a key signaling component in the immune response of many plant species. However, the mechanism underlying SA-mediated immunity is obscure in rice (Oryza sativa). Prior analysis revealed a correlation between basal SA level and blast resistance in a range of rice varieties. This suggested that resistance might be improved by increasing basal SA level. Here, we identified a novel UDP-glucosyltransferase gene, UGT74J1, which is expressed ubiquitously throughout plant development. Mutants of UGT74J1 generated by genome editing accumulated high levels of SA under non-stressed conditions, indicating that UGT74J1 is a key enzyme for SA homeostasis in rice. Microarray analysis revealed that the ugt74j1 mutants constitutively overexpressed a set of pathogenesis-related (PR) genes. An inoculation assay demonstrated that these mutants had increased resistance against rice blast, but they also exhibited stunted growth phenotypes. To our knowledge, this is the first report of a rice mutant displaying SA overaccumulation.
Collapse
|
48
|
Broda M, Khan K, O’Leary B, Pružinská A, Lee CP, Millar AH, Van Aken O. Increased expression of ANAC017 primes for accelerated senescence. PLANT PHYSIOLOGY 2021; 186:2205-2221. [PMID: 33914871 PMCID: PMC8331134 DOI: 10.1093/plphys/kiab195] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 04/02/2021] [Indexed: 05/06/2023]
Abstract
Recent studies in Arabidopsis (Arabidopsis thaliana) have reported conflicting roles for NAC DOMAIN CONTAINING PROTEIN 17 (ANAC017), a transcription factor regulating mitochondria-to-nuclear signaling, and its closest paralog NAC DOMAIN CONTAINING PROTEIN 16 (ANAC016), in leaf senescence. By synchronizing senescence in individually darkened leaves of knockout and overexpressing mutants from these contrasting studies, we demonstrate that elevated ANAC017 expression consistently causes accelerated senescence and cell death. A time-resolved transcriptome analysis revealed that senescence-associated pathways such as autophagy are not constitutively activated in ANAC017 overexpression lines, but require a senescence-stimulus to trigger accelerated induction. ANAC017 transcript and ANAC017-target genes are constitutively upregulated in ANAC017 overexpression lines, but surprisingly show a transient "super-induction" 1 d after senescence induction. This induction of ANAC017 and its target genes is observed during the later stages of age-related and dark-induced senescence, indicating the ANAC017 pathway is also activated in natural senescence. In contrast, knockout mutants of ANAC017 showed lowered senescence-induced induction of ANAC017 target genes during the late stages of dark-induced senescence. Finally, promoter binding analyses show that the ANAC016 promoter sequence is directly bound by ANAC017, so ANAC016 likely acts downstream of ANAC017 and is directly transcriptionally controlled by ANAC017 in a feed-forward loop during late senescence.
Collapse
Affiliation(s)
- Martyna Broda
- ARC Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, University of Western Australia, Perth, Western Australia 6009, Australia
| | - Kasim Khan
- Department of Biology, Lund University, Lund 22362, Sweden
| | - Brendan O’Leary
- ARC Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, University of Western Australia, Perth, Western Australia 6009, Australia
| | - Adriana Pružinská
- ARC Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, University of Western Australia, Perth, Western Australia 6009, Australia
| | - Chun Pong Lee
- ARC Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, University of Western Australia, Perth, Western Australia 6009, Australia
| | - A Harvey Millar
- ARC Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, University of Western Australia, Perth, Western Australia 6009, Australia
| | - Olivier Van Aken
- ARC Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, University of Western Australia, Perth, Western Australia 6009, Australia
- Department of Biology, Lund University, Lund 22362, Sweden
- Author for communication:
| |
Collapse
|
49
|
Application of exogenous salicylic acid reduces disease severity of Plasmodiophora brassicae in pakchoi (Brassica campestris ssp. chinensis Makino). PLoS One 2021; 16:e0248648. [PMID: 34166377 PMCID: PMC8224854 DOI: 10.1371/journal.pone.0248648] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 03/02/2021] [Indexed: 01/07/2023] Open
Abstract
Clubroot is one of the most serious diseases affecting Brassicaceae plants worldwide. However, there is no effective control method for clubroot. Salicylic acid (SA) is a plant hormone that plays a critical role in plant defense. In our study, we found the disease severity of a clubroot-sensitive cultivar of pakchoi, Xinxiaqing, was reduced with 0.6mM exogenous SA after the infection of P. brassicae. To investigate the mechanism of SA-reduced disease severity against clubroot, then we analyzed the plant growth, alteration of antioxidant enzyme system, and related gene expression of Xinxiaqing. Results showed that the clubroot incidence rate and disease index were decreased after being treated with 0.6 mM exogenous SA. Furthermore, plant growth, reactive oxygen species (ROS) contents, and membrane lipid peroxidation were changed. The activities of antioxidant enzymes, including superoxide dismutase (SOD), ascorbic acid-peroxidase (APX), catalase (CAT), and glutathione reductase (GR), were increased. Additionally, the production rates of malondialdehyde (MDA), hydrogen peroxide (H2O2), and superoxide anion (O2·-) were also inhibited. The expression levels of genes, encoding SOD, APX, CAT, and GR, were increased. By summering all results, we conclude that 0.6 mM SA contributes to the reduction of disease severity to clubroot by increasing the activities of antioxidant enzymes, abilities of osmotic regulation, and ROS scavenging to reduce the clubroot-induced damage in pakchoi.
Collapse
|
50
|
Abstract
Salicylic acid (SA) is an essential plant defense hormone that promotes immunity against biotrophic and semibiotrophic pathogens. It plays crucial roles in basal defense and the amplification of local immune responses, as well as the establishment of systemic acquired resistance. During the past three decades, immense progress has been made in understanding the biosynthesis, homeostasis, perception, and functions of SA. This review summarizes the current knowledge regarding SA in plant immunity and other biological processes. We highlight recent breakthroughs that substantially advanced our understanding of how SA is biosynthesized from isochorismate, how it is perceived, and how SA receptors regulate different aspects of plant immunity. Some key questions in SA biosynthesis and signaling, such as how SA is produced via another intermediate, benzoic acid, and how SA affects the activities of its receptors in the transcriptional regulation of defense genes, remain to be addressed.
Collapse
Affiliation(s)
- Yujun Peng
- Department of Botany, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada; , , ,
| | - Jianfei Yang
- Department of Botany, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada; , , ,
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Xin Li
- Department of Botany, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada; , , ,
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Yuelin Zhang
- Department of Botany, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada; , , ,
| |
Collapse
|