1
|
Huang J, Zhou M, Chen J, Ke C. Molecular Cloning, Characterization, and Function of Insulin-Related Peptide 1 (IRP1) in the Haliotis discus hanna. Genes (Basel) 2024; 15:960. [PMID: 39062739 PMCID: PMC11275868 DOI: 10.3390/genes15070960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 07/17/2024] [Accepted: 07/19/2024] [Indexed: 07/28/2024] Open
Abstract
Abalone is a popular mollusk in the marine aquaculture industry of China. However, existing challenges, like slow growth, individual miniaturization, and the absence of abundant abalone, have emerged as significant obstacles impeding its long-term progress in aquaculture. Studies have demonstrated that insulin-related peptide (IRP) is a crucial factor in the growth of marine organisms. However, limited studies have been conducted on IRP in abalone. This study indicated that the hdh-MIRP1 open reading frame (ORF) was composed of 456 base pairs, which encoded 151 amino acids. Based on the gene expression and immunofluorescence analyses, the cerebral ganglion of Haliotis discus hannai (H. discus hannai) was the primary site of hdh-MIRP1 mRNA expression. Moreover, hdh-MIRP1 expression was observed to be higher in the larger group than in the smaller group abalones. Only single nucleotide polymorphism (SNP) was related to their growth characteristics. However, approximately 82 proteins that may interact with hdh-MIRP1 were identified. The functional enrichment analysis of the 82 genes indicated that hdh-MIRP1 may be involved in the regulation of glucose metabolism and the process of growth. This study established a benchwork for further investigating the role of IRP in the growth of abalone.
Collapse
Affiliation(s)
- Jianfang Huang
- Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Fuzhou Institute of Oceanography, College of Geography and Oceanography, Minjiang University, Fuzhou 350108, China;
- State Key Laboratory of Mariculture Breeding, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China;
| | - Mingcan Zhou
- State Key Laboratory of Mariculture Breeding, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China;
| | - Jianming Chen
- Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Fuzhou Institute of Oceanography, College of Geography and Oceanography, Minjiang University, Fuzhou 350108, China;
| | - Caihuan Ke
- State Key Laboratory of Mariculture Breeding, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China;
| |
Collapse
|
2
|
Unravelling the neuroprotective mechanisms of carotenes in differentiated human neural cells: Biochemical and proteomic approaches. FOOD CHEMISTRY. MOLECULAR SCIENCES 2022; 4:100088. [PMID: 35415676 PMCID: PMC8991711 DOI: 10.1016/j.fochms.2022.100088] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 02/08/2022] [Accepted: 02/11/2022] [Indexed: 12/20/2022]
Abstract
Total mixed carotenes (TMC) protect differentiated human neural cells against 6-hydroxydopamine-induced toxicity. TMC elevated the antioxidant enzymes activities and suppressed generation of reactive oxygen species. TMC augmented the dopamine and tyrosine hydroxylase levels. TMC exerted differential protein expression in human neural cells.
Carotenoids, fat-soluble pigments found ubiquitously in plants and fruits, have been reported to exert significant neuroprotective effects against free radicals. However, the neuroprotective effects of total mixed carotenes complex (TMC) derived from virgin crude palm oil have not been studied extensively. Therefore, the present study was designed to establish the neuroprotective role of TMC on differentiated human neural cells against 6-hydroxydopamine (6-OHDA)-induced cytotoxicity. The human neural cells were differentiated using retinoic acid for six days. Then, the differentiated neural cells were pre-treated for 24 hr with TMC before exposure to 6-OHDA. TMC pre-treated neurons showed significant alleviation of 6-OHDA-induced cytotoxicity as evidenced by enhanced activity of the superoxide dismutase (SOD) and catalase (CAT) enzymes. Furthermore, TMC elevated the levels of intra-neuronal dopamine and tyrosine hydroxylase (TH) in differentiated neural cells. The 6-OHDA induced overexpression of α-synuclein was significantly hindered in neural cells pre-treated with TMC. In proteomic analysis, TMC altered the expression of ribosomal proteins, α/β isotypes of tubulins, protein disulphide isomerases (PDI) and heat shock proteins (HSP) in differentiated human neural cells. The natural palm phytonutrient TMC is a potent antioxidant with significant neuroprotective effects against free radical-induced oxidative stress.
Collapse
Key Words
- 6-OHDA, 6-hydroxydopamine
- 6-hydroxydopamine
- AD, Alzheimer’s disease
- BCM, beta-carotene-15,15′-monooxygenase
- CAT, catalase
- DRD2, dopamine receptor D2
- Dopamine
- ER, endoplasmic reticulum
- GO, gene ontology
- HSP, Heat shock protein
- HSPA9, Heat shock protein family A (HSP70) member 9
- HSPD1, Heat shock protein family D (HSP60) member 1
- KEGG, Kyoto Encyclopedia of Genes and Genomes
- LC-MS/MS, liquid chromatography-double mass spectrometry
- LDH, lactate dehydrogenase
- MCODE, minimal common oncology data elements
- MS, mass spectrometry
- Mixed carotene
- PD, Parkinson's disease
- PDI, protein disulphide isomerases
- PHB2, prohibitin 2
- PPI, protein–protein interaction
- RAN, Ras-related nuclear protein
- ROS, reactive oxygen species
- RPs, ribosomal proteins
- SH-SY5Y neuroblastoma cells
- SOD, superoxide dismutase
- TH, tyrosine hydroxylase
- TMC, total mixed carotene complex
Collapse
|
3
|
Magalingam KB, Somanath SD, Ramdas P, Haleagrahara N, Radhakrishnan AK. 6-Hydroxydopamine Induces Neurodegeneration in Terminally Differentiated SH-SY5Y Neuroblastoma Cells via Enrichment of the Nucleosomal Degradation Pathway: a Global Proteomics Approach. J Mol Neurosci 2022; 72:1026-1046. [PMID: 35258800 PMCID: PMC9064865 DOI: 10.1007/s12031-021-01962-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 12/22/2021] [Indexed: 01/07/2023]
Abstract
The SH-SY5Y human neuroblastoma cells have been used for decades as a cell-based model of dopaminergic neurons to explore the underlying science of cellular and molecular mechanisms of neurodegeneration in Parkinson’s disease (PD). However, data revealing the protein expression changes in 6-OHDA induced cytotoxicity in differentiated SH-SY5Y cells remain void. Therefore, we investigated the differentially regulated proteins expressed in terminally differentiated SH-SY5Y cells (differ-SH-SY5Y neural cells) exposed to 6-hydroxydopamine (6-OHDA) using the LC–MS/MS technology and construed the data using the online bioinformatics databases such as PANTHER, STRING, and KEGG. Our studies demonstrated that the neuronal development in differ-SH-SY5Y neural cells was indicated by the overexpression of proteins responsible for neurite formations such as calnexin (CANX) and calreticulin (CALR) besides significant downregulation of ribosomal proteins. The enrichment of the KEGG ribosome pathway was detected with significant downregulation (p < 0.05) of all the 21 ribosomal proteins in differ-SH-SY5Y neural cells compared with undifferentiated cells. Whereas in the PD model, the pathological changes induced by 6-OHDA were indicated by the presence of unfolded and misfolded proteins, which triggered the response of 10 kDa heat shock proteins (HSP), namely HSPE1 and HSPA9. Moreover, the 6-OHDA-induced neurodegeneration in differ-SH-SY5Y neural cells also upregulated the voltage-dependent anion-selective channel protein 1 (VDAC1) protein and enriched the KEGG systemic lupus erythematosus (SLE) pathway that was regulated by 17 histone proteins (p < 0.05) in differ-SH-SY5Y neural cells. These results suggest that the nucleosomal degradation pathway may have regulated the 6-OHDA induced neurodegeneration in PD cell-based model, which is reflected by increased apoptosis and histone release in differ-SH-SY5Y neural cells.
Collapse
Affiliation(s)
- Kasthuri Bai Magalingam
- School of Postgraduate Studies, International Medical University, Kuala Lumpur, Malaysia
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University, Malaysia, Bandar Sunway, Malaysia
| | - Sushela Devi Somanath
- Pathology Division, School of Medicine, International Medical University, Kuala Lumpur, Malaysia
| | - Premdass Ramdas
- Division of Applied Biomedical Sciences and Biotechnology, School of Health Sciences, International Medical University, Kuala Lumpur, Malaysia
| | - Nagaraja Haleagrahara
- College of Public Health, Medicine and Veterinary Sciences, James Cook University, Townsville, QLD, 4811, Australia
| | - Ammu Kutty Radhakrishnan
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University, Malaysia, Bandar Sunway, Malaysia.
- Monash-Industry Palm Oil Education and Research Platform (MIPO), Monash University Malaysia, Bandar Sunway, Selangor, Malaysia.
| |
Collapse
|
4
|
Cai Z, Yang C, Liao J, Song H, Zhang S. Sex-biased genes and metabolites explain morphologically sexual dimorphism and reproductive costs in Salix paraplesia catkins. HORTICULTURE RESEARCH 2021; 8:125. [PMID: 34059667 PMCID: PMC8166972 DOI: 10.1038/s41438-021-00566-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 03/16/2021] [Accepted: 03/22/2021] [Indexed: 05/10/2023]
Abstract
Dioecious species evolved from species with monomorphic sex systems in order to achieve overall fitness gains by separating male and female functions. As reproductive organs, unisexual flowers have different reproductive roles and exhibit conspicuous sexual dimorphism. To date, little is known about the temporal variations in and molecular mechanisms underlying the morphology and reproductive costs of dioecious flowers. We investigated male and female flowers of Salix paraplesia in three flowering stages before pollination (the early, blooming and late stages) via transcriptional sequencing as well as metabolite content and phenotypic analysis. We found that a large number of sex-biased genes, rather than sex-limited genes, were responsible for sexual dimorphism in S. paraplesia flowers and that the variation in gene expression in male flowers intensified this situation throughout flower development. The temporal dynamics of sex-biased genes derived from changes in reproductive function during the different flowering stages. Sexually differentiated metabolites related to respiration and flavonoid biosynthesis exhibited the same bias directions as the sex-biased genes. These sex-biased genes were involved mainly in signal transduction, photosynthesis, respiration, cell proliferation, phytochrome biosynthesis, and phenol metabolism; therefore, they resulted in more biomass accumulation and higher energy consumption in male catkins. Our results indicated that sex-biased gene expression in S. paraplesia flowers is associated with different reproductive investments in unisexual flowers; male flowers require a greater reproductive investment to meet their higher biomass accumulation and energy consumption needs.
Collapse
Affiliation(s)
- Zeyu Cai
- Key Laboratory of Mountain Surface Processes and Ecological Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Congcong Yang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Jun Liao
- College of Geography and Tourism, Chongqing Normal University, Chongqing, China
| | - Haifeng Song
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Sheng Zhang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China.
| |
Collapse
|
5
|
Yan H, Xiang P, Zhang J, Xie L, Shen M. Dynamic changes of serum protein in rats with acute intoxication of Chinese cobra snake venom by proteomic analysis. Forensic Sci Res 2020; 5:309-321. [PMID: 33457049 PMCID: PMC7782176 DOI: 10.1080/20961790.2017.1405565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
To elucidate the toxic mechanism of snake venom at the protein level, proteomics technology was applied to investigate the effect of venom on circulation in the mammalian body. Temporal proteomic analysis was performed to profile the dynamic changes in the sera of Sprague–Dawley rats administered with Chinese cobra venom or saline. Using 8-plex iTRAQ analysis, 392 and 636 serum proteins were identified to be linearly upregulated or downregulated over time in the low-dose group and high-dose group, respectively. These proteins were mainly associated with the acute phase response pathway, complement system, and liver X receptor (LXR)/retinoid X receptor (RXR) and farnesoid X receptor (FXR)/RXR activation pathways. Compared with the low-dose group, the immune response and integrin pathways were inhibited in the high-dose group, although no obvious effect was observed. With consistently higher or lower expression in the high-dose group compared to the low-dose group throughout the whole process of venom poisoning, two proteins, Kininogen-1 (KNG1) and orosomucoid 1 (ORM1), which are involved in metabolism and immune response, occupied a core position in the pathway network and are considered venom dose-dependent biomarker candidates.
Collapse
Affiliation(s)
- Hui Yan
- Shanghai Key Laboratory of Forensic Science, Shanghai Forensic Platform, Department of Forensic Toxicology, Academy of Forensic Science, Shanghai, China
| | - Ping Xiang
- Shanghai Key Laboratory of Forensic Science, Shanghai Forensic Platform, Department of Forensic Toxicology, Academy of Forensic Science, Shanghai, China
| | - Jingshuo Zhang
- College of Pharmaceutical Sciences, Soochow Universtity, Suzhou, Jiangsu, China
| | - Liqi Xie
- Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Min Shen
- Shanghai Key Laboratory of Forensic Science, Shanghai Forensic Platform, Department of Forensic Toxicology, Academy of Forensic Science, Shanghai, China
| |
Collapse
|
6
|
Gava SG, Tavares NC, Falcone FH, Oliveira G, Mourão MM. Profiling Transcriptional Regulation and Functional Roles of Schistosoma mansoni c-Jun N-Terminal Kinase. Front Genet 2019; 10:1036. [PMID: 31681440 PMCID: PMC6813216 DOI: 10.3389/fgene.2019.01036] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 09/27/2019] [Indexed: 12/12/2022] Open
Abstract
Mitogen-activated protein kinases (MAPKs) play a regulatory role and influence various biological activities, such as cell proliferation, differentiation, and survival. Our group has demonstrated through functional studies that Schistosoma mansoni c-Jun N-terminal kinase (SmJNK) MAPK is involved in the parasite's development, reproduction, and survival. SmJNK can, therefore, be considered a potential target for the development of new drugs. Considering the importance of SmJNK in S. mansoni maturation, we aimed at understanding of SmJNK regulated signaling pathways in the parasite, correlating expression data with S. mansoni development. To better understand the role of SmJNK in S. mansoni intravertebrate host life stages, RNA interference knockdown was performed in adult worms and in schistosomula larval stage. SmJNK knocked-down in adult worms showed a decrease in oviposition and no significant alteration in their movement. RNASeq libraries of SmJNK knockdown schistosomula were sequenced. A total of 495 differentially expressed genes were observed in the SmJNK knockdown parasites, of which 373 were down-regulated and 122 up-regulated. Among the down-regulated genes, we found transcripts related to protein folding, purine nucleotide metabolism, the structural composition of ribosomes and cytoskeleton. Genes coding for proteins that bind to nucleic acids and proteins involved in the phagosome and spliceosome pathways were enriched. Additionally, we found that SmJNK and Smp38 MAPK signaling pathways converge regulating the expression of a large set of genes. C. elegans orthologous genes were enriched for genes related to sterility and oocyte maturation, corroborating the observed phenotype alteration. This work allowed an in-depth analysis of the SmJNK signaling pathway, elucidating gene targets of regulation and functional roles of this critical kinase for parasite maturation.
Collapse
Affiliation(s)
- Sandra Grossi Gava
- Laboratório de Helmintologia e Malacologia Médica, Instituto René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Brazil
| | - Naiara Clemente Tavares
- Laboratório de Helmintologia e Malacologia Médica, Instituto René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Brazil
| | - Franco Harald Falcone
- Allergy and Infectious Diseases Laboratory, Division of Molecular Therapeutics and Formulation, School of Pharmacy, University of Nottingham, Nottingham, United Kingdom
- Institute of Parasitology, BFS, Justus Liebig University, Giessen, Germany
| | | | - Marina Moraes Mourão
- Laboratório de Helmintologia e Malacologia Médica, Instituto René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Brazil
| |
Collapse
|
7
|
Avelar LDGA, Gava SG, Neves RH, Silva MCS, Araújo N, Tavares NC, Khal AE, Mattos ACA, Machado-Silva JR, Oliveira G, Mourão MDM. Smp38 MAP Kinase Regulation in Schistosoma mansoni: Roles in Survival, Oviposition, and Protection Against Oxidative Stress. Front Immunol 2019; 10:21. [PMID: 30733716 PMCID: PMC6353789 DOI: 10.3389/fimmu.2019.00021] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 01/07/2019] [Indexed: 11/13/2022] Open
Abstract
Eukaryotic protein kinases (ePKs) are good medical targets for drug development in different biological systems. ePKs participate in many cellular processes, including the p38 MAPK regulation of homeostasis upon oxidative stress. We propose to assess the role of Smp38 MAPK signaling pathway in Schistosoma mansoni development and protection against oxidative stress, parasite survival, and also to elucidate which target genes have their expression regulated by Smp38 MAPK. After a significant reduction of up to 84% in the transcription level by Smp38 MAPK gene knockdown, no visible phenotypic changes were reported in schistosomula in culture. The development of adult worms was tested in vivo in mice infected with the Smp38 knocked-down schistosomula. It was observed that Smp38 MAPK has an essential role in the transformation and survival of the parasites as a low number of adult worms was recovered. Smp38 knockdown also resulted in decreased egg production, damaged adult worm tegument, and underdeveloped ovaries in females. Furthermore, only ~13% of the eggs produced developed into mature eggs. Our results suggest that inhibition of the Smp38 MAPK activity interfere in parasites protection against reactive oxygen species. Smp38 knockdown in adult worms resulted in 80% reduction in transcription levels on the 10th day, with consequent reduction of 94.4% in oviposition in vitro. In order to search for Smp38 MAPK pathway regulated genes, we used an RNASeq approach and identified 1,154 DEGs in Smp38 knockdown schistosomula. A substantial proportion of DEGs encode proteins with unknown function. The results indicate that Smp38 regulates essential signaling pathways for the establishment of parasite homeostasis, including genes related to antioxidant defense, structural composition of ribosomes, spliceosomes, cytoskeleton, as well as, purine and pyrimidine metabolism pathways. Our data show that the Smp38 MAPK signaling pathway is a critical route for parasite development and may present attractive therapeutic targets for the treatment and control of schistosomiasis.
Collapse
Affiliation(s)
- Lívia das Graças Amaral Avelar
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais-UFMG, Belo Horizonte, Brazil.,Instituto René Rachou, Fundação Oswaldo Cruz-FIOCRUZ, Belo Horizonte, Brazil
| | - Sandra Grossi Gava
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais-UFMG, Belo Horizonte, Brazil.,Instituto René Rachou, Fundação Oswaldo Cruz-FIOCRUZ, Belo Horizonte, Brazil
| | - Renata Heisler Neves
- Faculdade de Ciências Médicas, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Neusa Araújo
- Instituto René Rachou, Fundação Oswaldo Cruz-FIOCRUZ, Belo Horizonte, Brazil
| | | | - Assmaa El Khal
- Instituto René Rachou, Fundação Oswaldo Cruz-FIOCRUZ, Belo Horizonte, Brazil
| | | | | | | | | |
Collapse
|
8
|
The uS8, uS4, eS31, and uL14 Ribosomal Protein Genes Are Dysregulated in Nasopharyngeal Carcinoma Cell Lines. BIOMED RESEARCH INTERNATIONAL 2017; 2017:4876954. [PMID: 28791303 PMCID: PMC5534291 DOI: 10.1155/2017/4876954] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 06/14/2017] [Indexed: 11/18/2022]
Abstract
The association of ribosomal proteins with carcinogenesis of nasopharyngeal carcinoma (NPC) has been established in a limited subset of ribosomal protein genes. To date, three ribosomal protein genes, eL27 (L27), eL41 (L41), and eL43 (L37a), have been found to be differentially expressed in cell lines derived from NPC tumors. This raises the possibility of more ribosomal protein genes that could be associated with NPC. In this study, we investigated the expression profiles of eight ribosomal protein genes, uS8 (S8), uS4 (S9), eS31 (S27a), eL6 (L6), eL18 (L18), uL14 (L23), eL24 (L24), and eL30 (L30), in six NPC-derived cell lines (HONE-1, SUNE1, HK1, TW01, TW04, and C666-1). Their expression levels were compared with that of a nonmalignant nasopharyngeal epithelial cell line (NP69) using quantitative real-time PCR (RT-qPCR) assay. Of the eight genes studied, the expressions of four ribosomal protein genes uS8 (S8), uS4 (S9), eS31 (S27a), and uL14 (L23) were found to be significantly downregulated in NPC cell lines relative to NP69. Our findings provide novel empirical evidence of these four ribosomal protein genes as NPC-associated genetic factors and reinforce the relevance of ribosomal proteins in the carcinogenesis of nasopharyngeal cancer.
Collapse
|
9
|
Onderak AM, Anderson JT. Loss of the RNA helicase SKIV2L2 impairs mitotic progression and replication-dependent histone mRNA turnover in murine cell lines. RNA (NEW YORK, N.Y.) 2017; 23:910-926. [PMID: 28351885 PMCID: PMC5435864 DOI: 10.1261/rna.060640.117] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 03/02/2017] [Indexed: 06/06/2023]
Abstract
RNA surveillance via the nuclear exosome requires cofactors such as the helicase SKIV2L2 to process and degrade certain noncoding RNAs. This research aimed to characterize the phenotype associated with RNAi knockdown of Skiv2l2 in two murine cancer cell lines: Neuro2A and P19. SKIV2L2 depletion in Neuro2A and P19 cells induced changes in gene expression indicative of cell differentiation and reduced cellular proliferation by 30%. Propidium iodide-based cell-cycle analysis of Skiv2l2 knockdown cells revealed defective progression through the G2/M phase and an accumulation of mitotic cells, suggesting SKIV2L2 contributes to mitotic progression. Since SKIV2L2 targets RNAs to the nuclear exosome for processing and degradation, we identified RNA targets elevated in cells depleted of SKIV2L2 that could account for the observed twofold increase in mitotic cells. Skiv2l2 knockdown cells accumulated replication-dependent histone mRNAs, among other RNAs, that could impede mitotic progression and indirectly trigger differentiation.
Collapse
Affiliation(s)
- Alexis M Onderak
- Department of Biological Sciences, Marquette University, Milwaukee, Wisconsin 53201, USA
| | - James T Anderson
- Department of Biological Sciences, Marquette University, Milwaukee, Wisconsin 53201, USA
| |
Collapse
|
10
|
Wade J. Genetic regulation of sex differences in songbirds and lizards. Philos Trans R Soc Lond B Biol Sci 2016; 371:20150112. [PMID: 26833833 DOI: 10.1098/rstb.2015.0112] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/23/2015] [Indexed: 01/06/2023] Open
Abstract
Sex differences in the morphology of neural and peripheral structures related to reproduction often parallel the frequency of particular behaviours displayed by males and females. In a variety of model organisms, these sex differences are organized in development by gonadal steroids, which also act in adulthood to modulate behavioural expression and in some cases to generate parallel anatomical changes on a seasonal basis. Data collected from diverse species, however, suggest that changes in hormone availability are not sufficient to explain sex and seasonal differences in structure and function. This paper pulls together some of this literature from songbirds and lizards and considers the information in the broader context of taking a comparative approach to investigating genetic mechanisms associated with behavioural neuroendocrinology.
Collapse
Affiliation(s)
- Juli Wade
- Departments of Psychology and Integrative Biology, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
11
|
Wang W, Nag S, Zhang X, Wang MH, Wang H, Zhou J, Zhang R. Ribosomal proteins and human diseases: pathogenesis, molecular mechanisms, and therapeutic implications. Med Res Rev 2014; 35:225-85. [PMID: 25164622 DOI: 10.1002/med.21327] [Citation(s) in RCA: 156] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Ribosomes are essential components of the protein synthesis machinery. The process of ribosome biogenesis is well organized and tightly regulated. Recent studies have shown that ribosomal proteins (RPs) have extraribosomal functions that are involved in cell proliferation, differentiation, apoptosis, DNA repair, and other cellular processes. The dysfunction of RPs has been linked to the development and progression of hematological, metabolic, and cardiovascular diseases and cancer. Perturbation of ribosome biogenesis results in ribosomal stress, which triggers activation of the p53 signaling pathway through RPs-MDM2 interactions, resulting in p53-dependent cell cycle arrest and apoptosis. RPs also regulate cellular functions through p53-independent mechanisms. We herein review the recent advances in several forefronts of RP research, including the understanding of their biological features and roles in regulating cellular functions, maintaining cell homeostasis, and their involvement in the pathogenesis of human diseases. We also highlight the translational potential of this research for the identification of molecular biomarkers, and in the discovery and development of novel treatments for human diseases.
Collapse
Affiliation(s)
- Wei Wang
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas, 79106; Cancer Biology Center, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas, 79106
| | | | | | | | | | | | | |
Collapse
|
12
|
Ledda M, Megiorni F, Pozzi D, Giuliani L, D’Emilia E, Piccirillo S, Mattei C, Grimaldi S, Lisi A. Non ionising radiation as a non chemical strategy in regenerative medicine: Ca(2+)-ICR "In Vitro" effect on neuronal differentiation and tumorigenicity modulation in NT2 cells. PLoS One 2013; 8:e61535. [PMID: 23585910 PMCID: PMC3621667 DOI: 10.1371/journal.pone.0061535] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Accepted: 03/11/2013] [Indexed: 11/18/2022] Open
Abstract
In regenerative medicine finding a new method for cell differentiation without pharmacological treatment or gene modification and minimal cell manipulation is a challenging goal. In this work we reported a neuronal induced differentiation and consequent reduction of tumorigenicity in NT2 human pluripotent embryonal carcinoma cells exposed to an extremely low frequency electromagnetic field (ELF-EMF), matching the cyclotron frequency corresponding to the charge/mass ratio of calcium ion (Ca(2+)-ICR). These cells, capable of differentiating into post-mitotic neurons following treatment with Retinoic Acid (RA), were placed in a solenoid and exposed for 5 weeks to Ca(2+)-ICR. The solenoid was installed in a μ-metal shielded room to avoid the effect of the geomagnetic field and obtained totally controlled and reproducible conditions. Contrast microscopy analysis reveled, in the NT2 exposed cells, an important change in shape and morphology with the outgrowth of neuritic-like structures together with a lower proliferation rate and metabolic activity alike those found in the RA treated cells. A significant up-regulation of early and late neuronal differentiation markers and a significant down-regulation of the transforming growth factor-α (TGF-α) and the fibroblast growth factor-4 (FGF-4) were also observed in the exposed cells. The decreased protein expression of the transforming gene Cripto-1 and the reduced capability of the exposed NT2 cells to form colonies in soft agar supported these last results. In conclusion, our findings demonstrate that the Ca(2+)-ICR frequency is able to induce differentiation and reduction of tumorigenicity in NT2 exposed cells suggesting a new potential therapeutic use in regenerative medicine.
Collapse
Affiliation(s)
- Mario Ledda
- Institute of Translational Pharmacology, National Research Council, Rome, Italy
| | - Francesca Megiorni
- Department of Experimental Medicine, University of Rome “Sapienza”, Rome, Italy
| | - Deleana Pozzi
- Institute of Translational Pharmacology, National Research Council, Rome, Italy
- Department of Experimental Medicine, University of Rome “Sapienza”, Rome, Italy
| | - Livio Giuliani
- Department of Productive Plants and Interaction with the Environment, National Institute for Occupational Safety and Prevention, Rome, Italy
| | - Enrico D’Emilia
- Department of Productive Plants and Interaction with the Environment, National Institute for Occupational Safety and Prevention, Rome, Italy
| | - Sara Piccirillo
- Institute of Translational Pharmacology, National Research Council, Rome, Italy
| | - Cristiana Mattei
- Institute of Translational Pharmacology, National Research Council, Rome, Italy
| | - Settimio Grimaldi
- Institute of Translational Pharmacology, National Research Council, Rome, Italy
| | - Antonella Lisi
- Institute of Translational Pharmacology, National Research Council, Rome, Italy
- * E-mail:
| |
Collapse
|
13
|
Mutation of the diamond-blackfan anemia gene Rps7 in mouse results in morphological and neuroanatomical phenotypes. PLoS Genet 2013; 9:e1003094. [PMID: 23382688 PMCID: PMC3561062 DOI: 10.1371/journal.pgen.1003094] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2011] [Accepted: 09/30/2012] [Indexed: 11/19/2022] Open
Abstract
The ribosome is an evolutionarily conserved organelle essential for cellular function. Ribosome construction requires assembly of approximately 80 different ribosomal proteins (RPs) and four different species of rRNA. As RPs co-assemble into one multi-subunit complex, mutation of the genes that encode RPs might be expected to give rise to phenocopies, in which the same phenotype is associated with loss-of-function of each individual gene. However, a more complex picture is emerging in which, in addition to a group of shared phenotypes, diverse RP gene-specific phenotypes are observed. Here we report the first two mouse mutations (Rps7Mtu and Rps7Zma) of ribosomal protein S7 (Rps7), a gene that has been implicated in Diamond-Blackfan anemia. Rps7 disruption results in decreased body size, abnormal skeletal morphology, mid-ventral white spotting, and eye malformations. These phenotypes are reported in other murine RP mutants and, as demonstrated for some other RP mutations, are ameliorated by Trp53 deficiency. Interestingly, Rps7 mutants have additional overt malformations of the developing central nervous system and deficits in working memory, phenotypes that are not reported in murine or human RP gene mutants. Conversely, Rps7 mouse mutants show no anemia or hyperpigmentation, phenotypes associated with mutation of human RPS7 and other murine RPs, respectively. We provide two novel RP mouse models and expand the repertoire of potential phenotypes that should be examined in RP mutants to further explore the concept of RP gene-specific phenotypes. Ribosomes are composed of two subunits that each consist of a large number of proteins, and their function of translating mRNA into protein is essential for cell viability. Naturally occurring or genetically engineered mutations within an individual ribosomal protein provide a valuable resource, since the resulting abnormal phenotypes reveal the function of each ribosomal protein. A number of mutations recently identified in mammalian ribosomal subunit genes have confirmed that homozygous loss of function consistently results in lethality; however, haploinsufficiency causes a variety of tissue-specific phenotypes. In this paper, we describe the first mutant alleles of the gene encoding ribosomal protein S7 (Rps7) in mouse. Rps7 haploinsufficiency causes decreased size, abnormal skeletal morphology, mid-ventral white spotting, and eye malformations, phenotypes that also occur with haploinsufficiency for other ribosomal subunits. Additionally, significant apoptosis occurs within the developing central nervous system (CNS) along with subtle behavioral phenotypes, suggesting RPS7 is required for CNS development. Mutation of human RPS7 has been implicated in Diamond-Blackfan anemia (DBA), yet the murine alleles do not present an analogous phenotype. The phenotypes we observe in the Rps7 mouse mutants indicate RPS7 should be considered as a candidate for a broader spectrum of human diseases.
Collapse
|
14
|
Woo S, Yum S. Transcriptional response of marine medaka (Oryzias javanicus) on exposure to toxaphene. Comp Biochem Physiol C Toxicol Pharmacol 2011; 153:355-61. [PMID: 21220043 DOI: 10.1016/j.cbpc.2010.12.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2010] [Revised: 12/20/2010] [Accepted: 12/27/2010] [Indexed: 10/18/2022]
Abstract
Differential gene expression profiles were established from the head and liver tissues of the marine medaka fish (Oryzias javanicus) after its exposure to toxaphene, a persistent organic pollutant and insecticide, using differential display polymerase chain reaction. Twenty-seven differentially expressed genes were identified, which were associated with the cytoskeleton, development, metabolism, nucleic acid/protein binding, and signal transduction. Among these genes, those encoding molecular biomarkers known to be involved in metabolism, ATP hydrolysis, and protein regulation were strongly induced at the transcription level, and genes encoding one structural protein subunit or involved in lipid metabolism were strongly downregulated. The same trends in gene expression changes were observed with real-time PCR analysis of 12 selected clones. The genes identified could be used as molecular biomarkers of biological responses to polychlorinated camphene contamination in aquatic environments.
Collapse
Affiliation(s)
- Seonock Woo
- South Sea Environment Research Department, Korea Ocean Research and Development Institute, Geoje 656-830, Republic of Korea
| | | |
Collapse
|
15
|
Gilbert WV. Functional specialization of ribosomes? Trends Biochem Sci 2011; 36:127-32. [PMID: 21242088 DOI: 10.1016/j.tibs.2010.12.002] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2010] [Revised: 10/29/2010] [Accepted: 12/08/2010] [Indexed: 10/18/2022]
Abstract
Ribosomes are highly conserved macromolecular machines that are responsible for protein synthesis in all living organisms. Work published in the past year has shown that changes to the ribosome core can affect the mechanism of translation initiation that is favored in the cell, which potentially leads to specific changes in the relative efficiencies with which different proteins are made. Here, I examine recent data from expression and proteomic studies that suggest that cells make slightly different ribosomes under different growth conditions, and discuss genetic evidence that such differences are functional. In particular, I argue that eukaryotic cells probably produce ribosomes that lack one or more core ribosomal proteins (RPs) under some conditions, and that core RPs contribute differentially to translation of distinct subpopulations of mRNAs.
Collapse
Affiliation(s)
- Wendy V Gilbert
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
16
|
Blazer-Yost BL, Banga A, Amos A, Chernoff E, Lai X, Li C, Mitra S, Witzmann FA. Effect of carbon nanoparticles on renal epithelial cell structure, barrier function, and protein expression. Nanotoxicology 2010; 5:354-71. [PMID: 21067278 DOI: 10.3109/17435390.2010.514076] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
To assess effects of carbon nanoparticle (CNP) exposure on renal epithelial cells, fullerenes (C(60)), single-walled carbon nanotubes (SWNT), and multi-walled carbon nanotubes (MWNT) were incubated with a confluent renal epithelial line for 48 h. At low concentrations, CNP-treated cells exhibited significant decreases in transepithelial electrical resistance (TEER) but no changes in hormone-stimulated ion transport or CNP-induced toxicity or stress responses as measured by lactate dehydrogenase or cytokine release. The changes in TEER, manifested as an inverse relationship with CNP concentration, were mirrored by an inverse correlation between dose and changes in protein expression. Lower, more physiologically relevant, concentrations of CNP have the most profound effects on barrier cell function and protein expression. These results indicate an impact of CNPs on renal epithelial cells at concentrations lower than have been previously studied and suggest caution with regard to increasing CNP levels entering the food chain due to increasing environmental pollution.
Collapse
Affiliation(s)
- Bonnie L Blazer-Yost
- Department of Biology , Indiana University Purdue University at Indianapolis, Indianapolis, Indiana
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Tang YP, Wade J. Sex- and age-related differences in ribosomal proteins L17 and L37, as well as androgen receptor protein, in the song control system of zebra finches. Neuroscience 2010; 171:1131-40. [PMID: 20933575 DOI: 10.1016/j.neuroscience.2010.10.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2010] [Revised: 08/31/2010] [Accepted: 10/03/2010] [Indexed: 01/05/2023]
Abstract
The zebra finch song system is sexually dimorphic--only males sing, and the morphology of forebrain regions controlling the learning and production of this song is greatly enhanced in males compared to females. Masculinization appears to involve effects of steroid hormones as well as other factors, perhaps including the expression of sex chromosome genes (males: ZZ, females: ZW). The present study investigated three proteins--two encoded by Z-linked genes, ribosomal proteins L17 and L37 (RPL17 and RPL37), including their co-localization with androgen receptor (AR), from post-hatching day 25 to adulthood. Extensive co-expression of AR with the ribosomal proteins was detected in the three song nuclei investigated (HVC, robust nucleus of the arcopallium (RA), and Area X) across these ages. In general, more cells expressed each of these proteins in males compared to females, and the sex differences increased as animals matured. Specific patterns differed across regions and between RPL17 and RPL37, which suggest potential roles of one or both of these proteins in the incorporation and/or differentiation of song system cells.
Collapse
Affiliation(s)
- Y P Tang
- Michigan State University, Department of Psychology and Neuroscience Program, East Lansing, MI 48824, USA
| | | |
Collapse
|
18
|
Zhang M, Pritchard MR, Middleton FA, Horton JA, Damron TA. Microarray analysis of perichondral and reserve growth plate zones identifies differential gene expressions and signal pathways. Bone 2008; 43:511-20. [PMID: 18579462 PMCID: PMC2569855 DOI: 10.1016/j.bone.2008.04.021] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2007] [Revised: 04/24/2008] [Accepted: 04/25/2008] [Indexed: 12/23/2022]
Abstract
In the growth plate, the reserve and perichondral zones have been hypothesized to have similar functions, but their exact functions are poorly understood. Our hypothesis was that significant differential gene expression exists between perichondral and reserve chondrocytes that may differentiate the respective functions of these two zones. Normal Sprague-Dawley rat growth plate chondrocytes from the perichondral zone (PC) and reserve zone (RZ) were isolated by laser microdissection and then subjected to microarray analysis. In order to most comprehensively capture the unique features of the two zones, we analyzed both the most highly expressed genes and those that were most significantly different from the proliferative zone (PZ) as a single comparator. Confirmation of the differential expression of selected genes was done by quantitative real-time RT-PCR. A total of 8 transcripts showing high expression unique to the PC included translationally-controlled tumor protein (Tpt1), connective tissue growth factor (Ctgf), mortality factor 4 (Morf4l1), growth arrest specific 6 (Gas6), type V procollagen (Col5a2), frizzled-related protein (Frzb), GDP-dissociation inhibitor 2 (Gdi2) and Jun D proto-oncogene (Jund). In contrast, 8 transcripts showing unique high expression in the RZ included hyaluronan and proteoglycan link protein 1 (Hapln1), hemoglobin beta-2 subunit, type I procollagen (Col1a2), retinoblastoma binding protein 4 (LOC685491), Sparc-related modular calcium binding 2 (Smoc2), and calpastatin (Cast). Other genes were highly expressed in cells from both PC and RZ zones, including collagen II, collagen IX, catenin (cadherin associated protein) beta 1, eukaryotic translation elongation factor, high mobility group, ribosomal protein, microtubule-associated protein, reticulocalbin, thrombospondin, retinoblastoma binding protein, carboxypeptidase E, carnitine palmitoyltransferase 1, cysteine rich glycoprotein, plexin B2 (Plxnb2), and gap junction membrane channel protein. Functional classification of the most highly expressed transcripts were analyzed, and the pathway analysis indicated that ossification, bone remodeling, and cartilage development were uniquely enriched in the PC whereas both the PC and RZ showed pathway enrichment for skeletal development, extracellular matrix structural constituent, proteinaceous extracellular matrix, collagen, extracellular matrix, and extracellular matrix part pathways. We conclude that differential gene expression exists between the RZ and PC chondrocytes and these differentially expressed genes have unique roles to play corresponding to the function of their respective zones.
Collapse
Affiliation(s)
- Mingliang Zhang
- Musculoskeletal Sciences Research Laboratory, Department of Orthopedic Surgery, State University of New York Upstate Medical University, Syracuse, New York, 13210
| | - Meredith R. Pritchard
- Musculoskeletal Sciences Research Laboratory, Department of Orthopedic Surgery, State University of New York Upstate Medical University, Syracuse, New York, 13210
| | - Frank A. Middleton
- Microarray Core Facility, Department of Neuroscience and Physiology, State University of New York Upstate Medical University, Syracuse, New York, 13210
| | - Jason A. Horton
- Musculoskeletal Sciences Research Laboratory, Department of Orthopedic Surgery, State University of New York Upstate Medical University, Syracuse, New York, 13210
| | - Timothy A. Damron
- Musculoskeletal Sciences Research Laboratory, Department of Orthopedic Surgery, State University of New York Upstate Medical University, Syracuse, New York, 13210
| |
Collapse
|
19
|
Almstrup K, Leffers H, Lothe RA, Skakkebaek NE, Sonne SB, Nielsen JE, Rajpert-De Meyts E, Skotheim RI. Improved gene expression signature of testicular carcinoma in situ. ACTA ACUST UNITED AC 2007; 30:292-302; discussion 303. [PMID: 17488342 DOI: 10.1111/j.1365-2605.2007.00758.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The carcinoma in situ (CIS) stage is the common precursor of testicular germ cell tumours (TGCTs) that arise in young adults. Within the past decade genome wide gene expression tools have been developed and have greatly advanced the insight into the biology of TGCTs. Two independent data sets on global gene expression in testicular CIS have been previously published. We have merged the two data sets on CIS samples (n = 6) and identified the shared gene expression signature in relation to expression in normal testis. Among the top-20 highest expressed genes, one-third was transcription factors and the list included some 'novel' CIS markers (i.e. DOCK11 and ANXA3). Genes related to biological terms 'nucleic acid binding' and 'translational activity' (e.g. transcription factors and ribosomal proteins, respectively) were consistently and significantly over-represented. Some of the significantly over-expressed genes in CIS cells were selected for validation by RT-PCR (IFI16, DOCK11, and ANXA3), immunohistochemistry (HLXB9), or in situ hybridization (IFI16). High-level analysis utilizing the Ingenuity pathway analysis tool indicated that networks relating to 'gene expression in cancer' and 'embryonic development' were significantly altered and could collectively affect cellular pathways like the WNT signalling cascade, which thus may be disrupted in testicular CIS. The merged CIS data from two different microarray platforms, to our knowledge, provide the most precise CIS gene expression signature to date.
Collapse
Affiliation(s)
- Kristian Almstrup
- University Department of Growth and Reproduction, Rigshospitalet, Section GR-5064, Blegdamsvej 9, DK-2100 Copenhagen, Denmark
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Tan W, Sun L, Zhang D, Sun J, Qian J, Hu X, Wang W, Sun Y, Ma L, Zhu C. Cloning and overexpression of ribosomal protein L39 gene from deltamethrin-resistant Culex pipiens pallens. Exp Parasitol 2007; 115:369-78. [PMID: 17092499 DOI: 10.1016/j.exppara.2006.09.020] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2006] [Revised: 09/26/2006] [Accepted: 09/29/2006] [Indexed: 11/25/2022]
Abstract
The complete sequence of ribosomal protein L39 has been cloned from deltamethrin-resistant strain of Culex pipiens pallens (DR1 strain). Quantitative RT-PCR analysis indicated that the RPL39 transcription level was 23.4 times higher in DR1 strain than in susceptible strain at 4th instar larvae. The RPL39 expression was also found to be consistently higher throughout the life cycle of DR1 strain. A protein of predicted size 17 kDa has been detected by Western blotting in RPL39-transfected mosquito C6/36 cells. These RPL39-transfected cells also showed enhanced deltamethrin resistance compared to plasmid vector-transfected cells as determined by methyl tritiated thymidine ((3)H-TdR) incorporation. These results indicate that RPL39 is expressed at higher levels in DR1 strain, and may confer some insecticide resistance in Cx. pipiens pallens.
Collapse
Affiliation(s)
- Wenbin Tan
- Department of Pathogenic Biology, Nanjing Medical University, Nanjing, Jiangsu Province, PR China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Tang YP, Wade J. Sexually dimorphic expression of the genes encoding ribosomal proteins L17 and L37 in the song control nuclei of juvenile zebra finches. Brain Res 2006; 1126:102-8. [PMID: 16938280 PMCID: PMC2878125 DOI: 10.1016/j.brainres.2006.08.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2006] [Revised: 07/31/2006] [Accepted: 08/03/2006] [Indexed: 11/25/2022]
Abstract
Studies evaluating the role of steroid hormones in sexual differentiation of the zebra finch song system have produced complicated and at times paradoxical results, and indicate that additional factors may be critical. Therefore, in a previous study we initiated a screen for differential gene expression in the telencephalon of developing male and female zebra finches. The use of cDNA microarrays and real-time quantitative PCR revealed increased expression of the genes encoding ribosomal proteins L17 and L37 (RPL17 and RPL37) in the male forebrain as a whole. Preliminary in situ hybridization data then indicated enhanced expression of both these genes in song control regions. Two experiments in the present study quantified the mRNA expression. The first utilized 25-day-old male and female zebra finches. The second compared a separate set of juveniles to adults of both sexes to both re-confirm enhanced expression in juvenile males and to determine whether it is limited to developing animals. In Experiment 1, males exhibited increased expression of both RPL17 and RPL37 compared to females in Area X, the robust nucleus of the arcopallium (RA), and the ventral ventricular zone (VVZ), which may provide neurons to Area X. Experiment 2 replicated the sexually dimorphic expression of these genes at post-hatching day 25, and documented that the sex differences are eliminated or greatly reduced in adults. The results are consistent with the idea that these ribosomal proteins may influence sexual differentiation of Area X and RA, potentially regulating the genesis and/or survival of neurons.
Collapse
Affiliation(s)
| | - Juli Wade
- Corresponding author. Fax: +1 517 432 2744. (J. Wade)
| |
Collapse
|
22
|
Kathju S, Satish L, Rabik C, Rupert T, Oswald D, Johnson S, Hu FZ, Post JC, Ehrlich GD. Identification of differentially expressed genes in scarless wound healing utilizing polymerase chain reaction- suppression subtractive hybridization. Wound Repair Regen 2006; 14:413-20. [PMID: 16939568 DOI: 10.1111/j.1743-6109.2006.00140.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Wound healing in fetal skin is well known to proceed without scarring, whereas adult (postnatal) skin wound healing is accompanied by scar formation. To identify differentially expressed genes during fetal wound (FW) healing, we have used polymerase chain reaction-suppression subtractive hybridization. This technique allows for a comparative analysis across the entire transcriptome of FW vs. unwounded fetal control tissue, including even potentially novel sequences. Our subtractive hybridization protocol identified 15 clones that are overexpressed in healing FWs, and 20 clones that are underexpressed. These include genes with both known and unknown functions. We have confirmed the differential pattern of expression for four of these candidate genes: elongation factor 1 alpha, elongation initiation factor 4e, and two transcripts thus far known only as an expressed sequence tags. With this approach, we have also identified novel genes potentially involved in scarless wound healing.
Collapse
Affiliation(s)
- Sandeep Kathju
- Center for Genomic Sciences, Allegheny Singer Research Institute, Allegheny General Hospital, Pittsburgh, Pennsylvania 15212-4772, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Ditt RF, Kerr KF, de Figueiredo P, Delrow J, Comai L, Nester EW. The Arabidopsis thaliana transcriptome in response to Agrobacterium tumefaciens. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2006; 19:665-81. [PMID: 16776300 DOI: 10.1094/mpmi-19-0665] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
The pathogen Agrobacterium tumefaciens infects a broad range of plants, introducing the T-DNA into their genome. Contrary to all known bacterial phytopathogens, A. tumefaciens lacks the hypersensitive response-inducing hrp genes, although it introduces numerous proteins into the plant cell through a type IV secretion system. To understand the timing and extent of the plant transcriptional response to this unusual pathogen, we used an Arabidopsis 26,000-gene oligonucleotide microarray. We inoculated Arabidopsis cell cultures with an oncogenic Agrobacterium strain and analyzed four biological replicates to identify two robust sets of regulated genes, one induced and the other suppressed. In both cases, the response was distinct at 48 h after infection, but not at 24 h or earlier. The induced set includes genes encoding known defense proteins, and the repressed set is enriched with genes characteristic of cell proliferation even though a growth arrest was not visible in the inoculated cultures. The analysis of the repressed genes revealed that the conserved upstream regulatory elements Frankiebox (also known as "site II") and Telobox are associated with the suppression of gene expression. The regulated gene sets should be useful in dissecting the signaling pathways in this plant-pathogen interaction.
Collapse
Affiliation(s)
- Renata F Ditt
- Department of Biology, University of Washington, Seattle 98195, USA
| | | | | | | | | | | |
Collapse
|
24
|
Ingerslev HC, Pettersen EF, Jakobsen RA, Petersen CB, Wergeland HI. Expression profiling and validation of reference gene candidates in immune relevant tissues and cells from Atlantic salmon (Salmo salar L.). Mol Immunol 2006; 43:1194-201. [PMID: 16139890 DOI: 10.1016/j.molimm.2005.07.009] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2005] [Accepted: 07/06/2005] [Indexed: 11/25/2022]
Abstract
The expression levels of three commonly used housekeeping genes, EF1-alpha, RPS20 and Beta-Actin, were examined in seven different tissues and leucocytes from non-stimulated Atlantic salmon (Salmo salar L.). The tissues analysed by quantitative real-time PCR were gill, liver, intestine, muscle, spleen, head kidney leucocytes (HKL) and peripheral blood leucocytes (PBL). The experiments were performed to investigate the transcriptional stability within and between tissues and leucocytes and between individuals. For all tissues and leucocytes, an appropriate reference gene was identified except for muscle tissue. HKL were used as a calibrator and the expression of EF1-alpha varied maximally 2.5-fold in five out of the six tissues and leucocytes investigated relative to the expression of 18S rRNA. The RPS20 gene was more intermediate and varied at least by a factor of two and maximally by a 20-fold factor. Beta-Actin was generally the most regulated gene showing high variations for gill (5.8x) and spleen tissue (10.3x) relative to the calibrator. A suitable reference gene for muscle tissue was not found since the expression varied between 8.3- and 25-fold for the three genes compared to the calibrator. By comparing the expression results of the non-stimulated tissues and leucocytes using the Normfinder programme, it was further shown that EF1-alpha was the most stably expressed gene both between individuals and the different tissues/leucocytes. Stimulation with lipopolysaccharide (LPS) of TO cells and HKL from Atlantic salmon was additionally performed to reveal whether an immune stimulating agent would change the expression level of EF1-alpha, RPS20 and Beta-Actin. LPS stimulation of cells revealed that RPS20 and EF1-alpha were least regulated by the LPS treatment in the TO cells relative to 18S rRNA, but in HKL, Beta-Actin was the most appropriate gene. However, the variations were overall maximally two-fold in LPS-stimulated TO cells and HKL, which make all three genes suitable as reference genes in this case. A further experiment showed that no RT- and/or PCR inhibitors were present in the non-stimulated tissues and cells, indicating true transcriptional differences.
Collapse
|
25
|
Ortiz-Plata A, Nader-Kawachi J, Guevara J, Sandoval C, Rembao D, de la Cruz Hernandez-Hernandez F. EGP-314 is expressed differentially in three brain zones at an early time in an experimentally induced ischemia rat model. ACTA ACUST UNITED AC 2005; 137:55-62. [PMID: 15950761 DOI: 10.1016/j.molbrainres.2005.02.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2003] [Revised: 02/03/2005] [Accepted: 02/13/2005] [Indexed: 10/25/2022]
Abstract
Gene expression in frontal, occipital, and hippocampal regions of rat brains at 15 min of ischemic injury was studied in a rat model by producing focal cerebral ischemia through middle cerebral artery (MCA) occlusion without reperfusion. Catalase, epithelial glycoprotein (EGP-314), cytochrome C oxidase-subunit 1, ribosomal L31 protein, and ceruloplasmin were found to be differentially expressed. Specific primers were designed to study this newly reported brain EGP-314, a cellular adhesion molecule involved in cell-cell and cell-extracellular matrix interactions and related with cytoskeletal organization, differentiation, and proliferation. In the frontal and occipital lobes, EGP-314 expression was low in control and ischemic conditions and increased in sham injured conditions, whereas in the hippocampal region its expression was induced only by ischemia. In situ hybridization and immunohistochemistry revealed that EGP-314 mRNA and the protein were present in the ischemic hippocampus pyramidal neurons. DNA fragmentation was demonstrated by TUNEL and LM-PCR analysis in hippocampus region. TUNEL positive pyramidal neurons were observed at 15 min of ischemia. DNA ladder was found at 12 and 15 min of ischemia.
Collapse
Affiliation(s)
- Alma Ortiz-Plata
- Department of Neuropathology, Neurology and Neurosurgery National Institute, Mexico City, Mexico
| | | | | | | | | | | |
Collapse
|
26
|
An J, Yuan Q, Wang C, Liu L, Tang K, Tian HY, Jing NH, Zhao FK. Differential display of proteins involved in the neural differentiation of mouse embryonic carcinoma P19 cells by comparative proteomic analysis. Proteomics 2005; 5:1656-68. [PMID: 15789344 DOI: 10.1002/pmic.200401049] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Mouse embryonic carcinoma P19 cell has been used extensively as a model to study molecular mechanisms of neural differentiation in vitro. After retinoic acid (RA) treatment and aggregation, P19 cells can differentiate into neural cells including neurons and glial cells. In this study, comparative proteomic analysis is utilized to approach the protein profiles associated with the RA-induced neural differentiation of P19 cells. Image analysis of silver stained two-dimensional gels indicated that 28 protein spots had significantly differential expression patterns in both quantity and quality. With mass spectrometry analysis and protein functional exploration, many proteins demonstrated an association with distinct aspects of neural differentiation. These proteins were gag polyprotein, rod cGMP-specific 3',5'-cyclic phosphodiesterase, 53 kDa BRG1-associated factor A, N-myc downstream regulated 1, Vitamin D receptor associated factor 1, stromal cell derived factor receptor 1, phosphoglycerate mutase, Ran-specific GTPase-activating protein, and retinoic acid (RA)-binding protein. While some cytoskeleton-related proteins such as beta cytoskeletal actin, gamma-actin, actin-related protein 1, tropomyosin 1, and cofilin 1 are related to cell migration and aggregation, other proteins have shown a relationship with distinct aspects of neural differentiation including energy production and utilization, protein synthesis and folding, cell signaling transduction, and self-protection. The differential expression patterns of these 28 proteins indicate their different roles during the neural differentiation of P19 cells. As an initial step toward unveiling the regulations involved in the commitment of pluripotent cells to a neural fate, information from this study may be helpful to uncover the molecular mechanisms of neural differentiation.
Collapse
Affiliation(s)
- Jie An
- Key Laboratory of Proteomics, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Wade J, Tang YP, Peabody C, Tempelman RJ. Enhanced gene expression in the forebrain of hatchling and juvenile male zebra finches. ACTA ACUST UNITED AC 2005; 64:224-38. [PMID: 15849735 DOI: 10.1002/neu.20141] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The molecular mechanisms regulating sexual differentiation of the brain are largely unknown, although progress is being made, particularly in some mammalian systems. To uncover more of the key factors, a screen was conducted for genes involved in sexually dimorphic development of the neural song system in zebra finches. cDNA microarrays were initially used to compare gene expression in the telencephalons of hatchling and juvenile males and females. Then, real-time quantitative polymerase chain reaction (PCR) was employed to confirm sex differences, and the brain regions expressing the cDNAs of interest were localized using in situ hybridization. Several genes, including those likely to encode two ribosomal proteins (RPL17 and RPL37), SCAMP1, ZNF216, and a COBW-domain containing protein, showed enhanced expression in the telencephalon of males compared to females. In several cases, expression in the song control nuclei specifically was detected only in males. Interestingly, the sequences of some of these cDNAs shared substantial homology with regions of the chicken Z chromosome (male birds are ZZ, females ZW). Thus, we have identified genes likely to be involved in masculinization of the structure and/or function of the song circuit, some of which could be initial triggers for the sexual differentiation process.
Collapse
Affiliation(s)
- Juli Wade
- Departments of Psychology and Neuroscience Program, Michigan State University, East Lansing, Michigan 48824, USA.
| | | | | | | |
Collapse
|
28
|
Wittlin S, Sutherland KD, Visvader JE, Lindeman GJ. Identification of Taxreb107 as a lactogenic hormone responsive gene in mammary epithelial cells. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2003; 1642:139-47. [PMID: 14572897 DOI: 10.1016/s0167-4889(03)00121-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Mammary gland development and differentiation is regulated by a number of growth factors and hormones. Milk protein gene expression represents a hallmark of functional mammary epithelial differentiation and is coordinated by the lactogenic hormone prolactin and glucocorticoids. To date, few 'early-response' genes transcriptionally activated by lactogenic hormones have been described. We have used representational difference analysis (RDA) to search for lactogenic-responsive genes in SCp2 mouse mammary epithelial cells. One of the cDNAs identified encoded the DNA-binding protein Taxreb107, originally identified as a HTLV-I Tax responsive element binding protein. Increased Taxreb107 expression was confirmed following prolactin and dexamethasone-induced differentiation of SCp2 and HC11 mammary epithelial cells. Taxreb107 RNA levels were developmentally regulated in the mouse mammary gland, where levels increased substantially during mid- and late pregnancy and persisted during lactation. Overexpression of an antisense Taxreb107 cDNA construct or antisense oligonucleotide in HC11 mammary epithelial cells attenuated milk protein gene expression following prolactin and dexamethasone treatment. These findings indicate a role for Taxreb107 as a lactogenic hormone-responsive gene during differentiation of the mammary gland.
Collapse
Affiliation(s)
- Sergio Wittlin
- VBCRC Breast Cancer Laboratory, The Walter and Eliza Hall Institute of Medical Research and Bone Marrow Research Laboratories, 1G Royal Parade, VIC 3050, Parkville, Australia
| | | | | | | |
Collapse
|
29
|
Zhao SH, Nettleton D, Liu W, Fitzsimmons C, Ernst CW, Raney NE, Tuggle CK. Complementary DNA macroarray analyses of differential gene expression in porcine fetal and postnatal muscle. J Anim Sci 2003; 81:2179-88. [PMID: 12968692 DOI: 10.2527/2003.8192179x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
To study differential gene expression in porcine skeletal muscle, a porcine complementary DNA (cDNA) macroarray was produced that contained 327 expressed sequence tags (EST) derived from whole embryo and adult skeletal muscle, and differential display PCR products from fetal and postnatal muscle. Total RNA from four muscle samples, 75- and 105-d fetal hind limb muscles, and 1- and 7-wk postnatal semitendinosus muscle was used to make radiolabeled targets for duplicate hybridization to the macroarray membranes in an initial screen for expression. All EST that gave clear signals (n = 238) were then re-arrayed, and hybridization was conducted with additional biological replication of samples in the 75-d and 1-wk ages. Signal intensity for each gene was normalized to signal intensity measured at control spots on each membrane, which consisted of total cDNA from liver, lung, spleen, and skeletal muscle. Both normalized ratio levels and a mixed linear model analyses were used to identify genes differentially expressed among the muscle samples. Results showed 28 genes had differences in expression level greater than twofold between the 75-d fetal and 1-wk muscle RNA samples. All 28 genes were also identified as genes with significantly different (P < 0.01) expression using a mixed linear model analysis. Nineteen of these 28 genes had significant matches (basic local alignment search tool [BLAST] score > 100; P < 0.01) to known genes, two matched genes encoding human hypothetical proteins, and seven had no significant matches to Genbank nonredundant and dbEST (database of expressed sequence tags) entries. These results were confirmed for representative genes with RNA blot analysis of seven developmental time points, including RNA from the same muscle samples tested previously in the macroarray. The RNA blot results confirmed the macroarray results for all selected genes, demonstrating that the macroarray technique used in this study is accurate and reproducible. An unknown muscle clone (M218) with a slightly less than twofold increase in expression from the 75-d to the 1-wk age (1 wk/75 d = 1.94; P = 0.0114) was also shown to differ between these two ages using RNA blot analysis, demonstrating the methods used to identify differentially expressed genes may be conservative. The association between expression patterns of vimentin and desmin was also investigated. Results indicate the switch in intermediate filament protein from vimentin to desmin occurs primarily at the level of transcription and/or RNA processing.
Collapse
Affiliation(s)
- S H Zhao
- Department of Animal Science, Iowa State University, Ames 50011, USA
| | | | | | | | | | | | | |
Collapse
|
30
|
Kasai H, Nadano D, Hidaka E, Higuchi K, Kawakubo M, Sato TA, Nakayama J. Differential expression of ribosomal proteins in human normal and neoplastic colorectum. J Histochem Cytochem 2003; 51:567-74. [PMID: 12704204 DOI: 10.1177/002215540305100502] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Ribosomal proteins are a major component of ribosomes and play critical roles in protein biosynthesis. Recently it has been shown that the ribosomal proteins also function during various cellular processes that are independent of protein biosynthesis therefore called extraribosomal functions. In this study we have, for the first time, determined the expression profile of 12 ribosomal proteins (Sa, S8, S11, S12, S18, S24, L7, L13a, L18, L28, L32, and L35a) in normal epithelia of human colorectal mucosa using immunohistochemistry (IHC) and then compared their expression patterns with those of colorectal cancer. In the normal mucosa, ribosomal proteins were largely associated with the ribosomes of mucosal epithelia, and the expression level of ribosomal proteins, except for S11 and L7 proteins, was markedly increased in associated with maturation of the mucosal cells. On the other hand, these ribosomal proteins were markedly decreased in colorectal cancer compared with the normal mucosa. By contrast, S11 and L7 ribosomal proteins were rarely associated with the ribosomes of colorectal epithilia except immature mucosal cells, whereas their expression levels were significantly enhanced in colorectal cancer cells. In addition, L7 ribosomal protein was detected in the secretory granules of the enterochromaffin cells in the colorectal mucosa and in carcinoma cells expressing chromogranin A. These results indicate that the expression of ribosomal proteins is differentially regulated not only in normal mucosa but also in carcinoma of human colorectum, and suggest an extraribosomal function of L7 ribosomal protein in neuroendocrine function.
Collapse
Affiliation(s)
- Hide Kasai
- Department of Pathology, Shinshu University School of Medicine, Matsumoto, Japan
| | | | | | | | | | | | | |
Collapse
|
31
|
Goodin JL, Rutherford CL. Characterization of human ribosomal S3a gene expression during adenosine 3':5' cyclic monophosphate induced neuroendocrine differentiation of LNCaP cells. Regulation of S3a gene expression in LNCaP. Mol Biol Rep 2002; 29:301-16. [PMID: 12463423 DOI: 10.1023/a:1020457400377] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Elevation of intracellular cAMP levels in the human prostatic adenocarcinoma cell line LNCaP results in the induction of reversible neuroendocrine differentiation and cell growth arrest. We have used the differential display technique to identify genes that are differentially expressed during cAMP induced neuroendocrine differentiation in LNCaP cells. We identified the human ribosomal S3a gene as being down regulated in response to LNCaP differentiation. The S3a gene is known to be expressed at high levels in both tumors and cancer cell lines. It has also been shown that down regulation of S3a is associated with a loss of the transformed phenotype. In order to better ascertain the mechanism by which S3a gene expression is decreased during differentiation, the promoter region for this gene was analyzed. Electrophoretic mobility shift assay, antibody supershift assays, site-directed mutagenesis, and luciferase reporter gene analysis were employed to authenticate the roles of several transcription factors in the regulation of the S3a gene. We found that two cyclic AMP response elements, a Sp1 element, and a GA-binding protein element were involved in the regulation of S3a gene expression. The CRE elements were found to be necessary for high level expression of the 53a gene in undifferentiated LNCaP cells. Mutations in the CRE elements abolished CREB-1 binding and resulted in a 57% decrease in S3a gene expression. The addition of cAMP elevating agents to LNCaP cells in sufficient quantity to induce differentiation generated a 50% decrease in S3a gene expression. These results suggest that the CRE elements participate in cAMP-induced down regulation of gene expression. Furthermore, our experiments demonstrate that occupation of the GABP binding site results in a substantial decrease in S3a promoter activity.
Collapse
Affiliation(s)
- Jeremy L Goodin
- Department of Biology, 2119 Derring Hall, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | | |
Collapse
|
32
|
Chen MH, Antoni L, Tazi-Ahnini R, Cork M, Ward SJ, Båvik CO. Identification of known and novel genes whose expression is regulated by endogenous retinoic acid during early embryonic development of the mouse. Mech Dev 2002; 114:205-12. [PMID: 12175513 DOI: 10.1016/s0925-4773(02)00066-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Retinoic acid (RA) derived from vitamin A is necessary for, among other things, mammalian embryonic development. Although the impact of RA-dependent gene-regulation on embryonic development has been examined through genetic disruption of the retinoid receptors, the understanding of the underlying molecular mechanism remain unclear, in part, due to the difficulty in identifying RA-regulated genes in an intact embryo. We report here that RA-regulated genes can be identified from total RA-deficient embryos created by retinol-binding protein antisense (RBP-AS) oligodeoxynucleotide treatment in conjunction with differential display. Of the 28 genes isolated, 15 genes matched known genes in the GenBank database and the others either represented EST sequences or encoded novel genes. Semi-quantitative reverse transcriptase-polymerase chain reaction verified that the mRNA levels of mouse DN 38, COL VI 3 alpha, cul-1, alpha-tropomyosin, and PP2A-C alpha were substantially increased, whereas mouse Msh 2, Ndufa2, Ribosomal protein S19, sFRP-1, GDAP-10 and mSmcD were significantly decreased in vitamin A deficient (VAD) embryos compared to the control embryos. The utility of the method is exemplified by our finding that several genes in the Wnt signaling pathway are vitamin A regulated in day 9.0 post coitum (p.c.) embryos.
Collapse
Affiliation(s)
- Miao-Hsueh Chen
- Program of Nutritional Sciences and the Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX 78721, USA
| | | | | | | | | | | |
Collapse
|
33
|
Angelastro JM, Töröcsik B, Greene LA. Nerve growth factor selectively regulates expression of transcripts encoding ribosomal proteins. BMC Neurosci 2002; 3:3. [PMID: 11922865 PMCID: PMC100322 DOI: 10.1186/1471-2202-3-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2001] [Accepted: 02/28/2002] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND NGF exerts a variety of actions including promotion of neuronal differentiation and survival. The PC12 rat pheochromocytoma cell line has proved valuable for studying how NGF works and has revealed that the NGF mechanism includes regulation of gene expression. Accordingly, we used SAGE (Serial Analysis of Gene Expression) to compare levels of specific transcripts in PC12 cells before and after long-term NGF exposure. Of the approximately 22,000 transcripts detected and quantified, 4% are NGF-regulated by 6-fold or more. Here, we used database information to identify transcripts in our SAGE libraries that encode ribosomal proteins and have compared the effect of NGF on their relative levels of expression. RESULTS Among the transcripts detected in our SAGE analysis, 74 were identified as encoding ribosomal proteins. Ribosomal protein transcripts were among the most abundantly expressed and, for naive and NGF-treated PC12 cells, represented 5.2% and 3.5%, respectively, of total transcripts analyzed. Surprisingly, nearly half of ribosomal protein transcripts underwent statistically significant NGF-promoted alterations in relative abundance, with changes of up to 5-fold. Of the changes, approximately 2/3 represented decreases. A time course revealed that the relative abundance of transcripts encoding RPL9 increases within 1 hr of NGF treatment and is maximally elevated by 8 hr. CONCLUSIONS These data establish that NGF selectively changes expression of ribosomal protein transcripts. These findings raise potential roles for regulation of ribosomal protein transcripts in NGF-promoted withdrawal from the cell cycle and neuronal differentiation and indicate that regulation of individual ribosomal protein transcripts is cell- and stimulus-specific.
Collapse
Affiliation(s)
- James M Angelastro
- Department of Pathology and Center for Neurobiology and Behavior, Columbia University College of Physicians and Surgeons, 630 W. 168th Street, New York, NY 10032, USA
| | - Béata Töröcsik
- Department of Pathology and Center for Neurobiology and Behavior, Columbia University College of Physicians and Surgeons, 630 W. 168th Street, New York, NY 10032, USA
- On leave from the Department of Biology, University Medical School of Pecs, Pecs, Hungary
| | - Lloyd A Greene
- Department of Pathology and Center for Neurobiology and Behavior, Columbia University College of Physicians and Surgeons, 630 W. 168th Street, New York, NY 10032, USA
| |
Collapse
|
34
|
Goodin JL, Rutherford CL. Identification of differentially expressed genes during cyclic adenosine monophosphate-induced neuroendocrine differentiation in the human prostatic adenocarcinoma cell line LNCaP. Mol Carcinog 2002. [DOI: 10.1002/mc.10025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|