1
|
Sysel AM, Bauer JA. Evaluation of the Binding Affinity of Nitrosylcobalamin to Intrinsic Factor as a Predictive Model for Cobalamin Binding Protein Interactions: A Comparative Study with Hydroxocobalamin. Front Biosci (Elite Ed) 2025; 17:26810. [PMID: 40150986 DOI: 10.31083/fbe26810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/27/2024] [Accepted: 12/27/2024] [Indexed: 03/29/2025]
Abstract
BACKGROUND Intrinsic factor (IF) is a glycoprotein crucial for cobalamin (vitamin B12) absorption in the human body. This study aimed to evaluate the binding affinity of nitrosylcobalamin (NO-Cbl), a cobalamin analog, to recombinant human IF derived from plants, using hydroxocobalamin (OH-Cbl) as a comparative standard. METHODS Surface plasmon resonance (SPR) was employed to assess the kinetic parameters of NO-Cbl and OH-Cbl interactions with plant- derived IF across various concentrations. RESULTS SPR analysis demonstrated that NO-Cbl and OH-Cbl exhibited high binding affinities to IF, with equilibrium dissociation constant (KD) values in the picomolar range. OH-Cbl showed a slightly stronger binding affinity (KD = 4.79 × 10-11 M) than NO-Cbl (KD = 8.58 × 10-11 M). Despite NO-Cbl and OH-Cbl both being bound to IF, differences in binding affinity and stability were observed, particularly at higher concentrations. CONCLUSION Variations in IF binding between NO-Cbl and OH-Cbl may be attributed to the saturation of binding sites or recognition issues specific to plant-derived IF. This study underscores the potential of NO-Cbl as a targeted therapeutic agent capable of leveraging natural cobalamin uptake pathways. These results also highlight the suitability of using recombinant plant-derived IF as a model for predicting the biological activity of cobalamin analogs despite the nuanced differences from native human IF.
Collapse
|
2
|
Wang YH, Zhang RR, Yin Y, Tan GF, Wang GL, Liu H, Zhuang J, Zhang J, Zhuang FY, Xiong AS. Advances in engineering the production of the natural red pigment lycopene: A systematic review from a biotechnology perspective. J Adv Res 2023; 46:31-47. [PMID: 35753652 PMCID: PMC10105081 DOI: 10.1016/j.jare.2022.06.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 05/31/2022] [Accepted: 06/20/2022] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND Lycopene is a natural red compound with potent antioxidant activity that can be utilized both as pigment and as a raw material in functional food, and so possesses good commercial prospects. The biosynthetic pathway has already been documented, which provides the foundation for lycopene production using biotechnology. AIM OF REVIEW Although lycopene production has begun to take shape, there is still an urgent need to alleviate the yield of lycopene. Progress in this area can provide useful reference for metabolic engineering of lycopene production utilizing multiple approaches. KEY SCIENTIFIC CONCEPTS OF REVIEW Using conventional microbial fermentation approaches, biotechnologists have enhanced the yield of lycopene by selecting suitable host strains, utilizing various additives, and optimizing culture conditions. With the development of modern biotechnology, genetic engineering, protein engineering, and metabolic engineering have been applied for lycopene production. Extraction from natural plants is the main way for lycopene production at present. Based on the molecular mechanism of lycopene accumulation, the production of lycopene by plant bioreactor through genetic engineering has a good prospect. Here we summarized common strategies for optimizing lycopene production engineering from a biotechnology perspective, which are mainly carried out by microbial cultivation. We reviewed the challenges and limitations of this approach, summarized the critical aspects, and provided suggestions with the aim of potential future breakthroughs for lycopene production in plants.
Collapse
Affiliation(s)
- Ya-Hui Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Rong-Rong Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Yue Yin
- National Wolfberry Engineering Research Center, Ningxia Academy of Agricultural and Forestry Sciences, Yinchuan, Ningxia 750002, China
| | - Guo-Fei Tan
- Institute of Horticulture, Guizhou Academy of Agricultural Sciences, Guiyang, Guizhou 550025, China
| | - Guang-Long Wang
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, Jiangsu 223003, China
| | - Hui Liu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Jing Zhuang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Jian Zhang
- College of Agriculture, Jilin Agricultural University, Changchun, Jilin 130118, China; Department of Biology, University of British Columbia, Okanagan, Kelowna, Canada
| | - Fei-Yun Zhuang
- Institute of Vegetable and Flower, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Ai-Sheng Xiong
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China.
| |
Collapse
|
3
|
Ghag SB, Adki VS, Ganapathi TR, Bapat VA. Plant Platforms for Efficient Heterologous Protein Production. BIOTECHNOL BIOPROC E 2021; 26:546-567. [PMID: 34393545 PMCID: PMC8346785 DOI: 10.1007/s12257-020-0374-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/14/2021] [Accepted: 01/16/2021] [Indexed: 02/07/2023]
Abstract
Production of recombinant proteins is primarily established in cultures of mammalian, insect and bacterial cells. Concurrently, concept of using plants to produce high-value pharmaceuticals such as vaccines, antibodies, and dietary proteins have received worldwide attention. Newer technologies for plant transformation such as plastid engineering, agroinfiltration, magnifection, and deconstructed viral vectors have been used to enhance the protein production in plants along with the inherent advantage of speed, scale, and cost of production in plant systems. Production of therapeutic proteins in plants has now a more pragmatic approach when several plant-produced vaccines and antibodies successfully completed Phase I clinical trials in humans and were further scheduled for regulatory approvals to manufacture clinical grade products on a large scale which are safe, efficacious, and meet the quality standards. The main thrust of this review is to summarize the data accumulated over the last two decades and recent development and achievements of the plant derived therapeutics. It also attempts to discuss different strategies employed to increase the production so as to make plants more competitive with the established production systems in this industry.
Collapse
Affiliation(s)
- Siddhesh B. Ghag
- School of Biological Sciences, UM-DAE Centre for Excellence in Basic Sciences, University of Mumbai campus, Kalina, Santacruz, Mumbai, 400098 India
| | - Vinayak S. Adki
- V. G. Shivdare College of Arts, Commerce and Science, Solapur, Maharashtra 413004 India
| | - Thumballi R. Ganapathi
- Plant Cell Culture Technology Section, Nuclear Agriculture & Biotechnology Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085 India
| | - Vishwas A. Bapat
- Department of Biotechnology, Shivaji University, Vidyanagar, Kolhapur, Maharashtra 416004 India
| |
Collapse
|
4
|
Xisto MF, Dias RS, Feitosa-Araujo E, Prates JWO, da Silva CC, de Paula SO. Efficient Plant Production of Recombinant NS1 Protein for Diagnosis of Dengue. FRONTIERS IN PLANT SCIENCE 2020; 11:581100. [PMID: 33193526 PMCID: PMC7649140 DOI: 10.3389/fpls.2020.581100] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 10/02/2020] [Indexed: 05/28/2023]
Abstract
Dengue fever is endemic in more than 120 countries, which account for 3.9 billion people at risk of infection worldwide. The absence of a vaccine with effective protection against the four serotypes of this virus makes differential molecular diagnosis the key step for the correct treatment of the disease. Rapid and efficient diagnosis prevents progression to a more severe stage of this disease. Currently, the limiting factor in the manufacture of dengue (DENV) diagnostic kits is the lack of large-scale production of the non-structural 1 (NS1) protein (antigen) to be used in the capture of antibodies from the blood serum of infected patients. In this work, we use plant biotechnology and genetic engineering as tools for the study of protein production for research and commercial purposes. Gene transfer, integration and expression in plants is a valid strategy for obtaining large-scale and low-cost heterologous protein production. The authors produced NS1 protein of the dengue virus serotype 2 (NS1DENV2) in the Arabidopsis thaliana plant. Transgenic plants obtained by genetic transformation expressed the recombinant protein that was purified and characterized for diagnostic use. The yield was 203 μg of the recombinant protein per gram of fresh leaf. By in situ immunolocalization, transgenic protein was observed within the plant tissue, located in aggregates bodies. These antigens showed high sensitivity and specificity to both IgM (84.29% and 91.43%, respectively) and IgG (83.08% and 87.69%, respectively). The study goes a step further to validate the use of plants as a strategy for obtaining large-scale and efficient protein production to be used in dengue virus diagnostic tests.
Collapse
Affiliation(s)
| | - Roberto Sousa Dias
- Department of General Biology, Federal University of Viçosa, Viçosa, Brazil
| | | | | | | | | |
Collapse
|
5
|
Brito A, Habeych E, Silva-Zolezzi I, Galaffu N, Allen LH. Methods to assess vitamin B12 bioavailability and technologies to enhance its absorption. Nutr Rev 2019; 76:778-792. [PMID: 29931214 DOI: 10.1093/nutrit/nuy026] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Vitamin B12 (B-12) deficiency is still relatively common in low-, medium-, and high-income countries, mainly because of dietary inadequacy and, to a lesser extent, malabsorption. This narrative review is based on a systematic search of evidence on methods to assess B-12 bioavailability and technologies to enhance its absorption. A total of 2523 scientific articles identified in PubMed and 1572 patents identified in Orbit Intelligence were prescreened. Among the reviewed methods, Schilling's test and/or its food-based version (using cobalamin-labeled egg yolk) were used for decades but have been discontinued, largely because they required radioactive cobalt. The qualitative CobaSorb test, based on changes in circulating holo-transcobalamin before and after B-12 administration, and the 14C-labeled B-12 test for quantitative measurement of absorption of a low-dose radioactive tracer are currently the best available methods. Various forms of B-12 co-formulated with chemical enhancers (ie, salcaprozate sodium, 8-amino caprylate) or supplied via biotechnological methods (ie, microbiological techniques, plant cells expressing cobalamin binding proteins), encapsulation techniques (ie, emulsions, use of chitosan particles), and alternative routes of administration (ie, intranasal, transdermal administration) were identified as potential technologies to enhance B-12 absorption in humans. However, in most cases the evidence of absorption enhancement is limited.
Collapse
Affiliation(s)
- Alex Brito
- I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| | | | | | | | - Lindsay H Allen
- United States Department of Agriculture, Agricultural Research Service, Western Human Nutrition Research Center, Davis, California, USA
| |
Collapse
|
6
|
Systemically Administered Plant Recombinant Holo-Intrinsic Factor Targets the Liver and is not Affected by Endogenous B12 levels. Sci Rep 2019; 9:12269. [PMID: 31439908 PMCID: PMC6706418 DOI: 10.1038/s41598-019-48555-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 08/06/2019] [Indexed: 01/09/2023] Open
Abstract
Precision targeting imaging agents and/or treatment agents to select cells or organs in the body remains a significant need and is an area of intense research. It has been hypothesized that the vitamin B12 (B12) dietary pathway, or components thereof, may be exploitable in this area. The question of whether gastric Intrinsic factor (IF), critical for B12 absorption in the GI tract via the cubilin receptor, could be used as a targeting moiety for the cubilin receptor systemically, has not been investigated. Cubilin is the only known receptor for holo-IF and is found primarily in the kidney and ear (outside of the ileum of the GI) offering significant scope for specific targeting. We utilized plant derived human gastric IF in fluorescent cell and PET based in vivo imaging and biodistribution studies and demonstrated that plant derived IF primarily targets the liver, likely a consequence of the unique glycosylation profile of the IF, and is not affected by endogenous B12 levels.
Collapse
|
7
|
Fedosov SN, Nexo E, Heegaard CW. Vitamin B 12 and its binding proteins in milk from cow and buffalo in relation to bioavailability of B 12. J Dairy Sci 2019; 102:4891-4905. [PMID: 30928264 DOI: 10.3168/jds.2018-15016] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 02/07/2019] [Indexed: 11/19/2022]
Abstract
Milk is an important source of highly bioavailable vitamin B12 (cobalamin) in human nutrition. In most animal products, vitamin B12 is strongly bound to various specific protein carriers. The 2 vitamin B12-specific proteins, predominantly transcobalamin (TC) and haptocorrin (HC), were earlier found in milk from Holstein Friesian cows and in human or sow milk, respectively. As the type of vitamin B12 binders may influence bioavailability of the vitamin, we examined vitamin B12 carriers in pooled milk specimens derived from European and Indian cow and buffalo herds. The total endogenous vitamin B12 concentration was comparable in all milk pools (≈3 nM), but the vitamin carriers varied considerably: TC + caseins in Danish cows, TC + HC in Indian cows and buffaloes, and mainly HC in Italian buffaloes. Danish cow milk contained half as much TC as vitamin B12, and the surplus vitamin was all attached via a single coordination bond to abundantly available histidine residues of casein. The specific binding proteins in Indian cow milk (TC + HC) approximately matched the molar content of vitamin B12. Milk from the 2 buffalo breeds contained more specific binders than vitamin B12, and the surplus proteins included the unsaturated TC ≈ 3 nM (Indian stock), or both TC ≈ 4 nM and HC ≈ 23 nM (Italian stock). The abundant HC of the latter sample bound nearly all endogenous vitamin B12. We tested (in vitro) the transfer of vitamin B12 from milk proteins to human carriers, involved in the intestinal uptake. The bovine TC-vitamin B12 complex rapidly dissociated at pH 2 (time of half reaction, τ1/2 < 1 min, 37°C) and was susceptible to digestion with trypsin + chymotrypsin (pH 7.5). Transfer of vitamin B12 from the precipitated bovine casein (pH 2) to human carriers proceeded with τ1/2 ≈ 7 min (37°C) and τ1/2 ≈ 35 min (20°C). Liberation of vitamin B12 from buffalo HC was hampered because of its pH stability and slow proteolysis. Nutritional availability of vitamin B12 is expected to be high in cow milk (with TC-vitamin B12 and casein-vitamin B12 complexes) but potentially constrained in buffalo milk (with HC-vitamin B12). This especially concerns the Italian buffalo milk, where a high excess of HC was found. We speculate whether the isolated stock of Italian buffalo maintained the ancestral secretion of carriers (HC ≫ vitamin B12, TC ≈ 0), whereas intensive crossbreeding of cows and buffaloes from other regions caused a change to TC ≤ vitamin B12, with low or absent HC. The substitution of HC by less sturdy carriers is apparently more beneficial to human consumers as far as vitamin B12 bioavailability is concerned.
Collapse
Affiliation(s)
- Sergey N Fedosov
- Department of Molecular Biology and Genetics, Aarhus University, Science Park, Gustav Wieds Vej 10C 8000, Aarhus C, Denmark.
| | - Ebba Nexo
- Department of Clinical Biochemistry, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, 8200 Aarhus N, Denmark
| | - Christian W Heegaard
- Department of Molecular Biology and Genetics, Aarhus University, Science Park, Gustav Wieds Vej 10C 8000, Aarhus C, Denmark
| |
Collapse
|
8
|
Juul CB, Fedosov SN, Nexo E, Heegaard CW. Kinetic analysis of transcellular passage of the cobalamin-transcobalamin complex in Caco-2 monolayers. Mol Biol Cell 2018; 30:467-477. [PMID: 30565973 PMCID: PMC6594447 DOI: 10.1091/mbc.e18-09-0571] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
We suggest a novel kinetic approach to quantifying receptor–ligand interactions via the cellular transport and/or accumulation of the ligand. The system of cobalamin (Cbl, vitamin B12) transport was used as a model, because Cbl is an obligatory cofactor, taken up by animal cells with the help of a transport protein and a membrane receptor. Bovine transcobalamin (bTC) stimulated the cellular accumulation and transcytosis of radioactive [57Co]Cbl in polarized monolayers of Caco-2 cells. The bovine protein was much more efficient than human TC. The transport was inhibited in a dose-dependent manner by the unlabeled bTC-Cbl complex, the ligand-free bTC, and the receptor-associated protein (RAP). This inhibition pattern implied the presence of a megalin-like receptor. Quantitative assessment of kinetic records by the suggested method revealed the apparent concentration of receptors in vitro (≈15 nM), as well as the dissociation constants of bTC–Cbl (Kd = 13 nM) and RAP (Kd = 1.3 nM). The data were used to estimate the effective luminal concentrations of TC-specific receptors in kidneys (3.8 µM) and intestine (50 nM), the tissues resembling polarized Caco-2 cells.
Collapse
Affiliation(s)
- Christian B Juul
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus, Denmark
| | - Sergey N Fedosov
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus, Denmark
| | - Ebba Nexo
- Department of Clinical Biochemistry, Aarhus University Hospital, 8200 Aarhus N, Denmark
| | - Christian W Heegaard
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus, Denmark
| |
Collapse
|
9
|
Abstract
Nine compounds are classified as water-soluble vitamins, eight B vitamins and one vitamin C. The vitamins are mandatory for the function of numerous enzymes and lack of one or more of the vitamins may lead to severe medical conditions. All the vitamins are supplied by food in microgram to milligram quantities and in addition some of the vitamins are synthesized by the intestinal microbiota. In the gastrointestinal tract, the vitamins are liberated from binding proteins and for some of the vitamins modified prior to absorption. Due to their solubility in water, they all require specific carriers to be absorbed. Our current knowledge concerning each of the vitamins differs in depth and focus and is influenced by the prevalence of conditions and diseases related to lack of the individual vitamin. Because of that we have chosen to cover slightly different aspects for the individual vitamins. For each of the vitamins, we summarize the physiological role, the steps involved in the absorption, and the factors influencing the absorption. In addition, for some of the vitamins, the molecular base for absorption is described in details, while for others new aspects of relevance for human deficiency are included. © 2018 American Physiological Society. Compr Physiol 8:1291-1311, 2018.
Collapse
Affiliation(s)
- Hamid M Said
- University of California-School of Medicine, Irvine, California, USA.,VA Medical Center, Long Beach, California, USA
| | - Ebba Nexo
- Department of Clinical Medicine, Clinical Biochemistry, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
10
|
Lima S, Webb CL, Deery E, Robinson C, Zedler JAZ. Human Intrinsic Factor Expression for Bioavailable Vitamin B 12 Enrichment in Microalgae. BIOLOGY 2018; 7:biology7010019. [PMID: 29463047 PMCID: PMC5872045 DOI: 10.3390/biology7010019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 01/20/2018] [Accepted: 02/13/2018] [Indexed: 11/16/2022]
Abstract
Dietary supplements and functional foods are becoming increasingly popular complements to regular diets. A recurring ingredient is the essential cofactor vitamin B12 (B12). Microalgae are making their way into the dietary supplement and functional food market but do not produce B12, and their B12 content is very variable. In this study, the suitability of using the human B12-binding protein intrinsic factor (IF) to enrich bioavailable B12 using microalgae was tested. The IF protein was successfully expressed from the nuclear genome of the model microalga Chlamydomonasreinhardtii and the addition of an N-terminal ARS2 signal peptide resulted in efficient IF secretion to the medium. Co-abundance of B12 and the secreted IF suggests the algal produced IF protein is functional and B12-binding. Utilizing IF expression could be an efficient tool to generate B12-enriched microalgae in a controlled manner that is suitable for vegetarians and, potentially, more bioavailable for humans.
Collapse
Affiliation(s)
- Serena Lima
- Industrial Biotechnology Centre, School of Biosciences, University of Kent, Giles Lane, Canterbury, Kent CT2 7 NK, UK.
- Dipartimento dell'Innovazione Industriale e Digitale, Università degli Studi di Palermo, Viale delle Scienze Ed. 6, 90128 Palermo, Italy.
| | - Conner L Webb
- Industrial Biotechnology Centre, School of Biosciences, University of Kent, Giles Lane, Canterbury, Kent CT2 7 NK, UK.
| | - Evelyne Deery
- Industrial Biotechnology Centre, School of Biosciences, University of Kent, Giles Lane, Canterbury, Kent CT2 7 NK, UK.
| | - Colin Robinson
- Industrial Biotechnology Centre, School of Biosciences, University of Kent, Giles Lane, Canterbury, Kent CT2 7 NK, UK.
| | - Julie A Z Zedler
- Industrial Biotechnology Centre, School of Biosciences, University of Kent, Giles Lane, Canterbury, Kent CT2 7 NK, UK.
- Copenhagen Plant Science Centre, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark.
| |
Collapse
|
11
|
Intestinal Absorption of Water-Soluble Vitamins: Cellular and Molecular Mechanisms. PHYSIOLOGY OF THE GASTROINTESTINAL TRACT 2018. [DOI: 10.1016/b978-0-12-809954-4.00054-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
12
|
Binding of aquocobalamin to bovine casein and its peptides via coordination to histidine residues. Int Dairy J 2018. [DOI: 10.1016/j.idairyj.2017.08.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
13
|
Bonaccorso RL, Chepurny OG, Becker-Pauly C, Holz GG, Doyle RP. Enhanced Peptide Stability Against Protease Digestion Induced by Intrinsic Factor Binding of a Vitamin B12 Conjugate of Exendin-4. Mol Pharm 2015; 12:3502-6. [PMID: 26260673 DOI: 10.1021/acs.molpharmaceut.5b00390] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Peptide digestion from proteases is a significant limitation in peptide therapeutic development. It has been hypothesized that the dietary pathway of vitamin B12 (B12) may be exploited in this area, but an open question is whether B12-peptide conjugates bound to the B12 gastric uptake protein intrinsic factor (IF) can provide any stability against proteases. Herein, we describe a new conjugate of B12 with the incretin peptide exendin 4 that demonstrates picomolar agonism of the glugacon-like peptide-1 receptor (GLP1-R). Stability studies reveal that Ex-4 is digested by pancreatic proteases trypsin and chymotrypsin and by the kidney endopeptidase meprin β. Prebinding the B12 conjugate to IF, however, resulted in up to a 4-fold greater activity of the B12-Ex-4 conjugate relative to Ex-4, when the IF-B12-Ex-4 complex was exposed to 22 μg/mL of trypsin, 2.3-fold greater activity when exposed to 1.25 μg/mL of chymotrypsin, and there was no decrease in function at up to 5 μg/mL of meprin β.
Collapse
Affiliation(s)
- Ron L Bonaccorso
- Department of Chemistry, Center for Science and Technology, Syracuse University , 111 College Place, Syracuse, New York 13244, United States
| | - Oleg G Chepurny
- Department of Medicine, State University of New York, Upstate Medical University , Syracuse, New York 13210, United States
| | | | - George G Holz
- Department of Medicine, State University of New York, Upstate Medical University , Syracuse, New York 13210, United States.,Department of Pharmacology, State University of New York, Upstate Medical University , Syracuse, New York 13210, United States
| | - Robert P Doyle
- Department of Chemistry, Center for Science and Technology, Syracuse University , 111 College Place, Syracuse, New York 13244, United States.,Department of Medicine, State University of New York, Upstate Medical University , Syracuse, New York 13210, United States
| |
Collapse
|
14
|
Ortiz de Orué Lucana D, Fedosov SN, Wedderhoff I, Che EN, Torda AE. The extracellular heme-binding protein HbpS from the soil bacterium Streptomyces reticuli is an aquo-cobalamin binder. J Biol Chem 2014; 289:34214-28. [PMID: 25342754 PMCID: PMC4256353 DOI: 10.1074/jbc.m114.585489] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Revised: 10/22/2014] [Indexed: 11/06/2022] Open
Abstract
The extracellular protein HbpS from Streptomyces reticuli interacts with iron ions and heme. It also acts in concert with the two-component sensing system SenS-SenR in response to oxidative stress. Sequence comparisons suggested that the protein may bind a cobalamin. UV-visible spectroscopy confirmed binding (Kd = 34 μm) to aquo-cobalamin (H2OCbl(+)) but not to other cobalamins. Competition experiments with the H2OCbl(+)-coordinating ligand CN(-) and comparison of mutants identified a histidine residue (His-156) that coordinates the cobalt ion of H2OCbl(+) and substitutes for water. HbpS·Cobalamin lacks the Asp-X-His-X-X-Gly motif seen in some cobalamin binding enzymes. Preliminary tests showed that a related HbpS protein from a different species also binds H2OCbl(+). Furthermore, analyses of HbpS-heme binding kinetics are consistent with the role of HbpS as a heme-sensor and suggested a role in heme transport. Given the high occurrence of HbpS-like sequences among Gram-positive and Gram-negative bacteria, our findings suggest a great functional versatility among these proteins.
Collapse
Affiliation(s)
- Darío Ortiz de Orué Lucana
- From the Applied Genetics of Microorganisms, Department of Biology/Chemistry, University of Osnabrueck, 49067 Osnabrueck, Germany,
| | - Sergey N Fedosov
- Department of Engineering, Aarhus University, 8000 Aarhus, Denmark, and
| | - Ina Wedderhoff
- From the Applied Genetics of Microorganisms, Department of Biology/Chemistry, University of Osnabrueck, 49067 Osnabrueck, Germany
| | - Edith N Che
- From the Applied Genetics of Microorganisms, Department of Biology/Chemistry, University of Osnabrueck, 49067 Osnabrueck, Germany
| | - Andrew E Torda
- Centre for Bioinformatics, Hamburg University, 20146 Hamburg, Germany
| |
Collapse
|
15
|
Abstract
Minute doses of a complex cofactor cobalamin (Cbl, vitamin B12) are essential for metabolism. The nutritional chain for humans includes: (1) production of Cbl by bacteria in the intestinal tract of herbivores; (2) accumulation of the absorbed Cbl in animal tissues; (3) consumption of food of animal origin. Most biological sources contain both Cbl and its analogues, i.e. Cbl-resembling compounds physiologically inactive in animal cells. Selective assimilation of the true vitamin requires an interplay between three transporting proteins - haptocorrin (HC), intrinsic factor (IF), transcobalamin (TC) - and several receptors. HC is present in many biological fluids, including gastric juice, where it assists in disposal of analogues. Gastric IF selectively binds dietary Cbl and enters the intestinal cells via receptor-mediated endocytosis. Absorbed Cbl is transmitted to TC and delivered to the tissues with blood flow. The complex transport system guarantees a very efficient uptake of the vitamin, but failure at any link causes Cbl-deficiency. Early detection of a negative B12 balance is highly desirable to prevent irreversible neurological damages, anaemia and death in aggravated cases. The review focuses on the molecular mechanisms of cobalamin transport with emphasis on interaction of corrinoids with the specific proteins and protein-receptor recognition. The last section briefly describes practical aspects of recent basic research concerning early detection of B12-related disorders, medical application of Cbl-conjugates, and purification of corrinoids from biological samples.
Collapse
Affiliation(s)
- Sergey N Fedosov
- Protein Chemistry Laboratory, Department of Molecular Biology, University of Aarhus, Aarhus, Denmark,
| |
Collapse
|
16
|
Tran MTQ, Furger E, Alberto R. Two-step activation prodrugs: transplatin mediated binding of chemotherapeutic agents to vitamin B12. Org Biomol Chem 2013; 11:3247-54. [PMID: 23584074 DOI: 10.1039/c3ob40093j] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Clinically approved organic chemotherapeutic drugs such as cytarabine, dacarbazine and anastrozole were attached to B12via a {CN-trans-Pt(NH3)2}-bridge to yield [{Co}-CN-{trans-Pt(NH3)2}-{drug}](2+). The active organic drugs are protected by the platinum complex and by B12, which represents at the same time the targeting vector. We refer to these bioconjugates as two-step activation prodrugs since two reactions are finally required to liberate the actual organic drugs. All three prodrugs are soluble and stable in water. The physiological stability and the therapeutic efficiency of [{Co}-CN-{trans-Pt(NH3)2}-{cytarabine}](2+) (2) were studied. Under physiological conditions, 2 is stable for 3 days. Its affinity to the cobalamin transport proteins (haptocorrin, intrinsic factor and transcobalamin) is not substantially affected despite the introduction of a bulky group in the β-axial position. The cleavage of the [trans-CN-Pt(NH3)2-{cytarabine}](+) complex was observed upon chemical reduction of Co(III)→ Co(II) with Zn(0). Cytarabine was subsequently released from the cleaved complex to exhibit its cytotoxicity. 2 displayed a reduced cytotoxicity (IC50 = 230 ± 62 nM) as compared to cytarabine (IC50 = 30 ± 5 nM). However, cytarabine released from 2 showed comparable cytotoxicity (IC50 = 30 ± 11 nM).
Collapse
Affiliation(s)
- Mai Thanh Quynh Tran
- Institute of Inorganic Chemistry, University of Zürich, Winterthurerstr. 190, CH-8057 Zürich, Switzerland
| | | | | |
Collapse
|
17
|
Green factory: Plants as bioproduction platforms for recombinant proteins. Biotechnol Adv 2012; 30:1171-84. [DOI: 10.1016/j.biotechadv.2011.08.020] [Citation(s) in RCA: 132] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2011] [Revised: 08/24/2011] [Accepted: 08/30/2011] [Indexed: 12/15/2022]
|
18
|
Furger E, Fedosov SN, Launholt Lildballe D, Waibel R, Schibli R, Nexo E, Fischer E. Comparison of recombinant human haptocorrin expressed in human embryonic kidney cells and native haptocorrin. PLoS One 2012; 7:e37421. [PMID: 22662153 PMCID: PMC3360681 DOI: 10.1371/journal.pone.0037421] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Accepted: 04/20/2012] [Indexed: 02/02/2023] Open
Abstract
Haptocorrin (HC) is a circulating corrinoid binding protein with unclear function. In contrast to transcobalamin, the other transport protein in blood, HC is heavily glycosylated and binds a variety of cobalamin (Cbl) analogues. HC is present not only in blood but also in various secretions like milk, tears and saliva. No recombinant form of HC has been described so far. We report the expression of recombinant human HC (rhHC) in human embryonic kidney cells. We purified the protein with a yield of 6 mg (90 nmol) per litre of cell culture supernatant. The isolated rhHC behaved as native HC concerning its spectral properties and ability to recognize both Cbl and its baseless analogue cobinamide. Similar to native HC isolated from blood, rhHC bound to the asialoglycoprotein receptor only after removal of terminal sialic acid residues by treatment with neuraminidase. Interestingly, rhHC, that compared to native HC contains four excessive amino acids (…LVPR) at the C-terminus, showed subtle changes in the binding kinetics of Cbl, cobinamide and the fluorescent Cbl conjugate CBC. The recombinant protein has properties very similar to native HC and although showing slightly different ligand binding kinetics, rhHC is valuable for further biochemical and structural studies.
Collapse
Affiliation(s)
- Evelyne Furger
- Center for Radiopharmaceutical Sciences, Paul Scherrer Institute, Villigen, Switzerland
| | | | | | - Robert Waibel
- Center for Radiopharmaceutical Sciences, Paul Scherrer Institute, Villigen, Switzerland
| | - Roger Schibli
- Center for Radiopharmaceutical Sciences, Paul Scherrer Institute, Villigen, Switzerland
| | - Ebba Nexo
- Department of Clinical Biochemistry, Aarhus University Hospital, Aarhus, Denmark
| | - Eliane Fischer
- Center for Radiopharmaceutical Sciences, Paul Scherrer Institute, Villigen, Switzerland
- * E-mail:
| |
Collapse
|
19
|
Abstract
Vitamin B(12) (B(12); also known as cobalamin) is a cofactor in many metabolic processes; deficiency of this vitamin is associated with megaloblastic anaemia and various neurological disorders. In contrast to many prokaryotes, humans and other mammals are unable to synthesize B(12). Instead, a sophisticated pathway for specific uptake and transport of this molecule has evolved. Failure in the gastrointestinal part of this pathway is the most common cause of nondietary-induced B(12) deficiency disease. However, although less frequent, defects in cellular processing and further downstream steps in the transport pathway are also known culprits of functional B(12) deficiency. Biochemical and genetic approaches have identified novel proteins in the B(12) transport pathway--now known to involve more than 15 gene products--delineating a coherent pathway for B(12) trafficking from food to the body's cells. Some of these gene products are specifically dedicated to B(12) transport, whereas others embrace additional roles, which explains the heterogeneity in the clinical picture of the many genetic disorders causing B(12) deficiency. This Review describes basic and clinical features of this multistep pathway with emphasis on gastrointestinal transport of B(12) and its importance in clinical medicine.
Collapse
|
20
|
Nagels B, Van Damme EJM, Callewaert N, Weterings K. Introduction of tri-antennary N-glycans in Arabidopsis thaliana plants. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2012; 185-186:161-8. [PMID: 22325877 DOI: 10.1016/j.plantsci.2011.10.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Revised: 09/30/2011] [Accepted: 10/04/2011] [Indexed: 05/20/2023]
Abstract
Because the pathway for protein synthesis is largely conserved between plants and animals, plants provide an attractive platform for the cost effective and flexible production of biopharmaceuticals. However, there are some differences in glycosylation between plants and humans that need to be considered before plants can be used as an efficient expression platform. In the presented research the human genes encoding α1,3-mannosyl-β1,4-N-acetylglucosaminyltransferase (GnT-IV) and α1,6-mannosyl-β1,6-N-acetylglucosaminyltransferase (GnT-V) were introduced in the fast cycling model plant Arabidopsis thaliana to synthesize tri-antennary N-glycans. The GnT-IV and -V enzymes were targeted to the Golgi apparatus with plant-specific localization signals. The experiments were performed both in a wild type background, as well as in plants lacking β1,2-xylosyltransferase (XylT) and α1,3-fucosyltransferase (FucT) activity. Glycan analysis of endogenous proteins in the transgenic lines using CE-LIF showed that tri-antennary N-glycans could be produced in the XylT/FucT deficient line, while these structures were not found in the wild type background. Since β-N-acetylhexosaminidases, that remove terminal GlcNAcs, are active in A. thaliana plants, the specificity of these enzymes for different GlcNAc linkages was tested. The results showed that there is no pronounced preference of the A. thaliana hexosaminidases for human-type GlcNAc-linkages.
Collapse
Affiliation(s)
- Bieke Nagels
- Laboratory of Biochemistry and Glycobiology, Department of Molecular Biotechnology, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium.
| | | | | | | |
Collapse
|
21
|
Paul M, Ma JKC. Plant-made pharmaceuticals: Leading products and production platforms. Biotechnol Appl Biochem 2011; 58:58-67. [DOI: 10.1002/bab.6] [Citation(s) in RCA: 121] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
22
|
Boothe J, Nykiforuk C, Shen Y, Zaplachinski S, Szarka S, Kuhlman P, Murray E, Morck D, Moloney MM. Seed-based expression systems for plant molecular farming. PLANT BIOTECHNOLOGY JOURNAL 2010; 8:588-606. [PMID: 20500681 DOI: 10.1111/j.1467-7652.2010.00511.x] [Citation(s) in RCA: 136] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The evolution of the seed system provides enormous adaptability to the gymnosperms and angiosperms, because of the properties of dormancy, nutrient storage and seedling vigour. Many of the unique properties of seeds can be exploited in molecular farming applications, particularly where it is desirable to produce large quantities of a recombinant protein. Seeds of transgenic plants have been widely used to generate a raw material for the extraction and isolation of proteins and polypeptides, which can be processed into valuable biopharmaceuticals. The factors that control high-level accumulation of recombinant proteins in seed are reviewed in the following paragraphs. These include promoters and enhancers, which regulate transcript abundance. However, it is shown that subcellular trafficking and targeting of the desired polypeptides or proteins play a crucial role in their accumulation at economically useful levels. Seeds have proven to be versatile hosts for recombinant proteins of all types, including peptides or short and long polypeptides as well as complex, noncontiguous proteins like antibodies and other immunoglobulins. The extraction and recovery of recombinant proteins from seeds is greatly assisted by their dormancy properties, because this allows for long-term stability of stored products including recombinant proteins and a decoupling of processing from the growth and harvest cycles. Furthermore, the low water content and relatively low bioload of seeds help greatly in designing cost-effective manufacturing processes for the desired active pharmaceutical ingredient. The development of cGMP processes based on seed-derived materials has only been attempted by a few groups to date, but we provide a review of the key issues and criteria based on interactions with Food and Drug Administration and European Medicines Agency. This article uses 'case studies' to highlight the utility of seeds as vehicles for pharmaceutical production including: insulin, human growth hormone, lysozyme and lactoferrin. These examples serve to illustrate the preclinical and, in one case, clinical information required to move these plant-derived molecules through the research phase and into the regulatory pathway en route to eventual approval.
Collapse
|
23
|
Molecular toolbox for the identification of unknown genetically modified organisms. Anal Bioanal Chem 2009; 396:2073-89. [DOI: 10.1007/s00216-009-3287-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2009] [Revised: 10/23/2009] [Accepted: 11/03/2009] [Indexed: 12/18/2022]
|
24
|
Knowledge-technology-based discovery of unauthorized genetically modified organisms. Anal Bioanal Chem 2009; 396:1951-9. [DOI: 10.1007/s00216-009-3218-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
25
|
Sukumar N, Mathews FS, Gordon MM, Ealick SE, Alpers DH. Postcrystallization Analysis of the Irreproducibility of the Human Intrinsic Factor-Cobalamin Complex Crystals. CRYSTAL GROWTH & DESIGN 2009; 9:348-351. [PMID: 19884970 PMCID: PMC2631276 DOI: 10.1021/cg800509f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Approximately 15% (w/w) of human intrinsic factor (IF) is comprised of carbohydrate side chains, making crystallization problematic. In addition, IF is sensitive to proteolysis. To understand the role of these factors in crystallization, we carried out dynamic light scattering studies and assessed their correlation with crystallization. The packing of the IF-cobalamin complex and the known properties of the protein in solution were also analyzed to explore the irreproducibility of the IF-cobalamin complex crystals and the difficulty in obtaining apo-IF crystals suitable for crystallographic analysis. The results indicate that although glycosylation may in general be inhibitory for crystallization, time-dependent proteolysis appears to play a much more important role in the process of crystallization of IF. Thus, the presence of cobalamin and of domain fragments that can form incomplete dimers lacking one of two β-domains appears to promote the crystallization of IF.
Collapse
|
26
|
Brinch-Pedersen H, Borg S, Tauris B, Holm PB. Molecular genetic approaches to increasing mineral availability and vitamin content of cereals. J Cereal Sci 2007. [DOI: 10.1016/j.jcs.2007.02.004] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
27
|
Abstract
This review examines the challenges of segregating biopharmed crops expressing pharmaceutical or veterinary agents from mainstream crops, particularly those destined for food or feed use. The strategy of using major food crops as production vehicles for the expression of pharmaceutical or veterinary agents is critically analysed in the light of several recent episodes of contamination of the human food chain by non-approved crop varieties. Commercially viable strategies to limit or avoid biopharming intrusion into the human food chain require the more rigorous segregation of food and non-food varieties of the same crop species via a range of either physical or biological methods. Even more secure segregation is possible by the use of non-food crops, non-crop plants or in vitro plant cultures as production platforms for biopharming. Such platforms already under development range from outdoor-grown Nicotiana spp. to glasshouse-grown Arabidopsis, lotus and moss. Amongst the more effective methods for biocontainment are the plastid expression of transgenes, inducible and transient expression systems, and physical containment of plants or cell cultures. In the current atmosphere of heightened concerns over food safety and biosecurity, the future of biopharming may be largely determined by the extent to which the sector is able to maintain public confidence via a more considered approach to containment and security of its plant production systems.
Collapse
Affiliation(s)
- Denis J Murphy
- Biotechnology Unit, Division of Biological Sciences, University of Glamorgan, Treforest, CF37 1DL, UK.
| |
Collapse
|
28
|
Fedosov SN, Fedosova NU, Kräutler B, Nexø E, Petersen TE. Mechanisms of discrimination between cobalamins and their natural analogues during their binding to the specific B12-transporting proteins. Biochemistry 2007; 46:6446-58. [PMID: 17487979 DOI: 10.1021/bi062063l] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Three proteins, intrinsic factor (IF), transcobalamin (TC), and haptocorrin (HC), all have an extremely high affinity for the cobalamins (Cbls, Kd approximately 5 fM) but discriminate these physiological ligands from Cbl analogues with different efficiencies decreasing in the following order: IF > TC > HC. We investigated interactions of these proteins with a number of ligands: Cbl, fluorescent conjugate CBC, two base-off analogues [pseudo-coenzyme B12 (pB) and adenosyl factor A (fA)], and a baseless corrinoid cobinamide. Protein-ligand encounter and the following internal rearrangements in both molecules were registered as a change in the fluorescence of CBC (alone or mixed with other ligands), a transition in absorbance of pB and fA (base-off --> on-base conversion), and alterations in the molecular mass of two split IF domains. The greater complexity of the binding kinetics followed better Cbl specificity (HC < TC < IF). On the basis of the experimental results, we propose a general binding model with three major steps: (1) initial attachment of the ligand to the high-affinity C-domain, (2) primary assembly of N- and C-domains, and (3) slow adjustments and fixation of the ligand at the domain-domain interface. Since step 3 was characteristic of highly specific TC and especially IF, we suggest its particular importance for ligand recognition. The designed models revealed the absolute Kd values for a group of analogues. Calculations show that most of them could potentially bind to the specific transporters IF and TC under physiological conditions. Implications of this finding and the protective role of HC are discussed.
Collapse
Affiliation(s)
- Sergey N Fedosov
- Protein Chemistry Laboratory, Department of Molecular Biology, University of Aarhus, Science Park, Gustav Wieds Vej 10, DK 8000 Aarhus C, Denmark.
| | | | | | | | | |
Collapse
|
29
|
Wang X, Wei L, Kotra LP. Cyanocobalamin (vitamin B12) conjugates with enhanced solubility. Bioorg Med Chem 2007; 15:1780-7. [PMID: 17161950 DOI: 10.1016/j.bmc.2006.11.036] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2006] [Revised: 11/20/2006] [Accepted: 11/27/2006] [Indexed: 11/18/2022]
Abstract
Cyanocobalamin (vitamin B12) is an essential nutrient as well as a very useful carrier in drug delivery. Conjugates of vitamin B12 are investigated due to their wide range of therapeutic applications. We report the synthesis of six vitamin B12 conjugates, and the effect of conjugation on their solubilities and stabilities in various media. We reveal here that vitamin B12 can be released readily if a 2'-hydroxyl group is conjugated rather than the 5'-hydroxyl group, and the solubility (thus the equivalents of vitamin B12) could be enhanced as much as 19-fold, by simple conjugates such as glycolates. Findings disclosed here provide insights into the reactivities of vitamin B12 conjugates, the design of future prodrugs and similar conjugated moieties using vitamin B12.
Collapse
Affiliation(s)
- Xiaoyang Wang
- Center for Molecular Design and Preformulations, Toronto General Research Institute, University Health Network, Toronto, Ont., Canada
| | | | | |
Collapse
|
30
|
Fedosov SN, Grissom CB, Fedosova NU, Moestrup SK, Nexø E, Petersen TE. Application of a fluorescent cobalamin analogue for analysis of the binding kinetics. A study employing recombinant human transcobalamin and intrinsic factor. FEBS J 2006; 273:4742-53. [PMID: 16984395 DOI: 10.1111/j.1742-4658.2006.05478.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Fluorescent probe rhodamine was appended to 5' OH-ribose of cobalamin (Cbl). The prepared conjugate, CBC, bound to the transporting proteins, intrinsic factor (IF) and transcobalamin (TC), responsible for the uptake of Cbl in an organism. Pronounced increase in fluorescence upon CBC attachment facilitated detailed kinetic analysis of Cbl binding. We found that TC had the same affinity for CBC and Cbl (K(d) = 5 x 10(-15) m), whereas interaction of CBC with the highly specific protein IF was more complex. For instance, CBC behaved normally in the partial reactions CBC + IF(30) and CBC + IF(20) when binding to the isolated IF fragments (domains). The ligand could also assemble them into a stable complex IF(30)-CBC-IF(20) with higher fluorescent signal. However, dissociation of IF(30)-CBC-IF(20) and IF-CBC was accelerated by factors of 3 and 20, respectively, when compared to the corresponding Cbl complexes. We suggest that the correct domain-domain interactions are the most important factor during recognition and fixation of the ligands by IF. Dissociation of IF-CBC was biphasic, and existence of multiple protein-analogue complexes with normal and partially corrupted structure may explain this behaviour. The most stable component had K(d) = 1.5 x 10(-13) m, which guarantees the binding of CBC to IF under physiological conditions. The specific intestinal receptor cubilin bound both IF-CBC and IF-Cbl with equal affinity. In conclusion, the fluorescent analogue CBC can be used as a reporting agent in the kinetic studies, moreover, it seems to be applicable for imaging purposes in vivo.
Collapse
Affiliation(s)
- Sergey N Fedosov
- Protein Chemistry Laboratory, Department of Molecular Biology, University of Aarhus, Denmark.
| | | | | | | | | | | |
Collapse
|
31
|
Twyman RM, Schillberg S, Fischer R. Transgenic plants in the biopharmaceutical market. Expert Opin Emerg Drugs 2006; 10:185-218. [PMID: 15757412 DOI: 10.1517/14728214.10.1.185] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Many of our 'small-molecule-drugs' are natural products from plants, or are synthetic compounds based on molecules found naturally in plants. However, the vast majority of the protein therapeutics (or biopharmaceuticals) we use are from animal or human sources, and are produced commercially in microbial or mammalian bioreactor systems. Over the last few years, it has become clear that plants have great potential for the production of human proteins and other protein-based therapeutic entities. Plants offer the prospect of inexpensive biopharmaceutical production without sacrificing product quality or safety, and following the success of several plant-derived technical proteins, the first therapeutic products are now approaching the market. In this review, the different plant-based production systems are discussed and the merits of transgenic plants are evaluated compared with other platforms. A detailed discussion is provided of the development issues that remain to be addressed before plants become an acceptable mainstream production technology. The many different proteins that have already been produced using plants are described, and a sketch of the current market and the activities of the key players is provided. Despite the currently unclear regulatory framework and general industry inertia, the benefits of plant-derived pharmaceuticals are now bringing the prospect of inexpensive veterinary and human medicines closer than ever before.
Collapse
Affiliation(s)
- Richard M Twyman
- University of York, Department of Biology, Heslington, York, YO10 5DD, UK.
| | | | | |
Collapse
|
32
|
Bor MV, Cetin M, Aytaç S, Altay C, Nexo E. Nonradioactive Vitamin B12 Absorption Test Evaluated in Controls and in Patients with Inherited Malabsorption of Vitamin B12. Clin Chem 2005; 51:2151-5. [PMID: 16166166 DOI: 10.1373/clinchem.2005.055509] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
AbstractBackground: Current tests for evaluation of vitamin B12 absorption are problematic because they involve the use of radioactively labeled vitamin B12. We describe a vitamin B12 absorption test that circumvents this problem.Methods: We measured cobalamin or transcobalamin saturated with cobalamin (holo-TC) 24 h after three 9-μg doses of vitamin B12 given orally at 6-h intervals. We studied 17 patients with inherited malabsorption of vitamin B12 attributable to Imerslund–Grasbeck syndrome (n = 13) or intrinsic factor deficiency (n = 4), their obligate heterozygous biological parents (n = 19), and healthy controls (n = 44).Results: In the patients, the median (range) change of holo-TC after the B12 load was not significant [1 (−42 to 5) pmol/L], nor was the change of cobalamin [−3 (−32 to 22) pmol/L], consistent with a lack of measurable active or passive absorption. In controls, however, the median (range) increases of holo-TC and cobalamin were 26 (−6 to 63) pmol/L and 41 (−37 to 109) pmol/L, respectively. Similarly, the parents showed increases of 23 (−2 to 47) pmol/L and 27 (−15 to 94) pmol/L. The mean areas under the ROC curves (95% confidence intervals) were 0.97 (0.93–1.0) for holo-TC and 0.87 (0.79–0.94) for cobalamin, distinguishing patients from controls. At a cutoff of 6 pmol/L for holo-TC, the diagnostic sensitivity (95% confidence interval) was 100 (81–100)%, and the diagnostic specificity was 92 (82–97)%.Conclusion: Measurement of holo-TC after administration of vitamin B12 is a promising approach for evaluating vitamin B12 absorption.
Collapse
Affiliation(s)
- Mustafa Vakur Bor
- Department of Clinical Biochemistry, NBG, AS, Aalborg Hospital, Aarhus University Hospital, Denmark.
| | | | | | | | | |
Collapse
|
33
|
Fedosov SN, Orning L, Løvli T, Quadros EV, Thompson K, Berglund L, Petersen TE. Mapping the functional domains of human transcobalamin using monoclonal antibodies. FEBS J 2005; 272:3887-98. [PMID: 16045759 DOI: 10.1111/j.1742-4658.2005.04805.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Recombinant human transcobalamin (TC) was probed with 17 monoclonal antibodies (mAbs), using surface plasmon resonance measurements. These experiments identified five distinct epitope clusters on the surface of holo-TC. Western blot analysis of the CNBr cleavage fragments of TC allowed us to distribute the epitopes between two regions, which spanned either the second quarter of the TC sequence GQLA...TAAM(103-198) or the C-terminal peptide LEPA...LVSW(316-427). Proteolytic fragments of TC and the synthetic peptides were used to further specify the epitope map and define the functional domains of TC. Only one antibody showed some interference with cobalamin (Cbl) binding to TC, and the corresponding epitope was situated at the C-terminal stretch TQAS...QLLR(372-399). We explored the receptor-blocking effect of several mAbs and heparin to identify TC domains essential for the interaction between holo-TC and the receptor. The receptor-related epitopes were located within the TC sequence GQLA...HHSV(103-159). The putative heparin-binding site corresponded to a positively charged segment KRSN...RTVR(207-227), which also seemed to be necessary for receptor binding. We conclude that conformational changes in TC upon Cbl binding are accompanied by the convergence of multiple domains, and only the assembled conformation of the protein (i.e. holo-TC) has high affinity for the receptor.
Collapse
Affiliation(s)
- Sergey N Fedosov
- Protein Chemistry Laboratory, Department of Molecular Biology, University of Aarhus,Denmark.
| | | | | | | | | | | | | |
Collapse
|
34
|
Fedosov SN, Fedosova NU, Berglund L, Moestrup SK, Nexø E, Petersen TE. Composite organization of the cobalamin binding and cubilin recognition sites of intrinsic factor. Biochemistry 2005; 44:3604-14. [PMID: 15736970 DOI: 10.1021/bi047936v] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Intrinsic factor (IF(50)) is a cobalamin (Cbl)-transporting protein of 50 kDa, which can be cleaved into two fragments: the 30 kDa N-terminal peptide IF(30) and the 20 kDa C-terminal glycopeptide IF(20). Experiments on binding of Cbl to IF(30), IF(20), and IF(50) revealed comparable association rate constants (k(+)(Cbl) = 4 x 10(6), 14 x 10(6), and 26 x 10(6) M(-1) s(-1), respectively), but the equilibrium dissociation constants were essentially different (K(Cbl) = 200 microM, 0.2 microM, and <or=1 pM, respectively). The smaller fragment, IF(20), had unexpectedly high affinity for Cbl; however, efficient retention of the ligand required the presence of both fragments. Detailed schemes of the interaction of Cbl with IF(50) and with IF(30) and IF(20) are presented, where the sequential attachment of Cbl to the IF(20) and IF(30) domains plays the key role in recognition and retention of the ligand. Each isolated fragment of IF was tested for the binding to the specific receptor cubilin in the presence or absence of Cbl. Neither apo nor holo forms of IF(20) and IF(30) were recognized by the receptor. When two fragments were mixed and incubated with Cbl, they associated into a stable complex, IF(30+20).Cbl, which bound to cubilin as well as the noncleaved IF(50).Cbl complex. We suggest that formation of the cubilin recognition site on IF is caused by assembly of two distant domains, which allows the saturated protein to be recognized by the receptor. The obtained parameters for ligand and receptor binding indicate that both full-length IF(50) and the fragments may be involved in Cbl assimilation.
Collapse
Affiliation(s)
- Sergey N Fedosov
- Protein Chemistry Laboratory, Department of Molecular and Structural Biology, University of Aarhus, Science Park, Gustav Wieds Vej 10, 8000 Aarhus C, Denmark.
| | | | | | | | | | | |
Collapse
|
35
|
Abstract
In the year 2003 there was a 17% increase in the number of publications citing work performed using optical biosensor technology compared with the previous year. We collated the 962 total papers for 2003, identified the geographical regions where the work was performed, highlighted the instrument types on which it was carried out, and segregated the papers by biological system. In this overview, we spotlight 13 papers that should be on everyone's 'must read' list for 2003 and provide examples of how to identify and interpret high-quality biosensor data. Although we still find that the literature is replete with poorly performed experiments, over-interpreted results and a general lack of understanding of data analysis, we are optimistic that these shortcomings will be addressed as biosensor technology continues to mature.
Collapse
Affiliation(s)
- Rebecca L Rich
- Center for Biomolecular Interaction Analysis, University of Utah, Salt Lake City, UT 84132, USA
| | | |
Collapse
|
36
|
Fedosov SN, Fedosova NU, Berglund L, Moestrup SK, Nexø E, Petersen TE. Assembly of the Intrinsic Factor Domains and Oligomerization of the Protein in the Presence of Cobalamin. Biochemistry 2004; 43:15095-102. [PMID: 15554717 DOI: 10.1021/bi048924c] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Human intrinsic factor (IF) was purified from the recombinant plant Arabidopsis thaliana by affinity chromatography. Cobalamin (Cbl) saturated protein was separated by gel filtration into peaks I and II, which contained according to SDS electrophoresis the 50 kDa full-length protein IF(50) and a mixture of two fragments, respectively. Two components of peak II were identified as the 30 kDa N-terminal peptide IF(30) and the 20 kDa C-terminal glycopeptide IF(20). Measurements of M(w) under the nondenaturing conditions were conducted by static light scattering. They revealed 100 kDa IF dimers in peak I, whereas 50 kDa cleaved monomers were found in peak II. The protein devoid of Cbl dissociated to the elementary units incapable of association in the absence of Cbl. The individual proteolytic fragments bound Cbl at high concentration of the ligand; however, neither IF(30).Cbl nor IF(20).Cbl oligomerized. A mixture of two fragments IF(30) + IF(20) and Cbl produced a firm complex, IF(30+20).Cbl, which could not associate to dimers. In contrast to IF(30+20).Cbl, the saturated full-length monomers IF(50).Cbl dimerized with K(d) approximately 1 microM. We suggest a two-domain organization of the full-length protein, where two distant units, IF(30) and IF(20), can be assembled only by Cbl. They are connected by a protease-sensitive link, whose native structure is likely to be important for dimerization. However, linkage between two domains is not compulsory for Cbl binding. Advantages of the two-domain structure of IF are discussed.
Collapse
Affiliation(s)
- Sergey N Fedosov
- Protein Chemistry Laboratory, Department of Molecular and Structural Biology, University of Aarhus, Denmark.
| | | | | | | | | | | |
Collapse
|
37
|
Bor MV, Fedosov SN, Laursen NB, Nexø E. Recombinant Human Intrinsic Factor Expressed in Plants Is Suitable for Use in Measurement of Vitamin B12. Clin Chem 2003; 49:2081-3. [PMID: 14633882 DOI: 10.1373/clinchem.2003.025916] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Mustafa Vakur Bor
- Department of Clinical Biochemistry, AKH, Aarhus University Hospital, Aarhus C, Denmark.
| | | | | | | |
Collapse
|