1
|
Mullally C, Stubbs KA, Thai VC, Anandan A, Bartley S, Scanlon MJ, Jarvis GA, John CM, Lim KYL, Sullivan CM, Sarkar-Tyson M, Vrielink A, Kahler CM. Novel small molecules that increase the susceptibility of Neisseria gonorrhoeae to cationic antimicrobial peptides by inhibiting lipid A phosphoethanolamine transferase. J Antimicrob Chemother 2022; 77:2441-2447. [PMID: 35770844 PMCID: PMC9410672 DOI: 10.1093/jac/dkac204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 05/19/2022] [Indexed: 11/14/2022] Open
Abstract
Objectives Neisseria gonorrhoeae is an exclusively human pathogen that commonly infects the urogenital tract resulting in gonorrhoea. Empirical treatment of gonorrhoea with antibiotics has led to multidrug resistance and the need for new therapeutics. Inactivation of lipooligosaccharide phosphoethanolamine transferase A (EptA), which attaches phosphoethanolamine to lipid A, results in attenuation of the pathogen in infection models. Small molecules that inhibit EptA are predicted to enhance natural clearance of gonococci via the human innate immune response. Methods A library of small-fragment compounds was tested for the ability to enhance susceptibility of the reference strain N. gonorrhoeae FA1090 to polymyxin B. The effect of these compounds on lipid A synthesis and viability in models of infection were tested. Results Three compounds, 135, 136 and 137, enhanced susceptibility of strain FA1090 to polymyxin B by 4-fold. Pre-treatment of bacterial cells with all three compounds resulted in enhanced killing by macrophages. Only lipid A from bacterial cells exposed to compound 137 showed a 17% reduction in the level of decoration of lipid A with phosphoethanolamine by MALDI-TOF MS analysis and reduced stimulation of cytokine responses in THP-1 cells. Binding of 137 occurred with higher affinity to purified EptA than the starting material, as determined by 1D saturation transfer difference NMR. Treatment of eight MDR strains with 137 increased susceptibility to polymyxin B in all cases. Conclusions Small molecules have been designed that bind to EptA, inhibit addition of phosphoethanolamine to lipid A and can sensitize N. gonorrhoeae to killing by macrophages.
Collapse
Affiliation(s)
- Christopher Mullally
- The Marshall Center for Infectious Diseases Research and Training, School of Biomedical Science, University of Western Australia, Perth, Australia
| | - Keith A Stubbs
- School of Molecular Sciences, University of Western Australia, Perth, Australia
| | - Van C Thai
- The Marshall Center for Infectious Diseases Research and Training, School of Biomedical Science, University of Western Australia, Perth, Australia
| | - Anandhi Anandan
- School of Molecular Sciences, University of Western Australia, Perth, Australia
| | - Stephanie Bartley
- The Marshall Center for Infectious Diseases Research and Training, School of Biomedical Science, University of Western Australia, Perth, Australia
| | - Martin J Scanlon
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, Australia
| | - Gary A Jarvis
- Center for Immunochemistry, Veterans Affairs Medical Center, San Francisco, USA.,Department of Laboratory Medicine, University of California, San Francisco, USA
| | - Constance M John
- Center for Immunochemistry, Veterans Affairs Medical Center, San Francisco, USA.,Department of Laboratory Medicine, University of California, San Francisco, USA
| | - Katherine Y L Lim
- The Marshall Center for Infectious Diseases Research and Training, School of Biomedical Science, University of Western Australia, Perth, Australia
| | - Courtney M Sullivan
- The Marshall Center for Infectious Diseases Research and Training, School of Biomedical Science, University of Western Australia, Perth, Australia
| | - Mitali Sarkar-Tyson
- The Marshall Center for Infectious Diseases Research and Training, School of Biomedical Science, University of Western Australia, Perth, Australia
| | - Alice Vrielink
- School of Molecular Sciences, University of Western Australia, Perth, Australia
| | - Charlene M Kahler
- The Marshall Center for Infectious Diseases Research and Training, School of Biomedical Science, University of Western Australia, Perth, Australia.,Telethon Kids Institute, Perth Children's Hospital, Perth, Australia
| |
Collapse
|
2
|
Valvano MA. Remodelling of the Gram-negative bacterial Kdo 2-lipid A and its functional implications. MICROBIOLOGY (READING, ENGLAND) 2022; 168. [PMID: 35394417 DOI: 10.1099/mic.0.001159] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The lipopolysaccharide (LPS) is a characteristic molecule of the outer leaflet of the Gram-negative bacterial outer membrane, which consists of lipid A, core oligosaccharide, and O antigen. The lipid A is embedded in outer membrane and provides an efficient permeability barrier, which is particularly important to reduce the permeability of antibiotics, toxic cationic metals, and antimicrobial peptides. LPS, an important modulator of innate immune responses ranging from localized inflammation to disseminated sepsis, displays a high level of structural and functional heterogeneity, which arise due to regulated differences in the acylation of the lipid A and the incorporation of non-stoichiometric modifications in lipid A and the core oligosaccharide. This review focuses on the current mechanistic understanding of the synthesis and assembly of the lipid A molecule and its most salient non-stoichiometric modifications.
Collapse
Affiliation(s)
- Miguel A Valvano
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, BT9 7BL, UK
| |
Collapse
|
3
|
Anandan A, Vrielink A. Structure and function of lipid A-modifying enzymes. Ann N Y Acad Sci 2019; 1459:19-37. [PMID: 31553069 DOI: 10.1111/nyas.14244] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 08/26/2019] [Accepted: 09/05/2019] [Indexed: 12/30/2022]
Abstract
Lipopolysaccharides are complex molecules found in the cell envelop of many Gram-negative bacteria. The toxic activity of these molecules has led to the terminology of endotoxins. They provide bacteria with structural integrity and protection from external environmental conditions, and they interact with host signaling receptors to induce host immune responses. Bacteria have evolved enzymes that act to modify lipopolysaccharides, particularly the lipid A region of the molecule, to enable the circumvention of host immune system responses. These modifications include changes to lipopolysaccharide by the addition of positively charged sugars, such as N-Ara4N, and phosphoethanolamine (pEtN). Other modifications include hydroxylation, acylation, and deacylation of fatty acyl chains. We review the two-component regulatory mechanisms for enzymes that carry out these modifications and provide details of the structures of four enzymes (PagP, PagL, pEtN transferases, and ArnT) that modify the lipid A portion of lipopolysaccharides. We focus largely on the three-dimensional structures of these enzymes, which provide an understanding of how their substrate binding and catalytic activities are mediated. A structure-function-based understanding of these enzymes provides a platform for the development of novel therapeutics to treat antibiotic resistance.
Collapse
Affiliation(s)
- Anandhi Anandan
- School of Molecular Sciences, University of Western Australia, Perth, Western Australia, Australia
| | - Alice Vrielink
- School of Molecular Sciences, University of Western Australia, Perth, Western Australia, Australia
| |
Collapse
|
4
|
Kahler CM, Nawrocki KL, Anandan A, Vrielink A, Shafer WM. Structure-Function Relationships of the Neisserial EptA Enzyme Responsible for Phosphoethanolamine Decoration of Lipid A: Rationale for Drug Targeting. Front Microbiol 2018; 9:1922. [PMID: 30186254 PMCID: PMC6111236 DOI: 10.3389/fmicb.2018.01922] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 07/30/2018] [Indexed: 11/13/2022] Open
Abstract
Bacteria cause disease by two general mechanisms: the action of their toxins on host cells and induction of a pro-inflammatory response that can lead to a deleterious cytokine/chemokine response (e.g., the so-called cytokine storm) often seen in bacteremia/septicemia. These major mechanisms may overlap due to the action of surface structures that can have direct and indirect actions on phagocytic or non-phagocytic cells. In this respect, the lipid A (endotoxin) component of lipopolysaccharide (LPS) possessed by Gram-negative bacteria has been the subject of literally thousands of studies over the past century that clearly identified it as a key virulence factor in endotoxic shock. In addition to its capacity to modulate inflammatory responses, endotoxin can also modulate bacterial susceptibility to host antimicrobials, such as the host defense peptides termed cationic antimicrobial peptides. This review concentrates on the phosphoethanolamine (PEA) decoration of lipid A in the pathogenic species of the genus Neisseria [N. gonorrhoeae and N. meningitidis]. PEA decoration of lipid A is mediated by the enzyme EptA (formerly termed LptA) and promotes resistance to innate defense systems, induces the pro-inflammatory response and can influence the in vivo fitness of bacteria during infection. These important biological properties have driven efforts dealing with the biochemistry and structural biology of EptA that will facilitate the development of potential inhibitors that block PEA addition to lipid A.
Collapse
Affiliation(s)
- Charlene M Kahler
- The Marshall Center for Infectious Diseases Research and Training, School of Biomedical Sciences, University of Western Australia, Crawley, WA, Australia.,Perth Children's Hospital, Telethon Kids Institute, Subiaco, WA, Australia
| | - K L Nawrocki
- Department of Microbiology and Immunology, The Emory Antibiotic Resistance Center, Emory University School of Medicine, Atlanta, GA, United States.,Laboratories of Bacterial Pathogenesis, VA Medical Center, Decatur, GA, United States
| | - A Anandan
- School of Molecular Sciences, University of Western Australia, Crawley, WA, Australia
| | - Alice Vrielink
- The Marshall Center for Infectious Diseases Research and Training, School of Biomedical Sciences, University of Western Australia, Crawley, WA, Australia.,School of Molecular Sciences, University of Western Australia, Crawley, WA, Australia
| | - William M Shafer
- Department of Microbiology and Immunology, The Emory Antibiotic Resistance Center, Emory University School of Medicine, Atlanta, GA, United States.,Laboratories of Bacterial Pathogenesis, VA Medical Center, Decatur, GA, United States
| |
Collapse
|
5
|
Hung MC, Christodoulides M. The biology of Neisseria adhesins. BIOLOGY 2013; 2:1054-109. [PMID: 24833056 PMCID: PMC3960869 DOI: 10.3390/biology2031054] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Revised: 07/01/2013] [Accepted: 07/03/2013] [Indexed: 01/15/2023]
Abstract
Members of the genus Neisseria include pathogens causing important human diseases such as meningitis, septicaemia, gonorrhoea and pelvic inflammatory disease syndrome. Neisseriae are found on the exposed epithelia of the upper respiratory tract and the urogenital tract. Colonisation of these exposed epithelia is dependent on a repertoire of diverse bacterial molecules, extending not only from the surface of the bacteria but also found within the outer membrane. During invasive disease, pathogenic Neisseriae also interact with immune effector cells, vascular endothelia and the meninges. Neisseria adhesion involves the interplay of these multiple surface factors and in this review we discuss the structure and function of these important molecules and the nature of the host cell receptors and mechanisms involved in their recognition. We also describe the current status for recently identified Neisseria adhesins. Understanding the biology of Neisseria adhesins has an impact not only on the development of new vaccines but also in revealing fundamental knowledge about human biology.
Collapse
Affiliation(s)
- Miao-Chiu Hung
- Neisseria Research, Molecular Microbiology, Clinical and Experimental Sciences, Sir Henry Wellcome Laboratories, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, SO16 6YD, UK.
| | - Myron Christodoulides
- Neisseria Research, Molecular Microbiology, Clinical and Experimental Sciences, Sir Henry Wellcome Laboratories, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, SO16 6YD, UK.
| |
Collapse
|
6
|
Abstract
Galectins, which were first characterized in the mid-1970s, were assigned a role in the recognition of endogenous ('self') carbohydrate ligands in embryogenesis, development and immune regulation. Recently, however, galectins have been shown to bind glycans on the surface of potentially pathogenic microorganisms, and function as recognition and effector factors in innate immunity. Some parasites subvert the recognition roles of the vector or host galectins to ensure successful attachment or invasion. This Review discusses the role of galectins in microbial infection, with particular emphasis on adaptations of pathogens to evasion or subversion of host galectin-mediated immune responses.
Collapse
Affiliation(s)
- Gerardo R Vasta
- University of Maryland Biotechnology Institute, Center of Marine Biotechnology, Columbus Center, Baltimore, 21202, USA.
| |
Collapse
|
7
|
Tsai CM, Jankowska-Stephens E, Mizanur RM, Cipollo JF. The Fine Structure of Neisseria meningitidis Lipooligosaccharide from the M986 Strain and Three of Its Variants. J Biol Chem 2009; 284:4616-25. [DOI: 10.1074/jbc.m808209200] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
8
|
O'Connor ET, Swanson KV, Cheng H, Fluss K, Griffiss JM, Stein DC. Structural Requirements for Monoclonal Antibody 2-1-L8 Recognition of Neisserial Lipooligosaccharides. Hybridoma (Larchmt) 2008; 27:71-9. [DOI: 10.1089/hyb.2007.0552] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Ellen T. O'Connor
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland
| | - Karen V. Swanson
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland
- Department of Laboratory Medicine and Veterans Affairs, VA Medical Center, University of California, San Francisco, California
| | - Hui Cheng
- Department of Laboratory Medicine and Veterans Affairs, VA Medical Center, University of California, San Francisco, California
| | - Kathryn Fluss
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland
| | - J. McLeod Griffiss
- Department of Laboratory Medicine and Veterans Affairs, VA Medical Center, University of California, San Francisco, California
| | - Daniel C. Stein
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland
| |
Collapse
|
9
|
Cox AD, Zou W, Gidney MAJ, Lacelle S, Plested JS, Makepeace K, Wright JC, Coull PA, Moxon ER, Richards JC. Candidacy of LPS-based glycoconjugates to prevent invasive meningococcal disease: Developmental chemistry and investigation of immunological responses following immunization of mice and rabbits. Vaccine 2005; 23:5045-54. [PMID: 16046037 DOI: 10.1016/j.vaccine.2005.06.011] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2005] [Accepted: 06/13/2005] [Indexed: 10/25/2022]
Abstract
Glycoconjugates were prepared by covalently linking the immunogenic protein carrier CRM(197) to O-deacylated lipopolysaccharide (LPS) derived from Neisseria meningitidis (strain H44/76), immunotype L3 galE LPS. This mutant strain elaborates a truncated LPS structure that displays immunological epitopes characteristic of 76% of Group B meningococcal (NmB) strains. CRM(197) was covalently linked either to the reducing glucosamine residue of the lipid A region of the O-deacylated LPS or to a 2-keto-3-deoxy-octulosonic acid (Kdo) residue in the inner core region of the O-deacylated LPS. In both rabbits and mice a much stronger IgG response to the immunising antigen was generated in those animals that received conjugates linked via the lipid A region. Sera from mice that were immunized with these conjugates were assayed for their reactivity with LPS, both mutant and wild-type, of several homologous and heterologous NmB strains. Sera obtained from mice immunized with conjugates in which the carrier protein was linked via the Kdo moiety were only able to react with O-deacylated, but not fully acylated (native), LPS from the homologous strain. However, sera obtained from mice that were immunized with conjugates, in which the carrier protein was coupled to the lipid A region, reacted predominately with inner core epitopes that contained phosphoethanolamine at the same 3-position of the distal heptose residue (HepII) of the inner core LPS as was present on the immunising antigen. Additionally it was observed that sera from rabbits immunised with lipid A linked conjugates, unlike the mice responses, were generally not as specific for LPS antigens that contained phosphoethanolamine at the same 3-position as was present on the immunising antigen, but showed a broader inner core recognition, whereas those rabbits that received the Kdo-linked conjugates gave only a very weak non-specific response to all immunotypes. Finally, the sera from two out of six mice that had received lipid A linked conjugates had bactericidal activity against L3 wild-type NmB strain 8047 and one of these was able to passively protect against meningococcal infection in an infant rat model. This study demonstrates evidence towards the proof-in-principle that by using Nm inner core LPS conjugates coupled via the lipid A region with an intact phosphoethanolamine at the O-3 position of the HepII of the inner core LPS, it is possible to elicit functional and protective antibodies against meningococcal infection.
Collapse
Affiliation(s)
- A D Cox
- Institute for Biological Sciences, National Research Council, 100, Sussex Drive, Ottawa, Ont., Canada K1A 0R6.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Kahler CM, Datta A, Tzeng YL, Carlson RW, Stephens DS. Inner core assembly and structure of the lipooligosaccharide of Neisseria meningitidis: capacity of strain NMB to express all known immunotype epitopes. Glycobiology 2004; 15:409-19. [PMID: 15574803 DOI: 10.1093/glycob/cwi018] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Neisseria meningitidis expresses a heterogeneous population of lipooligosaccharide (LOS) inner cores variously substituted with alpha1-3-linked glucose and O-3, O-6, and O-7 linked phosphoethanolamine (PEA), as well as glycine, attached to HepII. Combinations of these attachments to the LOS inner core represent immunodominant epitopes that are being exploited as future vaccine candidates. Historically, each LOS immunotype was structurally assessed and prescribed a certain unique inner core epitope. We report that a single isolate, strain NMB, possesses the capacity to produce all of the known neisserial LOS inner core immunotype structures. Analysis of the inner cores from parental LOS revealed the presence or absence of alpha1,3-linked glucose, O-6 and/or O-7 linked PEA, in addition to glycine attached at the 7 position of the HepII inner core. Identification and inactivation of lpt-6 in strain NMB resulted in the loss of both O-6 and O-7 linked PEA groups from the LOS inner core, suggesting that Lpt-6 of strain NMB may have bifunctional transferase activities or that the O-6 linked PEA groups once attached to the inner core undergo nonenzymatic transfer to the O-7 position of HepII. Although O-3 linked PEA was not detected in parental LOS inner cores devoid of alpha1-3-linked glucose residues, LOS glycoforms bearing O-3 PEA groups accumulated in a truncated mutant, NMBlgtK (Hep2Kdo2-lipid A). Because these structures disappeared upon inactivation of the lpt-3 locus, strain NMB expresses a functional O-3 PEA transferase. The LOS glycoforms expressed by NMBlgtK were also devoid of glycine attachments, indicating that glycine was added to the inner core after the completion of the gamma-chain by LgtK. In conclusion, strain NMB has the capability to express all known inner core structures, but in in vitro culture L2 and L4 immunotype structures are predominantly expressed.
Collapse
Affiliation(s)
- Charlene M Kahler
- Department of Microbiology, Monash University, Clayton 3800, Australia.
| | | | | | | | | |
Collapse
|
11
|
Li J, Cox AD, Hood D, Moxon ER, Richards JC. Application of capillary electrophoresis- electrospray-mass spectrometry to the separation and characterization of isomeric lipopolysaccharides ofNeisseria meningitidis. Electrophoresis 2004; 25:2017-2025. [PMID: 15237402 DOI: 10.1002/elps.200305824] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
A capillary electrophoresis-electrospray-mass spectrometry technique for the characterization of lipopolysaccharides (LPSs) was developed, permitting the separation of trace-level O-deacylated LPS isoforms for subsequent structural characterization using tandem mass spectrometry (MS/MS). The separation buffer and electrospray interface were optimized first using O-deacylated LPS samples from large-scale preparations. It was found that with microelectrospray or sheath-solution interface, we could separate LPS in anionic forms and detect them using either negative or positive ion mode MS. For negative ion detection mode MS, 30 mM morpholine with addition of 5% v/v methanol was employed as separation buffer. When positive ion detection mode MS was required, 10 mM ammonium acetate with addition of 5% methanol was used as separation buffer. The structural assignments obtained from MS/MS and capillary zone electrophoresis-electrospray-MS (CZE-ESMS) analyses enabled the identification of isomeric glycoforms. Application of this technique to the analysis of LPS from the galE mutants of Neisseria meningitidis strain BZ157 B5+ revealed the presence of isomeric glycoforms, in which the location of a functional group phosphoethanolamine was found to be in either inner core or lipid A-OH regions. The described technique was also applied to the analysis of LPS samples from the galE mutant of N. meningitidis strains F1576 A4+ and A4-. The occurrence of isomeric LPS glycoforms differing by the location or presence of neutral sugar residues, such as hexoses, can also be characterized using MS/MS.
Collapse
Affiliation(s)
- Jianjun Li
- Institute for Biological Sciences, National Research Council, Ottawa, ON, Canada
| | - Andrew D Cox
- Institute for Biological Sciences, National Research Council, Ottawa, ON, Canada
| | - Derek Hood
- Institute for Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - E Richard Moxon
- Institute for Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - James C Richards
- Institute for Biological Sciences, National Research Council, Ottawa, ON, Canada
| |
Collapse
|
12
|
Gidney MAJ, Plested JS, Lacelle S, Coull PA, Wright JC, Makepeace K, Brisson JR, Cox AD, Moxon ER, Richards JC. Development, characterization, and functional activity of a panel of specific monoclonal antibodies to inner core lipopolysaccharide epitopes in Neisseria meningitidis. Infect Immun 2004; 72:559-69. [PMID: 14688137 PMCID: PMC351819 DOI: 10.1128/iai.72.1.559-569.2004] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A panel of six murine monoclonal antibodies (MAbs) recognizing inner core lipopolysaccharide (LPS) epitopes of Neisseria meningitidis was prepared and characterized in order to determine the diversity of inner core LPS glycoforms among disease and carrier isolates. Two of these MAbs, L2-16 (immunoglobulin G2b [IgG2b]) and LPT3-1 (IgG2a), together with a third, previously described MAb, L3B5 (IgG3), showed reactivity, either individually or in combination, with all except 3 of 143 disease and carriage isolates (125 of 126 strains from blood, cerebrospinal fluid, or skin biopsy samples and 15 of 17 from nasopharyngeal cultures). MAbs L3B5, L2-16, and LPT3-1 were further characterized in an indirect immunofluorescence assay. All three MAbs bound to the bacterial cell surface, findings that correlated strongly with whole-cell enzyme-linked immunosorbent assay and immunodot blots. However, in contrast to our findings with L3B5, cell surface binding of L2-16 or LPT 3-1 did not correlate with functional activity as determined by bactericidal or infant rat passive protection assays against wild-type N. meningitidis strains. These findings are provocative with respect to the requirements for protective activity of antibodies and the development of inner core LPS vaccines against invasive meningococcal disease.
Collapse
MESH Headings
- Animals
- Animals, Newborn
- Antibodies, Monoclonal/immunology
- Blood Bactericidal Activity
- Cross Reactions
- Enzyme-Linked Immunosorbent Assay
- Epitopes/chemistry
- Epitopes/immunology
- Fluorescent Antibody Technique, Indirect
- Humans
- Lipopolysaccharides/chemistry
- Lipopolysaccharides/immunology
- Meningitis, Meningococcal/immunology
- Models, Molecular
- Neisseria meningitidis, Serogroup B/genetics
- Neisseria meningitidis, Serogroup B/immunology
- Neisseria meningitidis, Serogroup B/pathogenicity
- Neisseria meningitidis, Serogroup C/genetics
- Neisseria meningitidis, Serogroup C/immunology
- Neisseria meningitidis, Serogroup C/pathogenicity
- Opsonin Proteins
- Phagocytosis
- Rats
- Rats, Wistar
Collapse
Affiliation(s)
- Margaret Anne J Gidney
- Institute for Biological Sciences, National Research Council, Ottawa, ON, K1A OR6, Canada.
| | | | | | | | | | | | | | | | | | | |
Collapse
|