1
|
Kolesnikova VV, Nikonov OS, Phat TD, Nikonova EY. The Proteins Diversity of the eIF4E Family in the eIF4F Complex. BIOCHEMISTRY. BIOKHIMIIA 2025; 90:S60-S85. [PMID: 40164153 DOI: 10.1134/s0006297924603721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/17/2024] [Accepted: 10/02/2024] [Indexed: 04/02/2025]
Abstract
In eukaryotes, translation initiation occurs by the cap-dependent mechanism. Each translated mRNA must be pre-bound by the translation initiation factor eIF4E. All isoforms of this factor are combined into one family. The review considers natural diversity of the eIF4E isoforms in different organisms, provides structural information about them, and describes their functional role in the processes, such as oncogenesis, participation in the translation of certain mRNAs under stress, and selective use of the individual isoforms by viruses. In addition, this review briefly describes the mechanism of cap-dependent translation initiation and possible ways to regulate the eIF4E function.
Collapse
Affiliation(s)
- Viktoriya V Kolesnikova
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| | - Oleg S Nikonov
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| | - Tien Do Phat
- Institute of Biotechnology, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Ekaterina Yu Nikonova
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia.
| |
Collapse
|
2
|
Zhang J, Jin H, Chen Y, Jiang Y, Gu L, Lin G, Lin C, Wang Q. The eukaryotic translation initiation factor eIF4E regulates flowering and circadian rhythm in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 120:123-138. [PMID: 39145515 DOI: 10.1111/tpj.16975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 07/24/2024] [Accepted: 07/29/2024] [Indexed: 08/16/2024]
Abstract
Translation initiation is a critical, rate-limiting step in protein synthesis. The eukaryotic translation initiation factor 4E (eIF4E) plays an essential role in this process. However, the mechanisms by which eIF4E-dependent translation initiation regulates plant growth and development remain not fully understood. In this study, we found that Arabidopsis eIF4E proteins are distributed in both the nucleus and cytoplasm, with only the cytoplasmic eIF4E being involved in the control of photoperiodic flowering. Genome-wide translation profiling using Ribo-tag sequencing reveals that eIF4E may regulate plant flowering by maintaining the homeostatic translation of components in the photoperiodic flowering pathway. eIF4E not only regulates the translation of flowering genes such as FLOWERING LOCUS T (FT) and FLOWERING LOCUS D (FLD) but also influences the translation of circadian genes like CIRCADIAN CLOCK ASSOCIATED 1 (CCA1) and PSEUDO-RESPONSE REGULATOR 9 (PRR9). Consistently, our results show that the eIF4E modulates the rhythmic oscillation of the circadian clock. Together, our study provides mechanistic insights into how the protein translation regulates multiple developmental processes in Arabidopsis, including the circadian clock and photoperiodic flowering.
Collapse
Affiliation(s)
- Jing Zhang
- College of Life Sciences, Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Huanhuan Jin
- College of Life Sciences, Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yadi Chen
- College of Life Sciences, Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yonghong Jiang
- College of Life Sciences, Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Lianfeng Gu
- College of Life Sciences, Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Guifang Lin
- College of Life Sciences, Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Chentao Lin
- College of Life Sciences, Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Qin Wang
- College of Life Sciences, Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
3
|
Hernández G, Vazquez-Pianzola P. eIF4E as a molecular wildcard in metazoans RNA metabolism. Biol Rev Camb Philos Soc 2023; 98:2284-2306. [PMID: 37553111 DOI: 10.1111/brv.13005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 07/01/2023] [Accepted: 07/25/2023] [Indexed: 08/10/2023]
Abstract
The evolutionary origin of eukaryotes spurred the transition from prokaryotic-like translation to a more sophisticated, eukaryotic translation. During this process, successive gene duplication of a single, primordial eIF4E gene encoding the mRNA cap-binding protein eukaryotic translation initiation factor 4E (eIF4E) gave rise to a plethora of paralog genes across eukaryotes that underwent further functional diversification in RNA metabolism. The ability to take different roles is due to eIF4E promiscuity in binding many partner proteins, rendering eIF4E a highly versatile and multifunctional player that functions as a molecular wildcard. Thus, in metazoans, eIF4E paralogs are involved in various processes, including messenger RNA (mRNA) processing, export, translation, storage, and decay. Moreover, some paralogs display differential expression in tissues and developmental stages and show variable biochemical properties. In this review, we discuss recent advances shedding light on the functional diversification of eIF4E in metazoans. We emphasise humans and two phylogenetically distant species which have become paradigms for studies on development, namely the fruit fly Drosophila melanogaster and the roundworm Caenorhabditis elegans.
Collapse
Affiliation(s)
- Greco Hernández
- mRNA and Cancer Laboratory, Unit of Biomedical Research on Cancer, National Institute of Cancer (Instituto Nacional de Cancerología, INCan), 22 San Fernando Ave., Tlalpan, Mexico City, 14080, Mexico
| | - Paula Vazquez-Pianzola
- Institute of Cell Biology, University of Bern, Baltzerstrasse 4, Berne, 3012, Switzerland
| |
Collapse
|
4
|
Li S, Chen JS, Li X, Bai X, Shi D. MNK, mTOR or eIF4E-selecting the best anti-tumor target for blocking translation initiation. Eur J Med Chem 2023; 260:115781. [PMID: 37669595 DOI: 10.1016/j.ejmech.2023.115781] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/29/2023] [Accepted: 08/29/2023] [Indexed: 09/07/2023]
Abstract
Overexpression of eIF4E is common in patients with various solid tumors and hematologic cancers. As a potential anti-cancer target, eIF4E has attracted extensive attention from researchers. At the same time, mTOR kinases inhibitors and MNK kinases inhibitors, which are directly related to regulation of eIF4E, have been rapidly developed. To explore the optimal anti-cancer targets among MNK, mTOR, and eIF4E, this review provides a detailed classification and description of the anti-cancer activities of promising compounds. In addition, the structures and activities of some dual-target inhibitors are briefly described. By analyzing the different characteristics of the inhibitors, it can be concluded that MNK1/2 and eIF4E/eIF4G interaction inhibitors are superior to mTOR inhibitors. Simultaneous inhibition of MNK and eIF4E/eIF4G interaction may be the most promising anti-cancer method for targeting translation initiation.
Collapse
Affiliation(s)
- Shuo Li
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, Shandong, PR China.
| | - Jia-Shu Chen
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, Shandong, PR China.
| | - Xiangqian Li
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, Shandong, PR China.
| | - Xiaoyi Bai
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, Shandong, PR China.
| | - Dayong Shi
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, Shandong, PR China.
| |
Collapse
|
5
|
Chen X, An Y, Tan M, Xie D, Liu L, Xu B. Biological functions and research progress of eIF4E. Front Oncol 2023; 13:1076855. [PMID: 37601696 PMCID: PMC10435865 DOI: 10.3389/fonc.2023.1076855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 01/30/2023] [Indexed: 08/22/2023] Open
Abstract
The eukaryotic translation initiation factor eIF4E can specifically bind to the cap structure of an mRNA 5' end, mainly regulating translation initiation and preferentially enhancing the translation of carcinogenesis related mRNAs. The expression of eIF4E is closely related to a variety of malignant tumors. In tumor cells, eIF4E activity is abnormally increased, which stimulates cell growth, metastasis and translation of related proteins. The main factors affecting eIF4E activity include intranuclear regulation, phosphorylation of 4EBPs, and phosphorylation and sumoylation of eIF4E. In this review, we summarize the biological functions and the research progress of eIF4E, the main influencing factors of eIF4E activity, and the recent progress of drugs targeting eIF4E, in the hope of providing new insights for the treatment of multiple malignancies and development of targeted drugs.
Collapse
Affiliation(s)
- Xiaocong Chen
- Department of Clinical Medicine, Fenyang College of Shanxi Medical University, Fenyang, China
| | - Yang An
- Department of Clinical Medicine, Fenyang College of Shanxi Medical University, Fenyang, China
| | - Mengsi Tan
- Department of Clinical Medicine, Fenyang College of Shanxi Medical University, Fenyang, China
| | - Dongrui Xie
- Department of Clinical Medicine, Fenyang College of Shanxi Medical University, Fenyang, China
| | - Ling Liu
- Department of Medical Laboratory Science, Fenyang College of Shanxi Medical University, Fenyang, China
- Key Laboratory of Lvliang for Clinical Molecular Diagnostics, Fenyang, China
- Department of Clinical Laboratory, Fenyang Hospital of Shanxi Province, Fenyang, China
| | - Benjin Xu
- Department of Medical Laboratory Science, Fenyang College of Shanxi Medical University, Fenyang, China
- Key Laboratory of Lvliang for Clinical Molecular Diagnostics, Fenyang, China
- Department of Clinical Laboratory, Fenyang Hospital of Shanxi Province, Fenyang, China
| |
Collapse
|
6
|
Zou S, Kim B, Tian Y, Liu G, Zhang J, Zerda R, Li Z, Zhang G, Du X, Lin W, Gao X, Huang W, Fu X. Enhanced nuclear translation is associated with proliferation and progression across multiple cancers. MedComm (Beijing) 2023; 4:e248. [PMID: 37063610 PMCID: PMC10104727 DOI: 10.1002/mco2.248] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 02/16/2023] [Accepted: 03/03/2023] [Indexed: 04/18/2023] Open
Abstract
Recent technological advances have re-invigorated the interest in nuclear translation (NT), but the underlying mechanisms and functional implications of NT remain unknown. Here we show that NT is enhanced in malignant cancer cells and is associated with rapid cell growth. Nuclear ribopuromycylation analyses in a panel of diverse cell lines revealed that NT is scarce in normal immortalized cells, but is ubiquitous and robust in malignant cancer cells. Moreover, NT occurs in the nucleolus and requires normal nucleolar function. Intriguingly, NT is reduced by cellular stresses and anti-tumor agents and positively correlates with cancer cell proliferation and growth. By using a modified puromycin-associated nascent chain proteomics, we further identified numerous oncoproteins that are preferentially translated in the nucleus, such as transforming growth factor-beta 2 (TGFB2) and nucleophosmin 1 (NMP1). Specific overexpression of TGFB2 and NMP1 messenger RNAs in the nucleus can increase their protein levels and promote tumorigenesis. These findings establish a previously unknown link between NT and malignancy and suggest that cancer cells might have adapted a mechanism of NT to support their need for rapid growth, which highlight the potential of NT in tumorigenesis and might also open up new possibilities for therapeutic targeting of cancer-specific cellular functions.
Collapse
Affiliation(s)
- Sailan Zou
- Division of Endocrinology and MetabolismState Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan University and Collaborative Innovation Center of BiotherapyChengduChina
| | - Byung‐Wook Kim
- Department of Diabetes Complications and MetabolismArthur Riggs Diabetes and Metabolism Research InstituteIrell & Manella Graduate School of Biological SciencesBeckman Research InstituteCity of Hope National Medical CenterDuarteUSA
| | - Yan Tian
- Division of Endocrinology and MetabolismState Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan University and Collaborative Innovation Center of BiotherapyChengduChina
| | - Geng Liu
- Division of Endocrinology and MetabolismState Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan University and Collaborative Innovation Center of BiotherapyChengduChina
| | - Jiawei Zhang
- Department of Diabetes Complications and MetabolismArthur Riggs Diabetes and Metabolism Research InstituteIrell & Manella Graduate School of Biological SciencesBeckman Research InstituteCity of Hope National Medical CenterDuarteUSA
- Cancer Institute (Key Laboratory of Cancer Prevention and InterventionChina National Ministry of Education)Second Affiliated HospitalSchool of MedicineZhejiang UniversityHangzhouChina
| | - Ricardo Zerda
- Electron Microscopy and Atomic Force Microscopy CoreCity of Hope National Medical CenterDuarteUSA
| | - Zhuo Li
- Electron Microscopy and Atomic Force Microscopy CoreCity of Hope National Medical CenterDuarteUSA
| | - Guixiang Zhang
- Division of Gastrointestinal SurgeryDepartment of General Surgery and Gastric Cancer CenterWest China HospitalSichuan UniversityChengduChina
| | - Xiao Du
- Division of Gastrointestinal SurgeryDepartment of General Surgery and Gastric Cancer CenterWest China HospitalSichuan UniversityChengduChina
- Department of General SurgeryYaan People's HospitalYaanChina
| | - Weiqiang Lin
- Department of NephrologyThe Fourth Affiliated HospitalInternational Institutes of MedicineSchool of MedicineZhejiang UniversityZhejiangChina
| | - Xiang Gao
- Department of Neurosurgery and Institute of NeurosurgeryState Key Laboratory of Biotherapy and Cancer CenterWest China HospitalWest China Medical SchoolSichuan University and Collaborative Innovation Center for BiotherapyChengduChina
| | - Wendong Huang
- Department of Diabetes Complications and MetabolismArthur Riggs Diabetes and Metabolism Research InstituteIrell & Manella Graduate School of Biological SciencesBeckman Research InstituteCity of Hope National Medical CenterDuarteUSA
| | - Xianghui Fu
- Division of Endocrinology and MetabolismState Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan University and Collaborative Innovation Center of BiotherapyChengduChina
| |
Collapse
|
7
|
Effect of Water Activity on Conidia Germination in Aspergillus flavus. Microorganisms 2022; 10:microorganisms10091744. [PMID: 36144346 PMCID: PMC9504883 DOI: 10.3390/microorganisms10091744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/18/2022] [Accepted: 08/24/2022] [Indexed: 11/16/2022] Open
Abstract
In this study, we explored the mechanism underlying Aspergillus flavus conidia germination inhibited by decreased water activity. The impact of low water activity was analyzed at 4 h, 8 h and 12 h. Additionally, we demonstrated that low water activity affected cell shape and decreased cell sizes. Transcriptomics found numerous differentially expressed genes (DEGs) during the first 12 h of germination, with 654 DEGs observed among 4 h, 8 h and 12 h. In particular, more DEGs were detected at 8 h of germinating. Therefore, proteomics was performed at 8 h, and 209 differentially expressed proteins (DEPs) were speculated, with 94 up-regulated and 115 down-regulated. Combined analysis of KEGG of transcriptomics and proteomics demonstrated that the dominant pathways were nutrient metabolism and translation. We also found several DEGs and DEPs in the Mitogen Activated Protein Kinase (MAPK) pathway. Therefore, we concluded that low water activity inhibited conidia germination, causing unregular morphology. In addition, low water activity influenced expression of creA, TreB in carbohydrate metabolism, Clr4, RmtA in amino acid metabolism and RPL37, RPL3 in translation in Aspergillus flavus.
Collapse
|
8
|
Gupta S, Kumar M, Chaudhuri S, Kumar A. The non-canonical nuclear functions of key players of the PI3K-AKT-MTOR pathway. J Cell Physiol 2022; 237:3181-3204. [PMID: 35616326 DOI: 10.1002/jcp.30782] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 04/05/2022] [Accepted: 05/02/2022] [Indexed: 12/29/2022]
Abstract
The PI3K-AKT-MTOR signal transduction pathway is one of the essential signalling cascades within the cell due to its involvement in many vital functions. The pathway initiates with the recruitment of phosphatidylinositol-3 kinases (PI3Ks) onto the plasma membrane, generating phosphatidylinositol-3,4,5-triphosphate [PtdIns(3,4,5)P3 ] and subsequently activating AKT. Being the central node of the PI3K network, AKT activates the mechanistic target of rapamycin kinase complex 1 (MTORC1) via Tuberous sclerosis complex 2 inhibition in the cytoplasm. Although the cytoplasmic role of the pathway has been widely explored for decades, we now know that most of the effector molecules of the PI3K axis diverge from the canonical route and translocate to other cell organelles including the nucleus. The presence of phosphoinositides (PtdIns) inside the nucleus itself indicates the existence of a nuclear PI3K signalling. The nuclear localization of these signaling components is evident in regulating many nuclear processes like DNA replication, transcription, DNA repair, maintenance of genomic integrity, chromatin architecture, and cell cycle control. Here, our review intends to present a comprehensive overview of the nuclear functions of the PI3K-AKT-MTOR signaling biomolecules.
Collapse
Affiliation(s)
- Sakshi Gupta
- Department of Molecular Reproduction, Development & Genetics, Indian Institute of Science, Bangalore, Karnataka, India
| | - Mukund Kumar
- Department of Molecular Reproduction, Development & Genetics, Indian Institute of Science, Bangalore, Karnataka, India
| | - Soumi Chaudhuri
- Department of Molecular Reproduction, Development & Genetics, Indian Institute of Science, Bangalore, Karnataka, India
| | - Arun Kumar
- Department of Molecular Reproduction, Development & Genetics, Indian Institute of Science, Bangalore, Karnataka, India
| |
Collapse
|
9
|
Regulation of Cell Cycle Progression by Growth Factor-Induced Cell Signaling. Cells 2021; 10:cells10123327. [PMID: 34943835 PMCID: PMC8699227 DOI: 10.3390/cells10123327] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 11/12/2021] [Accepted: 11/24/2021] [Indexed: 12/12/2022] Open
Abstract
The cell cycle is the series of events that take place in a cell, which drives it to divide and produce two new daughter cells. The typical cell cycle in eukaryotes is composed of the following phases: G1, S, G2, and M phase. Cell cycle progression is mediated by cyclin-dependent kinases (Cdks) and their regulatory cyclin subunits. However, the driving force of cell cycle progression is growth factor-initiated signaling pathways that control the activity of various Cdk–cyclin complexes. While the mechanism underlying the role of growth factor signaling in G1 phase of cell cycle progression has been largely revealed due to early extensive research, little is known regarding the function and mechanism of growth factor signaling in regulating other phases of the cell cycle, including S, G2, and M phase. In this review, we briefly discuss the process of cell cycle progression through various phases, and we focus on the role of signaling pathways activated by growth factors and their receptor (mostly receptor tyrosine kinases) in regulating cell cycle progression through various phases.
Collapse
|
10
|
Prieto C, Kharas MG. RNA Regulators in Leukemia and Lymphoma. Cold Spring Harb Perspect Med 2020; 10:cshperspect.a034967. [PMID: 31615866 DOI: 10.1101/cshperspect.a034967] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Posttranscriptional regulation of mRNA is a powerful and tightly controlled process in which cells command the integrity, diversity, and abundance of their protein products. RNA-binding proteins (RBPs) are the principal players that control many intermediary steps of posttranscriptional regulation. Recent advances in this field have discovered the importance of RBPs in hematological diseases. Herein we will review a number of RBPs that have been determined to play critical functions in leukemia and lymphoma. Furthermore, we will discuss the potential therapeutic strategies that are currently being studied to specifically target RBPs in these diseases.
Collapse
Affiliation(s)
- Camila Prieto
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Michael G Kharas
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| |
Collapse
|
11
|
Esteves P, Dard L, Brillac A, Hubert C, Sarlak S, Rousseau B, Dumon E, Izotte J, Bonneu M, Lacombe D, Dupuy JW, Amoedo N, Rossignol R. Nuclear control of lung cancer cells migration, invasion and bioenergetics by eukaryotic translation initiation factor 3F. Oncogene 2019; 39:617-636. [PMID: 31527668 PMCID: PMC6962096 DOI: 10.1038/s41388-019-1009-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 08/07/2019] [Accepted: 08/20/2019] [Indexed: 02/07/2023]
Abstract
The basic understanding of the biological effects of eukaryotic translation initiation factors (EIFs) remains incomplete, notably for their roles independent of protein translation. Different EIFs exhibit nuclear localization and DNA-related functions have been proposed, but the understanding of EIFs novel functions beyond protein translation lacks of integrative analyses between the genomic and the proteomic levels. Here, the noncanonical function of EIF3F was studied in human lung adenocarcinoma by combining methods that revealed both the protein-protein and the protein-DNA interactions of this factor. We discovered that EIF3F promotes cell metastasis in vivo. The underpinning molecular mechanisms involved the regulation of a cluster of 34 metastasis-promoting genes including Snail2, as revealed by proteomics combined with immuno-affinity purification of EIF3F and ChIP-seq/Q-PCR analyses. The interaction between EIF3F and signal transducer and activator of transcription 3 (STAT3) controlled the EIF3F-mediated increase in Snail2 expression and cellular invasion, which were specifically abrogated using the STAT3 inhibitor Nifuroxazide or knockdown approaches. Furthermore, EIF3F overexpression reprogrammed energy metabolism through the activation of AMP-activated protein kinase and the stimulation of oxidative phosphorylation. Our findings demonstrate the role of EIF3F in the molecular control of cell migration, invasion, bioenergetics, and metastasis. The discovery of a role for EIF3F-STAT3 interaction in the genetic control of cell migration and metastasis in human lung adenocarcinoma could lead to the development of diagnosis and therapeutic strategies.
Collapse
Affiliation(s)
- Pauline Esteves
- Bordeaux University, 146 rue Léo Saignat, 33000, Bordeaux, France.,INSERM U1211, 33000, Bordeaux, France
| | - Laetitia Dard
- Bordeaux University, 146 rue Léo Saignat, 33000, Bordeaux, France.,INSERM U1211, 33000, Bordeaux, France
| | - Aurélia Brillac
- Bordeaux University, 146 rue Léo Saignat, 33000, Bordeaux, France.,INSERM U1211, 33000, Bordeaux, France
| | - Christophe Hubert
- Bordeaux University, 146 rue Léo Saignat, 33000, Bordeaux, France.,INSERM U1211, 33000, Bordeaux, France
| | - Saharnaz Sarlak
- Bordeaux University, 146 rue Léo Saignat, 33000, Bordeaux, France.,INSERM U1211, 33000, Bordeaux, France
| | - Benoît Rousseau
- Bordeaux University, 146 rue Léo Saignat, 33000, Bordeaux, France.,Transgenic Animal Facility A2, University of Bordeaux, 33000, Bordeaux, France
| | - Elodie Dumon
- Bordeaux University, 146 rue Léo Saignat, 33000, Bordeaux, France.,INSERM U1211, 33000, Bordeaux, France
| | - Julien Izotte
- Bordeaux University, 146 rue Léo Saignat, 33000, Bordeaux, France.,Transgenic Animal Facility A2, University of Bordeaux, 33000, Bordeaux, France
| | - Marc Bonneu
- Bordeaux University, 146 rue Léo Saignat, 33000, Bordeaux, France.,Functional Genomics Center (CGFB), Proteomics Facility, 146 Rue Léo Saignat, 33076, Bordeaux, France.,Bordeaux-INP, Avenue des Facultés, 33405, Talence Cedex, France
| | - Didier Lacombe
- Bordeaux University, 146 rue Léo Saignat, 33000, Bordeaux, France.,INSERM U1211, 33000, Bordeaux, France
| | - Jean-William Dupuy
- Bordeaux University, 146 rue Léo Saignat, 33000, Bordeaux, France.,Functional Genomics Center (CGFB), Proteomics Facility, 146 Rue Léo Saignat, 33076, Bordeaux, France
| | - Nivea Amoedo
- CELLOMET, Functional Genomics Center (CGFB), 146 rue Léo Saignat, 33000, Bordeaux, France
| | - Rodrigue Rossignol
- Bordeaux University, 146 rue Léo Saignat, 33000, Bordeaux, France. .,INSERM U1211, 33000, Bordeaux, France. .,CELLOMET, Functional Genomics Center (CGFB), 146 rue Léo Saignat, 33000, Bordeaux, France.
| |
Collapse
|
12
|
Aboukameel A, Muqbil I, Baloglu E, Senapedis W, Landesman Y, Argueta C, Kauffman M, Chang H, Kashyap T, Shacham S, Neggers JE, Daelemans D, Heath EI, Azmi AS. Down-regulation of AR splice variants through XPO1 suppression contributes to the inhibition of prostate cancer progression. Oncotarget 2018; 9:35327-35342. [PMID: 30450161 PMCID: PMC6219671 DOI: 10.18632/oncotarget.26239] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 10/06/2018] [Indexed: 02/04/2023] Open
Abstract
Emerging studies have shown that the expression of AR splice variants (ARv) lacking ligand-binding domain is associated with castrate-resistant prostate cancer (CRPC) and higher risk of tumor metastasis and recurrence. Nuclear export protein XPO1 regulates the nuclear localization of many proteins including tumor suppressor proteins. Increased XPO1 in prostate cancer is associated with a high Gleason score and bone metastasis. In this study, we found that high expression of AR splice variant 7 (AR-v7) was correlated with increased XPO1 expression. Silencing of XPO1 by RNAi or treatment with Selective Inhibitor of Nuclear Export (SINE) compounds selinexor and eltanexor (KPT-8602) down-regulated the expression of AR, AR-v7 and ARv567es at mRNA and protein levels. XPO1 silencing also inhibited the expression of AR and ARv regulators including FOXA1, Src, Vav3, MED1 and Sam68, leading to the suppression of ARv and AR target genes, UBE2C and PSA. By targeting XPO1/ARv signaling, SINE suppressed prostate cancer (PCa) growth in vitro and in vivo and potentiated the anti-cancer activity of anti-AR agents, enzalutamide and abiraterone. Therefore, XPO1 inhibition could be a novel promising agent used in combination with conventional chemotherapeutics and AR-targeted therapy for the better treatment of PCa, especially CRPC.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Hua Chang
- Karyopharm Therapeutics Inc, Newton, MA, USA
| | | | | | - Jasper E Neggers
- KU Leuven Department of Microbiology and Immunology, Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, Herestraat, Belgium
| | - Dirk Daelemans
- KU Leuven Department of Microbiology and Immunology, Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, Herestraat, Belgium
| | | | - Asfar S Azmi
- Wayne State University School of Medicine, Detroit, MI, USA
| |
Collapse
|
13
|
Hsu KS, Kao HY. PML: Regulation and multifaceted function beyond tumor suppression. Cell Biosci 2018; 8:5. [PMID: 29416846 PMCID: PMC5785837 DOI: 10.1186/s13578-018-0204-8] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2017] [Accepted: 01/12/2018] [Indexed: 01/15/2023] Open
Abstract
Promyelocytic leukemia protein (PML) was originally identified as a fusion partner of retinoic acid receptor alpha in acute promyelocytic leukemia patients with the (15;17) chromosomal translocation, giving rise to PML–RARα and RARα–PML fusion proteins. A body of evidence indicated that PML possesses tumor suppressing activity by regulating apoptosis, cell cycle, senescence and DNA damage responses. PML is enriched in discrete nuclear substructures in mammalian cells with 0.2–1 μm diameter in size, referred to as alternately Kremer bodies, nuclear domain 10, PML oncogenic domains or PML nuclear bodies (NBs). Dysregulation of PML NB formation results in altered transcriptional regulation, protein modification, apoptosis and cellular senescence. In addition to PML NBs, PML is also present in nucleoplasm and cytoplasmic compartments, including the endoplasmic reticulum and mitochondria-associated membranes. The role of PML in tumor suppression has been extensively studied but increasing evidence indicates that PML also plays versatile roles in stem cell renewal, metabolism, inflammatory responses, neural function, mammary development and angiogenesis. In this review, we will briefly describe the known PML regulation and function and include new findings.
Collapse
Affiliation(s)
- Kuo-Sheng Hsu
- 1Department of Biochemistry, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106 USA.,Present Address: Tumor Angiogenesis Section, Mouse Cancer Genetics Program (MCGP), National Cancer Institute (NCI), NIH, Frederick, MD 21702 USA
| | - Hung-Ying Kao
- 1Department of Biochemistry, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106 USA.,The Comprehensive Cancer Center of Case Western Reserve University and University Hospitals of Cleveland, Cleveland, OH 44106 USA
| |
Collapse
|
14
|
Zhou H, Xu RZ, Gu Y, Shi PF, Qian S. Targeting of phospho-eIF4E by homoharringtonine eradicates a distinct subset of human acute myeloid leukemia. Leuk Lymphoma 2018; 61:1084-1096. [PMID: 29334312 DOI: 10.1080/10428194.2017.1390229] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
More than half of the patients with acute myeloid leukemia (AML) fail to achieve long-term disease-free survival with current therapies and novel therapeutic strategies are urgently needed. The effects of homoharringtonine (HHT) on the growth of AML cell lines and primary leukemia cells were examined using MTT, colony formation assay. The effects of HHT on both eukaryotic translation initiation factor 4E (eIF4E) and phospho-eIF4E(p-eIF4E) were examined through western blot and immunofluorescence staining. HHT selectively reduced levels of p-eIF4E and its downstream oncoprotein Mcl-1, and potently inhibited in vitro and in vivo the growth of a distinct subset of AML cells and primary leukemia cells expressing high level of p-eIF4E through apoptosis. Our findings suggest that HHT might be a first-in-class p-eIF4E-targeted drug and offer a novel therapeutic option for AML patients expressing high level of p-eIF4E.
Collapse
Affiliation(s)
- Hong Zhou
- Department of Hematology, Hangzhou First People's Hospital, Hangzhou, PR China
| | - Rong Zhen Xu
- Department of Hematology, Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Hangzhou, PR China.,Cancer Institute, Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang, PR China
| | - Ying Gu
- Department of Hematology, Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Hangzhou, PR China.,Cancer Institute, Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang, PR China
| | - Peng Fei Shi
- Department of Hematology, Hangzhou First People's Hospital, Hangzhou, PR China
| | - Shenxian Qian
- Department of Hematology, Hangzhou First People's Hospital, Hangzhou, PR China
| |
Collapse
|
15
|
Fiumara CV, Scumaci D, Iervolino A, Perri AM, Concolino A, Tammè L, Petrillo F, Capasso G, Cuda G. Unraveling the Mechanistic Complexity of the Glomerulocystic Phenotype in Dicer Conditional KO Mice by 2D Gel Electrophoresis Coupled Mass Spectrometry. Proteomics Clin Appl 2017; 12:e1700006. [PMID: 29159954 DOI: 10.1002/prca.201700006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 10/31/2017] [Indexed: 01/05/2023]
Abstract
PURPOSE Dicer, an RNase III type endonuclease, is a key enzyme involved in miRNA biogenesis. It has been shown that this enzyme is essential for several aspects of postnatal kidney functions and homeostasis. In this study, we have examined conditional knockout (cKO) mice for Dicer in Pax8 (Paired-box gene 8) expressing cells to investigate the kidney protein profile. This specific model develops a glomerulocystic phenotype coupled with urinary concentration impairment, proteinuria, and severe renal failure. EXPERIMENTAL DESIGN Proteomic analysis was performed on kidney tissue extracts from cKO and control (Ctr) mice by 2D Gel Electrophoresis coupled with mass spectrometry. RESULTS The analysis highlighted 120 protein spots differentially expressed in Dicer cKO tissue compared with control; some of these proteins were validated by Western blotting. Ingenuity Pathway Analysis led to the identification of some interesting networks; among them, the one having ERK as a central hub may explain, through the modulation of the expression of a number of identified protein targets, the metabolic and structural alterations occurring during kidney cyst development in Dicer cKO mouse model. CONCLUSIONS AND CLINICAL RELEVANCE Our results contribute to gain new insights into molecular mechanisms through which Dicer endonuclease controls kidney development and physiological functions.
Collapse
Affiliation(s)
- Claudia Vincenza Fiumara
- Department of Experimental and Clinical Medicine, Laboratory of Proteomics, Research Center on Advanced Biochemistry and Molecular Biology, Magna Graecia University of Catanzaro, Salvatore Venuta University Campus, Catanzaro, Italy
| | - Domenica Scumaci
- Department of Experimental and Clinical Medicine, Laboratory of Proteomics, Research Center on Advanced Biochemistry and Molecular Biology, Magna Graecia University of Catanzaro, Salvatore Venuta University Campus, Catanzaro, Italy
| | - Anna Iervolino
- Biogem, Biotechnology and Molecular Genetics Research Centre G. Salvatore, Ariano Irpino, Ariano Irpino, Italy.,Department of Cardio-Thoracic and Respiratory Science, Second University of Naples, Naples, Napoli, Italy
| | - Angela Mena Perri
- Department of Experimental and Clinical Medicine, Laboratory of Proteomics, Research Center on Advanced Biochemistry and Molecular Biology, Magna Graecia University of Catanzaro, Salvatore Venuta University Campus, Catanzaro, Italy
| | - Antonio Concolino
- Department of Experimental and Clinical Medicine, Laboratory of Proteomics, Research Center on Advanced Biochemistry and Molecular Biology, Magna Graecia University of Catanzaro, Salvatore Venuta University Campus, Catanzaro, Italy
| | - Laura Tammè
- Department of Experimental and Clinical Medicine, Laboratory of Proteomics, Research Center on Advanced Biochemistry and Molecular Biology, Magna Graecia University of Catanzaro, Salvatore Venuta University Campus, Catanzaro, Italy
| | - Federica Petrillo
- Biogem, Biotechnology and Molecular Genetics Research Centre G. Salvatore, Ariano Irpino, Ariano Irpino, Italy.,Department of Cardio-Thoracic and Respiratory Science, Second University of Naples, Naples, Napoli, Italy
| | - Giovambattista Capasso
- Biogem, Biotechnology and Molecular Genetics Research Centre G. Salvatore, Ariano Irpino, Ariano Irpino, Italy.,Department of Cardio-Thoracic and Respiratory Science, Second University of Naples, Naples, Napoli, Italy
| | - Giovanni Cuda
- Department of Experimental and Clinical Medicine, Laboratory of Proteomics, Research Center on Advanced Biochemistry and Molecular Biology, Magna Graecia University of Catanzaro, Salvatore Venuta University Campus, Catanzaro, Italy
| |
Collapse
|
16
|
Li Y, Sahni N, Pancsa R, McGrail DJ, Xu J, Hua X, Coulombe-Huntington J, Ryan M, Tychhon B, Sudhakar D, Hu L, Tyers M, Jiang X, Lin SY, Babu MM, Yi S. Revealing the Determinants of Widespread Alternative Splicing Perturbation in Cancer. Cell Rep 2017; 21:798-812. [PMID: 29045845 PMCID: PMC5689467 DOI: 10.1016/j.celrep.2017.09.071] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 08/10/2017] [Accepted: 09/21/2017] [Indexed: 12/25/2022] Open
Abstract
It is increasingly appreciated that alternative splicing plays a key role in generating functional specificity and diversity in cancer. However, the mechanisms by which cancer mutations perturb splicing remain unknown. Here, we developed a network-based strategy, DrAS-Net, to investigate more than 2.5 million variants across cancer types and link somatic mutations with cancer-specific splicing events. We identified more than 40,000 driver variant candidates and their 80,000 putative splicing targets deregulated in 33 cancer types and inferred their functional impact. Strikingly, tumors with splicing perturbations show reduced expression of immune system-related genes and increased expression of cell proliferation markers. Tumors harboring different mutations in the same gene often exhibit distinct splicing perturbations. Further stratification of 10,000 patients based on their mutation-splicing relationships identifies subtypes with distinct clinical features, including survival rates. Our work reveals how single-nucleotide changes can alter the repertoires of splicing isoforms, providing insights into oncogenic mechanisms for precision medicine.
Collapse
Affiliation(s)
- Yongsheng Li
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; College of Bioinformatics Science and Technology and Bio-Pharmaceutical Key Laboratory of Heilongjiang Province, Harbin Medical University, Harbin 150081, China
| | - Nidhi Sahni
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Graduate Program in Structural and Computational Biology and Molecular Biophysics, Baylor College of Medicine, Houston, TX 77030, USA.
| | - Rita Pancsa
- Medical Research Council Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Daniel J McGrail
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Juan Xu
- College of Bioinformatics Science and Technology and Bio-Pharmaceutical Key Laboratory of Heilongjiang Province, Harbin Medical University, Harbin 150081, China
| | - Xu Hua
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jasmin Coulombe-Huntington
- Institute for Research in Immunology and Cancer, Department of Medicine, University of Montreal, Montreal, Quebec H3C 3J7, Canada
| | - Michael Ryan
- In Silico Solutions, Falls Church, VA 22043, USA
| | - Boranai Tychhon
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Dhanistha Sudhakar
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Limei Hu
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Michael Tyers
- Institute for Research in Immunology and Cancer, Department of Medicine, University of Montreal, Montreal, Quebec H3C 3J7, Canada
| | - Xiaoqian Jiang
- Division of Biomedical Informatics, University of California at San Diego, La Jolla, CA 92093, USA
| | - Shiaw-Yih Lin
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - M Madan Babu
- Medical Research Council Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK.
| | - Song Yi
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
17
|
Tavert-Roudet G, Anne A, Barra A, Chovin A, Demaille C, Michon T. The Potyvirus Particle Recruits the Plant Translation Initiation Factor eIF4E by Means of the VPg covalently Linked to the Viral RNA. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2017; 30:754-762. [PMID: 28609214 DOI: 10.1094/mpmi-04-17-0091-r] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
The viral protein genome-linked (VPg) of potyviruses is a protein covalently linked to the 5' end of viral RNA. It interacts with eIF4E, a component of the cellular translation initiation complex. It has been suggested that the 5' RNA-linked VPg could mimic the cellular mRNA cap, promoting synthesis of viral proteins. Here, we report evidence for recruitment of the plant eIF4E by Lettuce mosaic virus (LMV, potyvirus) particles via the 5' RNA-linked VPg. Analysis of the viral population was performed by enzyme-linked immunosorbent assay-based tests, either with crude extracts of LMV-infected tissues or purified viral particles. In both cases, LMV-VPg and LMV-eIF4E subpopulations could be detected. After reaching a maximum within the first 2 weeks postinoculation, these populations decreased and very few labeled particles were found later than 3 weeks postinoculation. The central domain of VPg (CD-VPg) was found to be exposed at the surface of the particles. Using a purified recombinant lettuce eIF4E and CD-VPg-specific antibodies, we demonstrate that the plant factor binds to the VPg via its central domain. Moreover, the plant eIF4E factor could be imaged at one end of the particles purified from LMV plant extracts, by immunoredox atomic force microscopy coupled to scanning electrochemical microscopy. We discuss the biological significance of these results.
Collapse
Affiliation(s)
| | - Agnès Anne
- 2 Laboratoire d'Electrochimie Moléculaire, UMR 7591 CNRS, Université Paris Diderot, Sorbonne Paris Cité, 15 rue Jean-Antoine de Baïf, F-75205 Paris Cedex 13, France
| | - Amandine Barra
- 1 UMR 1332 BFP, INRA, Université Bordeaux, 33883 Villenave d'Ornon, France; and
| | - Arnaud Chovin
- 2 Laboratoire d'Electrochimie Moléculaire, UMR 7591 CNRS, Université Paris Diderot, Sorbonne Paris Cité, 15 rue Jean-Antoine de Baïf, F-75205 Paris Cedex 13, France
| | - Christophe Demaille
- 2 Laboratoire d'Electrochimie Moléculaire, UMR 7591 CNRS, Université Paris Diderot, Sorbonne Paris Cité, 15 rue Jean-Antoine de Baïf, F-75205 Paris Cedex 13, France
| | - Thierry Michon
- 1 UMR 1332 BFP, INRA, Université Bordeaux, 33883 Villenave d'Ornon, France; and
| |
Collapse
|
18
|
Gu Y, Zhou H, Gan Y, Zhang J, Chen J, Gan X, Li H, Zheng W, Meng Z, Ma X, Wang X, Xu X, Xu G, Lu X, Liang Y, Zhang X, Lu X, Huang W, Xu R. Small-molecule induction of phospho-eIF4E sumoylation and degradation via targeting its phosphorylated serine 209 residue. Oncotarget 2016; 6:15111-21. [PMID: 25915158 PMCID: PMC4558139 DOI: 10.18632/oncotarget.3615] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Accepted: 03/14/2015] [Indexed: 11/25/2022] Open
Abstract
As phospho-eIF4E (p-eIF4E), unlike total eIF4E (t-eIF4E) essential for normal cells, is specifically required by cancer cells, it is an attractive, yet unrealized, target for anti-tumor intervention. Here we identify a small molecule, homoharringtonine (HHT), that antagonizes p-eIF4E function and eradicates acute myeloid leukemia (AML) expressing high level of p-eIF4E in vitro and in vivo. HHT selectively reduces p-eIF4E levels of leukemia cells without affecting t-eIF4E. HHT targets the phosphorylated serine 209 residue of p-eIF4E and induces p-eIF4E oligomerization, which enhances its interaction with the small ubiquitin-like protein modifier (SUMO)-conjugating enzyme UBC9, resulting in proteasome-dependent degradation of p-eIF4E via SUMO2/3-mediated SUMOylation. These results suggest that the phosphorylated serine 209 residue of p-eIF4E might be a potential target for developing small molecule-based new therapies for leukemia.
Collapse
Affiliation(s)
- Ying Gu
- Department of Hematology, Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China.,Cancer Institute, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China.,Division of Molecular Diabetes Research, Department of Diabetes and Metabolic Diseases Research, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Hong Zhou
- Department of Hematology, Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China.,Cancer Institute, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
| | - Yichao Gan
- Department of Hematology, Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China.,Cancer Institute, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
| | - Jiawei Zhang
- Cancer Institute, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China.,Division of Molecular Diabetes Research, Department of Diabetes and Metabolic Diseases Research, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Jianghua Chen
- Department of Hematology, Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China.,Cancer Institute, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
| | - Xiaoxian Gan
- Division of Molecular Diabetes Research, Department of Diabetes and Metabolic Diseases Research, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA.,Zhejiang Academy of Medical Sciences, Hangzhou 310012, China
| | - Hongzhi Li
- Department of Molecular Medicine, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Weiwei Zheng
- Department of Hematology, Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China.,Cancer Institute, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
| | - Zhipeng Meng
- Division of Molecular Diabetes Research, Department of Diabetes and Metabolic Diseases Research, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Xiaoxiao Ma
- Division of Molecular Diabetes Research, Department of Diabetes and Metabolic Diseases Research, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Xichun Wang
- Division of Molecular Diabetes Research, Department of Diabetes and Metabolic Diseases Research, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Xiaohua Xu
- Department of Hematology, Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
| | - Ganyu Xu
- Division of Molecular Diabetes Research, Department of Diabetes and Metabolic Diseases Research, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Xiaoya Lu
- Department of Hematology, Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China.,Cancer Institute, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
| | - Yun Liang
- Department of Hematology, Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
| | - Xuzhao Zhang
- Department of Hematology, Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
| | - Xinliang Lu
- Cancer Institute, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
| | - Wendong Huang
- Division of Molecular Diabetes Research, Department of Diabetes and Metabolic Diseases Research, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Rongzhen Xu
- Department of Hematology, Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China.,Cancer Institute, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
| |
Collapse
|
19
|
Zhou H, Zhang J, Gu Y, Gan X, Gan Y, Zheng W, Kim BW, Xu X, Lu X, Dong Q, Zheng S, Huang W, Xu R. Identification of a novel RNA giant nuclear body in cancer cells. Oncotarget 2016; 7:4724-34. [PMID: 26678034 PMCID: PMC4826238 DOI: 10.18632/oncotarget.6619] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Accepted: 11/25/2015] [Indexed: 12/18/2022] Open
Abstract
Constitutive synthesis of oncogenic mRNAs is essential for maintaining the uncontrolled growth of cancer cells. However, little is known about how these mRNAs are exported from the nucleus to the cytoplasm. Here, we report the identification of a RNA giant nuclear body (RNA-GNB) that is abundant in cancer cells but rare in normal cells. The RNA-GNB contains a RNA core surrounded by a protein shell. We identify 782 proteins from cancer-associated RNA-GNBs, 40% of which are involved in the nuclear mRNA trafficking. RNA-GNB is required for cell proliferation, and its abundance is positively associated with tumor burden and outcome of therapies. Our findings suggest that the RNA-GNB is a novel nuclear RNA trafficking organelle that may contribute to the nuclear mRNA exporting and proliferation of cancer cells.
Collapse
Affiliation(s)
- Hong Zhou
- Department of Hematology, Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China.,Cancer Institute of Zhejiang University, Hangzhou 310009, China.,Hangzhou First People's Hospital, Hangzhou 310006, China
| | - Jiawei Zhang
- Cancer Institute of Zhejiang University, Hangzhou 310009, China.,Department of Diabetes Complications and Metabolism, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Ying Gu
- Department of Hematology, Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China.,Cancer Institute of Zhejiang University, Hangzhou 310009, China.,Department of Diabetes Complications and Metabolism, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Xiaoxian Gan
- Department of Diabetes Complications and Metabolism, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA.,Zhejiang Academy of Medical Sciences, Hangzhou 310012, China
| | - Yichao Gan
- Department of Hematology, Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China.,Cancer Institute of Zhejiang University, Hangzhou 310009, China
| | - Weiwei Zheng
- Department of Hematology, Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China.,Cancer Institute of Zhejiang University, Hangzhou 310009, China
| | - Byung-Wook Kim
- Department of Diabetes Complications and Metabolism, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Xiaohua Xu
- Department of Hematology, Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
| | - Xiaoya Lu
- Department of Hematology, Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China.,Cancer Institute of Zhejiang University, Hangzhou 310009, China
| | - Qi Dong
- Cancer Institute of Zhejiang University, Hangzhou 310009, China
| | - Shu Zheng
- Cancer Institute of Zhejiang University, Hangzhou 310009, China
| | - Wendong Huang
- Department of Diabetes Complications and Metabolism, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Rongzhen Xu
- Department of Hematology, Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China.,Cancer Institute of Zhejiang University, Hangzhou 310009, China
| |
Collapse
|
20
|
Osborne MJ, Borden KLB. The eukaryotic translation initiation factor eIF4E in the nucleus: taking the road less traveled. Immunol Rev 2015; 263:210-23. [PMID: 25510279 DOI: 10.1111/imr.12240] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The eukaryotic translation initiation factor eIF4E is a potent oncogene. Although eIF4E has traditional roles in translation initiation in the cytoplasm, it is also found in the nucleus, suggesting that it has activities beyond its role in protein synthesis. The road less traveled has been taken to study these nuclear activities and to understand their contribution to the oncogenic potential of eIF4E. The molecular features and biological pathways underpinning eIF4E's nuclear mRNA export are described. New classes of eIF4E regulators have been identified and their relevance to cancer shown. The studies presented here reveal the molecular, biophysical, and structural bases for eIF4E regulation. Finally, recent clinical work targeting eIF4E in acute myeloid leukemia patients with ribavirin is discussed. In summary, these findings provide a novel paradigm for eIF4E function and the molecular basis for targeting it in leukemia patients.
Collapse
Affiliation(s)
- Michael J Osborne
- Institute for Research in Immunology and Cancer & Dept. of Pathology and Cell Biology, Université de Montréal, Montréal, QC, Canada
| | | |
Collapse
|
21
|
Karaki S, Andrieu C, Ziouziou H, Rocchi P. The Eukaryotic Translation Initiation Factor 4E (eIF4E) as a Therapeutic Target for Cancer. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2015; 101:1-26. [PMID: 26572974 PMCID: PMC7185574 DOI: 10.1016/bs.apcsb.2015.09.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cancer cells depend on cap-dependent translation more than normal tissue. This explains the emergence of proteins involved in the cap-dependent translation as targets for potential anticancer drugs. Cap-dependent translation starts when eIF4E binds to mRNA cap domain. This review will present eIF4E's structure and functions. It will also expose the use of eIF4E as a therapeutic target in cancer.
Collapse
Affiliation(s)
- Sara Karaki
- INSERM, U1068, CRCM, Marseille, France,Institut Paoli-Calmettes, Marseille, France,Aix-Marseille University, Marseille, France,CNRS, UMR7258, Marseille, France
| | - Claudia Andrieu
- INSERM, U1068, CRCM, Marseille, France,Institut Paoli-Calmettes, Marseille, France,Aix-Marseille University, Marseille, France,CNRS, UMR7258, Marseille, France
| | - Hajer Ziouziou
- INSERM, U1068, CRCM, Marseille, France,Institut Paoli-Calmettes, Marseille, France,Aix-Marseille University, Marseille, France,CNRS, UMR7258, Marseille, France
| | - Palma Rocchi
- INSERM, U1068, CRCM, Marseille, France,Institut Paoli-Calmettes, Marseille, France,Aix-Marseille University, Marseille, France,CNRS, UMR7258, Marseille, France,Corresponding author:
| |
Collapse
|
22
|
Pettersson F, del Rincon SV, Miller WH. Eukaryotic translation initiation factor 4E as a novel therapeutic target in hematological malignancies and beyond. Expert Opin Ther Targets 2014; 18:1035-48. [DOI: 10.1517/14728222.2014.937426] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
23
|
Martinez-Marignac V, Shawi M, Pinedo-Carpio E, Wang X, Panasci L, Miller W, Pettersson F, Aloyz R. Pharmacological targeting of eIF4E in primary CLL lymphocytes. Blood Cancer J 2013; 3:e146. [PMID: 24036945 PMCID: PMC3789207 DOI: 10.1038/bcj.2013.43] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Affiliation(s)
- V Martinez-Marignac
- Department of Oncology & Division of Experimental Medicine, Lady Davis Institute for Medical Research, McGill University, Montreal, Quebec, Canada
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Gosselin P, Martineau Y, Morales J, Czjzek M, Glippa V, Gauffeny I, Morin E, Le Corguillé G, Pyronnet S, Cormier P, Cosson B. Tracking a refined eIF4E-binding motif reveals Angel1 as a new partner of eIF4E. Nucleic Acids Res 2013; 41:7783-92. [PMID: 23814182 PMCID: PMC3763552 DOI: 10.1093/nar/gkt569] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The initiation factor 4E (eIF4E) is implicated in most of the crucial steps of the mRNA life cycle and is recognized as a pivotal protein in gene regulation. Many of these roles are mediated by its interaction with specific proteins generally known as eIF4E-interacting partners (4E-IPs), such as eIF4G and 4E-BP. To screen for new 4E-IPs, we developed a novel approach based on structural, in silico and biochemical analyses. We identified the protein Angel1, a member of the CCR4 deadenylase family. Immunoprecipitation experiments provided evidence that Angel1 is able to interact in vitro and in vivo with eIF4E. Point mutation variants of Angel1 demonstrated that the interaction of Angel1 with eIF4E is mediated through a consensus eIF4E-binding motif. Immunofluorescence and cell fractionation experiments showed that Angel1 is confined to the endoplasmic reticulum and Golgi apparatus, where it partially co-localizes with eIF4E and eIF4G, but not with 4E-BP. Furthermore, manipulating Angel1 levels in living cells had no effect on global translation rates, suggesting that the protein has a more specific function. Taken together, our results illustrate that we developed a powerful method for identifying new eIF4E partners and open new perspectives for understanding eIF4E-specific regulation.
Collapse
Affiliation(s)
- Pauline Gosselin
- UPMC Univ Paris 06, UMR 7150, Mer et Santé, Station Biologique, F-29680 Roscoff, France, CNRS, UMR 7150, Mer et Santé, Station Biologique, F-29680 Roscoff, France. Université Européenne de Bretagne, Bretagne, Roscoff, France, INSERM, UMR 1037, Centre de Recherche en Cancérologie de Toulouse, Toulouse 31432, France, UPMC Univ Paris 06, UMR 7139, Végétaux Marins et Biomolécules, Station Biologique, F-29680 Roscoff, France, CNRS, UMR 7139, Végétaux Marins et Biomolécules, Station Biologique, F-29680 Roscoff, France, UPMC Univ Paris 06, FR2424, ABiMS, Station Biologique, F-29680 Roscoff, France and CNRS, FR2424, ABiMS, Station Biologique, F-29680 Roscoff, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Liu LY, Wang J, Huang Y, Pan HB, Zhang X, Huang ZX, Zhao SM, Gao SZ. The effect of dietary protein levels on the expression of genes coding for four selected protein translation initiation factors in muscle tissue of Wujin pig. J Anim Physiol Anim Nutr (Berl) 2013; 98:310-7. [PMID: 23718228 DOI: 10.1111/jpn.12081] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Accepted: 04/11/2013] [Indexed: 01/11/2023]
Abstract
The objective of this study was to investigate the regulatory mechanism underlying the increased muscle protein accumulation in pigs while were fed a high protein diet. The eukaryotic initiation factors (eIFs) have been reported to involve in muscle protein synthesis. We investigated the mRNA and protein expression levels of eIF2B1, 4A1, 4B and 4E in Wujin pigs fed either a high protein (HP: 18%) or a low protein (LP: 14%) diet at 30, 60 or 100 kg body weight, based on real-time PCR and western blotting analyses. Our results indicated that the expression levels of eIF2B1 mRNA and protein were increased by HP diet at all body weight. The HP diet showed higher mRNA and protein levels of eIF4B gene at 60 and 100 kg. The protein expression of eIF4E phosphorylation was increased by HP diet only at 30 kg. These data suggested that the HP diet promoted porcine muscle protein accumulation mainly by up-regulating eIF2B1, 4B and 4E rather than 4A1 expression along the growth stages.
Collapse
Affiliation(s)
- L Y Liu
- College of Life Sciences, Yunnan Normal University, Kunming, Yunnan, China
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Proshkin SA, Shematorova EK, Souslova EA, Proshkina GM, Shpakovski GV. A minor isoform of the human RNA polymerase II subunit hRPB11 (POLR2J) interacts with several components of the translation initiation factor eIF3. BIOCHEMISTRY (MOSCOW) 2012; 76:976-80. [PMID: 22022972 DOI: 10.1134/s0006297911080141] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Using the yeast two-hybrid (YTH) system we have uncovered interaction of the hRPB11cα minor isoform of Homo sapiens RNA polymerase II hRPB11 (POLR2J) subunit with three different subunits of the human translation initiation factor eIF3 (hEIF3): eIF3a, eIF3i, and eIF3m. One variant of eIF3m identified in the study is the product of translation of alternatively spliced mRNA. We have named a novel isoform of this subunit eIF3mβ. By means of the YTH system we also have shown that the new eIF3mβ isoform interacts with the eIF3a subunit. Whereas previously described subunit eIF3mα (GA17) has clear cytoplasmic localization, the novel eIF3mβ isoform is detected predominantly in the cell nucleus. The discovered interactions of the hRPB11cα isoform with several hEIF3 subunits demonstrate a new type coordination between transcription and the following (downstream) stages of gene expression (such as mRNA transport from nucleus to the active ribosomes in cytoplasm) in Homo sapiens and point out the possibility of existence of nuclear hEIF3 subcomplexes.
Collapse
Affiliation(s)
- S A Proshkin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
| | | | | | | | | |
Collapse
|
27
|
Jiang J, Laliberté JF. The genome-linked protein VPg of plant viruses-a protein with many partners. Curr Opin Virol 2011; 1:347-54. [PMID: 22440836 DOI: 10.1016/j.coviro.2011.09.010] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Revised: 09/23/2011] [Accepted: 09/26/2011] [Indexed: 12/19/2022]
Abstract
For some plant positive-sense RNA viruses, a protein known as VPg (short for virus protein, genome linked) is covalently linked to the 5' end of the viral RNA. The VPg is an intrinsically disordered protein, and this property would confer an ability to bind several proteins. Accordingly, the potyvirus VPg interacts with many proteins, notably host factors involved in protein synthesis within viral replication factories or within the nucleus. The number of protein partners, the clustering of the various interactions centering around it, the biological importance for some of these interactions (e.g. VPg-eIF4E) and the intrinsically disordered state of the protein are all elements that support the notion that VPg is a hub protein that controls many processes leading to virus production and spread.
Collapse
Affiliation(s)
- Jun Jiang
- Institut National de la Recherche Scientifique, Institut Armand-Frappier, 531 Boulevard des Prairies, Laval, Québec, Canada H7V 1B7
| | | |
Collapse
|
28
|
Expression analysis of nuclear W2-containing homologs of eukaryotic initiation factors in rice. Biologia (Bratisl) 2011. [DOI: 10.2478/s11756-011-0101-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
29
|
The translation initiation factor eIF4E regulates the sex-specific expression of the master switch gene Sxl in Drosophila melanogaster. PLoS Genet 2011; 7:e1002185. [PMID: 21829374 PMCID: PMC3145617 DOI: 10.1371/journal.pgen.1002185] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2010] [Accepted: 05/20/2011] [Indexed: 11/27/2022] Open
Abstract
In female fruit flies, Sex-lethal (Sxl) turns off the X chromosome dosage compensation system by a mechanism involving a combination of alternative splicing and translational repression of the male specific lethal-2 (msl-2) mRNA. A genetic screen identified the translation initiation factor eif4e as a gene that acts together with Sxl to repress expression of the Msl-2 protein. However, eif4e is not required for Sxl mediated repression of msl-2 mRNA translation. Instead, eif4e functions as a co-factor in Sxl-dependent female-specific alternative splicing of msl-2 and also Sxl pre-mRNAs. Like other factors required for Sxl regulation of splicing, eif4e shows maternal-effect female-lethal interactions with Sxl. This female lethality can be enhanced by mutations in other co-factors that promote female-specific splicing and is caused by a failure to properly activate the Sxl-positive autoregulatory feedback loop in early embryos. In this feedback loop Sxl proteins promote their own synthesis by directing the female-specific alternative splicing of Sxl-Pm pre-mRNAs. Analysis of pre-mRNA splicing when eif4e activity is compromised demonstrates that Sxl-dependent female-specific splicing of both Sxl-Pm and msl-2 pre-mRNAs requires eif4e activity. Consistent with a direct involvement in Sxl-dependent alternative splicing, eIF4E is associated with unspliced Sxl-Pm pre-mRNAs and is found in complexes that contain early acting splicing factors—the U1/U2 snRNP protein Sans-fils (Snf), the U1 snRNP protein U1-70k, U2AF38, U2AF50, and the Wilms' Tumor 1 Associated Protein Fl(2)d—that have been directly implicated in Sxl splicing regulation. Gene expression in eukaryotes is a complex process that occurs in several discrete steps. Some of those steps are separated into different sub-cellular compartments and thus might be expected to occur independently of one another and involve entirely distinct factors. For example pre-mRNA splicing takes place in the nucleus where it is coupled with transcription, while mRNA translation requires export to the cytoplasm and ribosome loading. We describe studies on the fruit fly Drosophila which indicate that a cytoplasmic translation initiation factor, the cap binding protein eIF4E, plays a key role in alternative splicing in the nucleus. When eIF4E activity is compromised, we observe defects in sex-specific splicing of pre-mRNAs that are regulated by the sex determination master switch gene Sex-lethal. Our data argue that eIF4E likely plays a direct role in the regulation of alternative splicing by Sex-lethal.
Collapse
|
30
|
Pettersson F, Yau C, Dobocan MC, Culjkovic-Kraljacic B, Retrouvey H, Puckett R, Flores LM, Krop IE, Rousseau C, Cocolakis E, Borden KLB, Benz CC, Miller WH. Ribavirin treatment effects on breast cancers overexpressing eIF4E, a biomarker with prognostic specificity for luminal B-type breast cancer. Clin Cancer Res 2011; 17:2874-84. [PMID: 21415224 DOI: 10.1158/1078-0432.ccr-10-2334] [Citation(s) in RCA: 104] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE We have evaluated the eukaryotic translation initiation factor 4E (eIF4E) as a potential biomarker and therapeutic target in breast cancer. eIF4E facilitates nuclear export and translation of specific, growth-stimulatory mRNAs and is frequently overexpressed in cancer. EXPERIMENTAL DESIGN Breast cancer cells were treated with ribavirin, an inhibitor of eIF4E, and effects on cell proliferation and on known mRNA targets of eIF4E were determined. eIF4E expression was assessed, at the mRNA and protein level, in breast cancer cell lines and in skin biopsies from patients with metastatic disease. Additionally, pooled microarray data from 621 adjuvant untreated, node-negative breast cancers were analyzed for eIF4E expression levels and correlation with distant metastasis-free survival (DMFS), overall and within each intrinsic breast cancer subtype. RESULTS At clinically relevant concentrations, ribavirin reduced cell proliferation and suppressed clonogenic potential, correlating with reduced mRNA export and protein expression of important eIF4E targets. This effect was suppressed by knockdown of eIF4E. Although eIF4E expression is elevated in all breast cancer cell lines, variability in ribavirin responsiveness was observed, indicating that other factors contribute to an eIF4E-dependent phenotype. Assessment of the prognostic value of high eIF4E mRNA in patient tumors found that significant discrimination between good and poor outcome groups was observed only in luminal B cases, suggesting that a specific molecular profile may predict response to eIF4E-targeted therapy. CONCLUSIONS Inhibition of eIF4E is a potential breast cancer therapeutic strategy that may be especially promising against specific molecular subtypes and in metastatic as well as primary tumors.
Collapse
MESH Headings
- Antimetabolites, Antineoplastic/pharmacology
- Antimetabolites, Antineoplastic/therapeutic use
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Breast Neoplasms/classification
- Breast Neoplasms/diagnosis
- Breast Neoplasms/drug therapy
- Breast Neoplasms/genetics
- Carcinoma/classification
- Carcinoma/diagnosis
- Carcinoma/drug therapy
- Carcinoma/genetics
- Cell Line, Tumor
- Cells, Cultured
- Eukaryotic Initiation Factor-4E/antagonists & inhibitors
- Eukaryotic Initiation Factor-4E/genetics
- Eukaryotic Initiation Factor-4E/metabolism
- Female
- Gene Expression Regulation, Neoplastic/drug effects
- Gene Knockdown Techniques
- Humans
- Mammary Glands, Human/metabolism
- Mammary Glands, Human/pathology
- Organ Specificity/genetics
- Prognosis
- RNA, Small Interfering/pharmacology
- Ribavirin/pharmacology
- Ribavirin/therapeutic use
- Up-Regulation/drug effects
- Up-Regulation/genetics
Collapse
Affiliation(s)
- Filippa Pettersson
- Lady Davis Institute & Segal Cancer Centre of the Jewish General Hospital, McGill University, Montréal, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Borden KLB, Culjkovic-Kraljacic B. Ribavirin as an anti-cancer therapy: acute myeloid leukemia and beyond? Leuk Lymphoma 2011; 51:1805-15. [PMID: 20629523 DOI: 10.3109/10428194.2010.496506] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Ribavirin was discovered nearly 40 years ago as a broad-spectrum antiviral drug. Recent data suggest that ribavirin may also be an effective cancer therapy. In this case, ribavirin targets an oncogene, the eukaryotic translation initiation factor eIF4E, elevated in approximately 30% of cancers including many leukemias and lymphomas. Specifically, ribavirin impedes eIF4E mediated oncogenic transformation by acting as an inhibitor of eIF4E. In a phase II clinical trial, ribavirin treatment led to substantial clinical benefit in patients with poor-prognosis acute myeloid leukemia (AML). Here molecular targeting of eIF4E correlated with clinical response. Ribavirin also targets a key enzyme in the guanosine biosynthetic pathway, inosine monophosphate dehydrogenase (IMPDH), and also modulates immunity. Parallels with known antiviral mechanisms could be informative; however, after 40 years, these are not entirely clear. The antiviral effects of ribavirin appear cell-type specific. This variation likely arises for many reasons, including cell specific variations in ribavirin metabolism as well as virus specific factors. Thus, it seems that the mechanisms for ribavirin action in cancer therapy may also vary in terms of the cancer/tissue under study. Here we review the anticancer activities of ribavirin and discuss the possible utility of incorporating ribavirin into diverse cancer therapeutic regimens.
Collapse
Affiliation(s)
- Katherine L B Borden
- Institute of Research in Immunology and Cancer (IRIC), Department of Pathology and Cell Biology, Université de Montréal, Montreal, QC, Canada.
| | | |
Collapse
|
32
|
Freire ER, Dhalia R, Moura DMN, da Costa Lima TD, Lima RP, Reis CRS, Hughes K, Figueiredo RCBQ, Standart N, Carrington M, de Melo Neto OP. The four trypanosomatid eIF4E homologues fall into two separate groups, with distinct features in primary sequence and biological properties. Mol Biochem Parasitol 2010; 176:25-36. [PMID: 21111007 DOI: 10.1016/j.molbiopara.2010.11.011] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2010] [Revised: 10/15/2010] [Accepted: 11/16/2010] [Indexed: 10/18/2022]
Abstract
Translation initiation in eukaryotes requires eIF4E, the cap binding protein, which mediates its function through an interaction with the scaffolding protein eIF4G, as part of the eIF4F complex. In trypanosomatids, four eIF4E homologues have been described but the specific function of each is not well characterized. Here, we report a study of these proteins in Trypanosoma brucei (TbEIF4E1 through 4). At the sequence level, they can be assigned to two groups: TbEIF4E1 and 2, similar in size to metazoan eIF4E1; and TbEIF4E3 and 4, with long N-terminal extensions. All are constitutively expressed, but whilst TbEIF4E1 and 2 localize to both the nucleus and cytoplasm, TbEIF4E3 and 4 are strictly cytoplasmic and are also more abundant. After knockdown through RNAi, TbEIF4E3 was the only homologue confirmed to be essential for viability of the insect procyclic form. In contrast, TbEIF4E1, 3 and 4 were all essential for the mammalian bloodstream form. Simultaneous RNAi knockdown of TbEIF4E1 and 2 caused cessation of growth and death in procyclics, but with a delayed impact on translation, whilst knockdown of TbEIF4E3 alone or a combined TbEIF4E1 and 4 knockdown led to substantial translation inhibition which preceded cellular death by several days, at least. Only TbEIF4E3 and 4 were found to interact with T. brucei eIF4G homologues; TbEIF4E3 bound both TbEIF4G3 and 4 whilst TbEIF4E4 bound only to TbEIF4G3. These results are consistent with TbEIF4E3 and 4 having distinct but relevant roles in initiation of protein synthesis.
Collapse
Affiliation(s)
- Eden R Freire
- Centro de Pesquisas Aggeu Magalhães, Fundação Oswaldo Cruz, Av. Moraes Rego s/n, Campus UFPE, Recife, PE 50670-420, Brazil
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Luyimbazi D, Akcakanat A, McAuliffe PF, Zhang L, Singh G, Gonzalez-Angulo AM, Chen H, Do KA, Zheng Y, Hung MC, Mills GB, Meric-Bernstam F. Rapamycin regulates stearoyl CoA desaturase 1 expression in breast cancer. Mol Cancer Ther 2010; 9:2770-84. [PMID: 20876744 DOI: 10.1158/1535-7163.mct-09-0980] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Mammalian target of rapamycin (mTOR) signaling is a central regulator of protein translation, cell growth, and metabolism. Alterations of the mTOR signaling pathway are common in cancer, making mTOR a promising therapeutic target. In clinical trials, rapamycin analogs have shown modest response rates for most cancer types, including breast cancer. Therefore, there is an urgent need to better understand the mechanism of action of rapamycin to improve patient selection and to monitor pathway inhibition. To identify novel pharmacodynamic markers of rapamycin activity, we carried out transcriptional profiling of total and polysome-associated RNA in three breast cancer cell lines representing different subtypes. In all three cell lines, we found that rapamycin significantly decreased polysome-associated mRNA for stearoyl-CoA desaturase 1 (SCD1), the rate-limiting enzyme in monounsaturated fatty acid synthesis. Activators of mTOR increased SCD1 protein expression, whereas rapamycin, LY294002, and BEZ235 decreased SCD1 protein expression. Rapamycin decreased total SCD1 RNA expression without inducing a significant decline in its relative polysomal recruitment (polysome/total ratio). Rapamycin did not alter SCD1 mRNA stability. Instead, rapamycin inhibited SCD1 promoter activity and decreased expression of mature transcription factor sterol regulatory element binding protein 1 (SREBP1). Eukaryotic initiation factor 4E (eIF4E) small interfering RNA (siRNA) decreased both SCD1 and SREBP1 expression, suggesting that SCD1 may be regulated through the mTOR/eIF4E-binding protein 1 axis. Furthermore, SCD1 siRNA knockdown inhibited breast cancer cell growth, whereas overexpression increased growth. Taken together these findings show that rapamycin decreases SCD1 expression, establishing an important link between cell signaling and cancer cell fatty acid synthesis and growth.
Collapse
Affiliation(s)
- David Luyimbazi
- Department of Surgical Oncology, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Saletta F, Suryo Rahmanto Y, Richardson DR. The translational regulator eIF3a: the tricky eIF3 subunit! Biochim Biophys Acta Rev Cancer 2010; 1806:275-86. [PMID: 20647036 DOI: 10.1016/j.bbcan.2010.07.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2010] [Revised: 07/07/2010] [Accepted: 07/11/2010] [Indexed: 01/10/2023]
Abstract
Regulation of gene expression is a fundamental step in cellular physiology as abnormalities in this process may lead to de-regulated growth and cancer. Translation of mRNA is mainly regulated at the rate-limiting initiation step, where many eukaryotic initiation factors (eIFs) are involved. The largest and most complex initiation factor is eIF3 which plays a role in translational regulation, cell growth and cancer. The largest subunit of eIF3 is eIF3a, although it is not required for the general function of eIF3 in translation initiation. However, eIF3a may play a role as a regulator of a subset of mRNAs and has been demonstrated to regulate the expression of p27(kip1), tyrosinated α-tubulin and ribonucleotide reductase M2 subunit. These molecules have a pivotal role in the regulation of the cell cycle. Moreover, the eIF3a mRNA is ubiquitously expressed in all tissues at different levels and is found elevated in a number of cancer types. eIF3a can modulate the cell cycle and may be a translational regulator for proteins important for entrance into S phase. The expression of eIF3a is decreased in differentiated cells in culture and the suppression of eIF3a expression can reverse the malignant phenotype and change the sensitivity of cells to cell cycle modulators. However, the role of eIF3a in cancer is still unclear. In fact, some studies have identified eIF3a to be involved in cancer development, while other results indicate that it could provide protection against evolution into higher malignancy. Together, these findings highlight the "tricky" and interesting nature of eIF3a.
Collapse
Affiliation(s)
- Federica Saletta
- Iron Metabolism and Chelation Program, Department of Pathology and Bosch Institute, Blackburn Building (D06), University of Sydney, Sydney, New South Wales, 2006 Australia
| | | | | |
Collapse
|
35
|
Taliansky ME, Brown JWS, Rajamäki ML, Valkonen JPT, Kalinina NO. Involvement of the plant nucleolus in virus and viroid infections: parallels with animal pathosystems. Adv Virus Res 2010; 77:119-58. [PMID: 20951872 PMCID: PMC7149663 DOI: 10.1016/b978-0-12-385034-8.00005-3] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The nucleolus is a dynamic subnuclear body with roles in ribosome subunit biogenesis, mediation of cell-stress responses, and regulation of cell growth. An increasing number of reports reveal that similar to the proteins of animal viruses, many plant virus proteins localize in the nucleolus to divert host nucleolar proteins from their natural functions in order to exert novel role(s) in the virus infection cycle. This chapter will highlight studies showing how plant viruses recruit nucleolar functions to facilitate virus translation and replication, virus movement and assembly of virus-specific ribonucleoprotein (RNP) particles, and to counteract plant host defense responses. Plant viruses also provide a valuable tool to gain new insights into novel nucleolar functions and processes. Investigating the interactions between plant viruses and the nucleolus will facilitate the design of novel strategies to control plant virus infections.
Collapse
Affiliation(s)
- M E Taliansky
- Scottish Crop Research Institute, Invergowrie, Dundee, United Kingdom
| | | | | | | | | |
Collapse
|
36
|
Understanding and Targeting the Eukaryotic Translation Initiation Factor eIF4E in Head and Neck Cancer. JOURNAL OF ONCOLOGY 2009; 2009:981679. [PMID: 20049173 PMCID: PMC2798714 DOI: 10.1155/2009/981679] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2009] [Accepted: 09/30/2009] [Indexed: 01/08/2023]
Abstract
The eukaryotic translation initiation factor eIF4E is elevated in about 30% of human malignancies including HNSCC where its levels correlate with poor prognosis. Here, we discuss the biochemical and molecular underpinnings of the oncogenic potential of eIF4E. Studies in human leukemia specimens, and later in a mouse model of prostate cancer, strongly suggest that cells with elevated eIF4E develop an oncogene dependency to it, making them more sensitive to targeting eIF4E than normal cells. We describe several strategies that have been suggested for eIF4E targeting in the clinic: the use of a small molecule antagonist of eIF4E (ribavirin), siRNA or antisense oligonucleotide strategies, suicide gene therapy, and the use of a tissue-targeting 4EBP fusion peptide. The first clinical trial targeting eIF4E indicates that ribavirin effectively targets eIF4E in poor prognosis leukemia patients and more importantly leads to striking clinical responses including complete and partial remissions. Finally, we discuss the relevance of these findings to HNSCC.
Collapse
|
37
|
Hernández G. On the origin of the cap-dependent initiation of translation in eukaryotes. Trends Biochem Sci 2009; 34:166-75. [PMID: 19299142 DOI: 10.1016/j.tibs.2009.02.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2008] [Revised: 02/04/2009] [Accepted: 02/04/2009] [Indexed: 01/13/2023]
Abstract
The Shine-Dalgarno sequence of prokaryotic mRNAs, which helps to bind and position the ribosome at the start site for protein synthesis, is absent from eukaryotic mRNAs. Instead, for most, a structure at the 5' end and a much larger number of protein initiation factors are needed for both binding of the ribosome and for successful start-site selection, that is, a 'cap-dependent' initiation mechanism. Although the mechanics of this process are well studied, what is not clear is how it evolved. By analyzing recent progress in different fields, I suggest that it was the need to adjust to the arrival of the nuclear membrane and the subsequent requirement to export intron-less mRNAs to the cytoplasm that spurred the shift to the more complex translation initiation mechanism in eukaryotes.
Collapse
Affiliation(s)
- Greco Hernández
- Department of Biology, McGill University, 1205 Dr. Penfield, Montreal, QC. H3A 1B1, Canada.
| |
Collapse
|
38
|
Tejada S, Lobo MVT, García-Villanueva M, Sacristán S, Pérez-Morgado MI, Salinas M, Martín ME. Eukaryotic initiation factors (eIF) 2alpha and 4E expression, localization, and phosphorylation in brain tumors. J Histochem Cytochem 2009; 57:503-12. [PMID: 19188486 DOI: 10.1369/jhc.2009.952929] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Increased protein synthesis is regulated, in part, by two eukaryotic translation initiation factors (eIFs): eIF4E and eIF2alpha. One or both of these factors are often overexpressed in several types of cancer cells; however, no data are available at present regarding eIF4E and eIF2alpha levels in brain tumors. In this study, we analyzed the expression, subcellular localization and phosphorylation states of eIF4E and eIF2alpha in 64 brain tumors (26 meningiomas, 16 oligodendroglial tumors, and 22 astrocytomas) and investigated the correlation with the expression of MIB-1, p53, and cyclin D1 proteins as well. There are significant differences in the phosphorylated eIF4E levels between the tumors studied, being the highest in meningiomas and the lowest in the oligodendroglial tumors. Relative to subcellular localization, eIF4E is frequently found in the nucleus of the oligodendroglial tumors and rarely in the same compartment of the meningiomas, whereas eIF2alpha showed an inverse pattern. Finally, cyclin D1 levels directly correlate with the phosphorylation status of both factors. The different expression, phosphorylation, or/and subcellular distribution of eIF2alpha and eIF4E within the brain types of tumors studied could indicate that different pathways are activated for promoting cell cycle proliferation, for instance, leading to increased cyclin D1 expression.
Collapse
Affiliation(s)
- Sonia Tejada
- Servicio de Neurocirugía, Hospital Ramón y Cajal, Ctra. Colmenar Km. 9, 28034 Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
39
|
Matsuo T, Sugita T, Shimose S, Kubo T, Ishikawa M, Yasunaga Y, Ochi M. Immunohistochemical expression of promyelocytic leukemia body in soft tissue sarcomas. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2008; 27:73. [PMID: 19025608 PMCID: PMC2611968 DOI: 10.1186/1756-9966-27-73] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2008] [Accepted: 11/23/2008] [Indexed: 02/04/2023]
Abstract
BACKGROUND The function of promyelocytic leukemia (PML) bodies is not well known but plays an important role in controlling cell proliferation, apoptosis and senescence. This study was undertaken to analyze the clinical significance of PML body expression in primary tumor samples from malignant fibrous histiocytoma (MFH) and liposarcoma patients. METHODS We studied MFH and liposarcoma samples from 55 patients for PML bodies. Fluorescent immunostaining of PML bodies was performed in the paraffin-embedded tumor sections. RESULTS PML body immunostaining was identified in 63.9% of MFH and 63.2% of liposarcoma samples. PML body expression rates of all sarcoma cells were 1.5 +/- 1.8% (range: 0-7.0) in MFH and 1.3 +/- 1.4% (0-5.2) in liposarcoma samples. PML body expression (p = 0.0053) and a high rate of PML body expression (p = 0.0012) were significantly greater prognostic risk factors for death than the other clinical factors in MFH patients. All liposarcoma patients without expression of PML were disease free at the end of the study. CONCLUSION Our study suggests that the presence of PML bodies may indicate a poor prognosis for MFH and liposarcoma patients.
Collapse
Affiliation(s)
- Toshihiro Matsuo
- Department of Artificial Joints and Biomaterials, Graduate School of Biomedical Sciences, Hiroshima University, Hiroshima, Japan.
| | | | | | | | | | | | | |
Collapse
|
40
|
Activation of p53 stimulates proteasome-dependent truncation of eIF4E-binding protein 1 (4E-BP1). Biol Cell 2008; 100:279-89. [PMID: 18021075 DOI: 10.1042/bc20070121] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
BACKGROUND INFORMATION The translational inhibitor protein 4E-BP1 [eIF4E (eukaryotic initiation factor 4E)-binding protein 1] regulates the availability of polypeptide chain initiation factor eIF4E for protein synthesis. Initiation factor eIF4E binds the 5' cap structure present on all cellular mRNAs. Its ability to associate with initiation factors eIF4G and eIF4A, forming the eIF4F complex, brings the mRNA to the 43S complex during the initiation of translation. Binding of eIF4E to eIF4G is inhibited in a competitive manner by 4E-BP1. Phosphorylation of 4E-BP1 decreases the affinity of this protein for eIF4E, thus favouring the binding of eIF4G and enhancing translation. We have previously shown that induction or activation of the tumour suppressor protein p53 rapidly leads to 4E-BP1 dephosphorylation, resulting in sequestration of eIF4E, decreased formation of the eIF4F complex and inhibition of protein synthesis. RESULTS We now report that activation of p53 also results in modification of 4E-BP1 to a truncated form. Unlike full-length 4E-BP1, which is reversibly phosphorylated at multiple sites, the truncated protein is almost completely unphosphorylated. Moreover, the latter interacts with eIF4E in preference to full-length 4E-BP1. Inhibitor studies indicate that the p53-induced cleavage of 4E-BP1 is mediated by the proteasome and is blocked by conditions that inhibit the dephosphorylation of full-length 4E-BP1. Measurements of the turnover of 4E-BP1 indicate that the truncated form is much more stable than the full-length protein. CONCLUSIONS The results suggest a model in which proteasome activity gives rise to a stable, hypophosphorylated and truncated form of 4E-BP1, which may exert a long-term inhibitory effect on the availability of eIF4E, thus contributing to the inhibition of protein synthesis and the growth-inhibitory and pro-apoptotic effects of p53.
Collapse
|
41
|
Borden KLB. Pondering the puzzle of PML (promyelocytic leukemia) nuclear bodies: can we fit the pieces together using an RNA regulon? BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2008; 1783:2145-54. [PMID: 18616965 DOI: 10.1016/j.bbamcr.2008.06.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2008] [Revised: 06/03/2008] [Accepted: 06/10/2008] [Indexed: 12/26/2022]
Abstract
The promyelocytic leukemia protein PML and its associated nuclear bodies are hot topics of investigation. This interest arises for multiple reasons including the tight link between the integrity of PML nuclear bodies and several disease states and the impact of the PML protein and PML nuclear bodies on proliferation, apoptosis and viral infection. Unfortunately, an understanding of the molecular underpinnings of PML nuclear body function remains elusive. Here, a general overview of the PML field is provided and is extended to discuss whether some of the basic tenets of "PML-ology" are still valid. For instance, recent findings suggest that some components of PML nuclear bodies form bodies in the absence of the PML protein. Also, a new model for PML nuclear body function is proposed which provides a unifying framework for its effects on diverse biochemical pathways such as Akt signaling and the p53-Mdm2 axis. In this model, the PML protein acts as an inhibitor of gene expression post-transcriptionally via inhibiting a network node in the eIF4E RNA regulon. An example is given for how the PML RNA regulon model provided the basis for the development of a new anti-cancer strategy being tested in the clinic.
Collapse
Affiliation(s)
- Katherine L B Borden
- Institute for Research in Immunology and Cancer and Department of Pathology and Cell Biology, Université de Montréal, Montréal, Québec, Canada H4M 1J6.
| |
Collapse
|
42
|
Paronetto MP, Bianchi E, Geremia R, Sette C. Dynamic expression of the RNA-binding protein Sam68 during mouse pre-implantation development. Gene Expr Patterns 2008; 8:311-22. [PMID: 18321792 DOI: 10.1016/j.gep.2008.01.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2008] [Accepted: 01/25/2008] [Indexed: 12/23/2022]
Abstract
The STAR protein Sam68 (KHDRBS1) is involved in several aspects of post-transcriptional mRNA metabolism. Herein, we have investigated the expression and subcellular localization of Sam68 during early mouse embryogenesis. We found that mouse oocytes express high levels of Sam68 mRNA, low levels of the transcript for Khdrbs2 (current symbol for Slm-1) and no Khdrbs3 (current symbol for Slm-2), two highly homologous STAR genes. Sam68 protein is expressed throughout oocyte meiotic maturation and early embryogenesis. It is released in the cytoplasm upon meiotic resumption and it slowly accumulates in the nucleus after fertilization. Unlike what was observed for other RNA-binding proteins, nuclear accumulation of Sam68 was independent of de novo mRNA transcription. However, we found that inhibition of mRNA translation by either cycloheximide or puromycin in one-cell embryos caused the accumulation of Sam68 in cytoplasmic granules. Analysis of these granules by deconvolution microscopy demonstrated that they are sites of accumulation for proteins involved in the initiation of mRNA translation, such as eIF4A1, eIF4E and eIF4G. These granules contained RNA and were dissolved by treatment with RNase A. Other proteins expressed by the zygote, like the splicing factor SC35 or the cytoplasmic kinase ERK2, did not accumulate in such structures after treatment with inhibitors of mRNA translation, indicating that the localization of Sam68 and of the translation initiation factors in these granules is a specific event. These results indicate that Sam68 is involved in translational regulation of maternal mRNAs in the zygote and in the early signaling events triggered by fertilization.
Collapse
Affiliation(s)
- Maria Paola Paronetto
- Department of Public Health and Cell Biology, Section of Anatomy, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| | | | | | | |
Collapse
|
43
|
Rhoads RE, Dinkova TD, Jagus R. Approaches for analyzing the differential activities and functions of eIF4E family members. Methods Enzymol 2007; 429:261-97. [PMID: 17913628 DOI: 10.1016/s0076-6879(07)29013-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2023]
Abstract
The translational initiation factor eIF4E binds to the m(7)G-containing cap of mRNA and participates in recruitment of mRNA to ribosomes for protein synthesis. eIF4E also functions in nucleocytoplasmic transport of mRNA, sequestration of mRNA in a nontranslatable state, and stabilization of mRNA against decay in the cytosol. Multiple eIF4E family members have been identified in a wide range of organisms that includes plants, flies, mammals, frogs, birds, nematodes, fish, and various protists. This chapter reviews methods that have been applied to learn the biochemical properties and physiological functions that differentiate eIF4E family members within a given organism. Much has been learned to date about approaches to discover new eIF4E family members, their in vitro properties (cap binding, stimulation of cell-free translation systems), tissue and developmental expression patterns, protein-binding partners, and their effects on the translation or repression of specific subsets of mRNA. Despite these advances, new eIF4E family members continue to be found and new physiological roles discovered.
Collapse
Affiliation(s)
- Robert E Rhoads
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, Shreveport, Louisiana, USA
| | | | | |
Collapse
|
44
|
Oh N, Kim KM, Cho H, Choe J, Kim YK. Pioneer round of translation occurs during serum starvation. Biochem Biophys Res Commun 2007; 362:145-151. [PMID: 17693387 DOI: 10.1016/j.bbrc.2007.07.169] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2007] [Accepted: 07/30/2007] [Indexed: 10/23/2022]
Abstract
The pioneer round of translation plays a role in translation initiation of newly spliced and exon junction complex (EJC)-bound mRNAs. Nuclear cap-binding protein complex CBP80/20 binds to those mRNAs at the 5'-end, recruiting translation initiation complex. As a consequence of the pioneer round of translation, the bound EJCs are dissociated from mRNAs and CBP80/20 is replaced by the cytoplasmic cap-binding protein eIF4E. Steady-state translation directed by eIF4E allows for an immediate and rapid response to changes in physiological conditions. Here, we show that nonsense-mediated mRNA decay (NMD), which restricts only to the pioneer round of translation but not to steady-state translation, efficiently occurs even during serum starvation, in which steady-state translation is drastically abolished. Accordingly, CBP80 remains in the nucleus and processing bodies are unaffected in their abundance and number in serum-starved conditions. These results suggest that mRNAs enter the pioneer round of translation during serum starvation and are targeted for NMD if they contain premature termination codons.
Collapse
Affiliation(s)
- Nara Oh
- School of Life Sciences and Biotechnology, Korea University, Seoul 136-701, Republic of Korea
| | - Kyoung Mi Kim
- School of Life Sciences and Biotechnology, Korea University, Seoul 136-701, Republic of Korea
| | - Hana Cho
- School of Life Sciences and Biotechnology, Korea University, Seoul 136-701, Republic of Korea
| | - Junho Choe
- School of Life Sciences and Biotechnology, Korea University, Seoul 136-701, Republic of Korea
| | - Yoon Ki Kim
- School of Life Sciences and Biotechnology, Korea University, Seoul 136-701, Republic of Korea.
| |
Collapse
|
45
|
Beauchemin C, Laliberté JF. The poly(A) binding protein is internalized in virus-induced vesicles or redistributed to the nucleolus during turnip mosaic virus infection. J Virol 2007; 81:10905-13. [PMID: 17670821 PMCID: PMC2045535 DOI: 10.1128/jvi.01243-07] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Poly(A) binding protein 2 (PABP2) of Arabidopsis thaliana was previously shown to interact with VPg-Pro of turnip mosaic virus (TuMV) and may consequently play an important role during infection. Subcellular fractionation experiments revealed that PABP2 was predominantly a cytoplasmic soluble protein in healthy plants. However, in TuMV-infected plants, a subpopulation of PABP2 was membrane associated or was localized in the nucleus. Confocal microscopy experiments indicated that PABP2 was partially retargeted to the nucleolus in the presence of TuMV VPg-Pro. In addition, the membrane association of PABP2 during TuMV infection resulted from the internalization of the host protein in 6K-VPg-Pro-induced vesicles, as shown by a combination of confocal microscopy and sucrose gradient fractionation experiments. This redistribution of an important translation initiation factor to the nucleolus and to membrane structure likely underlies two important processes of the TuMV replication cycle.
Collapse
Affiliation(s)
- Chantal Beauchemin
- INRS-Institut Armand Frappier, 531 Boulevard des Prairies, Laval, Québec H7V 1B7, Canada
| | | |
Collapse
|
46
|
Shih JW, Tsai TY, Chao CH, Wu Lee YH. Candidate tumor suppressor DDX3 RNA helicase specifically represses cap-dependent translation by acting as an eIF4E inhibitory protein. Oncogene 2007; 27:700-14. [PMID: 17667941 DOI: 10.1038/sj.onc.1210687] [Citation(s) in RCA: 139] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
DDX3 is a human RNA helicase with plethoric functions. Our previous studies have indicated that DDX3 is a transcriptional regulator and functions as a tumor suppressor. In this study, we use a bicistronic reporter to demonstrate that DDX3 specifically represses cap-dependent translation but enhances hepatitis C virus internal ribosome entry site-mediated translation in vivo in a helicase activity-independent manner. To elucidate how DDX3 modulates translation, we identified translation initiation factor eukaryotic initiation factor 4E (eIF4E) as a DDX3-binding partner. Interestingly, DDX3 utilizes a consensus eIF4E-binding sequence YIPPHLR to interact with the functionally important dorsal surface of eIF4E in a similar manner to other eIF4E-binding proteins. Furthermore, cap affinity chromatography analysis suggests that DDX3 traps eIF4E in a translationally inactive complex by blocking interaction with eIF4G. Point mutations within the consensus eIF4E-binding motif in DDX3 impair its ability to bind eIF4E and result in a loss of DDX3's regulatory effects on translation. All these features together indicate that DDX3 is a new member of the eIF4E inhibitory proteins involved in translation initiation regulation. Most importantly, this DDX3-mediated translation regulation also confers the tumor suppressor function on DDX3. Altogether, this study demonstrates regulatory roles and action mechanisms for DDX3 in translation, cell growth and likely viral replication.
Collapse
Affiliation(s)
- J-W Shih
- Institute of Biochemistry and Molecular Biology, School of Life Sciences, National Yang-Ming University, Taipei, Taiwan, Republic of China
| | | | | | | |
Collapse
|
47
|
Elia A, Constantinou C, Clemens MJ. Effects of protein phosphorylation on ubiquitination and stability of the translational inhibitor protein 4E-BP1. Oncogene 2007; 27:811-22. [PMID: 17653084 DOI: 10.1038/sj.onc.1210678] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The availability of the eukaryotic polypeptide chain initiation factor 4E (eIF4E) for protein synthesis is regulated by the 4E-binding proteins (4E-BPs), which act as inhibitors of cap-dependent mRNA translation. The ability of the 4E-BPs to sequester eIF4E is regulated by reversible phosphorylation at multiple sites. We show here that, in addition, 4E-BP1 is a substrate for polyubiquitination and that some forms of 4E-BP1 are simultaneously polyubiquitinated and phosphorylated. In Jurkat cells inhibition of proteasomal activity by MG132 enhances the level of hypophosphorylated, unmodified 4E-BP1 but only modestly increases the accumulation of high-molecular-weight, phosphorylated forms of 4E-BP1. In contrast, inhibition of protein phosphatase activity with calyculin A reduces the level of unmodified 4E-BP1 but strongly enhances the amount of phosphorylated, high-molecular-weight 4E-BP1. Turnover measurements in the presence of cycloheximide show that, whereas 4E-BP1 is normally a very stable protein, calyculin A decreases the apparent half-life of the normal-sized protein. Affinity chromatography on m(7)GTP-Sepharose indicates that the larger forms of 4E-BP1 bind very poorly to eIF4E. We suggest that the phosphorylation of 4E-BP1 may play a dual role in the regulation of protein synthesis, both reducing the affinity of 4E-BP1 for eIF4E and promoting the conversion of 4E-BP1 to alternative, polyubiquitinated forms.
Collapse
Affiliation(s)
- A Elia
- Translational Control Group, Division of Basic Medical Sciences, Centre for Molecular and Metabolic Signalling, St George's, University of London, London, UK
| | | | | |
Collapse
|
48
|
Meloche S, Pouysségur J. The ERK1/2 mitogen-activated protein kinase pathway as a master regulator of the G1- to S-phase transition. Oncogene 2007; 26:3227-39. [PMID: 17496918 DOI: 10.1038/sj.onc.1210414] [Citation(s) in RCA: 834] [Impact Index Per Article: 46.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The Ras-dependent extracellular signal-regulated kinase (ERK)1/2 mitogen-activated protein (MAP) kinase pathway plays a central role in cell proliferation control. In normal cells, sustained activation of ERK1/ERK2 is necessary for G1- to S-phase progression and is associated with induction of positive regulators of the cell cycle and inactivation of antiproliferative genes. In cells expressing activated Ras or Raf mutants, hyperactivation of the ERK1/2 pathway elicits cell cycle arrest by inducing the accumulation of cyclin-dependent kinase inhibitors. In this review, we discuss the mechanisms by which activated ERK1/ERK2 regulate growth and cell cycle progression of mammalian somatic cells. We also highlight the findings obtained from gene disruption studies.
Collapse
Affiliation(s)
- S Meloche
- Departments of Pharmacology and Molecular Biology, Institut de Recherche en Immunologie et Cancérologie, Université de Montréal, Montreal, Quebec, Canada.
| | | |
Collapse
|
49
|
Proud CG. Signalling to translation: how signal transduction pathways control the protein synthetic machinery. Biochem J 2007; 403:217-34. [PMID: 17376031 DOI: 10.1042/bj20070024] [Citation(s) in RCA: 380] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Recent advances in our understanding of both the regulation of components of the translational machinery and the upstream signalling pathways that modulate them have provided important new insights into the mechanisms by which hormones, growth factors, nutrients and cellular energy status control protein synthesis in mammalian cells. The importance of proper control of mRNA translation is strikingly illustrated by the fact that defects in this process or its control are implicated in a number of disease states, such as cancer, tissue hypertrophy and neurodegeneration. Signalling pathways such as those involving mTOR (mammalian target of rapamycin) and mitogen-activated protein kinases modulate the phosphorylation of translation factors, the activities of the protein kinases that act upon them and the association of RNA-binding proteins with specific mRNAs. These effects contribute both to the overall control of protein synthesis (which is linked to cell growth) and to the modulation of the translation or stability of specific mRNAs. However, important questions remain about both the contributions of individual regulatory events to the control of general protein synthesis and the mechanisms by which the translation of specific mRNAs is controlled.
Collapse
Affiliation(s)
- Christopher G Proud
- Department of Biochemistry and Molecular Biology, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, Canada V6T 1Z3.
| |
Collapse
|
50
|
Woulfe JM, Prichett-Pejic W, Rippstein P, Munoz DG. Promyelocytic leukaemia-immunoreactive neuronal intranuclear rodlets in the human brain. Neuropathol Appl Neurobiol 2007; 33:56-66. [PMID: 17239008 DOI: 10.1111/j.1365-2990.2006.00789.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
In a previous study, we demonstrated immunoreactivity of a subset of neuronal intranuclear rodlets (INRs) in the human substantia nigra for promyelocytic leukaemia (PML) protein, the signature protein of PML bodies. In the present study, we extend these observations and describe the ultrastructural features, immunohistochemical staining characteristics, and topographical pattern of distribution of PML-immunoreactive intranuclear rodlets (PML-INRs). Consistent with a purported role for PML bodies in nuclear proteolysis and/or transcriptional regulation, PML-INRs are immunoreactive for components of the ubiquitin-proteasome system, the transcriptional regulator CREB-binding protein, acetylated histone H4, and the eukaryotic translation initiation factor eIF4E. Immunoelectron microscopy reveals that they all possess a filamentous core and, in some, this is surrounded by a granular shell. We further demonstrate that a proportion of INRs in extranigral sites also show partial immunoreactivity for PML. These observations indicate an intimate association between two neuronal nuclear bodies, PML bodies and INRs. Because both of these structures have been implicated in neurodegenerative disease, PML-INRs may provide a tool with which to study changes in nuclear substructure in disease.
Collapse
Affiliation(s)
- J M Woulfe
- Cancer Research Program, The Ottawa Health Research Institute, Ottawa, Ontario, Canada.
| | | | | | | |
Collapse
|