1
|
Liu S, Wu H, Zhao Z. Heat stress-induced decapping of WUSCHEL mRNA enhances stem cell thermotolerance in Arabidopsis. MOLECULAR PLANT 2024; 17:1820-1832. [PMID: 39468792 DOI: 10.1016/j.molp.2024.10.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 10/14/2024] [Accepted: 10/26/2024] [Indexed: 10/30/2024]
Abstract
The plasticity of stem cells in response to environmental change is critical for multicellular organisms. Here, we show that MYB3R-like directly activates the key plant stem-cell regulator WUSCHEL (WUS) by recruiting the methyltransferase ROOT INITIATION DEFECTIVE 2 (RID2), which functions in m7G methylation of the 5' cap of WUS mRNA to protect it from degradation. Transcriptomic and molecular analyses showed that protein-folding genes are repressed by WUS to maintain precise protein synthesis in stem cells by preventing the reuse of misfolded proteins. Interestingly, we found that upon heat stress, the MYB3R-like/RID2 module is repressed to reduce WUS transcript abundance through decapping of nascent WUS mRNA. This releases the inhibition of protein-folding capacity in stem cells and protects them from heat shock by eliminating misfolded protein aggregation. Taken together, our results reveal a strategic trade-off whereby plants reduce the accuracy of protein synthesis in exchange for the survival of stem cells at high temperatures.
Collapse
Affiliation(s)
- Sumei Liu
- MOE Key Laboratory for Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, The First Affiliated Hospital of University of Science and Technology of China, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Haijun Wu
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, Gansu Province Key Laboratory of Gene Editing for Breeding, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Zhong Zhao
- MOE Key Laboratory for Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, The First Affiliated Hospital of University of Science and Technology of China, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China.
| |
Collapse
|
2
|
Poethig RS, Fouracre J. Temporal regulation of vegetative phase change in plants. Dev Cell 2024; 59:4-19. [PMID: 38194910 PMCID: PMC10783531 DOI: 10.1016/j.devcel.2023.11.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 10/11/2023] [Accepted: 11/13/2023] [Indexed: 01/11/2024]
Abstract
During their vegetative growth, plants reiteratively produce leaves, buds, and internodes at the apical end of the shoot. The identity of these organs changes as the shoot develops. Some traits change gradually, but others change in a coordinated fashion, allowing shoot development to be divided into discrete juvenile and adult phases. The transition between these phases is called vegetative phase change. Historically, vegetative phase change has been studied because it is thought to be associated with an increase in reproductive competence. However, this is not true for all species; indeed, heterochronic variation in the timing of vegetative phase change and flowering has made important contributions to plant evolution. In this review, we describe the molecular mechanism of vegetative phase change, how the timing of this process is controlled by endogenous and environmental factors, and its ecological and evolutionary significance.
Collapse
Affiliation(s)
- R Scott Poethig
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Jim Fouracre
- School of Biological Sciences, University of Bristol, Bristol BS8 1TQ, UK
| |
Collapse
|
3
|
Hao P, Lin B, Ren Y, Hu H, Xue B, Huang L, Hua S. Auxin-regulated timing of transition from vegetative to reproductive growth in rapeseed ( Brassica napus L.) under different nitrogen application rates. FRONTIERS IN PLANT SCIENCE 2022; 13:927662. [PMID: 36161032 PMCID: PMC9501695 DOI: 10.3389/fpls.2022.927662] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 08/17/2022] [Indexed: 06/16/2023]
Abstract
Accelerating the differentiation of floral meristem (FM) from shoot apical meristems (SAM) which determines the conversion from vegetative to reproductive growth is of great significance for the production of rapeseed (Brassica napus L.). In this research, the mechanisms of different nitrogen (N) application rates (low N, N1; normal N, N2; and high N, N3) on different FM development stages triggering the regulation of FM differentiation genes through the auxin biosynthetic and signal transduction were investigated. We found that the stage of FM differentiation, which was identified through a stereomicroscope and scanning electron microscope, came 4 and 7 days earlier under high N rate than under normal and low N levels, with the seed yield increased by 11.1 and 22.6%, respectively. Analysis of the auxin and its derivatives contents showed that the main biosynthesis way of auxin was the indole acetaldehyde oxime (IAOx) pathway, with 3-Indole acetonitrile dramatically accumulated during FM differentiation. At the same time, an obvious decrease of IAA contents at each FM differentiation stage was detected, and then gradually rose. Results of the expression of genes involved in auxin biosynthesis, auxin signaling transduction, and FM identification under five FM differentiation stages and three nitrogen application rates showed that genes involved in auxin biosynthesis were regulated before the FM differentiation stage, while the regulation of FM identity genes appeared mainly at the middle and later periods of the five stages, and the regulation level of genes varied under different N rates. Taken together, a high nitrogen rate could accelerate the initiation of FM differentiation, and auxin involved a lot in this regulation.
Collapse
Affiliation(s)
- Pengfei Hao
- Institute of Crops and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Baogang Lin
- Institute of Crops and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Yun Ren
- Huzhou Agricultural Science and Technology Development Center, Huzhou, China
| | - Hao Hu
- Institute of Digital Agriculture, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Bowen Xue
- Institute of Crops and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Lan Huang
- Institute of Crops and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Shuijin Hua
- Institute of Crops and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| |
Collapse
|
4
|
Tvorogova VE, Krasnoperova EY, Potsenkovskaia EA, Kudriashov AA, Dodueva IE, Lutova LA. What Does the WOX Say? Review of Regulators, Targets, Partners. Mol Biol 2021. [DOI: 10.1134/s002689332102031x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
5
|
Tieu Ngoc LN, Jung Park S, Thi Huong T, Lee KH, Kang H. N4-methylcytidine ribosomal RNA methylation in chloroplasts is crucial for chloroplast function, development, and abscisic acid response in Arabidopsis. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2021; 63:570-582. [PMID: 32876986 DOI: 10.1111/jipb.13009] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 09/01/2020] [Indexed: 06/11/2023]
Abstract
Although the essential role of messenger RNA methylation in the nucleus is increasingly understood, the nature of ribosomal RNA (rRNA) methyltransferases and the role of rRNA methylation in chloroplasts remain largely unknown. A recent study revealed that CMAL (for Chloroplast mr aW- Like) is a chloroplast-localized rRNA methyltransferase that is responsible for N4-methylcytidine (m4 C) in 16S chloroplast rRNA in Arabidopsis thaliana. In this study, we further examined the role of CMAL in chloroplast biogenesis and function, development, and hormone response. The cmal mutant showed reduced chlorophyll biosynthesis, photosynthetic activity, and growth-defect phenotypes, including severely stunted stems, fewer siliques, and lower seed yield. The cmal mutant was hypersensitive to chloroplast translation inhibitors, such as lincomycin and erythromycin, indicating that the m4 C-methylation defect in the 16S rRNA leads to a reduced translational activity in chloroplasts. Importantly, the stunted stem of the cmal mutant was partially rescued by exogenous gibberellic acid or auxin. The cmal mutant grew poorer than wild type, whereas the CMAL-overexpressing transgenic Arabidopsis plants grew better than wild type in the presence of abscisic acid. Altogether, these results indicate that CMAL is an indispensable rRNA methyltransferase in chloroplasts and is crucial for chloroplast biogenesis and function, photosynthesis, and hormone response during plant growth and development.
Collapse
Affiliation(s)
- Le Nguyen Tieu Ngoc
- Department of Applied Biology, College of Agriculture and Life Sciences, Chonnam National University, Gwangju, 61186, Republic of Korea
- Faculty of Forestry Agriculture, Tay Nguyen University, BuonMaThuot, DakLak, 63000, Vietnam
| | - Su Jung Park
- Department of Applied Biology, College of Agriculture and Life Sciences, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Trinh Thi Huong
- Department of Applied Biology, College of Agriculture and Life Sciences, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Kwang Ho Lee
- Center for Research Facilities, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Hunseung Kang
- Department of Applied Biology, College of Agriculture and Life Sciences, Chonnam National University, Gwangju, 61186, Republic of Korea
| |
Collapse
|
6
|
Xue T, Zheng X, Chen D, Liang L, Chen N, Huang Z, Fan W, Chen J, Cen W, Chen S, Zhu J, Chen B, Zhang X, Chen Y. A high-quality genome provides insights into the new taxonomic status and genomic characteristics of Cladopus chinensis (Podostemaceae). HORTICULTURE RESEARCH 2020; 7:46. [PMID: 32257232 PMCID: PMC7109043 DOI: 10.1038/s41438-020-0269-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Revised: 02/08/2020] [Accepted: 02/11/2020] [Indexed: 05/08/2023]
Abstract
The Podostemaceae are ecologically and morphologically unusual aquatic angiosperms that survive only in rivers with pristine hydrology and high water quality and are at a relatively high risk of extinction. The taxonomic status of Podostemaceae has always been controversial. Here, we report the first high-quality genome assembly for Cladopus chinensis of Podostemaceae, obtained by incorporating Hi-C, Illumina and PacBio sequencing. We generated an 827.92 Mb genome with a contig N50 of 1.42 Mb and 27,370 annotated protein-coding genes. The assembled genome size was close to the estimated size, and 659.42 Mb of the assembly was assigned to 29 superscaffolds (scaffold N50 21.22 Mb). A total of 59.20% repetitive sequences were identified, among which long terminal repeats (LTRs) were the most abundant class (28.97% of the genome). Genome evolution analysis suggested that the divergence time of Cladopus chinensis (106 Mya) was earlier than that of Malpighiales (82 Mya) and that this taxon diverged into an independent branch of Podestemales. A recent whole-genome duplication (WGD) event occurred 4.43 million years ago. Comparative genomic analysis revealed that the expansion and contraction of oxidative phosphorylation, photosynthesis and isoflavonoid metabolism genes in Cladopus chinensis are probably related to the genomic characteristics of this growing submerged species. Transcriptome analysis revealed that upregulated genes in the shoot group compared to the root group were enriched in the NAC gene family and transcription factors associated with shoot development and defense responses, including WUSCHEL (WUS), ASYMMETRIC LEAVES (ASL), SHOOT MERISTEMLESS (STM), NAC2, NAC8, NAC29, NAC47, NAC73, NAC83 and NAC102. These findings provide new insights into the genomic diversity of unusual aquatic angiosperms and serve as a valuable reference for the taxonomic status and unusual shoot apical meristem of Podostemaceae.
Collapse
Affiliation(s)
- Ting Xue
- Public Service Platform for Industrialization Development Technology of Marine Biological Medicine and Products of the State Oceanic Administration, Fujian Key Laboratory of Special Marine Bioresource Sustainable Utilization, Key Laboratory of Developmental and Neural Biology, College of Life Sciences, Fujian Normal University, Fuzhou, China
- Center of Engineering Technology Research for Microalga Germplasm Improvement of Fujian, Southern Institute of Oceanography, Fujian Normal University, Fuzhou, China
| | - Xuehai Zheng
- Public Service Platform for Industrialization Development Technology of Marine Biological Medicine and Products of the State Oceanic Administration, Fujian Key Laboratory of Special Marine Bioresource Sustainable Utilization, Key Laboratory of Developmental and Neural Biology, College of Life Sciences, Fujian Normal University, Fuzhou, China
| | - Duo Chen
- Public Service Platform for Industrialization Development Technology of Marine Biological Medicine and Products of the State Oceanic Administration, Fujian Key Laboratory of Special Marine Bioresource Sustainable Utilization, Key Laboratory of Developmental and Neural Biology, College of Life Sciences, Fujian Normal University, Fuzhou, China
| | - Limin Liang
- Center of Engineering Technology Research for Microalga Germplasm Improvement of Fujian, Southern Institute of Oceanography, Fujian Normal University, Fuzhou, China
| | - Nan Chen
- College of Fine Arts, Fujian Normal University, Fuzhou, China
| | - Zhen Huang
- Public Service Platform for Industrialization Development Technology of Marine Biological Medicine and Products of the State Oceanic Administration, Fujian Key Laboratory of Special Marine Bioresource Sustainable Utilization, Key Laboratory of Developmental and Neural Biology, College of Life Sciences, Fujian Normal University, Fuzhou, China
| | - Wenfang Fan
- Public Service Platform for Industrialization Development Technology of Marine Biological Medicine and Products of the State Oceanic Administration, Fujian Key Laboratory of Special Marine Bioresource Sustainable Utilization, Key Laboratory of Developmental and Neural Biology, College of Life Sciences, Fujian Normal University, Fuzhou, China
| | - Jiannan Chen
- Center of Engineering Technology Research for Microalga Germplasm Improvement of Fujian, Southern Institute of Oceanography, Fujian Normal University, Fuzhou, China
| | - Wan Cen
- Center of Engineering Technology Research for Microalga Germplasm Improvement of Fujian, Southern Institute of Oceanography, Fujian Normal University, Fuzhou, China
| | - Shuai Chen
- FAFU and UIUC-SIB Joint Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jinmao Zhu
- Public Service Platform for Industrialization Development Technology of Marine Biological Medicine and Products of the State Oceanic Administration, Fujian Key Laboratory of Special Marine Bioresource Sustainable Utilization, Key Laboratory of Developmental and Neural Biology, College of Life Sciences, Fujian Normal University, Fuzhou, China
| | - Binghua Chen
- Public Service Platform for Industrialization Development Technology of Marine Biological Medicine and Products of the State Oceanic Administration, Fujian Key Laboratory of Special Marine Bioresource Sustainable Utilization, Key Laboratory of Developmental and Neural Biology, College of Life Sciences, Fujian Normal University, Fuzhou, China
| | - Xingtan Zhang
- FAFU and UIUC-SIB Joint Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Youqiang Chen
- Public Service Platform for Industrialization Development Technology of Marine Biological Medicine and Products of the State Oceanic Administration, Fujian Key Laboratory of Special Marine Bioresource Sustainable Utilization, Key Laboratory of Developmental and Neural Biology, College of Life Sciences, Fujian Normal University, Fuzhou, China
- Center of Engineering Technology Research for Microalga Germplasm Improvement of Fujian, Southern Institute of Oceanography, Fujian Normal University, Fuzhou, China
| |
Collapse
|
7
|
Wang H, Xu Y, Hong L, Zhang X, Wang X, Zhang J, Ding Z, Meng Z, Wang ZY, Long R, Yang Q, Kong F, Han L, Zhou C. HEADLESS Regulates Auxin Response and Compound Leaf Morphogenesis in Medicago truncatula. FRONTIERS IN PLANT SCIENCE 2019; 10:1024. [PMID: 31475021 PMCID: PMC6707262 DOI: 10.3389/fpls.2019.01024] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 07/22/2019] [Indexed: 05/28/2023]
Abstract
WUSCHEL (WUS) is thought to be required for the establishment of the shoot stem cell niche in Arabidopsis thaliana. HEADLESS (HDL), a gene that encodes a WUS-related homeobox family transcription factor, is thought to be the Medicago truncatula ortholog of the WUS gene. HDL plays conserved roles in shoot apical meristem (SAM) and axillary meristem (AM) maintenance. HDL is also involved in compound leaf morphogenesis in M. truncatula; however, its regulatory mechanism has not yet been explored. Here, the significance of HDL in leaf development was investigated. Unlike WUS in A. thaliana, HDL was transcribed not only in the SAM and AM but also in the leaf. Both the patterning of the compound leaves and the shape of the leaf margin in hdl mutant were abnormal. The transcriptional profile of the gene SLM1, which encodes an auxin efflux carrier, was impaired and the plants' auxin response was compromised. Further investigations revealed that HDL positively regulated auxin response likely through the recruitment of MtTPL/MtTPRs into the HDL repressor complex. Its participation in auxin-dependent compound leaf morphogenesis is of interest in the context of the functional conservation and neo-functionalization of the products of WUS orthologs.
Collapse
Affiliation(s)
- Hongfeng Wang
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, China
- School of Life Science, Guangzhou University, Guangzhou, China
| | - Yiteng Xu
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, China
| | - Limei Hong
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, China
| | - Xue Zhang
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, China
| | - Xiao Wang
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, China
| | - Jing Zhang
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, China
| | - Zhaojun Ding
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, China
| | - Zhe Meng
- Shandong Provincial Key Laboratory of Plant Stress, Shandong Normal University, Ji’nan, China
| | - Zeng-Yu Wang
- Grassland Agri-Husbandry Research Center, Qingdao Agricultural University, Qingdao, China
| | - Ruicai Long
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Qingchuan Yang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Fanjiang Kong
- School of Life Science, Guangzhou University, Guangzhou, China
| | - Lu Han
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, China
| | - Chuanen Zhou
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, China
| |
Collapse
|
8
|
Fouracre JP, Poethig RS. Role for the shoot apical meristem in the specification of juvenile leaf identity in Arabidopsis. Proc Natl Acad Sci U S A 2019; 116:10168-10177. [PMID: 31023887 PMCID: PMC6525512 DOI: 10.1073/pnas.1817853116] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The extent to which the shoot apical meristem (SAM) controls developmental decisions, rather than interpreting them, is a longstanding issue in plant development. Previous work suggests that vegetative phase change is regulated by signals intrinsic and extrinsic to the SAM, but the relative importance of these signals for this process is unknown. We investigated this question by examining the effect of meristem-deficient mutations on vegetative phase change and on the expression of key regulators of this process, miR156 and its targets, SPL transcription factors. We found that the precocious phenotypes of meristem-deficient mutants are a consequence of reduced miR156 accumulation. Tissue-specific manipulation of miR156 levels revealed that the SAM functions as an essential pool of miR156 early in shoot development, but that its effect on leaf identity declines with age. We also found that SPL genes control meristem size by repressing WUSCHEL expression via a novel genetic pathway.
Collapse
Affiliation(s)
- Jim P Fouracre
- Biology Department, University of Pennsylvania, Philadelphia, PA 19104
| | - R Scott Poethig
- Biology Department, University of Pennsylvania, Philadelphia, PA 19104
| |
Collapse
|
9
|
Betekhtin A, Rojek M, Nowak K, Pinski A, Milewska-Hendel A, Kurczynska E, Doonan JH, Hasterok R. Cell Wall Epitopes and Endoploidy as Reporters of Embryogenic Potential in Brachypodium Distachyon Callus Culture. Int J Mol Sci 2018; 19:E3811. [PMID: 30501101 PMCID: PMC6321580 DOI: 10.3390/ijms19123811] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 11/26/2018] [Accepted: 11/27/2018] [Indexed: 11/17/2022] Open
Abstract
Effective regeneration of callus tissue into embryos and then into whole plants is essential for plant biotechnology. The embryonic potential is often low and can further decrease with time in culture, which limits the utilisation of calli for transformation procedures and in vitro propagation. In this study, we show that the loss of embryogenic potential in callus cultures of Brachypodium distachyon is progressive over time. Flow cytometry analyses indicated endoploidy levels increased in 60- and 90-day-old calli with effective loss of the 2C DNA content peak in the latter. Analysis of indolic compounds content revealed a decrease in 60- and 90-day-old calli compared to either freshly isolated explants or 30-day-old calli. Immunohistochemical analysis revealed a decrease in arabinogalactan proteins (AGP) signal with the time of culture, but extensin (EXT) epitopes either increased (JIM12 epitopes) or decreased (JIM11 epitopes). The transcript accumulation levels of AGPs and EXTs confirmed these results, with most of AGP and EXT transcripts gradually decreasing. Some chimeric EXT transcripts significantly increased on the 30th day of culture, perhaps because of an increased embryogenic potential. Selected somatic embryogenesis-related genes and cyclins demonstrated a gradual decrease of transcript accumulation for YUCCA (YUC), AINTEGUMENTA-LIKE (AIL), BABY BOOM (BBM), and CLAVATA (CLV3) genes, as well as for most of the cyclins, starting from the 30th day of culture. Notably, WUSCHEL (WUS) transcript was detectable only on the 30th and 60th day and was not detectable in the zygotic embryos and in 90-day-old calli.
Collapse
Affiliation(s)
- Alexander Betekhtin
- Department of Plant Anatomy and Cytology, Faculty of Biology and Environmental Protection, University of Silesia in Katowice, Katowice 40-007, Poland.
| | - Magdalena Rojek
- Department of Plant Anatomy and Cytology, Faculty of Biology and Environmental Protection, University of Silesia in Katowice, Katowice 40-007, Poland.
| | - Katarzyna Nowak
- Department of Genetics, Faculty of Biology and Environmental Protection, University of Silesia in Katowice, Katowice 40-007, Poland.
| | - Artur Pinski
- Department of Plant Anatomy and Cytology, Faculty of Biology and Environmental Protection, University of Silesia in Katowice, Katowice 40-007, Poland.
| | - Anna Milewska-Hendel
- Department of Cell Biology, Faculty of Biology and Environmental Protection, University of Silesia in Katowice, Katowice 40-007, Poland.
| | - Ewa Kurczynska
- Department of Cell Biology, Faculty of Biology and Environmental Protection, University of Silesia in Katowice, Katowice 40-007, Poland.
| | - John H Doonan
- National Plant Phenomics Centre, IBERS, Aberystwyth University, Aberystwyth SY23 3EE, UK.
| | - Robert Hasterok
- Department of Plant Anatomy and Cytology, Faculty of Biology and Environmental Protection, University of Silesia in Katowice, Katowice 40-007, Poland.
| |
Collapse
|
10
|
Meng LS, Cao XY, Liu MQ, Jiang JH. The antagonistic or synchronous relationship between ASL/LBD and KNOX homeobox members. Biologia (Bratisl) 2017. [DOI: 10.1515/biolog-2017-0058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
11
|
Lin TF, Saiga S, Abe M, Laux T. OBE3 and WUS Interaction in Shoot Meristem Stem Cell Regulation. PLoS One 2016; 11:e0155657. [PMID: 27196372 PMCID: PMC4873020 DOI: 10.1371/journal.pone.0155657] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 05/02/2016] [Indexed: 11/18/2022] Open
Abstract
The stem cells in the shoot apical meristem (SAM) are the origin of all above ground tissues in plants. In Arabidopsis thaliana, shoot meristem stem cells are maintained by the homeobox transcription factor gene WUS (WUSCHEL) that is expressed in cells of the organizing center underneath the stem cells. In order to identify factors that operate together with WUS in stem cell maintenance, we performed an EMS mutant screen for modifiers of the hypomorphic wus-6 allele. We isolated the oberon3-2 (obe3-2) mutant that enhances stem cell defects in wus-6, but does not affect the putative null allele wus-1. The OBE3 gene encodes a PHD (Plant Homeo Domain) protein that is thought to function in chromatin regulation. Single mutants of OBE3 or its closest homolog OBE4 do not display any defects, whereas the obe3-2 obe4-2 double mutant displays broad growth defects and developmental arrest of seedlings. Transcript levels of WUS and its target gene in the stem cells, CLAVATA3, are reduced in obe3-2. On the other hand, OBE3 and OBE4 transcripts are both indirectly upregulated by ectopic WUS expression. Our results suggest a positive feedback regulation between WUS and OBE3 that contributes to shoot meristem homeostasis.
Collapse
Affiliation(s)
- Ta-Fang Lin
- BIOSS Centre for Biological Signalling Studies, Faculty of Biology, University of Freiburg, Schaenzlestrasse 1, 79104, Freiburg, Germany
| | - Shunsuke Saiga
- Laboratory of Biochemistry, Wageningen University, Dreijenlaan 3, 6703 HA, Wageningen, The Netherlands
| | - Mitsutomo Abe
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113–0033, Japan
| | - Thomas Laux
- BIOSS Centre for Biological Signalling Studies, Faculty of Biology, University of Freiburg, Schaenzlestrasse 1, 79104, Freiburg, Germany
- * E-mail:
| |
Collapse
|
12
|
Ernst M, Munkert J, Campa M, Malnoy M, Martens S, Müller-Uri F. Steroid 5β-Reductase from Leaves of Vitis vinifera: Molecular Cloning, Expression, and Modeling. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:10112-10120. [PMID: 26537436 DOI: 10.1021/acs.jafc.5b04261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
A steroid 5β-reductase gene corresponding to the hypothetical protein LOC100247199 from leaves of Vitis vinifera (var. 'Chardonnay') was cloned and overexpressed in Escherichia coli. The recombinant protein showed 5β-reductase activity when progesterone was used as a substrate. The reaction was stereoselective, producing only 5β-products such as 5β-pregnane-3,20-dione. Other small substrates (terpenoids and enones) were also accepted as substrates, indicating the highly promiscuous character of the enzyme class. Our results show that the steroid 5β-reductase gene, encoding an orthologous enzyme described as a key enzyme in cardenolide biosynthesis, is also expressed in leaves of the cardenolide-free plant V. vinifera. We emphasize the fact that, on some occasions, different reductases (e.g., progesterone 5β-reductase and monoterpenoid reductase) can also use molecules that are similar to the final products as a substrate. Therefore, in planta, the different reductases may contribute to the immense number of diverse small natural products finally leading to the flavor of wine.
Collapse
Affiliation(s)
- Mona Ernst
- Chair of Pharmaceutical Biology, Department Biology, Friedrich-Alexander-University Erlangen-Nürnberg , Staudtstrasse 5, 91058 Erlangen, Germany
| | - Jennifer Munkert
- Chair of Pharmaceutical Biology, Department Biology, Friedrich-Alexander-University Erlangen-Nürnberg , Staudtstrasse 5, 91058 Erlangen, Germany
| | - Manuela Campa
- Research and Innovation Centre, Fondazione Edmund Mach (FEM) , Via Mach 1, 38010 San Michele all'Adige (Trentino), Italy
| | - Mickael Malnoy
- Research and Innovation Centre, Fondazione Edmund Mach (FEM) , Via Mach 1, 38010 San Michele all'Adige (Trentino), Italy
| | - Stefan Martens
- Research and Innovation Centre, Fondazione Edmund Mach (FEM) , Via Mach 1, 38010 San Michele all'Adige (Trentino), Italy
| | - Frieder Müller-Uri
- Chair of Pharmaceutical Biology, Department Biology, Friedrich-Alexander-University Erlangen-Nürnberg , Staudtstrasse 5, 91058 Erlangen, Germany
| |
Collapse
|
13
|
Zhang F, Tadege M. Repression of AS2 by WOX family transcription factors is required for leaf development in Medicago and Arabidopsis. PLANT SIGNALING & BEHAVIOR 2015; 10:e993291. [PMID: 25807065 PMCID: PMC4623463 DOI: 10.4161/15592324.2014.993291] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
WOX transcription factors are key regulators of meristematic activity in plants. The Medicago WOX gene, STF, functions in maintenance of leaf marginal meristem, analogous to the function of WUS in the shoot apical meristem. Both STF and WUS directly repress AS2 expression in their respective domains. Ectopic expression of AS2 with WUS promoter leads to a narrow leaf phenotype and other phenotypes similar to the wus mutant. We also found that a wox1 prs wus triple mutant produces much narrower leaf blades than the wox1 prs double mutant, indicating that WUS genetically interacts with WOX1 and PRS in Arabidopsis leaf blade development. Our data points to a general requirement for AS2 repression in meristematic regions to allow cell proliferation.
Collapse
Affiliation(s)
- Fei Zhang
- Department of Plant and Soil Sciences; Institute for Agricultural Biosciences; Oklahoma State University; Ardmore, OK USA
| | - Million Tadege
- Department of Plant and Soil Sciences; Institute for Agricultural Biosciences; Oklahoma State University; Ardmore, OK USA
- Correspondence to: Million Tadege;
| |
Collapse
|
14
|
Guo X, Lu W, Ma Y, Qin Q, Hou S. The BIG gene is required for auxin-mediated organ growth in Arabidopsis. PLANTA 2013; 237:1135-1147. [PMID: 23288076 DOI: 10.1007/s00425-012-1834-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Accepted: 12/17/2012] [Indexed: 06/01/2023]
Abstract
Control of organ size by cell expansion and cell proliferation is a fundamental process during development, but the importance of BIG in this process is still poorly understood. Here, we report the isolation and characterization of a new allele mutant of BIG in Arabidopsis: big-j588. The mutant displayed small aerial organs that were characterized by reduced cell size in the epidermis and short roots with decreased cell numbers. The big-j588 axr1 double and big-j588 arf7 arf19 triple mutants displayed more severe defects in leaf expansion and root elongation than their parents, implying BIG is involved in auxin-dependent organ growth. Genetic analysis suggests that BIG may act synergistically with PIN1 to affect leaf growth. The PIN1 protein level decreased in both the root cells and the tips of leaf pavement cell lobes of big-j588. Further analysis showed that the auxin maxima in the roots and the leaves of big-j588 decreased. Therefore, we concluded that the small leaves and the short roots of big-j588 were associated with reduction of auxin maxima. Overall, our study suggested that BIG is required for Arabidopsis organ growth via auxin action.
Collapse
Affiliation(s)
- Xiaola Guo
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | | | | | | | | |
Collapse
|
15
|
Uchida N, Shimada M, Tasaka M. ERECTA-family receptor kinases regulate stem cell homeostasis via buffering its cytokinin responsiveness in the shoot apical meristem. PLANT & CELL PHYSIOLOGY 2013; 54:343-51. [PMID: 22885615 PMCID: PMC3589826 DOI: 10.1093/pcp/pcs109] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2012] [Accepted: 07/23/2012] [Indexed: 05/19/2023]
Abstract
Shoot apical meristems (SAMs), which are maintained at the tips of stems, are indeterminate structures and sources of stem cells from which all aerial organs are ultimately derived. Although mechanisms that regulate the homeostasis of the stem cells have been extensively investigated, identification of further unknown regulators should provide better understanding of the regulation. Here, we report that members of the Arabidopsis ERECTA (ER) receptor kinase family redundantly play a significant role in the regulation of stem cell homeostasis. In wild-type seedlings, the expression of WUSCHEL (WUS), a central regulator of the stem cell population, is stimulated by cytokinin. Interestingly, however, the SAM morphology and the expression of CLAVATA3 (CLV3), which is expressed in stem cells and therefore serves as a stem cell marker, are relatively stable against cytokinin treatment regardless of increased WUS expression. These findings indicate the presence of a mechanism to buffer stem cell homeostasis against an increase in cytokinin. Mutant seedlings lacking all ER-family members, which are expressed in the SAM, show an increase in the stem cell population and also the up-regulation of a cytokinin-responsive gene in the SAM. In this mutant, WUS expression is stimulated by cytokinin treatment as efficiently as in wild-type plants. However, in contrast to wild-type plants, SAM morphology and CLV3 expression respond drastically to cytokinin treatment, suggesting that the buffering mechanism to maintain stem cell homeostasis against an increase in cytokinin is severely impaired in this mutant. We suggest that the ER family regulates stem cell homeostasis via buffering its cytokinin responsiveness in the SAM.
Collapse
Affiliation(s)
- Naoyuki Uchida
- *Corresponding authors: Naoyuki Uchida, E-mail, ; Fax, +81-743-72-5489, Masao Tasaka, E-mail, ; Fax, +81-743-72-5489
| | | | - Masao Tasaka
- *Corresponding authors: Naoyuki Uchida, E-mail, ; Fax, +81-743-72-5489, Masao Tasaka, E-mail, ; Fax, +81-743-72-5489
| |
Collapse
|
16
|
Cytokinin signaling as a positional cue for patterning the apical-basal axis of the growing Arabidopsis shoot meristem. Proc Natl Acad Sci U S A 2012; 109:4002-7. [PMID: 22345559 DOI: 10.1073/pnas.1200636109] [Citation(s) in RCA: 182] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The transcription factor WUSCHEL (WUS) acts from a well-defined domain within the Arabidopsis thaliana shoot apical meristem (SAM) to maintain a stem cell niche. A negative-feedback loop involving the CLAVATA (CLV) signaling pathway regulates the number of WUS-expressing cells and provides the current paradigm for the homeostatic maintenance of stem cell numbers. Despite the continual turnover of cells in the SAM during development, the WUS domain remains patterned at a fixed distance below the shoot apex. Recent work has uncovered a positive-feedback loop between WUS function and the plant hormone cytokinin. Furthermore, loss of function of the cytokinin biosynthetic gene, LONELY GUY (LOG), results in a wus-like phenotype in rice. Herein, we find the Arabidopsis LOG4 gene is expressed in the SAM epidermis. We use this to develop a computational model representing a growing SAM to suggest the plausibility that apically derived cytokinin and CLV signaling, together, act as positional cues for patterning the WUS domain within the stem cell niche. Furthermore, model simulations backed by experimental data suggest a previously unknown negative feedback between WUS function and cytokinin biosynthesis in the Arabidopsis SAM epidermis. These results suggest a plausible dynamic feedback principle by which the SAM stem cell niche is patterned.
Collapse
|
17
|
Dhondt S, Van Haerenborgh D, Van Cauwenbergh C, Merks RMH, Philips W, Beemster GTS, Inzé D. Quantitative analysis of venation patterns of Arabidopsis leaves by supervised image analysis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2012; 69:553-63. [PMID: 21955023 DOI: 10.1111/j.1365-313x.2011.04803.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The study of transgenic Arabidopsis lines with altered vascular patterns has revealed key players in the venation process, but details of the vascularization process are still unclear, partly because most lines have only been assessed qualitatively. Therefore, quantitative analyses are required to identify subtle perturbations in the pattern and to test dynamic modeling hypotheses using biological measurements. We developed an online framework, designated Leaf Image Analysis Interface (LIMANI), in which venation patterns are automatically segmented and measured on dark-field images. Image segmentation may be manually corrected through use of an interactive interface, allowing supervision and rectification steps in the automated image analysis pipeline and ensuring high-fidelity analysis. This online approach is advantageous for the user in terms of installation, software updates, computer load and data storage. The framework was used to study vascular differentiation during leaf development and to analyze the venation pattern in transgenic lines with contrasting cellular and leaf size traits. The results show the evolution of vascular traits during leaf development, suggest a self-organizing mechanism for leaf venation patterning, and reveal a tight balance between the number of end-points and branching points within the leaf vascular network that does not depend on the leaf developmental stage and cellular content, but on the leaf position on the rosette. These findings indicate that development of LIMANI improves understanding of the interaction between vascular patterning and leaf growth.
Collapse
Affiliation(s)
- Stijn Dhondt
- Department of Plant Systems Biology, VIB, 9052 Gent, Belgium
| | | | | | | | | | | | | |
Collapse
|
18
|
Uchida N, Igari K, Bogenschutz NL, Torii KU, Tasaka M. Arabidopsis ERECTA-family receptor kinases mediate morphological alterations stimulated by activation of NB-LRR-type UNI proteins. PLANT & CELL PHYSIOLOGY 2011; 52:804-14. [PMID: 21427109 DOI: 10.1093/pcp/pcr032] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Shoot apical meristems (SAMs), which maintain stem cells at the tips of stems, and axillary meristems (AMs), which arise at leaf axils for branch formation, play significant roles in the establishment of plant architecture. Previously, we showed that, in Arabidopsis thaliana, activation of NB-LRR (nucleotide-binding site-leucine-rich repeat)-type UNI proteins affects plant morphology through modulation of the regulation of meristems. However, information about genes involved in the processes was still lacking. Here, we report that ERECTA (ER) receptor kinase family members cooperatively mediate the morphological alterations that are stimulated by activation of UNI proteins. uni-1D is a gain-of-function mutation in the UNI gene and uni-1D mutants exhibit early termination of inflorescence stem growth and also formation of extra AMs at leaf axils. The former defect involves modulation of the SAM activity and is suppressed by er mutation. Though the AM phenotype is not affected by a single er mutation, it is suppressed by simultaneous mutations of ER-family members. It was previously shown that trans-zeatin (tZ)-type cytokinins were involved in the morphological phenotypes of uni-1D mutants and that expression of CYP735A2, which is essential for biosynthesis of tZ-type cytokinins, was modulated in uni-1D mutants. We show that this modulation of CYP735A2 expression requires activities of ER-family members. Moreover, the ER activity in UNI-expressing cells contributes to all morphological phenotypes of uni-1D mutants, suggesting that a cross-talk between ER-family-dependent and UNI-triggered signaling pathways plays a significant role in the morphological alterations observed in uni-1D mutants.
Collapse
Affiliation(s)
- Naoyuki Uchida
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma 630-0192, Japan
| | | | | | | | | |
Collapse
|
19
|
Yang L, Conway SR, Poethig RS. Vegetative phase change is mediated by a leaf-derived signal that represses the transcription of miR156. Development 2011; 138:245-9. [PMID: 21148189 PMCID: PMC3005601 DOI: 10.1242/dev.058578] [Citation(s) in RCA: 118] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/11/2010] [Indexed: 02/02/2023]
Abstract
Vegetative phase change in Arabidopsis is regulated by miR156, a microRNA that promotes the expression of the juvenile phase and represses the expression of the adult phase. miR156 is expressed at a very high level early in shoot development and then decreases, leading to the onset of the adult phase. To determine the source of the factors that regulate vegetative phase change, we examined the effect of root and leaf ablation on the timing of this transition. Ablation of the root system or cotyledons had no effect on the timing of vegetative phase change, but ablation of leaf primordia delayed this transition in a miR156-dependent fashion. This treatment produced an increase in the overall abundance of miR156, which was attributable to an increase in the transcription of some, but not all, of the miR156 genes in Arabidopsis, and decreased the expression of SPL genes regulated by miR156. miR156 levels were also elevated by leaf ablation in Nicotiana benthamiana and in rejuvenating shoot apices of maize cultured in vitro. We conclude that vegetative phase change is initiated by a signal(s) produced by leaf primordia, which acts by repressing the transcription of specific members of the miR156 gene family.
Collapse
Affiliation(s)
- Li Yang
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Susan R. Conway
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - R. Scott Poethig
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
20
|
Kosetsu K, Matsunaga S, Nakagami H, Colcombet J, Sasabe M, Soyano T, Takahashi Y, Hirt H, Machida Y. The MAP kinase MPK4 is required for cytokinesis in Arabidopsis thaliana. THE PLANT CELL 2010; 22:3778-90. [PMID: 21098735 PMCID: PMC3015120 DOI: 10.1105/tpc.110.077164] [Citation(s) in RCA: 144] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2010] [Revised: 10/09/2010] [Accepted: 10/29/2010] [Indexed: 05/17/2023]
Abstract
Cytokinesis in plants is achieved by the formation of the cell plate. A pathway that includes mitogen-activated protein (MAP) kinase kinase kinase and MAP kinase kinase (MAPKK) plays a key role in the control of plant cytokinesis. We show here that a MAP kinase, MPK4, is required for the formation of the cell plate in Arabidopsis thaliana. Single mutations in MPK4 caused dwarfism and characteristic defects in cytokinesis, such as immature cell plates, which became much more prominent upon introduction of a mutation in MKK6/ANQ, the MAPKK for cytokinesis, into mpk4. MKK6/ANQ strongly activated MPK4 in protoplasts, and kinase activity of MPK4 was detected in wild-type tissues that contained dividing cells but not in mkk6/anq mutants. Fluorescent protein-fused MPK4 localized to the expanding cell plates in cells of root tips. Expansion of the cell plates in mpk4 root tips appeared to be retarded. The level of MPK11 transcripts was markedly elevated in mpk4 plants, and defects in the mpk4 mpk11 double mutant with respect to growth and cytokinesis were more severe than in the corresponding single mutants. These results indicate that MPK4 is the downstream target of MKK6/ANQ in the regulation of cytokinesis in Arabidopsis and that MPK11 is also involved in cytokinesis.
Collapse
Affiliation(s)
- Ken Kosetsu
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya 464-8602, Japan
| | - Sachihiro Matsunaga
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | - Hirofumi Nakagami
- Department of Plant Molecular Biology, Max F. Perutz Laboratories, University of Vienna, A-1030 Vienna, Austria
| | - Jean Colcombet
- Unité de Recherche en Génomique Végétale Plant Genomics, Institut National de la Recherche Agronomique, Centre National de la Recherche Scientifique, Université d’Evry, 91057 Evry, France
| | - Michiko Sasabe
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya 464-8602, Japan
| | - Takashi Soyano
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya 464-8602, Japan
| | - Yuji Takahashi
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya 464-8602, Japan
| | - Heribert Hirt
- Department of Plant Molecular Biology, Max F. Perutz Laboratories, University of Vienna, A-1030 Vienna, Austria
- Unité de Recherche en Génomique Végétale Plant Genomics, Institut National de la Recherche Agronomique, Centre National de la Recherche Scientifique, Université d’Evry, 91057 Evry, France
| | - Yasunori Machida
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya 464-8602, Japan
- Address correspondence to
| |
Collapse
|
21
|
Graf P, Dolzblasz A, Würschum T, Lenhard M, Pfreundt U, Laux T. MGOUN1 encodes an Arabidopsis type IB DNA topoisomerase required in stem cell regulation and to maintain developmentally regulated gene silencing. THE PLANT CELL 2010; 22:716-28. [PMID: 20228247 PMCID: PMC2861470 DOI: 10.1105/tpc.109.068296] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2009] [Revised: 02/05/2010] [Accepted: 03/01/2010] [Indexed: 05/18/2023]
Abstract
Maintenance of stem cells in the Arabidopsis thaliana shoot meristem is regulated by signals from the underlying cells of the organizing center, provided through the transcription factor WUSCHEL (WUS). Here, we report the isolation of several independent mutants of MGOUN1 (MGO1) as genetic suppressors of ectopic WUS activity and enhancers of stem cell defects in hypomorphic wus alleles. mgo1 mutants have previously been reported to result in a delayed progression of meristem cells into differentiating organ primordia (Laufs et al., 1998). Genetic analyses indicate that MGO1 functions together with WUS in stem cell maintenance at all stages of shoot and floral meristems. Synergistic interactions of mgo1 with several chromatin mutants suggest that MGO1 affects gene expression together with chromatin remodeling pathways. In addition, the expression states of developmentally regulated genes are randomly switched in mgo1 in a mitotically inheritable way, indicating that MGO1 stabilizes epigenetic states against stochastically occurring changes. Positional cloning revealed that MGO1 encodes a putative type IB topoisomerase, which in animals and yeast has been shown to be required for regulation of DNA coiling during transcription and replication. The specific developmental defects in mgo1 mutants link topoisomerase IB function in Arabidopsis to stable propagation of developmentally regulated gene expression.
Collapse
Affiliation(s)
- Philipp Graf
- Institute of Biology III, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Alicja Dolzblasz
- Institute of Biology III, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Tobias Würschum
- Institute of Biology III, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Michael Lenhard
- Institute of Biology III, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Ulrike Pfreundt
- Institute of Biology III, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Thomas Laux
- Institute of Biology III, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
- Freiburg Institute of Advanced Studies, University of Freiburg, 79104 Freiburg, Germany
| |
Collapse
|
22
|
Ikezaki M, Kojima M, Sakakibara H, Kojima S, Ueno Y, Machida C, Machida Y. Genetic networks regulated by ASYMMETRIC LEAVES1 (AS1) and AS2 in leaf development in Arabidopsis thaliana: KNOX genes control five morphological events. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2010; 61:70-82. [PMID: 19891706 DOI: 10.1111/j.1365-313x.2009.04033.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The asymmetric leaves 1 (as1) and as2 mutants of Arabidopsis thaliana exhibit pleiotropic phenotypes. Expression of a number of genes, including three class-1 KNOTTED-like homeobox (KNOX) genes (BP, KNAT2 and KNAT6) and ETTIN/ARF3, is enhanced in these mutants. In the present study, we attempted to identify the phenotypic features of as1 and as2 mutants that were generated by ectopic expression of KNOX genes, using multiple loss-of-function mutations of KNOX genes as well as as1 and as2. Our results revealed that the ectopic expression of class-1 KNOX genes resulted in reductions in the sizes of leaves, reductions in the size of sepals and petals, the formation of a less prominent midvein, the repression of adventitious root formation and late flowering. Our results also revealed that the reduction in leaf size and late flowering were caused by the repression, by KNOX genes, of a gibberellin (GA) pathway in as1 and as2 plants. The formation of a less prominent midvein and the repression of adventitious root formation were not, however, related to the GA pathway. The asymmetric formation of leaf lobes, the lower complexity of higher-ordered veins, and the elevated frequency of adventitious shoot formation on leaves of as1 and as2 plants were not rescued by multiple mutations in KNOX genes. These features must, therefore, be controlled by other genes in which expression is enhanced in the as1 and as2 mutants.
Collapse
Affiliation(s)
- Masaya Ikezaki
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Aichi 464-8602, Japan
| | | | | | | | | | | | | |
Collapse
|
23
|
Petricka JJ, Clay NK, Nelson TM. Vein patterning screens and the defectively organized tributaries mutants in Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2008; 56:251-263. [PMID: 18643975 DOI: 10.1111/j.1365-313x.2008.03595.x] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Leaf veins form a closed network that transports essential photosynthates, water and signaling molecules to the developing plant. The formation of the patterns of these networks during leaf ontogeny is an active subject of modeling and computer simulation. To investigate the vein patterning process, we performed screens for defects in juvenile leaf vein patterning in Arabidopsis thaliana lines subjected to mutagenesis via diepoxybutane, activation tagging or the Dissociation/Activator transposon. We identified over 40 vein pattern defective lines, providing a phenotypic resource for the testing of vein patterning models. In addition, we report the chromosomal linkage for 13 of these, eight of which were successfully cloned. We further describe the phenotypes of five of these mutants, which we call the defectively organized tributaries (dot) mutants, and their corresponding molecular identities. The diversity of the individual genes affected in this collection of pattern mutants suggests that vein pattern is highly sensitive to perturbations in many cellular processes. Despite this diversity of causes, the resulting pattern defects fall into a limited number of classes, including parallel, spurred, misaligned, open, midvein gap and irregularly spaced. These classes may represent sensitivities to cellular processes associated with the DOT genes. The ontogeny of common defective patterns should be accommodated into any robust model for the ontogeny and evolution of pattern.
Collapse
Affiliation(s)
- Jalean Joyanne Petricka
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06520-8104, USABiology Department, Duke University, French Family Sciences Center, Durham, NC 27703, USABiology Department, Harvard University, Massachusetts General Hospital, Boston, MA 02114-2605, USA
| | - Nicole Kho Clay
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06520-8104, USABiology Department, Duke University, French Family Sciences Center, Durham, NC 27703, USABiology Department, Harvard University, Massachusetts General Hospital, Boston, MA 02114-2605, USA
| | - Timothy Mark Nelson
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06520-8104, USABiology Department, Duke University, French Family Sciences Center, Durham, NC 27703, USABiology Department, Harvard University, Massachusetts General Hospital, Boston, MA 02114-2605, USA
| |
Collapse
|
24
|
Sarkar AK, Luijten M, Miyashima S, Lenhard M, Hashimoto T, Nakajima K, Scheres B, Heidstra R, Laux T. Conserved factors regulate signalling in Arabidopsis thaliana shoot and root stem cell organizers. Nature 2007; 446:811-4. [PMID: 17429400 DOI: 10.1038/nature05703] [Citation(s) in RCA: 757] [Impact Index Per Article: 42.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2007] [Accepted: 02/23/2007] [Indexed: 01/27/2023]
Abstract
Throughout the lifespan of a plant, which in some cases can last more than one thousand years, the stem cell niches in the root and shoot apical meristems provide cells for the formation of complete root and shoot systems, respectively. Both niches are superficially different and it has remained unclear whether common regulatory mechanisms exist. Here we address whether root and shoot meristems use related factors for stem cell maintenance. In the root niche the quiescent centre cells, surrounded by the stem cells, express the homeobox gene WOX5 (WUSCHEL-RELATED HOMEOBOX 5), a homologue of the WUSCHEL (WUS) gene that non-cell-autonomously maintains stem cells in the shoot meristem. Loss of WOX5 function in the root meristem stem cell niche causes terminal differentiation in distal stem cells and, redundantly with other regulators, also provokes differentiation of the proximal meristem. Conversely, gain of WOX5 function blocks differentiation of distal stem cell descendents that normally differentiate. Importantly, both WOX5 and WUS maintain stem cells in either a root or shoot context. Together, our data indicate that stem cell maintenance signalling in both meristems employs related regulators.
Collapse
Affiliation(s)
- Ananda K Sarkar
- Institute of Biology III, University of Freiburg, Schänzlestrasse 1, 79104 Freiburg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Tamada Y, Nakamori K, Nakatani H, Matsuda K, Hata S, Furumoto T, Izui K. Temporary expression of the TAF10 gene and its requirement for normal development of Arabidopsis thaliana. PLANT & CELL PHYSIOLOGY 2007; 48:134-46. [PMID: 17148695 DOI: 10.1093/pcp/pcl048] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
TAF10 is one of the TATA box-binding protein (TBP)-associated factors (TAFs) which constitute a TFIID with a TBP. Initially most TAFs were thought to be necessary for accurate transcription initiation from a broad group of core promoters. However, it was recently revealed that several TAFs are expressed in limited tissues during animal embryogenesis, and are indispensable for normal development of the tissues. They are called 'selective' TAFs. In plants, however, little is known as to these 'selective' TAFs and their function. Here we isolated the Arabidopsis thaliana TAF10 gene (atTAF10), which is a single gene closely related to the TAF10 genes of other organisms. atTAF10 was expressed transiently during the development of several organs such as lateral roots, rosette leaves and most floral organs. Such an expression pattern was clearly distinct from that of Arabidopsis Rpb1, which encodes a component of RNA polymerase II, suggesting that atTAF10 functions in not only general transcription but also the selective expression of a subset of genes. In a knockdown mutant of atTAF10, we observed several abnormal phenotypes involved in meristem activity and leaf development, suggesting that atTAF10 is concerned in pleiotropic, but selected morphological events in Arabidopsis. These results clearly demonstrate that TAF10 is a 'selective' TAF in plants, providing a new insight into the function of TAFs in plants.
Collapse
Affiliation(s)
- Yosuke Tamada
- Laboratory of Plant Physiology, Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto, 606-8502 Japan
| | | | | | | | | | | | | |
Collapse
|
26
|
Horiguchi G, Fujikura U, Ferjani A, Ishikawa N, Tsukaya H. Large-scale histological analysis of leaf mutants using two simple leaf observation methods: identification of novel genetic pathways governing the size and shape of leaves. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2006; 48:638-44. [PMID: 17076802 DOI: 10.1111/j.1365-313x.2006.02896.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Observations of cellular organization are essential in understanding the mechanisms underlying leaf morphogenesis. These observations require several preparative steps, such as fixation and clearing of organs, and such procedures are time-consuming and labor-intensive for large-scale analyses. Thus, we have developed simple methods for the observation of leaf epidermal and mesophyll cells. To visualize the epidermis, a gel cast was made of the leaf surface, which was then observed under a light microscope. To visualize the leaf mesophyll cells, leaves were immersed in a solution containing Triton X-100, briefly centrifuged, and then viewed under a light microscope. These methods allowed us to conduct a histological phenome analysis for a large number of known and newly isolated leaf-shape/size mutants of Arabidopsis thaliana by measuring various parameters, including cell number, size, and distribution of cells within a leaf blade. Mutants showed changes in leaf size caused by specific increases or decreases in the number and/or size of cells. In addition, altered cell distributions in the leaf blade were observed, resulting from increases or decreases in the number of cells along the proximo-distal or medio-lateral axis, or recruitment of cells along a particular axis at the expense of other leaf parts. These results provide a phenomic view of the cellular behavior involved in organ size control and leaf-shape patterning.
Collapse
Affiliation(s)
- Gorou Horiguchi
- National Institute for Basic Biology, Okazaki Institute for Integrated Bioscience, Myodaiji-cho Nisigo Naka 38, Okazaki, Aichi 444-8585, Japan.
| | | | | | | | | |
Collapse
|
27
|
Deyhle F, Sarkar AK, Tucker EJ, Laux T. WUSCHEL regulates cell differentiation during anther development. Dev Biol 2006; 302:154-9. [PMID: 17027956 DOI: 10.1016/j.ydbio.2006.09.013] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2006] [Revised: 08/15/2006] [Accepted: 09/06/2006] [Indexed: 10/24/2022]
Abstract
During anther development a series of cell specification events establishes the male gametophyte and the surrounding sporophytic structure. Here we show that the homeobox gene WUSCHEL, originally identified as a central regulator of stem cell maintenance, plays an important role in cell type specification during male organogenesis. WUS expression is initiated very early during anther development in the precursor cells of the stomium and terminates just before the stomium cells enter terminal differentiation. At this stage the stomium cells and the neighboring septum cells that separate the pollen sacs undergo typical cell wall thickening and degenerate which leads to rupture of the anther and pollen release. In wus mutants, neither stomium cells nor septum cells differentiate or undergo cell death and degenerate. As a consequence, the anther stays intact and pollen is not released. CLAVATA3 which is activated by WUS in stem cell maintenance, is not activated in anthers indicating a novel pathway regulated by WUS. Comparing WUS function in stem cell maintenance and sexual organ development suggests that WUS expressing cells represent a conserved signaling module that regulates behavior and communication of undifferentiated cells.
Collapse
Affiliation(s)
- Florian Deyhle
- Institute of Biology III, University of Freiburg, Schänzlestrasse 1, 79104 Freiburg, Germany
| | | | | | | |
Collapse
|
28
|
Terakura S, Kitakura S, Ishikawa M, Ueno Y, Fujita T, Machida C, Wabiko H, Machida Y. Oncogene 6b from Agrobacterium tumefaciens induces abaxial cell division at late stages of leaf development and modifies vascular development in petioles. PLANT & CELL PHYSIOLOGY 2006; 47:664-72. [PMID: 16547081 DOI: 10.1093/pcp/pcj036] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The 6b gene in the T-DNA region of the Ti plasmids of Agrobacterium tumefaciens and A. vitis is able to generate shooty calli in phytohormone-free culture of leaf sections of tobacco transformed with 6b. In the present study, we report characteristic morphological abnormalities of the leaves of transgenic tobacco and Arabidopsis that express 6b from pTiAKE10 (AK-6b), and altered expression of genes related to cell division and meristem formation in the transgenic plants. Cotyledons and leaves of both transgenic tobacco and Arabidopsis exhibited various abnormalities including upward curling of leaf blades, and transgenic tobacco leaves produced leaf-like outgrowths from the abaxial side. Transcripts of some class 1 KNOX homeobox genes, which are thought to be related to meristem functions, and cell cycle regulating genes were ectopically accumulated in mature leaves. M phase-specific genes were also ectopically expressed at the abaxial sides of mature leaves. These results suggest that the AK-6b gene stimulates the cellular potential for division and meristematic functions preferentially in the abaxial side of leaves and that the leaf phenotypes generated by AK-6b are at least in part due to such biased cell division during polar development of leaves. The results of the present experiments with a fusion gene between the AK-6b gene and the glucocorticoid receptor gene showed that nuclear import of the AK-6b protein was essential for upward curling of leaves and hormone-free callus formation, suggesting a role for AK-6b in nuclear events.
Collapse
MESH Headings
- Agrobacterium tumefaciens/genetics
- Arabidopsis/genetics
- Arabidopsis/growth & development
- Arabidopsis/microbiology
- Cell Differentiation/genetics
- Cell Differentiation/physiology
- Cell Division/genetics
- Cell Division/physiology
- Cell Proliferation
- Gene Expression Regulation, Plant/physiology
- Genes, Homeobox/genetics
- Genes, Homeobox/physiology
- Genes, Plant/genetics
- Genes, Plant/physiology
- Meristem/cytology
- Meristem/growth & development
- Meristem/physiology
- Oncogene Proteins/analysis
- Oncogene Proteins/genetics
- Oncogene Proteins/physiology
- Plant Leaves/chemistry
- Plant Leaves/cytology
- Plant Leaves/growth & development
- Plant Proteins/analysis
- Plant Proteins/genetics
- Plant Proteins/physiology
- Plant Stems/chemistry
- Plant Stems/cytology
- Plant Stems/growth & development
- Plant Tumor-Inducing Plasmids/genetics
- Plants, Genetically Modified
- Receptors, Glucocorticoid/analysis
- Receptors, Glucocorticoid/genetics
- Receptors, Glucocorticoid/physiology
- Nicotiana/cytology
- Nicotiana/genetics
- Nicotiana/physiology
- Transcription, Genetic
Collapse
Affiliation(s)
- Shinji Terakura
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya, 464-8602 Japan
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Djakovic S, Dyachok J, Burke M, Frank MJ, Smith LG. BRICK1/HSPC300 functions with SCAR and the ARP2/3 complex to regulate epidermal cell shape in Arabidopsis. Development 2006; 133:1091-100. [PMID: 16481352 DOI: 10.1242/dev.02280] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The Arp2/3 complex, a highly conserved nucleator of F-actin polymerization,is essential for a variety of eukaryotic cellular processes, including epidermal cell morphogenesis in Arabidopsis thaliana. Efficient nucleation of actin filaments by the Arp2/3 complex requires the presence of an activator such as a member of the Scar/WAVE family. In mammalian cells, a multiprotein complex consisting of WAVE, PIR121/Sra-1, Nap1, Abi-2 and HSPC300 mediates responsiveness of WAVE to upstream regulators such as Rac. Essential roles in WAVE complex assembly or function have been demonstrated for PIR121/Sra-1, Nap1 and Abi-2, but the significance of HSPC300 in this complex is unclear. Plant homologs of all mammalian WAVE complex components have been identified, including HSPC300, the mammalian homolog of maize BRICK1 (BRK1). We show that, like mutations disrupting the Arabidopsis homologs of PIR121/Sra-1, Nap1 and Scar/WAVE, mutations in the Arabidopsis BRK1gene result in trichome and pavement cell morphology defects (and associated alterations in the F-actin cytoskeleton of expanding cells) similar to those caused by mutations disrupting the ARP2/3 complex itself. Analysis of double mutants provides genetic evidence that BRK1 functions in a pathway with the ARP2/3 complex. BRK1 is required for accumulation of SCAR1 protein in vivo,potentially explaining the apparently essential role of BRK1 in ARP2/3 complex function.
Collapse
Affiliation(s)
- Stevan Djakovic
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0116, USA
| | | | | | | | | |
Collapse
|
30
|
Brembu T, Winge P, Bones AM. The small GTPase AtRAC2/ROP7 is specifically expressed during late stages of xylem differentiation in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2005; 56:2465-76. [PMID: 16061508 DOI: 10.1093/jxb/eri239] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The RAC/ROP family of small GTPases are central regulators of important cellular processes in plants. AtRAC2/ROP7 is an ancient member of the RAC/ROP gene family in Arabidopsis thaliana whose functions are generally unknown. In order to study the spatial expression pattern of the AtRAC2/ROP7 gene, transgenic plants expressing GUS or GFP under the control of the AtRAC2/ROP7 promoter were analysed. Functional analysis of AtRAC2/ROP7 was done using transgenic plants overexpressing wild-type and constitutively activated AtRAC2/ROP7 (Val15Gly), and an AtRAC2/ROP7T-DNA insertion mutant. The AtRAC2/ROP7 promoter directs a highly specific xylem-specific expression in the root, hypocotyl, stem, and leaves. The expression is developmentally limited to the late stages of xylem differentiation, and coincides with the formation of secondary cell walls. Leaf epidermal cells of transgenic plants overexpressing constitutively active AtRAC2/ROP7 exhibited highly impaired lobe formation, suggesting that AtRAC2/ROP7 is able to regulate polar cell expansion. Finally, GFP-AtRAC2/ROP7 fusion proteins were localized to the plasma membrane. The results indicate a role for AtRAC2/ROP7 in the development of secondary cell walls of xylem vessels.
Collapse
Affiliation(s)
- Tore Brembu
- Department of Biology, Section for Cell and Molecular Biology, Norwegian University of Science and Technology, N-7491 Trondheim, Norway
| | | | | |
Collapse
|
31
|
Tanaka H, Ishikawa M, Kitamura S, Takahashi Y, Soyano T, Machida C, Machida Y. The AtNACK1/HINKEL and STUD/TETRASPORE/AtNACK2 genes, which encode functionally redundant kinesins, are essential for cytokinesis in Arabidopsis. Genes Cells 2005; 9:1199-211. [PMID: 15569152 DOI: 10.1111/j.1365-2443.2004.00798.x] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cytokinesis is the critical step during which daughter cells are separated. We showed previously that a protein complex that consists of NACK1 (and NACK2) kinesin-like protein and NPK1 MAPKKK and its substrate NQK1 MAPKK are required for progression of cytokinesis in Nicotiana tabacum. The genome of Arabidopsis thaliana encodes homologues of NACK1 and NACK2, namely, AtNACK1/HINKEL and STUD/TETRASPORE/AtNACK2, respectively. Loss-of-function mutations in AtNACK1/HINKEL and STUD/TETRASPORE/AtNACK2 result in the occasional failure of somatic and male-meiotic cytokinesis, respectively. However, it is likely that these genes function redundantly to some extent in somatic tissues and female gametogenesis. We describe the phenotypes of Arabidopsis plants that have mutations in both the AtNACK1/HINKEL and STUD/TETRASPORE/AtNACK2 genes. These phenotypes suggest that the two genes are essential during both male and female gametogenesis. Female gametes with atnack1 atnack2 double mutations failed to cellularize and to generate a central cell, synergids and the egg cells. Male gametes with atnack1 atnack2 mutations were also not transmitted to the next generation. The AtNACK1/HINKEL and STUD/TETRASPORE/AtNACK2 genes for kinesin-like proteins have overlapping functions that are essential for gametogenetic cytokinesis. They appear to be essential components of a MAP kinase cascade that promotes cytokinesis of plant cells in both gametophytic (haploid) and sporophytic (diploid) proliferation.
Collapse
Affiliation(s)
- Hirokazu Tanaka
- College of Bioscience and Biotechnology, Chubu University and CREST, Japan Science and Technology Corporation, 1200 Matsumoto-cho, Kasugai, Aichi 487-8501, Japan
| | | | | | | | | | | | | |
Collapse
|
32
|
Li H, Xu L, Wang H, Yuan Z, Cao X, Yang Z, Zhang D, Xu Y, Huang H. The Putative RNA-dependent RNA polymerase RDR6 acts synergistically with ASYMMETRIC LEAVES1 and 2 to repress BREVIPEDICELLUS and MicroRNA165/166 in Arabidopsis leaf development. THE PLANT CELL 2005; 17:2157-71. [PMID: 16006579 PMCID: PMC1182480 DOI: 10.1105/tpc.105.033449] [Citation(s) in RCA: 143] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The Arabidopsis thaliana ASYMMETRIC LEAVES1 (AS1) and AS2 genes are important for repressing class I KNOTTED1-like homeobox (KNOX) genes and specifying leaf adaxial identity in leaf development. RNA-dependent RNA polymerases (RdRPs) are critical for posttranscriptional and transcriptional gene silencing in eukaryotes; however, very little is known about their functions in plant development. Here, we show that the Arabidopsis RDR6 gene (also called SDE1 and SGS2) that encodes a putative RdRP, together with AS1 and AS2, regulates leaf development. rdr6 single mutant plants displayed only minor phenotypes, whereas rdr6 as1 and rdr6 as2 double mutants showed dramatically enhanced as1 and as2 phenotypes, with severe defects in the leaf adaxial-abaxial polarity and vascular development. In addition, the double mutant plants produced more lobed leaves than the as1 and as2 single mutants and showed leaf-like structures associated on a proportion of leaf blades. The abnormal leaf morphology of the double mutants was accompanied by an extended ectopic expression of a class I KNOX gene BREVIPEDICELLUS (BP) and high levels of microRNA165/166 that may lead to mRNA degradation of genes in the class III HD-ZIP family. Taken together, our data suggest that the Arabidopsis RDR6-associated epigenetic pathway and the AS1-AS2 pathway synergistically repress BP and MIR165/166 for proper plant development.
Collapse
Affiliation(s)
- Hong Li
- National Laboratory of Plant Molecular Genetics, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institute for Biological Sciences, Graduate School of Chinese Academy of Sciences, Shanghai 200032, China
| | - Lin Xu
- National Laboratory of Plant Molecular Genetics, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institute for Biological Sciences, Graduate School of Chinese Academy of Sciences, Shanghai 200032, China
- College of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Hua Wang
- National Laboratory of Plant Molecular Genetics, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institute for Biological Sciences, Graduate School of Chinese Academy of Sciences, Shanghai 200032, China
| | - Zheng Yuan
- National Laboratory of Plant Molecular Genetics, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institute for Biological Sciences, Graduate School of Chinese Academy of Sciences, Shanghai 200032, China
| | - Xiaofeng Cao
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhongnan Yang
- College of Life and Environment Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Dabing Zhang
- College of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Yuquan Xu
- College of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Hai Huang
- National Laboratory of Plant Molecular Genetics, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institute for Biological Sciences, Graduate School of Chinese Academy of Sciences, Shanghai 200032, China
- To whom correspondence should be addressed. E-mail ; fax 86-21-54924015
| |
Collapse
|
33
|
Asano T, Yoshioka Y, Kurei S, Sakamoto W, Machida Y. A mutation of the CRUMPLED LEAF gene that encodes a protein localized in the outer envelope membrane of plastids affects the pattern of cell division, cell differentiation, and plastid division in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2004; 38:448-459. [PMID: 15086805 DOI: 10.1111/j.1365-313x.2004.02057.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
We identified a novel mutation of a nuclear-encoded gene, designated as CRUMPLED LEAF (CRL), of Arabidopsis thaliana that affects the morphogenesis of all plant organs and division of plastids. Histological analysis revealed that planes of cell division were distorted in shoot apical meristems (SAMs), root tips, and embryos in plants that possess the crl mutation. Furthermore, we observed that differentiation patterns of cortex and endodermis cells in inflorescence stems and root endodermis cells were disturbed in the crl mutant. These results suggest that morphological abnormalities observed in the crl mutant were because of aberrant cell division and differentiation. In addition, cells of the crl mutant contained a reduced number of enlarged plastids, indicating that the division of plastids was inhibited in the crl. The CRL gene encodes a novel protein with a molecular mass of 30 kDa that is localized in the plastid envelope. The CRL protein is conserved in various plant species, including a fern, and in cyanobacteria, but not in other organisms. These data suggest that the CRL protein is required for plastid division, and it also plays an important role in cell differentiation and the regulation of the cell division plane in plants. A possible function of the CRL protein is discussed.
Collapse
Affiliation(s)
- Tomoya Asano
- Division of Biological Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
| | | | | | | | | |
Collapse
|
34
|
Tanaka T, Tanaka H, Machida C, Watanabe M, Machida Y. A new method for rapid visualization of defects in leaf cuticle reveals five intrinsic patterns of surface defects in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2004; 37:139-46. [PMID: 14675439 DOI: 10.1046/j.1365-313x.2003.01946.x] [Citation(s) in RCA: 202] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The epidermis of higher plants generates the cuticle layer that covers the outer surface of each plant. The cuticle plays a crucial role in plant development, and some mutants with defective cuticle exhibit morphological abnormalities, such as the fusion of organs. The way in which the cuticle forms and its contribution to morphogenesis are poorly understood. Conventional detection of the cuticle by transmission electron microscopy (TEM) requires laborious procedures, which include fixation, staining with osmium, and preparation of ultra-thin sections. It is also difficult to survey entire surfaces of expanded leaves because of the limited size of specimens that can be examined. Thus, TEM is unsuitable for large-scale screening for mutants with defective cuticle. We describe here a rapid and inexpensive method, designated the toluidine-blue (TB) test, for detection of cuticular defects in whole leaves. We demonstrated the validity of the TB test using mutants of Arabidopsis thaliana, including abnormal leaf shape1 (ale1), fiddlehead (fdh), and five eceriferum (cer) mutants, in which the structure and/or function of the cuticle is abnormal. Genetic screening for mutants using the TB test allowed us to identify seven loci. The cuticle-defective regions of leaves of the mutants revealed five intrinsic patterns of surface defects (classes I through V), suggesting that formation of functional cuticle on leaves involves various spatially regulated factors.
Collapse
Affiliation(s)
- Toshihiro Tanaka
- Division of Biological Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
| | | | | | | | | |
Collapse
|
35
|
Asano T, Yoshioka Y, Machida Y. A defect in atToc159 of Arabidopsis thaliana causes severe defects in leaf development. Genes Genet Syst 2004; 79:207-12. [PMID: 15514440 DOI: 10.1266/ggs.79.207] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Plastid protein import 2 (ppi2), a mutant of Arabidopsis thaliana, lacks a homologue of a component of the translocon at the outer envelope membrane of chloroplasts (Toc), designated Toc159 of the pea. Toc159 is thought to be essential for the import of photosynthetic proteins into chloroplasts. In order to investigate the effect of protein import on the plant development, we examined the morphologies of the developing leaves and the shoot apical meristems (SAM) in the ppi2 plants. Our histological analysis revealed that the development of leaves is severely affected in ppi2, while the structure of SAM is normal. Abnormalities in leaves became obvious in the later stages of leaf development, resulting in the generation of mature leaves with fewer mesophyll cells and more intercellular spaces as compared with the wild type. Palisade and spongy tissues of the mature leaves were indistinguishable in ppi2. Replication of chloroplast DNA was also suggested to be impaired in ppi2. Our results suggest that protein import into chloroplasts is important for the normal development of leaves.
Collapse
Affiliation(s)
- Tomoya Asano
- Division of Biological Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8602, Japan
| | | | | |
Collapse
|
36
|
Traw MB, Bergelson J. Interactive effects of jasmonic acid, salicylic acid, and gibberellin on induction of trichomes in Arabidopsis. PLANT PHYSIOLOGY 2003; 133:1367-75. [PMID: 14551332 PMCID: PMC281631 DOI: 10.1104/pp.103.027086] [Citation(s) in RCA: 222] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2003] [Revised: 06/10/2003] [Accepted: 08/14/2003] [Indexed: 05/17/2023]
Abstract
Leaf trichomes protect plants from attack by insect herbivores and are often induced following damage. Hormonal regulation of this plant induction response has not been previously studied. In a series of experiments, we addressed the effects of artificial damage, jasmonic acid, salicylic acid, and gibberellin on induction of trichomes in Arabidopsis. Artificial damage and jasmonic acid caused significant increases in trichome production of leaves. The jar1-1 mutant exhibited normal trichome induction following treatment with jasmonic acid, suggesting that adenylation of jasmonic acid is not necessary. Salicylic acid had a negative effect on trichome production and consistently reduced the effect of jasmonic acid, suggesting negative cross-talk between the jasmonate and salicylate-dependent defense pathways. Interestingly, the effect of salicylic acid persisted in the nim1-1 mutant, suggesting that the Npr1/Nim1 gene is not downstream of salicylic acid in the negative regulation of trichome production. Last, we found that gibberellin and jasmonic acid had a synergistic effect on the induction of trichomes, suggesting important interactions between these two compounds.
Collapse
Affiliation(s)
- M Brian Traw
- Department of Ecology and Evolution, University of Chicago, 1101 E. 57th Street, Chicago, Illinois 60637, USA
| | | |
Collapse
|
37
|
Ito M, Sato Y, Matsuoka M. Involvement of homeobox genes in early body plan of monocot. INTERNATIONAL REVIEW OF CYTOLOGY 2003; 218:1-35. [PMID: 12199516 DOI: 10.1016/s0074-7696(02)18010-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Homeobox genes are known as transcriptional regulators that are involved in various aspects of developmental processes in many organisms. In plants, many types of homeobox genes have been identified, and mutational or expression pattern analyses of these genes have indicated the involvement of several classes of homeobox genes in developmental processes. The fundamental body plan of plants is established during embryogenesis, whereas morphogenetic events in the shoot apical meristem (SAM) continue after embryogenesis. Knotted1-like homeobox genes (knox genes) are preferentially expressed in both the SAM and the immature embryo. Therefore, these genes are considered to be key regulators of plant morphogenesis. In this review, we discuss the regulatory role of knox genes and other types of homeobox genes in SAM establishment during embryogenesis and SAM maintenance after embryogenesis, mainly in rice.
Collapse
Affiliation(s)
- Momoyo Ito
- BioScience Center, Nagoya University, Chikusa, Japan
| | | | | |
Collapse
|
38
|
Ha CM, Kim GT, Kim BC, Jun JH, Soh MS, Ueno Y, Machida Y, Tsukaya H, Nam HG. The BLADE-ON-PETIOLE 1 gene controls leaf pattern formation through the modulation of meristematic activity in Arabidopsis. Development 2003; 130:161-72. [PMID: 12441300 DOI: 10.1242/dev.00196] [Citation(s) in RCA: 131] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The plant leaf provides an ideal system to study the mechanisms of organ formation and morphogenesis. The key factors that control leaf morphogenesis include the timing, location and extent of meristematic activity during cell division and differentiation. We identified an Arabidopsis mutant in which the regulation of meristematic activities in leaves was aberrant. The recessive mutant allele blade-on-petiole1-1 (bop1-1) produced ectopic, lobed blades along the adaxial side of petioles of the cotyledon and rosette leaves. The ectopic organ, which has some of the characteristics of rosette leaf blades with formation of trichomes in a dorsoventrally dependent manner, was generated by prolonged and clustered cell division in the mutant petioles. Ectopic, lobed blades were also formed on the proximal part of cauline leaves that lacked a petiole. Thus, BOP1 regulates the meristematic activity of leaf cells in a proximodistally dependent manner. Manifestation of the phenotypes in the mutant leaves was dependent on the leaf position. Thus, BOP1 controls leaf morphogenesis through control of the ectopic meristematic activity but within the context of the leaf proximodistality, dorsoventrality and heteroblasty. BOP1 appears to regulate meristematic activity in organs other than leaves, since the mutation also causes some ectopic outgrowths on stem surfaces and at the base of floral organs. Three class I knox genes, i.e., KNAT1, KNAT2 and KNAT6, were expressed aberrantly in the leaves of the bop1-1 mutant. Furthermore, the bop1-1 mutation showed some synergistic effect in double mutants with as1-1 or as2-2 mutation that is known to be defective in the regulation of meristematic activity and class I knox gene expression in leaves. The bop1-1 mutation also showed a synergistic effect with the stm-1 mutation, a strong mutant allele of a class I knox gene, STM. We, thus, suggest that BOP1 promotes or maintains a developmentally determinate state in leaf cells through the regulation of class I knox genes.
Collapse
Affiliation(s)
- Chan Man Ha
- Division of Molecular Life Science, Pohang University of Science and Technology, San 31, Hyoja-dong, Pohang, Kyungbuk, 790-784, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Ishikawa T, Machida C, Yoshioka Y, Kitano H, Machida Y. The GLOBULAR ARREST1 gene, which is involved in the biosynthesis of folates, is essential for embryogenesis in Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2003; 33:235-244. [PMID: 12535338 DOI: 10.1046/j.1365-313x.2003.01621.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
We identified a mutation in Arabidopsis that resulted in defective embryos, and we designated this mutation globular arrest1 (gla1). The predicted amino acid sequence encoded by the GLA1 gene is homologous to the amino acid sequences of folylpolyglutamate synthetase (FPGS) and dihydrofolate synthetase (DHFS), which participate in folate biosynthesis. The defect of gla1 in the formation of calli was rescued by the supplement of 5-formyl tetrahydrofolate. These results indicated that GLA1 is involved in the biosynthesis of tetrahydrofolate. The gla1 embryos developed normally in the early stage of development but did not undergo the transition to the heart stage. Thus, the function of the GLA1 gene in embryogenesis appears to be required after the globular stage. However, when the levels of GLA1 transcripts in transgenic plants were increased by introduction of several copies of a GLA1 transgene (GLA6.8), the gla1 embryos that grew on gla1/gla1 GLA6.8/- plants developed as far as the heart to bent-cotyledon stage. This result suggests that the GLA1 function is provided to embryos by maternal tissues until embryos reach the globular stage.
Collapse
Affiliation(s)
- Takaaki Ishikawa
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya 464-8602, Japan
| | | | | | | | | |
Collapse
|
40
|
Curaba J, Herzog M, Vachon G. GeBP, the first member of a new gene family in Arabidopsis, encodes a nuclear protein with DNA-binding activity and is regulated by KNAT1. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2003; 33:305-317. [PMID: 12535344 DOI: 10.1046/j.1365-313x.2003.01622.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Trichomes of Arabidopsis are single-celled epidermal hair that are a useful model for studying plant cell fate determination. Trichome initiation requires the activity of the GLABROUS1 (GL1) gene whose expression in epidermal and trichome cells is dependent on the presence of a 3'-cis-regulatory element. Using a one-hybrid screen, we have isolated a cDNA, which encodes for a protein, GL1 enhancer binding protein (GeBP), that binds this regulatory element in yeast and in vitro. GeBP and its three homologues in Arabidopsis share two regions: a central region with no known motifs and a C-terminal region with a putative leucine-zipper motif. We show that both regions are necessary for trans-activation in yeast. A translational fusion with the Yellow Fluorescent Protein (YFP) indicates that GeBP is a nuclear protein whose localization is restricted to, on average, 3-5 subnuclear foci that might correspond to nucleoli. Transcriptional fusion with the GUS reporter indicates that GeBP is mainly expressed in vegetative meristematic tissues and in very young leaf primordia. We looked at GeBP expression in plants mutated in or misexpressing KNAT1, a KNOX gene, expressed in the shoot apical meristem and downregulated in leaf founder cells, and found that GeBP transcript level is regulated by KNAT1 suggesting that KNAT1 is a transcriptional activator of GeBP. This regulation suggests that GeBP is acting as a repressor of leaf cell fate.
Collapse
Affiliation(s)
- Julien Curaba
- Laboratoire de Génétique Moléculaire des Plantes, CNRS UMR 5575, Université Joseph Fourier, CERMO B.P. 53, F-38041 Grenoble Cedex 9, France
| | | | | |
Collapse
|
41
|
Iwakawa H, Ueno Y, Semiarti E, Onouchi H, Kojima S, Tsukaya H, Hasebe M, Soma T, Ikezaki M, Machida C, Machida Y. The ASYMMETRIC LEAVES2 gene of Arabidopsis thaliana, required for formation of a symmetric flat leaf lamina, encodes a member of a novel family of proteins characterized by cysteine repeats and a leucine zipper. PLANT & CELL PHYSIOLOGY 2002; 43:467-78. [PMID: 12040093 DOI: 10.1093/pcp/pcf077] [Citation(s) in RCA: 283] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The ASYMMETRIC LEAVES2 (AS2) gene of Arabidopsis thaliana is involved in the establishment of the leaf venation system, which includes the prominent midvein, as well as in the development of a symmetric lamina. The gene product also represses the expression of class 1 knox homeobox genes in leaves. We have characterized the AS2 gene, which appears to encode a novel protein with cysteine repeats (designated the C-motif) and a leucine-zipper-like sequence in the amino-terminal half of the primary sequence. The Arabidopsis genome contains 42 putative genes that potentially encode proteins with conserved amino acid sequences that include the C-motif and the leucine-zipper-like sequence in the amino-terminal half. Thus, the AS2 protein belongs to a novel family of proteins that we have designated the AS2 family. Members of this family except AS2 also have been designated ASLs (AS2-like proteins). Transcripts of AS2 were detected mainly in adaxial domains of cotyledonary primordia. Green fluorescent protein-fused AS2 was concentrated in plant cell nuclei. Overexpression of AS2 cDNA in transgenic Arabidopsis plants resulted in upwardly curled leaves, which differed markedly from the downwardly curled leaves generated by loss-of-function mutation of AS2. Our results suggest that AS2 functions in the transcription of a certain gene(s) in plant nuclei and thereby controls the formation of a symmetric flat leaf lamina and the establishment of a prominent midvein and other patterns of venation.
Collapse
Affiliation(s)
- Hidekazu Iwakawa
- Division of Biological Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Tanaka H, Watanabe M, Watanabe D, Tanaka T, Machida C, Machida Y. ACR4, a putative receptor kinase gene of Arabidopsis thaliana, that is expressed in the outer cell layers of embryos and plants, is involved in proper embryogenesis. PLANT & CELL PHYSIOLOGY 2002; 43:419-28. [PMID: 11978870 DOI: 10.1093/pcp/pcf052] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The surfaces of higher plants are characterized by epidermis, which usually consists of a single layer of cells. The epidermis is derived from the outer cell layer of the embryo or protoderm, which arises as a result of periclinal cell division. After seed germination, most of the epidermal cells of the aerial parts of plants are derived from the outer cell layer of the shoot apical meristem (the L1 layer). Thus, knowledge of how the protoderm and/or L1 layer is established is fundamental to understanding the morphogenesis of higher plants. Here, we report the isolation of a gene encoding an Arabidopsis homologue (ACR4) of the maize putative receptor kinase CRINKLY4 (CR4), which is involved in epidermal differentiation. The domain organization of the predicted amino acid sequence of ACR4 is essentially identical to that of CR4. ACR4-GFP fusion protein localized to the cell surface when expressed in tobacco cell (BY-2) culture. ACR4 transcripts were detected in all the organs of the Arabidopsis plant. In developing embryos and shoot apices, ACR4 transcripts accumulated in protoderm and epidermis at relatively higher levels than in the inner tissues. Over-expression of antisense ACR4 in Arabidopsis plants resulted in malformation of embryos to varying degrees. These results suggest that ACR4 is, at a minimum, involved in the normal morphogenesis of embryos, most likely through properly differentiating protoderm cells.
Collapse
MESH Headings
- Amino Acid Sequence
- Arabidopsis/enzymology
- Arabidopsis/genetics
- Arabidopsis Proteins/genetics
- Arabidopsis Proteins/metabolism
- Cloning, Molecular
- DNA, Complementary/chemistry
- DNA, Complementary/genetics
- Gene Expression Regulation, Plant
- In Situ Hybridization
- Molecular Sequence Data
- Plant Epidermis/enzymology
- Plant Epidermis/genetics
- Plant Stems/enzymology
- Plant Stems/genetics
- Plants, Genetically Modified
- Protein Serine-Threonine Kinases
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Receptor Protein-Tyrosine Kinases/genetics
- Receptor Protein-Tyrosine Kinases/metabolism
- Receptors, Cell Surface/genetics
- Receptors, Cell Surface/metabolism
- Seeds/enzymology
- Seeds/genetics
- Seeds/growth & development
- Sequence Alignment
- Sequence Analysis, DNA
- Sequence Homology, Amino Acid
- Zea mays/genetics
Collapse
Affiliation(s)
- Hirokazu Tanaka
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku 464-8602 Japan
| | | | | | | | | | | |
Collapse
|
43
|
Jun JH, Ha CM, Nam HG. Involvement of the VEP1 gene in vascular strand development in Arabidopsis thaliana. PLANT & CELL PHYSIOLOGY 2002; 43:323-30. [PMID: 11917087 DOI: 10.1093/pcp/pcf042] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
A dominant mutant line characterized by abnormal leaf venation pattern was isolated from a transgenic Arabidopsis plant pool that was generated with Agrobacterium culture harboring an Arabidopsis antisense cDNA library. In the mutant line, the phenotype was due to antisense suppression of a gene we named VEP1 (Vein Patterning). The predicted amino acid sequence of the gene contained a motif related to the mammalian death domain that is found in the apoptotic machinery. Reduced expression of the VEP1 gene resulted in the reduced complexity of the venation pattern of the cotyledons and foliar leaves, which was mainly due to the reduced number of the minor veins and their incomplete connection. The analysis of mutant embryos indicated that the phenotype was originated, at least in part, from a defect in the procambium patterning. In the mutant, the stem and root were thinner than those in wild type. This phenotype was associated with reduced vascular development. The promoter activity of the VEP1 gene was detected preferentially in the vascular regions. We propose that the death domain-containing protein VEP1 functions as a positive element required for vascular strand development in Arabidopsis thaliana.
Collapse
Affiliation(s)
- Ji Hyung Jun
- Division of Molecular Life Sciences, Pohang University of Science and Technology, Hyoja Dong, Kyungbuk, 790-784, Korea
| | | | | |
Collapse
|
44
|
Battey NH, Tooke F. Molecular control and variation in the floral transition. CURRENT OPINION IN PLANT BIOLOGY 2002; 5:62-68. [PMID: 11788310 DOI: 10.1016/s1369-5266(01)00229-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The common controls that are involved in both vegetative and floral development are becoming apparent at the molecular level. Intriguing links are also emerging between developmental events during the juvenile/adult and floral transitions. This progress has made it possible to test the annual model of floral transition in a wide range of plant species, including those that flower perennially.
Collapse
Affiliation(s)
- Nicholas H Battey
- Department of Horticulture and Landscape, The University of Reading, Whiteknights, RG6 6AS, Reading, UK.
| | | |
Collapse
|
45
|
Tanaka H, Onouchi H, Kondo M, Hara-Nishimura I, Nishimura M, Machida C, Machida Y. A subtilisin-like serine protease is required for epidermal surface formation inArabidopsisembryos and juvenile plants. Development 2001; 128:4681-9. [PMID: 11731449 DOI: 10.1242/dev.128.23.4681] [Citation(s) in RCA: 150] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The surfaces of land plants are covered with a cuticle that is essential for retention of water. Epidermal surfaces of Arabidopsis thaliana embryos and juvenile plants that were homozygous for abnormal leaf shape1 (ale1) mutations were defective, resulting in excessive water loss and organ fusion in young plants. In ale1 embryos, the cuticle was rudimentary and remnants of the endosperm remained attached to developing embryos. Juvenile plants had a similar abnormal cuticle. The ALE1 gene was isolated using a transposon-tagged allele ale1-1. The predicted ALE1 amino acid sequence was homologous to those of subtilisin-like serine proteases. The ALE1 gene was found to be expressed within certain endosperm cells adjacent to the embryo and within the young embryo. Expression was not detected after germination. Our results suggest that the putative protease ALE1 affects the formation of cuticle on embryos and juvenile plants and that an appropriate cuticle is required for separation of the endosperm from the embryo and for prevention of organ fusion.
Collapse
Affiliation(s)
- H Tanaka
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya 464-8602, Japan
| | | | | | | | | | | | | |
Collapse
|
46
|
Affiliation(s)
- G Jürgens
- ZMBP, Entwicklungsgenetik, Universität Tübingen, Auf der Morgenstelle 1, D-72076 Tübingen, Germany.
| |
Collapse
|
47
|
Semiarti E, Ueno Y, Tsukaya H, Iwakawa H, Machida C, Machida Y. The ASYMMETRIC LEAVES2 gene of Arabidopsis thaliana regulates formation of a symmetric lamina, establishment of venation and repression of meristem-related homeobox genes in leaves. Development 2001; 128:1771-83. [PMID: 11311158 DOI: 10.1242/dev.128.10.1771] [Citation(s) in RCA: 298] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The asymmetric leaves2 (as2) mutant of Arabidopsis thaliana generated leaf lobes and leaflet-like structures from the petioles of leaves in a bilaterally asymmetric manner. Both the delayed formation of the primary vein and the asymmetric formation of secondary veins were apparent in leaf primordia of as2 plants. A distinct midvein, which is the thickest vein and is located in the longitudinal center of the leaf lamina of wild-type plants, was often rudimentary even in mature as2 leaves. However, several parallel veins of very similar thickness were evident in such leaves. The complexity of venation patterns in all leaf-like organs of as2 plants was reduced. The malformed veins were visible before the development of asymmetry of the leaf lamina and were maintained in mature as2 leaves. In vitro culture on phytohormone-free medium of leaf sections from as2 mutants and from the asymmetric leaves1 (as1) mutant, which has a phenotype similar to that of as2, revealed an elevated potential in both cases for regeneration of shoots from leaf cells. Analysis by the reverse transcription-polymerase chain reaction showed that transcripts of the KNAT1, KNAT2 and KNAT6 (a recently identified member of the class 1 knox family) genes accumulated in the leaves of both as2 and as1 plants but not of wild type. Transcripts of the STM gene also accumulated in as1 leaves. These findings suggest that, in leaves, the AS2 and AS1 genes repress the expression of these homeobox genes, which are thought to maintain the indeterminate cell state in the shoot apical meristem. Taken together, our results suggest that AS2 and AS1 might be involved in establishment of a prominent midvein and of networks of other veins as well as in the formation of the symmetric leaf lamina, which might be related to repression of class 1 knox homeobox genes in leaves.
Collapse
Affiliation(s)
- E Semiarti
- Division of Biological Science, Graduate School of Science, Nagoya, University, Chikusa-ku, Nagoya 464-8602, Japan.
| | | | | | | | | | | |
Collapse
|