1
|
Elias J, Sharma V, Archana G, Kumar GN. Cra-controlled antisense RNA-downregulation of isocitrate dehydrogenase in Escherichia coli. Arch Microbiol 2025; 207:105. [PMID: 40167800 DOI: 10.1007/s00203-025-04290-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2025] [Revised: 02/24/2025] [Accepted: 02/26/2025] [Indexed: 04/02/2025]
Abstract
Catabolite repressor activator (Cra) protein (formerly called FruR) found in E. coli is known to regulate the expression of many genes positively and negatively in response to the intracellular levels of fructose-1-phosphate (F-1-P) and fructose-1,6-bisphopahate (F-1,6-bisP). In this paper, we report synthesis and characterization of a conditionally expressed antisense RNA corresponding to 101 bp of isocitrate dehydrogenase (icd) gene (as-icd) under Cra (FruR) responsive promoter fruB (PfruB as-icd construct denoted as pVS2K3) in E. coli K-12 derivative (DH5α) and E. coli B derivative (BL21) strains. Previous studies have shown that ICD mutants accumulated citrate intracellularly but failed to grow on glucose in absence of glutamate. Hence, a conditional downregulation of icd gene could be helpful in overcoming this lethality and also aid in understanding the flux towards citrate accumulation. Effect of pVS2K3 construct was monitored in E. coli DH5α and E. coli BL21 during growth on carbon sources wherein the fruB promoter is active (glucose) or repressed (glycerol). A 3-to 4-fold decrease in ICDH activity was observed in E. coli DH5α expressing pVS2K3 on glucose but no change in ICDH activity was observed in E. coli BL21 expressing pVS2K3 on glucose. This alteration could be attributed to the anomalous Cra regulation seen in E. coli B strain which could be a crucial factor while choosing PfruB promoter for expression studies.
Collapse
Affiliation(s)
- Jisha Elias
- Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, 390 002, India
- Medgenome Labs Ltd, Kailash Cancer Hospital and Research Centre, Goraj, Vadodara, Gujarat, 391760, India
| | - Vikas Sharma
- Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, 390 002, India.
- Department of Biotechnology, Ambala College of Engineering and Applied Research, Devsthali, Ambala Cantt-Jagadhari Road, P.O. Sambhalkha, Ambala, Haryana, 133101, India.
| | - G Archana
- Department of Microbiology, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, 390 002, India
| | - G Naresh Kumar
- Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, 390 002, India.
| |
Collapse
|
2
|
Chen Y, Feng D, Cheng Y, Jiang X, Qiu L, Zhang L, Shi D, Wang J. Research progress of metal-CpG composite nanoadjuvants in tumor immunotherapy. Biomater Sci 2025; 13:1605-1623. [PMID: 39998438 DOI: 10.1039/d4bm01399a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2025]
Abstract
The practical benefits and therapeutic potential of tumor vaccines in immunotherapy have drawn significant attention in the field of cancer treatment. Among the available vaccines, nanovaccines that utilize nanoparticles as carriers or adjuvants have demonstrated considerable effectiveness in combating cancer. Cytosine-phosphate-guanine oligodeoxynucleotide (CpG ODN), a common adjuvant in tumor nanovaccines, activates both humoral and cellular immunity by recognizing toll-like receptor 9 (TLR9), thereby aiding in the prevention and treatment of cancer. Metal nanoparticles hold great promise in tumor immunotherapy due to their adjustable size, surface functionalization, ability to regulate innate immunity, and capacity for controlled delivery of antigens or immunomodulators. Consequently, composite nanoadjuvants, formed by combining metal nanoparticles with CpG ODNs, can be customized to meet the specific performance requirements of different application scenarios, effectively overcoming the limitations of conventional immunotherapy approaches. This review provides a comprehensive analysis of the critical role of metal-CpG composite nanoadjuvants in advancing vaccine adjuvants for cancer therapy and prevention, highlighting their efficacy in preclinical settings.
Collapse
Affiliation(s)
- Yifan Chen
- School of Pharmacy, Changzhou University, Changzhou 213164, China.
| | - Danna Feng
- School of Pharmacy, Changzhou University, Changzhou 213164, China.
| | - Yilin Cheng
- School of Pharmacy, Changzhou University, Changzhou 213164, China.
| | - Xianmeng Jiang
- School of Pharmacy, Changzhou University, Changzhou 213164, China.
| | - Lin Qiu
- School of Pharmacy, Changzhou University, Changzhou 213164, China.
| | - Li Zhang
- School of Pharmacy, Changzhou University, Changzhou 213164, China.
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Dongjian Shi
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Jianhao Wang
- School of Pharmacy, Changzhou University, Changzhou 213164, China.
| |
Collapse
|
3
|
Mansour HM, El-Khatib AS. Oligonucleotide-based therapeutics for neurodegenerative disorders: Focus on antisense oligonucleotides. Eur J Pharmacol 2025; 998:177529. [PMID: 40118328 DOI: 10.1016/j.ejphar.2025.177529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2025] [Revised: 03/04/2025] [Accepted: 03/18/2025] [Indexed: 03/23/2025]
Abstract
Antisense oligonucleotides (ASOs) specifically bind to target RNA sequences and regulate protein expression through various mechanisms. ASOs are a promising therapeutic approach for treating neurodegenerative diseases. The ASO field is a growing area of drug development that focuses on targeting the root cause of diseases at the RNA level, providing a promising alternative to therapies that target downstream processes. Addressing challenges related to off-target effects and inadequate biological activity is essential to successfully develop ASO-based therapies. Researchers have investigated various chemical modifications and delivery strategies to overcome these challenges. This review discusses oligonucleotide-based therapies, particularly ASOs. We discuss the chemical modifications and mechanisms of action of ASOs. Additionally, we recap the results of preclinical and clinical studies testing different ASOs in various neurodegenerative disorders, including spinal muscular atrophy, Huntington's disease, amyotrophic lateral sclerosis, Alzheimer's disease, and Parkinson's disease. In conclusion, ASO drugs show promise as a therapeutic option for treating neurodegenerative diseases.
Collapse
Affiliation(s)
- Heba M Mansour
- Central Administration of Biologicals, Innovative Products, and Clinical Studies, Egyptian Drug Authority, EDA, Giza, Egypt.
| | - Aiman S El-Khatib
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
4
|
Shehzadi K, Kalsoom I, Yu MJ, Liang JH. Design and in-silico evaluation of PNA-based novel pronucleotide analogues targeting RNA-dependent RNA polymerase to combat COVID-19. J Biomol Struct Dyn 2025:1-23. [PMID: 39937582 DOI: 10.1080/07391102.2024.2335287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 03/19/2024] [Indexed: 02/13/2025]
Abstract
The emergence of highly contagious SARS-CoV-2 variants emphasizes the need for antiviral drugs that can adapt to evolving viral mutations. Despite widespread vaccination efforts, novel variants and recurrence cases raise concerns about COVID-19. Although repurposed drugs like Remdesivir, a nucleoside inhibitor, offer treatment, there is still a critical need for alternative drugs. Inhibiting viral RdRp function remains a key strategy. Structural analysis highlights the importance of pyrrolo-triazine and pyrimidine scaffolds in nucleoside inhibitors. Our study designed Peptide Nucleic Acid (PNA) antisense pronucleotides by combining these scaffolds using structure-guided drug design. Molecular modeling, including molecular docking, pharmacokinetics, molecular dynamics simulations, and MMPBSA binding energy calculations, predicts that modified PNAs can disrupt ribosome assembly at the RdRp translation start site. The neutral backbone of PNAs may enhance sequence-specific RNA binding. MD simulations revealed that complexes of Remdesivir and L14 remained stable throughout, with the phosphate tail of L14 stabilized by a positive amino acid pocket near the RdRp-RNA entry channel, similar to Remdesivir. Additionally, L14's guanine motif interacted with U20, A19, and U18 on the primer RNA strand. The lead PNA analog (L14) showed superior binding free energy to both RdRp (-47.26 kcal/mol) and RdRp-RNA (-85.66 kcal/mol), outperforming Remdesivir. Key amino acid residues critical for binding affinity were identified, providing valuable insights for drug development. This promising PNA-mimetic compound offers dual-target specificity, presenting a compelling avenue for developing potent anti-SARS-CoV-2 agents.
Collapse
Affiliation(s)
- Kiran Shehzadi
- Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering, Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, China
| | - Iqra Kalsoom
- Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering, Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, China
| | - Ming-Jia Yu
- Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering, Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, China
| | - Jian-Hua Liang
- Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering, Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, China
| |
Collapse
|
5
|
Chimento DP, Anderson AL, Fial I, Ascoli CA. Bioanalytical Assays for Oligonucleotide Therapeutics: Adding Antibody-Based Immunoassays to the Toolbox as an Orthogonal Approach to LC-MS/MS and Ligand Binding Assays. Nucleic Acid Ther 2025; 35:6-15. [PMID: 39993214 DOI: 10.1089/nat.2024.0065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2025] Open
Affiliation(s)
| | - Amy L Anderson
- Rockland Immunochemicals Inc., Limerick, Pennsylvania, USA
| | - Inês Fial
- Medical Research Council Functional Genomics Unit, Nucleic Acid Therapy Accelerator (NATA), Research Complex at Harwell, Oxford, United Kingdom
| | - Carl A Ascoli
- Rockland Immunochemicals Inc., Limerick, Pennsylvania, USA
| |
Collapse
|
6
|
Mikutis S, Bernardes GJL. Technologies for Targeted RNA Degradation and Induced RNA Decay. Chem Rev 2024; 124:13301-13330. [PMID: 39499674 PMCID: PMC11638902 DOI: 10.1021/acs.chemrev.4c00472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 10/03/2024] [Accepted: 10/29/2024] [Indexed: 11/07/2024]
Abstract
The vast majority of the human genome codes for RNA, but RNA-targeting therapeutics account for a small fraction of approved drugs. As such, there is great incentive to improve old and develop new approaches to RNA targeting. For many RNA targeting modalities, just binding is not sufficient to exert a therapeutic effect; thus, targeted RNA degradation and induced decay emerged as powerful approaches with a pronounced biological effect. This review covers the origins and advanced use cases of targeted RNA degrader technologies grouped by the nature of the targeting modality as well as by the mode of degradation. It covers both well-established methods and clinically successful platforms such as RNA interference, as well as emerging approaches such as recruitment of RNA quality control machinery, CRISPR, and direct targeted RNA degradation. We also share our thoughts on the biggest hurdles in this field, as well as possible ways to overcome them.
Collapse
Affiliation(s)
- Sigitas Mikutis
- Yusuf Hamied Department of
Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
| | - Gonçalo J. L. Bernardes
- Yusuf Hamied Department of
Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
| |
Collapse
|
7
|
Zhou Y, Sato H, Kawade M, Yamagishi K, Ueno Y. Application of 4'- C-α-aminoethoxy-2'- O-methyl-5-propynyl-uridine for antisense therapeutics. RSC Adv 2024; 14:39148-39162. [PMID: 39664244 PMCID: PMC11632595 DOI: 10.1039/d4ra06376g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 11/22/2024] [Indexed: 12/13/2024] Open
Abstract
Owing to the increased public interest and advances in chemical modifications, the approval of antisense therapeutics, a class of mRNA-targeting DNA-based oligonucleotide therapeutics, has accelerated in recent years. It was previously reported that siRNAs with several 4'-C-α-aminoethoxy-2'-O-methyl-uridine (4AEoU) analogs could maintain moderate thermal stability similar to the native ones while showing robust nuclease stability. In this study, we further expanded the application of 4AEo modification to antisense therapeutics and achieved superior thermal stability by adding the uracil 5-propynyl modification. Antisense oligonucleotides containing 4'-C-α-aminoethoxy-2'-O-methyl-5-propynyl-uridine (4AEopU) could efficiently activate RNase H-mediated antisense in vitro in the presence of native DNA gaps. These results encourage future studies of 4AEopU-containing antisense therapeutics.
Collapse
Affiliation(s)
- Yujun Zhou
- The United Graduate School of Agriculture Science (UGSAS), Gifu University Japan +81-58-293-2919 +81-58-293-2919
| | - Hitotaka Sato
- The United Graduate School of Agriculture Science (UGSAS), Gifu University Japan +81-58-293-2919 +81-58-293-2919
| | - Miwa Kawade
- Faculty of Applied Biological Sciences, Gifu University Japan
| | - Kenji Yamagishi
- Department of Chemical Biology and Applied Chemistry, College of Engineering, Nihon University 1 Nakagawara, Tokusada, Tamuramachi Koriyama Fukushima 963-8642 Japan
| | - Yoshihito Ueno
- The United Graduate School of Agriculture Science (UGSAS), Gifu University Japan +81-58-293-2919 +81-58-293-2919
- Faculty of Applied Biological Sciences, Gifu University Japan
- Graduate School of Natural Sciences and Technology, Gifu University Japan
- Center for One Medicine Innovative Translational Research (COMIT), Tokai National Higher Education and Research System, Gifu University 1-1 Yanagido Gifu 501-1193 Japan
| |
Collapse
|
8
|
Grabbe C, Cai L. Regioselective Deacetylation in Nucleosides and Derivatives. Chembiochem 2024; 25:e202400360. [PMID: 39037890 PMCID: PMC11610680 DOI: 10.1002/cbic.202400360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/23/2024] [Accepted: 07/22/2024] [Indexed: 07/24/2024]
Abstract
Nucleoside analogues are a promising class of natural compounds in the pharmaceutical industry, and many antiviral, antibacterial and anticancer drugs have been created through structural modification of nucleosides scaffold. Acyl protecting groups, especially the acetyl group, play an important role in the protection of hydroxy groups in nucleoside synthesis and modification; consequently, numerous methodologies have been put forth for the acetylation of free nucleosides. However, for nucleosides that contain different O- and N-based functionalities, selective deprotection of the acetyl group(s) in nucleosides has been studied little, despite its practical significance in simplifying the preparation of partially or differentially substituted nucleoside intermediates. In this mini-review, recent approaches for regioselective deacetylation in acetylated nucleosides and their analogues are summarized and evaluated. Different regioselectivities (primary ester, secondary ester, full de-O-acetylation, and de-N-acetylation) are summarized and discussed in each section.
Collapse
Affiliation(s)
- Charis Grabbe
- Department of ChemistryUniversity of South Carolina Lancaster476 Hubbard DrLancaster, SC29720USA
| | - Li Cai
- Department of ChemistryUniversity of South Carolina Lancaster476 Hubbard DrLancaster, SC29720USA
| |
Collapse
|
9
|
Dowerah D, V N Uppuladinne M, Paul S, Das D, Gour NK, Biswakarma N, Sarma PJ, Sonavane UB, Joshi RR, Ray SK, Deka RC. A Study Modeling Bridged Nucleic Acid-Based ASOs and Their Impact on the Structure and Stability of ASO/RNA Duplexes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:21407-21426. [PMID: 39370641 DOI: 10.1021/acs.langmuir.4c02171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Antisense medications treat diseases that cannot be treated using traditional pharmacological technologies. Nucleotide monomers of bare and phosphorothioate (PS)-modified LNA, N-MeO-amino-BNA, 2',4'-BNANC[NH], 2',4'-BNANC[NMe], and N-Me-aminooxy-BNA antisense modifications were considered for a detailed DFT-based quantum chemical study to estimate their molecular-level structural and electronic properties. Oligomer hybrid duplex stability is described by performing an elaborate MD simulation study by incorporating the PS-LNA and PS-BNA antisense modifications onto 14-mer ASO/RNA hybrid gapmer type duplexes targeting protein PTEN mRNA nucleic acid sequence (5'-CTTAGCACTGGCCT-3'/3'-GAAUCGUGACCGGA-5'). Replica sets of MD simulations were performed accounting to two data sets, each set simulated for 1 μs simulation time. Bulk properties of oligomers are regulated by the chemical properties of their monomers. As such, the primary goal of this work focused on establishing an organized connection between the monomeric BNA nucleotide's electronic effects observed in DFT studies and the macroscopic behavior of the BNA antisense oligomers, as observed in MD simulations. The results from this study predicted that spatial orientation of MO-isosurfaces of the BNA nucleotides are concentrated in the nucleobase region. These BNA nucleotides may become less accessible for various electronic interactions when coupled as ASOs forming duplexes with target RNAs and when the ASO/RNA duplexes further bind with the RNase H. Understanding such electronic interactions is crucial to design superior antisense modifications with specific electronic properties. Also, for the particular nucleic acid sequence solvation of the duplexes although were higher compared to the natural oligonucleotides, their binding energies being relatively lower may lead to decreased antisense activity compared to existing analogs such as the LNAs and MOEs. Fine tuning these BNAs to obtain superior binding affinity is thus a necessity.
Collapse
Affiliation(s)
- Dikshita Dowerah
- CMML-Catalysis and Molecular Modelling Lab, Department of Chemical Sciences, Tezpur University, Napaam, Sonitpur, Assam 784028, India
| | - Mallikarjunachari V N Uppuladinne
- HPC - Medical & Bioinformatics Applications Group, Centre for Development of Advanced Computing (C-DAC), Panchavati, Pashan, Pune 411008, India
| | - Subrata Paul
- CMML-Catalysis and Molecular Modelling Lab, Department of Chemical Sciences, Tezpur University, Napaam, Sonitpur, Assam 784028, India
- Department of Chemistry, Assam University, Silchar, Assam 788011, India
| | - Dharitri Das
- CMML-Catalysis and Molecular Modelling Lab, Department of Chemical Sciences, Tezpur University, Napaam, Sonitpur, Assam 784028, India
| | - Nand K Gour
- CMML-Catalysis and Molecular Modelling Lab, Department of Chemical Sciences, Tezpur University, Napaam, Sonitpur, Assam 784028, India
| | - Nishant Biswakarma
- CMML-Catalysis and Molecular Modelling Lab, Department of Chemical Sciences, Tezpur University, Napaam, Sonitpur, Assam 784028, India
| | - Plaban J Sarma
- CMML-Catalysis and Molecular Modelling Lab, Department of Chemical Sciences, Tezpur University, Napaam, Sonitpur, Assam 784028, India
- Department of Chemistry, Gargaon College, Simaluguri, Sivasagar, Assam 785686, India
| | - Uddhavesh B Sonavane
- HPC - Medical & Bioinformatics Applications Group, Centre for Development of Advanced Computing (C-DAC), Panchavati, Pashan, Pune 411008, India
| | - Rajendra R Joshi
- HPC - Medical & Bioinformatics Applications Group, Centre for Development of Advanced Computing (C-DAC), Panchavati, Pashan, Pune 411008, India
| | - Suvendra K Ray
- Department of Molecular Biology and Biotechnology, Tezpur University, Napaam, Sonitpur, Assam 784028, India
- Center for Multidisciplinary Research, Tezpur University, Napaam, Sonitpur, Assam 784028, India
| | - Ramesh Ch Deka
- CMML-Catalysis and Molecular Modelling Lab, Department of Chemical Sciences, Tezpur University, Napaam, Sonitpur, Assam 784028, India
- Center for Multidisciplinary Research, Tezpur University, Napaam, Sonitpur, Assam 784028, India
| |
Collapse
|
10
|
Vázquez-Domínguez I, Anido AA, Duijkers L, Hoppenbrouwers T, Hoogendoorn AM, Koster C, Collin RJ, Garanto A. Efficacy, biodistribution and safety comparison of chemically modified antisense oligonucleotides in the retina. Nucleic Acids Res 2024; 52:10447-10463. [PMID: 39119918 PMCID: PMC11417397 DOI: 10.1093/nar/gkae686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 06/25/2024] [Accepted: 07/26/2024] [Indexed: 08/10/2024] Open
Abstract
Antisense oligonucleotides (AONs) are a versatile tool for treating inherited retinal diseases. However, little is known about how different chemical modifications of AONs can affect their biodistribution, toxicity, and uptake in the retina. Here, we addressed this question by comparing splice-switching AONs with three different chemical modifications commonly used in a clinical setting (2'O-methyl-phosphorothioate (2-OMe/PS), 2'O-methoxyethyl-phosphoriate (2-MOE/PS), and phosphorodiamidite morpholino oligomers (PMO)). These AONs targeted genes exclusively expressed in certain types of retinal cells. Overall, studies in vitro and in vivo in C57BL/6J wild-type mouse retinas showed that 2-OMe/PS and 2-MOE/PS AONs have comparable efficacy and safety profiles. In contrast, octa-guanidine-dendrimer-conjugated in vivo PMO-oligonucleotides (ivPMO) caused toxicity. This was evidenced by externally visible ocular phenotypes in 88.5% of all ivPMO-treated animals, accompanied by severe alterations at the morphological level. However, delivery of unmodified PMO-AONs did not cause any toxicity, although it clearly reduced the efficacy. We conducted the first systematic comparison of different chemical modifications of AONs in the retina. Our results showed that the same AON sequence with different chemical modifications displayed different splicing modulation efficacies, suggesting the 2'MOE/PS modification as the most efficacious in these conditions. Thereby, our work provides important insights for future clinical applications.
Collapse
Affiliation(s)
| | - Alejandro Allo Anido
- Radboud university medical center, Department of Human Genetics, Nijmegen, The Netherlands
| | - Lonneke Duijkers
- Radboud university medical center, Department of Human Genetics, Nijmegen, The Netherlands
| | - Tamara Hoppenbrouwers
- Radboud university medical center, Department of Human Genetics, Nijmegen, The Netherlands
| | - Anita D M Hoogendoorn
- Radboud university medical center, Amalia Children's Hospital, Department of Pediatrics, Nijmegen, The Netherlands
| | - Céline Koster
- Departments of Human Genetics and Ophthalmology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Rob W J Collin
- Radboud university medical center, Department of Human Genetics, Nijmegen, The Netherlands
| | - Alejandro Garanto
- Radboud university medical center, Department of Human Genetics, Nijmegen, The Netherlands
- Radboud university medical center, Amalia Children's Hospital, Department of Pediatrics, Nijmegen, The Netherlands
| |
Collapse
|
11
|
Rahman M, Marzullo BP, Lam PY, Barrow MP, Holman SW, Ray AD, O'Connor PB. Unveiling the intricacy of gapmer oligonucleotides through advanced tandem mass spectrometry approaches and scan accumulation for 2DMS. Analyst 2024; 149:4687-4701. [PMID: 39101388 PMCID: PMC11382339 DOI: 10.1039/d4an00484a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/06/2024]
Abstract
Antisense oligonucleotides (ASOs) are crucial for biological applications as they bind to complementary RNA sequences, modulating protein expression. ASOs undergo synthetic modifications like phosphorothioate (PS) backbone and locked nucleic acid (LNA) to enhance stability and specificity. Tandem mass spectrometry (MS) techniques were employed to study gapmer ASOs, which feature a DNA chain within RNA segments at both termini, revealing enhanced cleavages with ultraviolet photodissociation (UVPD) and complementary fragment ions from collision-induced dissociation (CID) and electron detachment dissociation (EDD). 2DMS, a data-independent analysis technique, allowed for comprehensive coverage and identification of shared fragments across multiple precursor ions. EDD fragmentation efficiency correlated with precursor ion charge states, with higher charges facilitating dissociation due to intramolecular repulsions. An electron energy of 22.8 eV enabled electron capture and radical-based cleavage. Accumulating multiple scans and generating average spectra improved signal intensity, aided by denoising algorithms. Data analysis utilised a custom Python script capable of handling modifications and generating unique mass lists.
Collapse
Affiliation(s)
- Mohammed Rahman
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK.
- Department of Physics, University of Warwick, Coventry, CV4 7AL, UK
| | - Bryan P Marzullo
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK.
| | - Pui Yiu Lam
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK.
| | - Mark P Barrow
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK.
| | - Stephen W Holman
- Chemical Development, Pharmaceutical Technology & Development, Operations, AstraZeneca, AstraZeneca, SK10 2NA, UK
| | - Andrew D Ray
- New Modalities & Parental Development, Pharmaceutical Technology & Development, Operations, AstraZeneca, Macclesfield, SK10 2NA, UK
| | - Peter B O'Connor
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK.
| |
Collapse
|
12
|
He L, Zhu Z, Qi C. β-Glucan-A promising immunocyte-targeting drug delivery vehicle: Superiority, applications and future prospects. Carbohydr Polym 2024; 339:122252. [PMID: 38823919 DOI: 10.1016/j.carbpol.2024.122252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 05/07/2024] [Accepted: 05/08/2024] [Indexed: 06/03/2024]
Abstract
Drug delivery technologies that could convert promising therapeutics into successful therapies have been under broad research for many years. Recently, β-glucans, natural-occurring polysaccharides extracted from many organism species such as yeast, fungi and bacteria, have attracted increasing attention to serve as drug delivery carriers. With their unique structure and innate immunocompetence, β-glucans are considered as promising carriers for targeting delivery especially when applied in the vaccine construction and oral administration of therapeutic agents. In this review, we focus on three types of β-glucans applied in the drug delivery system including yeast β-glucan, Schizophyllan and curdlan, highlighting the benefits of β-glucan based delivery system. We summarize how β-glucans as delivery vehicles have aided various therapeutics ranging from macromolecules including proteins, peptides and nucleic acids to small molecular drugs to reach desired cells or organs in terms of loading strategies. We also outline the challenges and future directions for developing the next generation of β-glucan based delivery systems.
Collapse
Affiliation(s)
- Liuyang He
- The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou Medical Center, Changzhou 213003, China
| | - Zhichao Zhu
- The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou Medical Center, Changzhou 213003, China
| | - Chunjian Qi
- The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou Medical Center, Changzhou 213003, China.
| |
Collapse
|
13
|
Jiang Y, Jiang B, Wang Z, Li Y, Cheung JCW, Yin B, Wong SHD. Nucleic Acid Armor: Fortifying RNA Therapeutics through Delivery and Targeting Innovations for Immunotherapy. Int J Mol Sci 2024; 25:8888. [PMID: 39201574 PMCID: PMC11354913 DOI: 10.3390/ijms25168888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 08/09/2024] [Accepted: 08/11/2024] [Indexed: 09/02/2024] Open
Abstract
RNA is a promising nucleic acid-based biomolecule for various treatments because of its high efficacy, low toxicity, and the tremendous availability of targeting sequences. Nevertheless, RNA shows instability and has a short half-life in physiological environments such as the bloodstream in the presence of RNAase. Therefore, developing reliable delivery strategies is important for targeting disease sites and maximizing the therapeutic effect of RNA drugs, particularly in the field of immunotherapy. In this mini-review, we highlight two major approaches: (1) delivery vehicles and (2) chemical modifications. Recent advances in delivery vehicles employ nanotechnologies such as lipid-based nanoparticles, viral vectors, and inorganic nanocarriers to precisely target specific cell types to facilitate RNA cellular entry. On the other hand, chemical modification utilizes the alteration of RNA structures via the addition of covalent bonds such as N-acetylgalactosamine or antibodies (antibody-oligonucleotide conjugates) to target specific receptors of cells. The pros and cons of these technologies are enlisted in this review. We aim to review nucleic acid drugs, their delivery systems, targeting strategies, and related chemical modifications. Finally, we express our perspective on the potential combination of RNA-based click chemistry with adoptive cell therapy (e.g., B cells or T cells) to address the issues of short duration and short half-life associated with antibody-oligonucleotide conjugate drugs.
Collapse
Affiliation(s)
- Yi Jiang
- School of Medicine and Pharmacy, The Ocean University of China, Qingdao 266100, China; (Y.J.); (B.J.); (Y.L.)
| | - Bolong Jiang
- School of Medicine and Pharmacy, The Ocean University of China, Qingdao 266100, China; (Y.J.); (B.J.); (Y.L.)
| | - Zhenru Wang
- Medical College, Jining Medical University, Jining 272000, China;
| | - Yuxi Li
- School of Medicine and Pharmacy, The Ocean University of China, Qingdao 266100, China; (Y.J.); (B.J.); (Y.L.)
| | - James Chung Wai Cheung
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong 999077, China;
| | - Bohan Yin
- School of Medicine and Pharmacy, The Ocean University of China, Qingdao 266100, China; (Y.J.); (B.J.); (Y.L.)
- Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Siu Hong Dexter Wong
- School of Medicine and Pharmacy, The Ocean University of China, Qingdao 266100, China; (Y.J.); (B.J.); (Y.L.)
- Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| |
Collapse
|
14
|
Gong X, Hu F, Hu J, Bao Z, Wang M. The interactions between CpG oligodeoxynucleotides and Toll-like receptors in Pacific white shrimp Litopenaeus vannamei. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2024; 155:105157. [PMID: 38423492 DOI: 10.1016/j.dci.2024.105157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 02/23/2024] [Accepted: 02/27/2024] [Indexed: 03/02/2024]
Abstract
CpG oligodeoxynucleotides (ODNs), as a novel type of adjuvant with immunomodulatory effects, are recognized by Toll-like receptors (TLRs) in Litopenaeus vannamei. In the present study, eleven LvTLRs-pCMV recombinants (rLvTLRs) were constructed to investigate the relationships between various CpG ODNs and different LvTLRs in human embryonic kidney 293T (HEK293T) cells, which was further confirmed by bio-layer interferometry (BLI) technique. The results of dual luciferase reporter assay showed that every LvTLR could activate multiple downstream genes, mainly including NF-κB, CREB, ISRE, IL-6-promoter, TNF-α-promoter and Myc, thereby inducing main signaling pathways in shrimps. Most CpG ODNs possessed affinities to more than one LvTLR, while each LvTLR could recognize multiple CpG ODNs, and the widely recognized ligands within CpG ODNs are A-class and B-class. Moreover, BLI analysis showed that CpG 2216, Cpg 2006, CpG 2143 and CpG 21425 exhibited dose-dependent affinity to the expressed TLR protein, which were consistent with the results in HEK293T cells. It suggested that the interactions of CpG ODNs with LvTLRs were indispensable for the immune regulation triggered by CpG ODNs, and these findings would lay foundations for studying the activations of LvTLRs to immune signaling pathways and shedding lights on the immune functions and mechanisms of CpG ODNs.
Collapse
Affiliation(s)
- Xuerui Gong
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, 266003, China; Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Sanya, 57202, China
| | - Feng Hu
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, 266003, China; Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Sanya, 57202, China
| | - Jingjie Hu
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, 266003, China; Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Sanya, 57202, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China; Hainan Seed Industry Laboratory, Sanya, 572024, China
| | - Zhenmin Bao
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, 266003, China; Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Sanya, 57202, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China; Hainan Seed Industry Laboratory, Sanya, 572024, China; Hebei Xinhai Aquatic Biotechnology Co., Ltd, Cangzhou, 061101, China
| | - Mengqiang Wang
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, 266003, China; Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Sanya, 57202, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China; Hainan Seed Industry Laboratory, Sanya, 572024, China.
| |
Collapse
|
15
|
Tang Q, Khvorova A. RNAi-based drug design: considerations and future directions. Nat Rev Drug Discov 2024; 23:341-364. [PMID: 38570694 PMCID: PMC11144061 DOI: 10.1038/s41573-024-00912-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/14/2024] [Indexed: 04/05/2024]
Abstract
More than 25 years after its discovery, the post-transcriptional gene regulation mechanism termed RNAi is now transforming pharmaceutical development, proved by the recent FDA approval of multiple small interfering RNA (siRNA) drugs that target the liver. Synthetic siRNAs that trigger RNAi have the potential to specifically silence virtually any therapeutic target with unprecedented potency and durability. Bringing this innovative class of medicines to patients, however, has been riddled with substantial challenges, with delivery issues at the forefront. Several classes of siRNA drug are under clinical evaluation, but their utility in treating extrahepatic diseases remains limited, demanding continued innovation. In this Review, we discuss principal considerations and future directions in the design of therapeutic siRNAs, with a particular emphasis on chemistry, the application of informatics, delivery strategies and the importance of careful target selection, which together influence therapeutic success.
Collapse
Affiliation(s)
- Qi Tang
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA, USA
- Department of Dermatology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Anastasia Khvorova
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA, USA.
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA.
| |
Collapse
|
16
|
Sergeeva O, Akhmetova E, Dukova S, Beloglazkina E, Uspenskaya A, Machulkin A, Stetsenko D, Zatsepin T. Structure-activity relationship study of mesyl and busyl phosphoramidate antisense oligonucleotides for unaided and PSMA-mediated uptake into prostate cancer cells. Front Chem 2024; 12:1342178. [PMID: 38501046 PMCID: PMC10944894 DOI: 10.3389/fchem.2024.1342178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 02/13/2024] [Indexed: 03/20/2024] Open
Abstract
Phosphorothioate (PS) group is a key component of a majority of FDA approved oligonucleotide drugs that increase stability to nucleases whilst maintaining interactions with many proteins, including RNase H in the case of antisense oligonucleotides (ASOs). At the same time, uniform PS modification increases nonspecific protein binding that can trigger toxicity and pro-inflammatory effects, so discovery and characterization of alternative phosphate mimics for RNA therapeutics is an actual task. Here we evaluated the effects of the introduction of several N-alkane sulfonyl phosphoramidate groups such as mesyl (methanesulfonyl) or busyl (1-butanesulfonyl) phosphoramidates into gapmer ASOs on the efficiency and pattern of RNase H cleavage, cellular uptake in vitro, and intracellular localization. Using Malat1 lncRNA as a target, we have identified patterns of mesyl or busyl modifications in the ASOs for optimal knockdown in vitro. Combination of the PSMA ligand-mediated delivery with optimized mesyl and busyl ASOs resulted in the efficient target depletion in the prostate cancer cells. Our study demonstrated that other N-alkanesulfonyl phosphoramidate groups apart from a known mesyl phosphoramidate can serve as an essential component of mixed backbone gapmer ASOs to reduce drawbacks of uniformly PS-modified gapmers, and deserve further investigation in RNA therapeutics.
Collapse
Affiliation(s)
- O. Sergeeva
- Skolkovo Institute of Science and Technology, Moscow, Russia
| | - E. Akhmetova
- Skolkovo Institute of Science and Technology, Moscow, Russia
| | - S. Dukova
- Skolkovo Institute of Science and Technology, Moscow, Russia
| | - E. Beloglazkina
- Department of Chemistry, Lomonosov Moscow State University, Moscow, Russia
| | - A. Uspenskaya
- Department of Chemistry, Lomonosov Moscow State University, Moscow, Russia
| | - A. Machulkin
- Department of Chemistry, Lomonosov Moscow State University, Moscow, Russia
- Department for Biochemistry, People’s Friendship University of Russia Named after Patrice Lumumba (RUDN University), Moscow, Russia
| | - D. Stetsenko
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - T. Zatsepin
- Department of Chemistry, Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
17
|
Makanai H, Nishihara T, Nishikawa M, Tanabe K. Hoechst-Modification on Oligodeoxynucleotides for Efficient Transport to the Cell Nucleus and Gene Regulation. Chembiochem 2024; 25:e202300645. [PMID: 37984902 DOI: 10.1002/cbic.202300645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/15/2023] [Accepted: 11/17/2023] [Indexed: 11/22/2023]
Abstract
Various artificial oligodeoxynucleotides (ODNs) that contribute to gene regulation have been developed and their diversity and multifunctionality have been demonstrated. However, few artificial ODNs are actively transported to the cell nucleus, despite the fact that gene regulation also takes place in both the cell nucleus and the cytoplasm. In this study, to prepare ODNs with the ability to accumulate in the cell nucleus, we introduced Hoechst molecules into ODNs that act as carriers of functional molecules to the cell nucleus (Hoe-ODNs). We synthesized Hoe-ODNs and confirmed that they bound strongly to DNA duplexes. When single-stranded Hoe-ODNs or double-stranded ODNs consisting of Hoe-ODNs and its complementary strand were administered into living cells, both ODNs were efficiently accumulated in the cell nucleus. In addition, antisense ODNs, which were tethered with Hoechst unit, were delivered into the cell nucleus and efficiently suppressed the expression of their target RNA. Thus, we constructed a delivery system that enables the transport of ODNs into cell nucleus.
Collapse
Affiliation(s)
- Hiroki Makanai
- Department of Chemistry and Biological Science, College of Science and Engineering, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara, 252-5258, Japan
| | - Tatsuya Nishihara
- Department of Chemistry and Biological Science, College of Science and Engineering, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara, 252-5258, Japan
| | - Makiya Nishikawa
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan
| | - Kazuhito Tanabe
- Department of Chemistry and Biological Science, College of Science and Engineering, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara, 252-5258, Japan
| |
Collapse
|
18
|
Chen W, Xu H, Dai S, Wang J, Yang Z, Jin Y, Zou M, Xiao X, Wu T, Yan W, Zhang B, Lin Z, Zhao M. Detection of low-frequency mutations in clinical samples by increasing mutation abundance via the excision of wild-type sequences. Nat Biomed Eng 2023; 7:1602-1613. [PMID: 37500748 DOI: 10.1038/s41551-023-01072-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 06/23/2023] [Indexed: 07/29/2023]
Abstract
The efficiency of DNA-enrichment techniques is often insufficient to detect mutations that occur at low frequencies. Here we report a DNA-excision method for the detection of low-frequency mutations in genomic DNA and in circulating cell-free DNA at single-nucleotide resolution. The method is based on a competitive DNA-binding-and-digestion mechanism, effected by deoxyribonuclease I (DNase) guided by single-stranded phosphorothioated DNA (sgDNase), for the removal of wild-type DNA strands. The sgDNase can be designed against any wild-type DNA sequences, allowing for the uniform enrichment of all the mutations within the target-binding region of single-stranded phosphorothioated DNA at mild-temperature conditions. Pretreatment with sgDNase enriches all mutant strands with initial frequencies down to 0.01% and leads to high discrimination factors for all types of single-nucleotide mismatch in multiple sequence contexts, as we show for the identification of low-abundance mutations in samples of blood or tissue from patients with cancer. The method can be coupled with next-generation sequencing, droplet digital polymerase chain reaction, Sanger sequencing, fluorescent-probe-based assays and other mutation-detection methods.
Collapse
Affiliation(s)
- Wei Chen
- Beijing National Laboratory for Molecular Sciences and MOE Key Laboratory of Bioorganic Chemistry and Molecular Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Haiqi Xu
- Beijing National Laboratory for Molecular Sciences and MOE Key Laboratory of Bioorganic Chemistry and Molecular Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Shenbin Dai
- Beijing National Laboratory for Molecular Sciences and MOE Key Laboratory of Bioorganic Chemistry and Molecular Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Jiayu Wang
- Beijing National Laboratory for Molecular Sciences and MOE Key Laboratory of Bioorganic Chemistry and Molecular Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Ziyu Yang
- Beijing National Laboratory for Molecular Sciences and MOE Key Laboratory of Bioorganic Chemistry and Molecular Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Yuewen Jin
- Beijing National Laboratory for Molecular Sciences and MOE Key Laboratory of Bioorganic Chemistry and Molecular Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Mengbing Zou
- Beijing National Laboratory for Molecular Sciences and MOE Key Laboratory of Bioorganic Chemistry and Molecular Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Xianjin Xiao
- Beijing National Laboratory for Molecular Sciences and MOE Key Laboratory of Bioorganic Chemistry and Molecular Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, China.
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Tongbo Wu
- Beijing National Laboratory for Molecular Sciences and MOE Key Laboratory of Bioorganic Chemistry and Molecular Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, China.
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Wei Yan
- Department of Dermatology, Peking University First Hospital, Beijing Key Laboratory of Molecular Diagnosis on Dermatoses and National Clinical Research Center for Skin and Immune Diseases, Beijing, China
| | - Bin Zhang
- Department of Dermatology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
- Department of Dermatology, Zhengzhou University, Affiliated Children's Hospital, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, China
| | - Zhimiao Lin
- Department of Dermatology, Peking University First Hospital, Beijing Key Laboratory of Molecular Diagnosis on Dermatoses and National Clinical Research Center for Skin and Immune Diseases, Beijing, China
| | - Meiping Zhao
- Beijing National Laboratory for Molecular Sciences and MOE Key Laboratory of Bioorganic Chemistry and Molecular Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, China.
| |
Collapse
|
19
|
Li S, Chen JS, Li X, Bai X, Shi D. MNK, mTOR or eIF4E-selecting the best anti-tumor target for blocking translation initiation. Eur J Med Chem 2023; 260:115781. [PMID: 37669595 DOI: 10.1016/j.ejmech.2023.115781] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/29/2023] [Accepted: 08/29/2023] [Indexed: 09/07/2023]
Abstract
Overexpression of eIF4E is common in patients with various solid tumors and hematologic cancers. As a potential anti-cancer target, eIF4E has attracted extensive attention from researchers. At the same time, mTOR kinases inhibitors and MNK kinases inhibitors, which are directly related to regulation of eIF4E, have been rapidly developed. To explore the optimal anti-cancer targets among MNK, mTOR, and eIF4E, this review provides a detailed classification and description of the anti-cancer activities of promising compounds. In addition, the structures and activities of some dual-target inhibitors are briefly described. By analyzing the different characteristics of the inhibitors, it can be concluded that MNK1/2 and eIF4E/eIF4G interaction inhibitors are superior to mTOR inhibitors. Simultaneous inhibition of MNK and eIF4E/eIF4G interaction may be the most promising anti-cancer method for targeting translation initiation.
Collapse
Affiliation(s)
- Shuo Li
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, Shandong, PR China.
| | - Jia-Shu Chen
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, Shandong, PR China.
| | - Xiangqian Li
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, Shandong, PR China.
| | - Xiaoyi Bai
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, Shandong, PR China.
| | - Dayong Shi
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, Shandong, PR China.
| |
Collapse
|
20
|
Animasaun DA, Lawrence JA. Antisense RNA (asRNA) technology: the concept and applications in crop improvement and sustainable agriculture. Mol Biol Rep 2023; 50:9545-9557. [PMID: 37755651 DOI: 10.1007/s11033-023-08814-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 09/11/2023] [Indexed: 09/28/2023]
Abstract
Antisense RNA (asRNA) technology is a method used to silence genes and inhibit their expression. Gene function relies on expression, which follows the central dogma of molecular biology. The use of asRNA can regulate gene expression by targeting specific mRNAs, which can result in changes in phenotype, disease resistance, and other traits associated with protein expression profiles. This technology uses short, single-stranded oligonucleotide strands that are complementary to the targeted mRNA. Manipulating and regulating protein expression during its translation can either knock out or knock down the expression of a gene of interest. Therefore, functional genomics can benefit from this technology since it allows for the regulation of protein expression. In this review, we discuss the concept, and applications of asRNA technology which include delaying ripening, prolonging shelf life, biofortification, and increasing biotic and abiotic resistance among others in crop improvement and sustainable agriculture.
Collapse
Affiliation(s)
- David Adedayo Animasaun
- Department of Plant Biology, Faculty of Life Sciences, University of Ilorin, P.M.B. 1515, Ilorin, Kwara State, Nigeria.
- Plant Tissue Culture Lab, Central Research Laboratories, University of Ilorin, P.M.B.1515, Ilorin, Kwara State, Nigeria.
| | - Judith Amaka Lawrence
- Department of Plant Biology, Faculty of Life Sciences, University of Ilorin, P.M.B. 1515, Ilorin, Kwara State, Nigeria.
| |
Collapse
|
21
|
KhokharVoytas A, Shahbaz M, Maqsood MF, Zulfiqar U, Naz N, Iqbal UZ, Sara M, Aqeel M, Khalid N, Noman A, Zulfiqar F, Al Syaad KM, AlShaqhaa MA. Genetic modification strategies for enhancing plant resilience to abiotic stresses in the context of climate change. Funct Integr Genomics 2023; 23:283. [PMID: 37642792 DOI: 10.1007/s10142-023-01202-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/18/2023] [Accepted: 08/02/2023] [Indexed: 08/31/2023]
Abstract
Enhancing the resilience of plants to abiotic stresses, such as drought, salinity, heat, and cold, is crucial for ensuring global food security challenge in the context of climate change. The adverse effects of climate change, characterized by rising temperatures, shifting rainfall patterns, and increased frequency of extreme weather events, pose significant threats to agricultural systems worldwide. Genetic modification strategies offer promising approaches to develop crops with improved abiotic stress tolerance. This review article provides a comprehensive overview of various genetic modification techniques employed to enhance plant resilience. These strategies include the introduction of stress-responsive genes, transcription factors, and regulatory elements to enhance stress signaling pathways. Additionally, the manipulation of hormone signaling pathways, osmoprotectant accumulation, and antioxidant defense mechanisms is discussed. The use of genome editing tools, such as CRISPR-Cas9, for precise modification of target genes related to stress tolerance is also explored. Furthermore, the challenges and future prospects of genetic modification for abiotic stress tolerance are highlighted. Understanding and harnessing the potential of genetic modification strategies can contribute to the development of resilient crop varieties capable of withstanding adverse environmental conditions caused by climate change, thereby ensuring sustainable agricultural productivity and food security.
Collapse
Affiliation(s)
| | - Muhammad Shahbaz
- Department of Botany, University of Agriculture, Faisalabad, Pakistan.
| | | | - Usman Zulfiqar
- Department of Agronomy, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan.
| | - Nargis Naz
- Department of Botany, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Usama Zafar Iqbal
- Department of Botany, University of Agriculture, Faisalabad, Pakistan
| | - Maheen Sara
- Department of Nutritional Sciences, Government College Women University, Faisalabad, Pakistan
| | - Muhammad Aqeel
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems (SKLHIGA), College of Ecology, Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China
| | - Noreen Khalid
- Department of Botany, Government College Women University Sialkot, Sialkot, Pakistan
| | - Ali Noman
- Department of Botany, Government College University, Faisalabad, Pakistan
| | - Faisal Zulfiqar
- Department of Horticultural Sciences, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Khalid M Al Syaad
- Department of Biology, College of Science, King Khalid University, Abha, 61413, Saudi Arabia
| | | |
Collapse
|
22
|
Dowerah D, V. N. Uppuladinne M, Sarma PJ, Biswakarma N, Sonavane UB, Joshi RR, Ray SK, Namsa ND, Deka RC. Design of LNA Analogues Using a Combined Density Functional Theory and Molecular Dynamics Approach for RNA Therapeutics. ACS OMEGA 2023; 8:22382-22405. [PMID: 37396274 PMCID: PMC10308574 DOI: 10.1021/acsomega.2c07860] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 02/17/2023] [Indexed: 07/04/2023]
Abstract
Antisense therapeutics treat a wide spectrum of diseases, many of which cannot be addressed with the current drug technologies. In the quest to design better antisense oligonucleotide drugs, we propose five novel LNA analogues (A1-A5) for modifying antisense oligonucleotides and establishing each with the five standard nucleic acids: adenine (A), guanine (G), cytosine (C), thymine (T), and uracil (U). Monomer nucleotides of these modifications were considered for a detailed Density Functional Theory (DFT)-based quantum chemical analysis to determine their molecular-level structural and electronic properties. A detailed MD simulation study was done on a 14-mer ASO (5'-CTTAGCACTGGCCT-3') containing these modifications targeting PTEN mRNA. Results from both molecular- and oligomer-level analysis clearly depicted LNA-level stability of the modifications, the ASO/RNA duplexes maintaining stable Watson-Crick base pairing preferring RNA-mimicking A-form duplexes. Notably, monomer MO isosurfaces for both purines and pyrimidines were majorly distributed on the nucleobase region in modifications A1 and A2 and in the bridging unit in modifications A3, A4, and A5, suggesting that A3/RNA, A4/RNA, and A5/RNA duplexes interact more with the RNase H and solvent environment. Accordingly, solvation of A3/RNA, A4/RNA, and A5/RNA duplexes was higher compared to that of LNA/RNA, A1/RNA, and A2/RNA duplexes. This study has resulted in a successful archetype for creating advantageous nucleic acid modifications tailored for particular needs, fulfilling a useful purpose of designing novel antisense modifications, which may overcome the drawbacks and improve the pharmacokinetics of existing LNA antisense modifications.
Collapse
Affiliation(s)
- Dikshita Dowerah
- CMML—Catalysis
and Molecular Modelling Lab, Department of Chemical Sciences, Tezpur University, Napaam, Sonitpur, Assam 784 028, India
| | - Mallikarjunachari V. N. Uppuladinne
- HPC—Medical
& Bioinformatics Applications Group, Centre for Development of Advanced Computing (C-DAC), Panchavati, Pashan, Pune 411008, India
| | - Plaban J. Sarma
- CMML—Catalysis
and Molecular Modelling Lab, Department of Chemical Sciences, Tezpur University, Napaam, Sonitpur, Assam 784 028, India
- Department
of Chemistry, Gargaon College, Sivasagar, Assam 785685, India
| | - Nishant Biswakarma
- CMML—Catalysis
and Molecular Modelling Lab, Department of Chemical Sciences, Tezpur University, Napaam, Sonitpur, Assam 784 028, India
| | - Uddhavesh B. Sonavane
- HPC—Medical
& Bioinformatics Applications Group, Centre for Development of Advanced Computing (C-DAC), Panchavati, Pashan, Pune 411008, India
| | - Rajendra R. Joshi
- HPC—Medical
& Bioinformatics Applications Group, Centre for Development of Advanced Computing (C-DAC), Panchavati, Pashan, Pune 411008, India
| | - Suvendra K. Ray
- Department
of Molecular Biology and Biotechnology, Tezpur University, Napaam, Sonitpur, Assam 784028, India
- Center
for Multidisciplinary Research, Tezpur University, Napaam, Sonitpur, Assam 784028, India
| | - Nima D. Namsa
- Department
of Molecular Biology and Biotechnology, Tezpur University, Napaam, Sonitpur, Assam 784028, India
- Center
for Multidisciplinary Research, Tezpur University, Napaam, Sonitpur, Assam 784028, India
| | - Ramesh Ch. Deka
- CMML—Catalysis
and Molecular Modelling Lab, Department of Chemical Sciences, Tezpur University, Napaam, Sonitpur, Assam 784 028, India
- Center
for Multidisciplinary Research, Tezpur University, Napaam, Sonitpur, Assam 784028, India
| |
Collapse
|
23
|
Nakevska Z, Yokota T. Challenges and future perspective of antisense therapy for spinal muscular atrophy: A review. Eur J Cell Biol 2023; 102:151326. [PMID: 37295266 DOI: 10.1016/j.ejcb.2023.151326] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 05/18/2023] [Accepted: 05/20/2023] [Indexed: 06/12/2023] Open
Abstract
Spinal muscular atrophy (SMA), the most common genetic cause of infantile death, is caused by a mutation in the survival of motor neuron 1 gene (SMN1), leading to the death of motor neurons and progressive muscle weakness. SMN1 normally produces an essential protein called SMN. Although humans possess a paralogous gene called SMN2, ∼90% of the SMN it produces is non-functional. This is due to a mutation in SMN2 that causes the skipping of a required exon during splicing of the pre-mRNA. The first treatment for SMA, nusinersen (brand name Spinraza), was approved by the FDA in 2016 and by the EMU in 2017. Nusinersen is an antisense oligonucleotide-based therapy that alters the splicing of SMN2 to make functional full-length SMN protein. Despite the recent advancements in antisense oligonucleotide therapy and SMA treatment development, nusinersen is faced with a multitude of challenges, such as intracellular and systemic delivery. In recent years, the use of peptide-conjugated phosphorodiamidate morpholino oligomers (PPMOs) in antisense therapy has gained interest. These are antisense oligonucleotides conjugated to cell-penetrating peptides such as Pips and DG9, and they have the potential to address the challenges associated with delivery. This review focuses on the historic milestones, development, current challenges, and future perspectives of antisense therapy for SMA.
Collapse
Affiliation(s)
- Zorica Nakevska
- Department of Biological Sciences, Faculty of Science, University of Alberta, 116 St. and 85 Ave., Edmonton AB T6G 2E1, Canada.
| | - Toshifumi Yokota
- Neuroscience and Mental Health Institute, Faculty of Medicine and Dentistry, University of Alberta, 116 St. and 85 Ave., Edmonton AB T6G 2E1, Canada; Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, 116 St. and 85 Ave., Edmonton AB T6G 2E1, Canada; The Friends of Garret Cumming Research and Muscular Dystrophy Canada HM Toupin Neurological Science Research Chair, 8812 112 St., Edmonton AB T6G 2H7, Canada.
| |
Collapse
|
24
|
Fang Z, Dantsu Y, Chen C, Zhang W, Huang Z. Syntheses of Pyrimidine-Modified Seleno-DNAs as Stable Antisense Molecules. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.02.539140. [PMID: 37205589 PMCID: PMC10187239 DOI: 10.1101/2023.05.02.539140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Chemically modified antisense oligonucleotides (ASO) currently in pre-clinical and clinical experiments mainly focus on the 2'-position derivatizations to enhance stability and targeting affinity. Considering the possible incompatibility of 2'-modifications with RNase H stimulation and activity, we have hypothesized that the atom specific modifications on nucleobases can retain the complex structure and RNase H activity, while enhancing ASO's binding affinity, specificity, and stability against nucleases. Herein we report a novel strategy to explore our hypothesis by synthesizing the deoxynucleoside phosphoramidite building block with the seleno-modification at 5-position of thymidine, as well as its Se-oligonucleotides. Via X-ray crystal structural study, we found that the Se-modification was located in the major groove of nucleic acid duplex and didn't cause the thermal and structural perturbations. Surprisingly, our nucleobase-modified Se-DNAs were exceptionally resistant to nuclease digestion, while compatible with RNase H activity. This affords a novel avenue for potential antisense modification in the form of Se-antisense oligonucleotides (Se-ASO).
Collapse
Affiliation(s)
- Ziyuan Fang
- Department of Chemistry, University of Chicago, Chicago, IL 60637, USA
| | - Yuliya Dantsu
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Cen Chen
- Firebird Biomolecular Sciences LLC, Alachua, FL 32615, USA
| | - Wen Zhang
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Melvin and Bren Simon Cancer Center, 535 Barnhill Drive, Indianapolis, IN 46202, USA
| | - Zhen Huang
- Key Laboratory of Bio-Resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, 610064, P. R. China
- SeNA Research Institute and Szostak-CDHT Large Nucleic Acids Institute, Chengdu, Sichuan, 618000, P. R. China
| |
Collapse
|
25
|
Larcher LM, Pitout IL, Keegan NP, Veedu RN, Fletcher S. DNAzymes: Expanding the Potential of Nucleic Acid Therapeutics. Nucleic Acid Ther 2023. [PMID: 37093127 DOI: 10.1089/nat.2022.0066] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2023] Open
Abstract
Nucleic acids drugs have been proven in the clinic as a powerful modality to treat inherited and acquired diseases. However, key challenges including drug stability, renal clearance, cellular uptake, and movement across biological barriers (foremost the blood-brain barrier) limit the translation and clinical efficacy of nucleic acid-based therapies, both systemically and in the central nervous system. In this study we provide an overview of an emerging class of nucleic acid therapeutic, called DNAzymes. In particular, we review the use of chemical modifications and carrier molecules for the stabilization and/or delivery of DNAzymes in cell and animal models. Although this review focuses on DNAzymes, the strategies described are broadly applicable to most nucleic acid technologies. This review should serve as a general guide for selecting chemical modifications to improve the therapeutic performance of DNAzymes.
Collapse
Affiliation(s)
- Leon M Larcher
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth, Australia
| | - Ianthe L Pitout
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth, Australia
| | - Niall P Keegan
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth, Australia
- Discovery, PYC Therapeutics, Nedlands, Australia
| | - Rakesh N Veedu
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth, Australia
- Precision Nucleic Acid Therapeutics, Perron Institute for Neurological and Translational Science, Perth, Australia
| | - Sue Fletcher
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth, Australia
- Discovery, PYC Therapeutics, Nedlands, Australia
| |
Collapse
|
26
|
Yu J, Kim JW, Chandra G, Saito-Tarashima N, Nogi Y, Ota M, Minakawa N, Jeong LS. Synthesis of oligonucleotides containing 5'-homo-4'-selenouridine derivative and its increased resistance against nuclease. Bioorg Med Chem Lett 2023; 83:129172. [PMID: 36746352 DOI: 10.1016/j.bmcl.2023.129172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/31/2023] [Accepted: 02/03/2023] [Indexed: 02/08/2023]
Abstract
As technologies using RNA or DNA have been developed, various chemical modifications of nucleosides have been attempted to increase the stability of oligonucleotides. Since it is known that 2'-OMe-modification greatly contributes to increasing the stability of oligonucleotides, we added 2'-OMe to our previously developed 4'-selenonucleoside and 5'-homo-4'-selenonucleoside as the modified monomers for oligonucleotide: 2'-methoxy-4'-selenouridine (2'-OMe-4'-Se-U) and 5'-homo-2'-methoxy-4'-selenouridine (5'-homo-2'-OMe-4'-Se-U). We synthesized oligonucleotides containing the chemically modified 4'-selenouridine and evaluated their thermal stability and nuclease resistance. In conclusion, the nuclease stability of the oligonucleotide containing 5'-homo-2'-OMe-4'-selenouridine increased while its thermal stability decreased.
Collapse
Affiliation(s)
- Jinha Yu
- College of Pharmacy, Seoul National University, Seoul 08826, Korea; College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Korea
| | - Ji Won Kim
- College of Pharmacy, Seoul National University, Seoul 08826, Korea
| | - Girish Chandra
- College of Pharmacy, Seoul National University, Seoul 08826, Korea; Central University of South Bihar, Panchanpur, Gaya, Bihar 824236, India
| | - Noriko Saito-Tarashima
- Graduate School of Pharmaceutical Science, Tokushima University, Shomachi 1-78-1, Tokushima 770-8505, Japan
| | - Yuhei Nogi
- Graduate School of Pharmaceutical Science, Tokushima University, Shomachi 1-78-1, Tokushima 770-8505, Japan
| | - Masashi Ota
- Graduate School of Pharmaceutical Science, Tokushima University, Shomachi 1-78-1, Tokushima 770-8505, Japan
| | - Noriaki Minakawa
- Graduate School of Pharmaceutical Science, Tokushima University, Shomachi 1-78-1, Tokushima 770-8505, Japan
| | - Lak Shin Jeong
- College of Pharmacy, Seoul National University, Seoul 08826, Korea.
| |
Collapse
|
27
|
Sufian MA, Ilies MA. Lipid-based nucleic acid therapeutics with in vivo efficacy. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2023; 15:e1856. [PMID: 36180107 PMCID: PMC10023279 DOI: 10.1002/wnan.1856] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 07/22/2022] [Accepted: 08/30/2022] [Indexed: 03/09/2023]
Abstract
Synthetic vectors for therapeutic nucleic acid delivery are currently competing significantly with their viral counter parts due to their reduced immunogenicity, large payload capacity, and ease of manufacture under GMP-compliant norms. The approval of Onpattro, a lipid-based siRNA therapeutic, and the proven clinical success of two lipid-based COVID-19 vaccines from Pfizer-BioNTech, and Moderna heralded the specific advantages of lipid-based systems among all other synthetic nucleic acid carriers. Lipid-based systems with diverse payloads-plasmid DNA (pDNA), antisense oligonucleotide (ASO), small interfering RNA (siRNA), microRNA (miRNA), small activating RNA (saRNA), and messenger RNA (mRNA)-are now becoming a mature technology, with growing impact in the clinic. Research over four decades identified the key factors determining the therapeutic success of these multi-component systems. Here, we discuss the main nucleic acid-based technologies, presenting their mechanism of action, delivery barriers facing them, the structural properties of the payload as well as the component lipids that regulate physicochemical properties, pharmacokinetics and biodistribution, efficacy, and toxicity of the resultant nanoparticles. We further detail on the formulation parameters, evolution of the manufacturing techniques that generate reproducible and scalable outputs, and key manufacturing aspects that enable control over physicochemical properties of the resultant particles. Preclinical applications of some of these formulations that were successfully translated from in vitro studies to animal models are subsequently discussed. Finally, clinical success and failure of these systems starting from 1993 to present are highlighted, in a holistic literature review focused on lipid-based nucleic acid delivery systems. This article is categorized under: Therapeutic Approaches and Drug Discovery > Emerging Technologies Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease Toxicology and Regulatory Issues in Nanomedicine > Toxicology of Nanomaterials.
Collapse
Affiliation(s)
- Md Abu Sufian
- Department of Pharmaceutical Sciences and Moulder Center for Drug Discovery Research, School of Pharmacy, Temple University, 3307 North Broad Street, Philadelphia, PA 19140, USA
| | - Marc A. Ilies
- Department of Pharmaceutical Sciences and Moulder Center for Drug Discovery Research, School of Pharmacy, Temple University, 3307 North Broad Street, Philadelphia, PA 19140, USA
| |
Collapse
|
28
|
Krasnodębski C, Sawuła A, Kaźmierczak U, Żuk M. Oligo-Not Only for Silencing: Overlooked Potential for Multidirectional Action in Plants. Int J Mol Sci 2023; 24:ijms24054466. [PMID: 36901895 PMCID: PMC10002457 DOI: 10.3390/ijms24054466] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 02/15/2023] [Accepted: 02/22/2023] [Indexed: 03/12/2023] Open
Abstract
Oligo technology is a low-cost and easy-to-implement method for direct manipulation of gene activity. The major advantage of this method is that gene expression can be changed without requiring stable transformation. Oligo technology is mainly used for animal cells. However, the use of oligos in plants seems to be even easier. The oligo effect could be similar to that induced by endogenous miRNAs. In general, the action of exogenously introduced nucleic acids (Oligo) can be divided into a direct interaction with nucleic acids (genomic DNA, hnRNA, transcript) and an indirect interaction via the induction of processes regulating gene expression (at the transcriptional and translational levels) involving regulatory proteins using endogenous cellular mechanisms. Presumed mechanisms of oligonucleotides' action in plant cells (including differences from animal cells) are described in this review. Basic principles of oligo action in plants that allow bidirectional changes in gene activity and even those that lead to heritable epigenetic changes in gene expression are presented. The effect of oligos is related to the target sequence at which they are directed. This paper also compares different delivery methods and provides a quick guide to using IT tools to help design oligonucleotides.
Collapse
Affiliation(s)
- Cezary Krasnodębski
- Department of Genetic Biochemistry, Faculty of Biotechnology, University of Wroclaw, Przybyszewskiego 63/77, 51-148 Wroclaw, Poland
| | - Agnieszka Sawuła
- Department of Genetic Biochemistry, Faculty of Biotechnology, University of Wroclaw, Przybyszewskiego 63/77, 51-148 Wroclaw, Poland
| | - Urszula Kaźmierczak
- Department of Cellular Molecular Biology, Faculty of Biotechnology, University of Wroclaw, F. Joliot-Curie 14A, 50-383 Wroclaw, Poland
| | - Magdalena Żuk
- Department of Genetic Biochemistry, Faculty of Biotechnology, University of Wroclaw, Przybyszewskiego 63/77, 51-148 Wroclaw, Poland
- Correspondence:
| |
Collapse
|
29
|
Filonova G, Aartsma-Rus A. Next steps for the optimization of exon therapy for Duchenne muscular dystrophy. Expert Opin Biol Ther 2023; 23:133-143. [PMID: 36655939 DOI: 10.1080/14712598.2023.2169070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
INTRODUCTION It is established that the exon-skipping approach can restore dystrophin in Duchenne muscular dystrophy (DMD) patients. However, dystrophin restoration levels are low, and the field is evolving to provide solutions for improved exon skipping. DMD is a neuromuscular disorder associated with chronic muscle tissue loss attributed to the lack of dystrophin, which causes muscle inflammation, fibrosis formation, and impaired regeneration. Currently, four antisense oligonucleotides (AONs) based on phosphorodiamidate morpholino oligomer (PMO) chemistry are approved by US Food and Drug Administration for exon skipping therapy of eligible DMD patients. AREAS COVERED This review describes a preclinical and clinical experience with approved and newly developed AONs for DMD, outlines efforts that have been done to enhance AON efficiency, reviews challenges of clinical trials, and summarizes the current state of the exon skipping approach in the DMD field. EXPERT OPINION The exon skipping approach for DMD is under development, and several chemical modifications with improved properties are under (pre)-clinical investigation. Despite existing advantages of these modifications, their safety and effectiveness have to be examined in clinical trials, which are planned or ongoing. Furthermore, we propose clinical settings using natural history controls to facilitate studying the functional effect of the therapy.
Collapse
Affiliation(s)
| | - Annemieke Aartsma-Rus
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
30
|
Lu K, Fan Q, Zou X. Antisense oligonucleotide is a promising intervention for liver diseases. Front Pharmacol 2022; 13:1061842. [PMID: 36569303 PMCID: PMC9780395 DOI: 10.3389/fphar.2022.1061842] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 11/28/2022] [Indexed: 12/13/2022] Open
Abstract
As the body's critical metabolic organ, the liver plays an essential role in maintaining proper body homeostasis. However, as people's living standards have improved and the number of unhealthy lifestyles has increased, the liver has become overburdened. These have made liver disease one of the leading causes of death worldwide. Under the influence of adverse factors, liver disease progresses from simple steatosis to hepatitis, to liver fibrosis, and finally to cirrhosis and cancer, followed by increased mortality. Until now, there has been a lack of accepted effective treatments for liver disease. Based on current research, antisense oligonucleotide (ASO), as an alternative intervention for liver diseases, is expected to be an effective treatment due to its high efficiency, low toxicity, low dosage, strong specificity, and additional positive characteristics. In this review, we will first introduce the design, modification, delivery, and the mechanisms of ASO, and then summarize the application of ASO in liver disease treatment, including in non-alcoholic fatty liver disease (NAFLD), hepatitis, liver fibrosis, and liver cancer. Finally, we discuss challenges and perspectives on the transfer of ASO drugs into clinical use. This review provides a current and comprehensive understanding of the integrative and systematic functions of ASO for its use in liver disease.
Collapse
Affiliation(s)
- Kailing Lu
- College of Chinese Materia Medica and Yunnan Key Laboratory of Southern Medicinal Utilization, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Qijing Fan
- Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, Yunnan, China
| | - Xiaoju Zou
- College of Chinese Materia Medica and Yunnan Key Laboratory of Southern Medicinal Utilization, Yunnan University of Chinese Medicine, Kunming, Yunnan, China,*Correspondence: Xiaoju Zou,
| |
Collapse
|
31
|
Wang G, Du Y, Ma X, Ye F, Qin Y, Wang Y, Xiang Y, Tao R, Chen T. Thermophilic Nucleic Acid Polymerases and Their Application in Xenobiology. Int J Mol Sci 2022; 23:ijms232314969. [PMID: 36499296 PMCID: PMC9738464 DOI: 10.3390/ijms232314969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/22/2022] [Accepted: 11/27/2022] [Indexed: 12/02/2022] Open
Abstract
Thermophilic nucleic acid polymerases, isolated from organisms that thrive in extremely hot environments, possess great DNA/RNA synthesis activities under high temperatures. These enzymes play indispensable roles in central life activities involved in DNA replication and repair, as well as RNA transcription, and have already been widely used in bioengineering, biotechnology, and biomedicine. Xeno nucleic acids (XNAs), which are analogs of DNA/RNA with unnatural moieties, have been developed as new carriers of genetic information in the past decades, which contributed to the fast development of a field called xenobiology. The broad application of these XNA molecules in the production of novel drugs, materials, and catalysts greatly relies on the capability of enzymatic synthesis, reverse transcription, and amplification of them, which have been partially achieved with natural or artificially tailored thermophilic nucleic acid polymerases. In this review, we first systematically summarize representative thermophilic and hyperthermophilic polymerases that have been extensively studied and utilized, followed by the introduction of methods and approaches in the engineering of these polymerases for the efficient synthesis, reverse transcription, and amplification of XNAs. The application of XNAs facilitated by these polymerases and their mutants is then discussed. In the end, a perspective for the future direction of further development and application of unnatural nucleic acid polymerases is provided.
Collapse
|
32
|
Hu Z, Zhou Q, Jiao Z, Qin P, Wang F, Xia Y, Zhang T, Jie J, Su H. Low Energy Photoionization of Phosphorothioate DNA-Oligomers and Ensuing Hole Transfer. J Phys Chem B 2022; 126:8699-8707. [PMID: 36259641 DOI: 10.1021/acs.jpcb.2c05521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Phosphorothioate (PS) modified oligonucleotides (S-DNA) naturally exist in bacteria and archaea genome and are widely used as an antisense strategy in gene therapy. However, the introduction of PS as a redox active site may trigger distinct UV photoreactions. Herein, by time-resolved spectroscopy, we observe that 266 nm excitation of S-DNA d(Aps)20 and d(ApsA)10 leads to direct photoionization on the PS moiety to form hemi-bonded -P-S∴S-P- radicals, in addition to A base ionization to produce A+•/A(-H)•. Fluorescence spectroscopy and global analysis indicate that an unusual charge transfer state (CT) between the A and PS moiety might populate in competition with the common CT state among bases as key intermediate states responsible for S-DNA photoionization. Significantly, the photoionization bifurcating to PS and A moieties of S-DNA is discovered, suggesting that the PS moiety could capture the oxidized site and protect the remaining base against ionization lesion, shedding light on the understanding of its existence in living organisms.
Collapse
Affiliation(s)
- Zheng Hu
- College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Qian Zhou
- College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Zeqing Jiao
- College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Peixuan Qin
- University of Science and Technology Beijing, Beijing 100083, P. R. China
| | - Fei Wang
- College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Ye Xia
- College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Tianfeng Zhang
- College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Jialong Jie
- College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Hongmei Su
- College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| |
Collapse
|
33
|
RNA modifications can affect RNase H1-mediated PS-ASO activity. MOLECULAR THERAPY - NUCLEIC ACIDS 2022; 28:814-828. [PMID: 35664704 PMCID: PMC9136273 DOI: 10.1016/j.omtn.2022.05.024] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 05/07/2022] [Indexed: 11/21/2022]
|
34
|
Azlan A, Rajasegaran Y, Kang Zi K, Rosli AA, Yik MY, Yusoff NM, Heidenreich O, Moses EJ. Elucidating miRNA Function in Cancer Biology via the Molecular Genetics' Toolbox. Biomedicines 2022; 10:915. [PMID: 35453665 PMCID: PMC9029477 DOI: 10.3390/biomedicines10040915] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/23/2021] [Accepted: 11/30/2021] [Indexed: 11/16/2022] Open
Abstract
Micro-RNA (miRNAs) are short non-coding RNAs of about 18-20 nucleotides in length and are implicated in many cellular processes including proliferation, development, differentiation, apoptosis and cell signaling. Furthermore, it is well known that miRNA expression is frequently dysregulated in many cancers. Therefore, this review will highlight the various mechanisms by which microRNAs are dysregulated in cancer. Further highlights include the abundance of molecular genetics tools that are currently available to study miRNA function as well as their advantages and disadvantages with a special focus on various CRISPR/Cas systems This review provides general workflows and some practical considerations when studying miRNA function thus enabling researchers to make informed decisions in regards to the appropriate molecular genetics tool to be utilized for their experiments.
Collapse
Affiliation(s)
- Adam Azlan
- Cluster of Regenerative Medicine, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam, Kepala Batas 13200, Pulau Pinang, Malaysia
| | - Yaashini Rajasegaran
- Cluster of Regenerative Medicine, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam, Kepala Batas 13200, Pulau Pinang, Malaysia
| | - Khor Kang Zi
- Cluster of Regenerative Medicine, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam, Kepala Batas 13200, Pulau Pinang, Malaysia
| | - Aliaa Arina Rosli
- Cluster of Regenerative Medicine, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam, Kepala Batas 13200, Pulau Pinang, Malaysia
| | - Mot Yee Yik
- Cluster of Regenerative Medicine, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam, Kepala Batas 13200, Pulau Pinang, Malaysia
| | - Narazah Mohd Yusoff
- Cluster of Regenerative Medicine, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam, Kepala Batas 13200, Pulau Pinang, Malaysia
| | - Olaf Heidenreich
- Northern Institute for Cancer Research, Paul O'Gorman Building, Medical School, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
- Prinses Máxima Centrum Voor Kinderoncologie Heidelberglaan 25, 3584 CS Utrecht, The Netherlands
| | - Emmanuel Jairaj Moses
- Cluster of Regenerative Medicine, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam, Kepala Batas 13200, Pulau Pinang, Malaysia
| |
Collapse
|
35
|
Goswami A, Prasad AK, Maity J, Khaneja N. Synthesis and applications of bicyclic sugar modified locked nucleic acids: A review. NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS 2022; 41:503-529. [PMID: 35319343 DOI: 10.1080/15257770.2022.2052316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 03/01/2022] [Accepted: 03/08/2022] [Indexed: 06/14/2023]
Abstract
A large number of Locked Nucleic Acids (LNAs) with variety of modifications and restricted conformations have been developed in the last few decades. These modifications have significantly improved the biological properties of oligonucleotides, when LNAs moieties were incorporated into them. Herein, the synthesis and applications of these modified locked nucleic acids as antisense oligonucleotides are discussed.Supplemental data for this article is available online at https://doi.org/10.1080/15257770.2022.2052316 .
Collapse
Affiliation(s)
- Arkaja Goswami
- Department of Chemistry, Shyam Lal College, University of Delhi, Delhi, India
| | - Ashok K Prasad
- Bioorganic Laboratory, Department of Chemistry, University of Delhi, Delhi, India
| | - Jyotirmoy Maity
- Department of Chemistry, St. Stephen's College, University of Delhi, Delhi, India
| | - Neerja Khaneja
- Department of Chemistry, Shyam Lal College, University of Delhi, Delhi, India
| |
Collapse
|
36
|
Wang F, Li P, Chu HC, Lo PK. Nucleic Acids and Their Analogues for Biomedical Applications. BIOSENSORS 2022; 12:93. [PMID: 35200353 PMCID: PMC8869748 DOI: 10.3390/bios12020093] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/20/2022] [Accepted: 01/25/2022] [Indexed: 05/07/2023]
Abstract
Nucleic acids are emerging as powerful and functional biomaterials due to their molecular recognition ability, programmability, and ease of synthesis and chemical modification. Various types of nucleic acids have been used as gene regulation tools or therapeutic agents for the treatment of human diseases with genetic disorders. Nucleic acids can also be used to develop sensing platforms for detecting ions, small molecules, proteins, and cells. Their performance can be improved through integration with other organic or inorganic nanomaterials. To further enhance their biological properties, various chemically modified nucleic acid analogues can be generated by modifying their phosphodiester backbone, sugar moiety, nucleobase, or combined sites. Alternatively, using nucleic acids as building blocks for self-assembly of highly ordered nanostructures would enhance their biological stability and cellular uptake efficiency. In this review, we will focus on the development and biomedical applications of structural and functional natural nucleic acids, as well as the chemically modified nucleic acid analogues over the past ten years. The recent progress in the development of functional nanomaterials based on self-assembled DNA-based platforms for gene regulation, biosensing, drug delivery, and therapy will also be presented. We will then summarize with a discussion on the advanced development of nucleic acid research, highlight some of the challenges faced and propose suggestions for further improvement.
Collapse
Affiliation(s)
- Fei Wang
- Department of Chemistry, City University of Hong Kong, Hong Kong SAR 999077, China; (F.W.); (P.L.); (H.C.C.)
| | - Pan Li
- Department of Chemistry, City University of Hong Kong, Hong Kong SAR 999077, China; (F.W.); (P.L.); (H.C.C.)
| | - Hoi Ching Chu
- Department of Chemistry, City University of Hong Kong, Hong Kong SAR 999077, China; (F.W.); (P.L.); (H.C.C.)
| | - Pik Kwan Lo
- Department of Chemistry, City University of Hong Kong, Hong Kong SAR 999077, China; (F.W.); (P.L.); (H.C.C.)
- Key Laboratory of Biochip Technology, Biotech and Health Care, Shenzhen Research Institute of City University of Hong Kong, Shenzhen 518057, China
| |
Collapse
|
37
|
Luo K, Ogawa M, Ayer A, Britton WJ, Stocker R, Kikuchi K, Oehlers SH. Zebrafish Heme Oxygenase 1a Is Necessary for Normal Development and Macrophage Migration. Zebrafish 2022; 19:7-17. [PMID: 35108124 DOI: 10.1089/zeb.2021.0058] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Heme oxygenase function is highly conserved between vertebrates where it plays important roles in normal embryonic development and controls oxidative stress. Expression of the zebrafish heme oxygenase 1 genes is known to be responsive to oxidative stress suggesting a conserved physiological function. In this study, we generate a knockout allele of zebrafish hmox1a and characterize the effects of hmox1a and hmox1b loss on embryonic development. We find that loss of hmox1a or hmox1b causes developmental defects in only a minority of embryos, in contrast to Hmox1 gene deletions in mice that cause loss of most embryos. Using a tail wound inflammation assay we find a conserved role for hmox1a, but not hmox1b, in normal macrophage migration to the wound site. Together our results indicate that zebrafish hmox1a has clearly a partitioned role from hmox1b that is more consistent with conserved functions of mammalian Heme oxygenase 1.
Collapse
Affiliation(s)
- Kaiming Luo
- Tuberculosis Research Program at the Centenary Institute, The University of Sydney, Camperdown, Australia.,Victor Chang Cardiac Research Institute, Darlinghurst, Australia
| | - Masahito Ogawa
- Victor Chang Cardiac Research Institute, Darlinghurst, Australia
| | - Anita Ayer
- Victor Chang Cardiac Research Institute, Darlinghurst, Australia.,The Heart Research Institute, Newtown, Australia
| | - Warwick J Britton
- Tuberculosis Research Program at the Centenary Institute, The University of Sydney, Camperdown, Australia.,Department of Clinical Immunology, Royal Prince Alfred Hospital, Camperdown, Australia
| | - Roland Stocker
- Victor Chang Cardiac Research Institute, Darlinghurst, Australia.,The Heart Research Institute, Newtown, Australia
| | - Kazu Kikuchi
- Victor Chang Cardiac Research Institute, Darlinghurst, Australia.,National Cerebral and Cardiovascular Center, Suita, Japan
| | - Stefan H Oehlers
- Tuberculosis Research Program at the Centenary Institute, The University of Sydney, Camperdown, Australia.,Sydney Institute for Infectious Diseases, The University of Sydney, Camperdown, Australia
| |
Collapse
|
38
|
Anderson KM, Anderson DM. LncRNAs at the heart of development and disease. Mamm Genome 2022; 33:354-365. [PMID: 35048139 DOI: 10.1007/s00335-021-09937-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 11/26/2021] [Indexed: 10/19/2022]
Abstract
Long noncoding RNAs (LncRNAs) have emerged as a diverse class of functional molecules that contribute to nearly every facet of mammalian cardiac development and disease. Recent examples show that lncRNAs can be important co-regulators of cardiac patterning and morphogenesis and modulators of the pathogenic signaling that drives heart disease. The flexibility and chemical nature of RNA allows lncRNAs to utilize diverse mechanisms, mediating their effects through their sequence, structure, and molecular interactions with DNA, protein, and other RNAs. In vivo, i.e., animal, studies of individual lncRNAs highlight their ability to balance conserved cardiac gene expression networks, serve as specific and early biomarkers, and indicate their promise as useful therapeutic targets to treat human heart disease. Here, we review recent functionally characterized lncRNAs in cardiac biology and pathology and provide a perspective on emerging approaches to decipher the role of lncRNAs in the heart.
Collapse
Affiliation(s)
- Kelly M Anderson
- Department of Medicine, Cardiovascular Research Institute, University of Rochester Medical Center, 601 Elmwood Avenue, Box CVRI, Rochester, NY, 14642, USA
| | - Douglas M Anderson
- Department of Medicine, Cardiovascular Research Institute, University of Rochester Medical Center, 601 Elmwood Avenue, Box CVRI, Rochester, NY, 14642, USA.
| |
Collapse
|
39
|
Hirano Y, Komatsu Y. Promotion of cytoplasmic localization of oligonucleotides by connecting cross-linked duplexes. RSC Adv 2022; 12:24471-24477. [PMID: 36128385 PMCID: PMC9425837 DOI: 10.1039/d2ra04375k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 08/22/2022] [Indexed: 11/21/2022] Open
Abstract
An interstrand cross-linked duplex (CD) modification promoted antisense oligonucleotide to be localized in the cytoplasm, resulting in effective knockdown microRNA in cytoplasm. In contrast, single-stranded antisense was confined in the nucleus.
Collapse
Affiliation(s)
- Yu Hirano
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 2-17-2-1 Tsukisamu-Higashi, Toyohira-ku, Sapporo 062-8517, Japan
| | - Yasuo Komatsu
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 2-17-2-1 Tsukisamu-Higashi, Toyohira-ku, Sapporo 062-8517, Japan
| |
Collapse
|
40
|
Narayanaswami P, Živković S. Molecular and Genetic Therapies. Neuromuscul Disord 2022. [DOI: 10.1016/b978-0-323-71317-7.00011-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
41
|
Zhang Z, Kuo JCT, Yao S, Zhang C, Khan H, Lee RJ. CpG Oligodeoxynucleotides for Anticancer Monotherapy from Preclinical Stages to Clinical Trials. Pharmaceutics 2021; 14:73. [PMID: 35056969 PMCID: PMC8780291 DOI: 10.3390/pharmaceutics14010073] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/16/2021] [Accepted: 12/26/2021] [Indexed: 11/29/2022] Open
Abstract
CpG oligodeoxynucleotides (CpG ODNs), the artificial versions of unmethylated CpG motifs that were originally discovered in bacterial DNA, are demonstrated not only as potent immunoadjuvants but also as anticancer agents by triggering toll-like receptor 9 (TLR9) activation in immune cells. TLR9 activation triggered by CpG ODN has been shown to activate plasmacytoid dendritic cells (pDCs) and cytotoxic T lymphocytes (CTLs), enhancing T cell-mediated antitumor immunity. However, the extent of antitumor immunity carried by TLR agonists has not been optimized individually or in combinations with cancer vaccines, resulting in a decreased preference for TLR agonists as adjuvants in clinical trials. Although various combination therapies involving CpG ODNs have been applied in clinical trials, none of the CpG ODN-based drugs have been approved by the FDA, owing to the short half-life of CpG ODNs in serum that leads to low activation of natural killer cells (NK cells) and CTLs, along with increases of pro-inflammatory cytokine productions. This review summarized the current innovation on CpG ODNs that are under clinical investigation and explored the future direction for CpG ODN-based nanomedicine as an anticancer monotherapy.
Collapse
Affiliation(s)
- Zhongkun Zhang
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, 500 W 12th Avenue, Columbus, OH 43210, USA; (Z.Z.); (J.C.-T.K.); (C.Z.); (H.K.)
| | - Jimmy Chun-Tien Kuo
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, 500 W 12th Avenue, Columbus, OH 43210, USA; (Z.Z.); (J.C.-T.K.); (C.Z.); (H.K.)
| | - Siyu Yao
- Department of Food Science and Technology, The Ohio State University, 110 Parker Food Science and Technology Building, 2015 Fyffe Road, Columbus, OH 43210, USA;
| | - Chi Zhang
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, 500 W 12th Avenue, Columbus, OH 43210, USA; (Z.Z.); (J.C.-T.K.); (C.Z.); (H.K.)
| | - Hira Khan
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, 500 W 12th Avenue, Columbus, OH 43210, USA; (Z.Z.); (J.C.-T.K.); (C.Z.); (H.K.)
- Department of Pharmacy, Abbottabad University of Science and Technology, Havelian, Abbottabad 22500, Pakistan
| | - Robert J. Lee
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, 500 W 12th Avenue, Columbus, OH 43210, USA; (Z.Z.); (J.C.-T.K.); (C.Z.); (H.K.)
| |
Collapse
|
42
|
Mochizuki S, Miyamoto N, Sakurai K. Oligonucleotide delivery to antigen presenting cells by using schizophyllan. Drug Metab Pharmacokinet 2021; 42:100434. [PMID: 34896749 DOI: 10.1016/j.dmpk.2021.100434] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 11/21/2021] [Accepted: 11/23/2021] [Indexed: 12/15/2022]
Abstract
Schizophyllan (SPG), a member of the β-glucan family, can form novel complexes with homo-polynucleotides such as poly(dA) through hydrogen bonding between two main chain glucoses and the one nucleotide base. Dectin-1, one of the major receptors for β-glucans, is known to be expressed on antigen presenting cells (APCs) such as macrophages and dendritic cells. This suggests that the above-mentioned complexes could deliver bound functional oligonucleotides (ODNs) including antisense (AS)-ODNs, small interfering RNA, and CpG-ODNs to the APCs. Analysis using a quartz crystal microbalance revealed that a complex consisting of SPG and dA60 with a phosphorothioate backbone was recognized by recombinant Dectin-1 protein. Treatment with this complex containing an AS-ODN for tumor necrosis factor alpha protected mice against lipopolysaccharide-induced hepatitis at a very low AS-ODN dose. Moreover, immunization with CpG-ODN/SPG complex and antigenic proteins induced potent antigen specific immune responses. The present review also represents peptide delivery by conjugation with dA60 and the preparation of a nanogel using DNA-DNA hybridization. These findings indicate that the delivery of a specific ODN using β-glucans could be used for treating various diseases caused by APCs and for activating antigen specific immune responses.
Collapse
Affiliation(s)
- Shinichi Mochizuki
- Department of Chemistry and Biochemistry, The University of Kitakyushu, 1-1, Hibikino, Wakamatsu-ku, Kitakyushu, Fukuoka, 808-0135, Japan.
| | - Noriko Miyamoto
- Department of Applied Chemistry, Aichi Institute of Technology, 1247, Yachigusa, Yakusacho, Toyota, Aichi, 470-0392, Japan
| | - Kazuo Sakurai
- Department of Chemistry and Biochemistry, The University of Kitakyushu, 1-1, Hibikino, Wakamatsu-ku, Kitakyushu, Fukuoka, 808-0135, Japan
| |
Collapse
|
43
|
Wdowikowska A, Janicka M. Antisense oligonucleotide technology as a research tool in plant biology. FUNCTIONAL PLANT BIOLOGY : FPB 2021; 49:1-12. [PMID: 34794541 DOI: 10.1071/fp21194] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 10/20/2021] [Indexed: 06/13/2023]
Abstract
An antisense oligonucleotide (ASO) is a short single-stranded deoxyribonucleotide complementary to the sense strand of a selected nucleic acid. As a result, an ASO can modulate gene expression through several mechanisms. The technology based on ASO has already been applied in studies on gene function in mammalian cells and selective therapeutic strategies for many diseases. The conceptual simplicity and low cost of this method, and the developments in the field of plant genome sequencing observed in the last decades, have paved the way for the ASO method also in plant biology. It is applied in gene function analysis as well as the development of non-invasive plant production technology involving gene modifications without transgenesis. Therefore, the first part of this review provides a comprehensive overview of the structure, mechanism of action and delivery methods of ASOs in plants and shows the most important features essential for the proper design of individual experiments. We also discuss potential issues and difficulties that may arise during practical ASO implementation. The second part of this article contains an analysis of ASO applications in various studies in the field of plant biology. We presented for the first time that ASOs were also successfully applied in cucumber.
Collapse
Affiliation(s)
- Anna Wdowikowska
- Department of Plant Molecular Physiology, Faculty of Biological Sciences, University of Wroclaw, Kanonia 6/8, 50-328 Wroclaw, Poland
| | - Malgorzata Janicka
- Department of Plant Molecular Physiology, Faculty of Biological Sciences, University of Wroclaw, Kanonia 6/8, 50-328 Wroclaw, Poland
| |
Collapse
|
44
|
Raguraman P, Balachandran AA, Chen S, Diermeier SD, Veedu RN. Antisense Oligonucleotide-Mediated Splice Switching: Potential Therapeutic Approach for Cancer Mitigation. Cancers (Basel) 2021; 13:5555. [PMID: 34771719 PMCID: PMC8583451 DOI: 10.3390/cancers13215555] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 10/27/2021] [Accepted: 11/01/2021] [Indexed: 12/13/2022] Open
Abstract
Splicing is an essential process wherein precursor messenger RNA (pre-mRNA) is reshaped into mature mRNA. In alternative splicing, exons of any pre-mRNA get rearranged to form mRNA variants and subsequently protein isoforms, which are distinct both by structure and function. On the other hand, aberrant splicing is the cause of many disorders, including cancer. In the past few decades, developments in the understanding of the underlying biological basis for cancer progression and therapeutic resistance have identified many oncogenes as well as carcinogenic splice variants of essential genes. These transcripts are involved in various cellular processes, such as apoptosis, cell signaling and proliferation. Strategies to inhibit these carcinogenic isoforms at the mRNA level are promising. Antisense oligonucleotides (AOs) have been developed to inhibit the production of alternatively spliced carcinogenic isoforms through splice modulation or mRNA degradation. AOs can also be used to induce splice switching, where the expression of an oncogenic protein can be inhibited by the induction of a premature stop codon. In general, AOs are modified chemically to increase their stability and binding affinity. One of the major concerns with AOs is efficient delivery. Strategies for the delivery of AOs are constantly being evolved to facilitate the entry of AOs into cells. In this review, the different chemical modifications employed and delivery strategies applied are discussed. In addition to that various AOs in clinical trials and their efficacy are discussed herein with a focus on six distinct studies that use AO-mediated exon skipping as a therapeutic strategy to combat cancer.
Collapse
Affiliation(s)
- Prithi Raguraman
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Murdoch, WA 6150, Australia; (P.R.); (A.A.B.); (S.C.)
- Perron Institute for Neurological and Translational Science, Nedlands, WA 6009, Australia
| | - Akilandeswari Ashwini Balachandran
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Murdoch, WA 6150, Australia; (P.R.); (A.A.B.); (S.C.)
- Perron Institute for Neurological and Translational Science, Nedlands, WA 6009, Australia
| | - Suxiang Chen
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Murdoch, WA 6150, Australia; (P.R.); (A.A.B.); (S.C.)
- Perron Institute for Neurological and Translational Science, Nedlands, WA 6009, Australia
| | - Sarah D. Diermeier
- Department of Biochemistry, University of Otago, Dunedin 9016, New Zealand;
| | - Rakesh N. Veedu
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Murdoch, WA 6150, Australia; (P.R.); (A.A.B.); (S.C.)
- Perron Institute for Neurological and Translational Science, Nedlands, WA 6009, Australia
| |
Collapse
|
45
|
Vázquez-Mojena Y, León-Arcia K, González-Zaldivar Y, Rodríguez-Labrada R, Velázquez-Pérez L. Gene Therapy for Polyglutamine Spinocerebellar Ataxias: Advances, Challenges, and Perspectives. Mov Disord 2021; 36:2731-2744. [PMID: 34628681 DOI: 10.1002/mds.28819] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 09/02/2021] [Accepted: 09/06/2021] [Indexed: 12/11/2022] Open
Abstract
Polyglutamine spinocerebellar ataxias (SCAs) comprise a heterogeneous group of six autosomal dominant ataxias caused by cytosine-adenine-guanine repeat expansions in the coding region of single genes. Currently, there is no curative or disease-slowing treatment for these disorders, but their monogenic inheritance has informed rationales for development of gene therapy strategies. In fact, RNA interference strategies have shown promising findings in cellular and/or animal models of SCA1, SCA3, SCA6, and SCA7. In addition, antisense oligonucleotide therapy has provided encouraging proofs of concept in models of SCA1, SCA2, SCA3, and SCA7, but they have not yet progressed to clinical trials. On the contrary, the gene editing strategies, such as the clustered regularly interspaced short palindromic repeat (CRISPR/Cas9), have been introduced to a limited extent in these disorders. In this article, we review the available literature about gene therapy in polyglutamine SCAs and discuss the main technological and ethical challenges toward the prospect of their use in future clinical trials. Although antisense oligonucleotide therapies are further along the path to clinical phases, the recent failure of three clinical trials in Huntington's disease may delay their utilization for polyglutamine SCAs, but they offer lessons that could optimize the likelihood of success in potential future clinical studies. © 2021 International Parkinson and Movement Disorder Society.
Collapse
|
46
|
Araújo D, Mil-Homens D, Rodrigues ME, Henriques M, Jørgensen PT, Wengel J, Silva S. Antisense locked nucleic acid gapmers to control Candida albicans filamentation. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2021; 39:102469. [PMID: 34606999 DOI: 10.1016/j.nano.2021.102469] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 07/21/2021] [Accepted: 08/05/2021] [Indexed: 11/17/2022]
Abstract
Whereas locked nucleic acid (LNA) has been extensively used to control gene expression, it has never been exploited to control Candida virulence genes. Thus, the main goal of this work was to compare the efficacy of five different LNA-based antisense oligonucleotides (ASO) with respect to the ability to control EFG1 gene expression, to modulate filamentation and to reduce C. albicans virulence. In vitro, all LNA-ASOs were able to significantly reduce C. albicans filamentation and to control EFG1 gene expression. Using the in vivo Galleria mellonella model, important differences among the five LNA-ASOs were revealed in terms of C. albicans virulence reduction. The inclusion of PS-linkage and palmitoyl-2'-amino-LNA chemical modification in these five LNA gapmers proved to be the most promising combination, increasing the survival of G. mellonella by 40%. Our work confirms that LNA-ASOs are useful tools for research and therapeutic development in the candidiasis field.
Collapse
Affiliation(s)
- Daniela Araújo
- LIBRO-Laboratório de Investigação em Biofilmes Rosário Oliveira, CEB-Centre of Biological Engineering, University of Minho, Braga, Portugal
| | - Dalila Mil-Homens
- iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Lisbon University, Lisbon, Portugal
| | - Maria Elisa Rodrigues
- LIBRO-Laboratório de Investigação em Biofilmes Rosário Oliveira, CEB-Centre of Biological Engineering, University of Minho, Braga, Portugal
| | - Mariana Henriques
- LIBRO-Laboratório de Investigação em Biofilmes Rosário Oliveira, CEB-Centre of Biological Engineering, University of Minho, Braga, Portugal
| | - Per Trolle Jørgensen
- Biomolecular Nanoscale Engineering Center, Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Odense M, Denmark
| | - Jesper Wengel
- Biomolecular Nanoscale Engineering Center, Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Odense M, Denmark
| | - Sónia Silva
- LIBRO-Laboratório de Investigação em Biofilmes Rosário Oliveira, CEB-Centre of Biological Engineering, University of Minho, Braga, Portugal; National Institute for Agrarian and Veterinary Research, Vairão, Vila do Conde, Portugal.
| |
Collapse
|
47
|
Correa S, Grosskopf AK, Lopez Hernandez H, Chan D, Yu AC, Stapleton LM, Appel EA. Translational Applications of Hydrogels. Chem Rev 2021; 121:11385-11457. [PMID: 33938724 PMCID: PMC8461619 DOI: 10.1021/acs.chemrev.0c01177] [Citation(s) in RCA: 451] [Impact Index Per Article: 112.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Indexed: 12/17/2022]
Abstract
Advances in hydrogel technology have unlocked unique and valuable capabilities that are being applied to a diverse set of translational applications. Hydrogels perform functions relevant to a range of biomedical purposes-they can deliver drugs or cells, regenerate hard and soft tissues, adhere to wet tissues, prevent bleeding, provide contrast during imaging, protect tissues or organs during radiotherapy, and improve the biocompatibility of medical implants. These capabilities make hydrogels useful for many distinct and pressing diseases and medical conditions and even for less conventional areas such as environmental engineering. In this review, we cover the major capabilities of hydrogels, with a focus on the novel benefits of injectable hydrogels, and how they relate to translational applications in medicine and the environment. We pay close attention to how the development of contemporary hydrogels requires extensive interdisciplinary collaboration to accomplish highly specific and complex biological tasks that range from cancer immunotherapy to tissue engineering to vaccination. We complement our discussion of preclinical and clinical development of hydrogels with mechanical design considerations needed for scaling injectable hydrogel technologies for clinical application. We anticipate that readers will gain a more complete picture of the expansive possibilities for hydrogels to make practical and impactful differences across numerous fields and biomedical applications.
Collapse
Affiliation(s)
- Santiago Correa
- Materials
Science & Engineering, Stanford University, Stanford, California 94305, United States
| | - Abigail K. Grosskopf
- Chemical
Engineering, Stanford University, Stanford, California 94305, United States
| | - Hector Lopez Hernandez
- Materials
Science & Engineering, Stanford University, Stanford, California 94305, United States
| | - Doreen Chan
- Chemistry, Stanford University, Stanford, California 94305, United States
| | - Anthony C. Yu
- Materials
Science & Engineering, Stanford University, Stanford, California 94305, United States
| | | | - Eric A. Appel
- Materials
Science & Engineering, Stanford University, Stanford, California 94305, United States
- Bioengineering, Stanford University, Stanford, California 94305, United States
- Pediatric
Endocrinology, Stanford University School
of Medicine, Stanford, California 94305, United States
- ChEM-H Institute, Stanford
University, Stanford, California 94305, United States
- Woods
Institute for the Environment, Stanford
University, Stanford, California 94305, United States
| |
Collapse
|
48
|
Hunter WB, Wintermantel WM. Optimizing Efficient RNAi-Mediated Control of Hemipteran Pests (Psyllids, Leafhoppers, Whitefly): Modified Pyrimidines in dsRNA Triggers. PLANTS 2021; 10:plants10091782. [PMID: 34579315 PMCID: PMC8472347 DOI: 10.3390/plants10091782] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/23/2021] [Accepted: 08/23/2021] [Indexed: 01/09/2023]
Abstract
The advantages from exogenously applied RNAi biopesticides have yet to be realized in through commercialization due to inconsistent activity of the dsRNA trigger, and the activity level of RNAi suppression. This has prompted research on improving delivery methods for applying exogenous dsRNA into plants and insects for the management of pests and pathogens. Another aspect to improve RNAi activity is the incorporation of modified 2′-F pyrimidine nucleotides into the dsRNA trigger. Modified dsRNA incorporating 32–55% of the 2′-F- nucleotides produced improved RNAi activity that increased insect mortality by 12–35% greater than non-modified dsRNA triggers of the same sequence. These results were repeatable across multiple Hemiptera: the Asian citrus psyllid (Diaphorina citri, Liviidae); whitefly (Bemisia tabaci, Aleyroididae); and the glassy-winged sharpshooter (Homalodisca vitripennis, Cicadellidae). Studies using siRNA with modified 2′-F- pyrimidines in mammalian cells show they improved resistance to degradation from nucleases, plus result in greater RNAi activity, due to increase concentrations and improved binding affinity to the mRNA target. Successful RNAi biopesticides of the future will be able to increase RNAi repeatability in the field, by incorporating modifications of the dsRNA, such as 2′-F- pyrimidines, that will improve delivery after applied to fruit trees or crop plants, with increased activity after ingestion by insects. Costs of RNA modification have decreased significantly over the past few years such that biopesticides can now compete on pricing with commercial chemical products.
Collapse
Affiliation(s)
- Wayne Brian Hunter
- U.S. Horticultural Research Laboratory, U.S. Department of Agriculture, Agriculture Research Service, Subtropical Insects Res., Fort Pierce, FL 34945, USA
- Correspondence:
| | - William M. Wintermantel
- U.S. Department of Agriculture, Agriculture Research Service, Crop Improvement and Protection Research, Salinas, CA 93905, USA;
| |
Collapse
|
49
|
Hara RI, Wada T. Inhibition of off-target cleavage by RNase H using an artificial cationic oligosaccharide. Org Biomol Chem 2021; 19:6865-6870. [PMID: 34323246 DOI: 10.1039/d1ob00983d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Sequence-dependent off-target effects are a serious problem of antisense oligonucleotide-based drugs. Some of these side effects are induced by ribonuclease H (RNase H)-mediated cleavage of non-target RNAs with base sequences similar to that of the target RNA. We found that an artificial cationic oligosaccharide, ODAGal4, improved single-base discrimination for RNase H cleavage.
Collapse
Affiliation(s)
- Rintaro Iwata Hara
- Department of Medicinal and Life Sciences, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan.
| | | |
Collapse
|
50
|
Baraniak D, Boryski J. Triazole-Modified Nucleic Acids for the Application in Bioorganic and Medicinal Chemistry. Biomedicines 2021; 9:628. [PMID: 34073038 PMCID: PMC8229351 DOI: 10.3390/biomedicines9060628] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/26/2021] [Accepted: 05/26/2021] [Indexed: 02/07/2023] Open
Abstract
This review covers studies which exploit triazole-modified nucleic acids in the range of chemistry and biology to medicine. The 1,2,3-triazole unit, which is obtained via click chemistry approach, shows valuable and unique properties. For example, it does not occur in nature, constitutes an additional pharmacophore with attractive properties being resistant to hydrolysis and other reactions at physiological pH, exhibits biological activity (i.e., antibacterial, antitumor, and antiviral), and can be considered as a rigid mimetic of amide linkage. Herein, it is presented a whole area of useful artificial compounds, from the clickable monomers and dimers to modified oligonucleotides, in the field of nucleic acids sciences. Such modifications of internucleotide linkages are designed to increase the hybridization binding affinity toward native DNA or RNA, to enhance resistance to nucleases, and to improve ability to penetrate cell membranes. The insertion of an artificial backbone is used for understanding effects of chemically modified oligonucleotides, and their potential usefulness in therapeutic applications. We describe the state-of-the-art knowledge on their implications for synthetic genes and other large modified DNA and RNA constructs including non-coding RNAs.
Collapse
Affiliation(s)
- Dagmara Baraniak
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland;
| | | |
Collapse
|