1
|
Sun H, Nie Y, Yu L, Yue X, Hou X, Zhao J. P-Type Pentatricopeptide Repeat Proteins YS1 and YS2 Function in Splicing of petB Intron to Maintain Chloroplast Homeostasis During Rice Seedling Development. Int J Mol Sci 2025; 26:4459. [PMID: 40362697 PMCID: PMC12072890 DOI: 10.3390/ijms26094459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2025] [Revised: 04/30/2025] [Accepted: 05/01/2025] [Indexed: 05/15/2025] Open
Abstract
Regulating chloroplast gene expression is crucial for maintaining chloroplast function and plant development. Pentatricopeptide repeat (PPR) proteins form a vast protein family that regulates organelle genes and has multiple functions during plant development. Here, we found that two P-type PPR proteins, YS1 (yellow-green seedling 1) and YS2, jointly regulated seedling development in rice. The loss of YS1 and YS2 exhibited the collapsed chloroplast thylakoids and decreased photosynthetic activity, leading to the yellowing and death of rice seedlings. YS1 and YS2 could directly bind to the transcript of the psbH-petB intergenic region to facilitate the splicing of petB intron, thereby affecting the splicing efficiency of petD, which is located downstream of petB in the five-cistronic transcription unit psbB-psbT-psbH-petB-petD. The mutations in YS1 and YS2 led to decreased mature transcripts of petB and petD after splicing, significantly reducing the protein levels of PetB and PetD. This further led to deficiencies in the cytochrome b6/f and photosystem I complexes of the electron transport chain (ETC), ultimately resulting in decreased ETC-produced NADPH and reduced contents of carbohydrates in ys mutants. Moreover, transcriptome sequencing analysis revealed that YS1 and YS2 were vital for chloroplast organization and carbohydrate metabolism, as well as chloroplast RNA processing. In previous studies, the mechanism of petB intron splicing in the five-cistronic transcription unit psbB-psbT-psbH-petB-petD of rice is unclear. Our study revealed that the two highly conserved proteins YS1 and YS2 were functionally redundant and played critical roles in photosynthesis and seedling development through their involvement in petB intron splicing to maintain chloroplast homeostasis in rice. This work broadened the perspective on PPR-mediated chloroplast development and laid a foundation for exploring the biofunctions of duplicated genes in higher plants.
Collapse
Affiliation(s)
| | | | | | | | | | - Jie Zhao
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China; (H.S.); (Y.N.); (L.Y.); (X.Y.); (X.H.)
| |
Collapse
|
2
|
Hu L, Wu Q, Wu C, Zhang C, Wu Z, Shi M, Zhang M, Duan S, Wang HB, Jin HL. Light signaling-dependent regulation of plastid RNA processing in Arabidopsis. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2025; 67:375-390. [PMID: 39352303 DOI: 10.1111/jipb.13779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 09/02/2024] [Indexed: 02/13/2025]
Abstract
Light is a vital environmental signal that regulates the expression of plastid genes. Plastids are crucial organelles that respond to light, but the effects of light on plastid RNA processing following transcription remain unclear. In this study, we systematically examined the influence of light exposure on plastid RNA processing, focusing on RNA splicing and RNA editing. We demonstrated that light promotes the splicing of transcripts from the plastid genes rps12, ndhA, atpF, petB, and rpl2. Additionally, light increased the editing rate of the accD transcript at nucleotide 794 (accD-794) and the ndhF transcript at nucleotide 290 (ndhF-290), while decreasing the editing rate of the clpP transcript at nucleotide 559 (clpP-559). We have identified key regulators of signaling pathways, such as CONSTITUTIVELY PHOTOMORPHOGENIC 1 (COP1), ELONGATED HYPOCOTYL 5 (HY5), and PHYTOCHROME-INTERACTING FACTORs (PIFs), as important players in the regulation of plastid RNA splicing and editing. Notably, COP1 was required for GENOMES UNCOUPLED1 (GUN1)-dependent repression of clpP-559 editing in the light. We showed that HY5 and PIF1 bind to the promoters of nuclear genes encoding plastid-localized RNA processing factors in a light-dependent manner. This study provides insight into the mechanisms underlying light-mediated post-transcriptional regulation of plastid gene expression.
Collapse
Affiliation(s)
- Lili Hu
- Institute of Medical Plant Physiology and Ecology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
- School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Qian Wu
- Institute of Medical Plant Physiology and Ecology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Chunyu Wu
- Institute of Medical Plant Physiology and Ecology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Chunmei Zhang
- School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Ziying Wu
- Institute of Medical Plant Physiology and Ecology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Meihui Shi
- Institute of Medical Plant Physiology and Ecology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Man Zhang
- Institute of Medical Plant Physiology and Ecology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Sujuan Duan
- Institute of Medical Plant Physiology and Ecology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Hong-Bin Wang
- Institute of Medical Plant Physiology and Ecology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
- Key Laboratory of Chinese Medicinal Resource from Lingnan, Guangzhou University of Chinese Medicine, Ministry of Education, Guangzhou, 510006, China
| | - Hong-Lei Jin
- Institute of Medical Plant Physiology and Ecology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
- Guangzhou Key Laboratory of Chinese Medicine Research on Prevention and Treatment of Osteoporosis, The Third Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510375, China
- State Key Laboratory of Traditional Chinese Medicine Syndrome, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| |
Collapse
|
3
|
Zhang Y, Tian L, Lu C. Chloroplast gene expression: Recent advances and perspectives. PLANT COMMUNICATIONS 2023; 4:100611. [PMID: 37147800 PMCID: PMC10504595 DOI: 10.1016/j.xplc.2023.100611] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 04/11/2023] [Accepted: 05/01/2023] [Indexed: 05/07/2023]
Abstract
Chloroplasts evolved from an ancient cyanobacterial endosymbiont more than 1.5 billion years ago. During subsequent coevolution with the nuclear genome, the chloroplast genome has remained independent, albeit strongly reduced, with its own transcriptional machinery and distinct features, such as chloroplast-specific innovations in gene expression and complicated post-transcriptional processing. Light activates the expression of chloroplast genes via mechanisms that optimize photosynthesis, minimize photodamage, and prioritize energy investments. Over the past few years, studies have moved from describing phases of chloroplast gene expression to exploring the underlying mechanisms. In this review, we focus on recent advances and emerging principles that govern chloroplast gene expression in land plants. We discuss engineering of pentatricopeptide repeat proteins and its biotechnological effects on chloroplast RNA research; new techniques for characterizing the molecular mechanisms of chloroplast gene expression; and important aspects of chloroplast gene expression for improving crop yield and stress tolerance. We also discuss biological and mechanistic questions that remain to be answered in the future.
Collapse
Affiliation(s)
- Yi Zhang
- National Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Lin Tian
- National Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Congming Lu
- National Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, China.
| |
Collapse
|
4
|
Zeng C, Jiao Q, Jia T, Hu X. Updated Progress on Group II Intron Splicing Factors in Plant Chloroplasts. Curr Issues Mol Biol 2022; 44:4229-4239. [PMID: 36135202 PMCID: PMC9497791 DOI: 10.3390/cimb44090290] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/05/2022] [Accepted: 09/08/2022] [Indexed: 11/16/2022] Open
Abstract
Group II introns are large catalytic RNAs (ribozymes) in the bacteria and organelle genomes of several lower eukaryotes. Many critical photosynthesis-related genes in the plant chloroplast genome also contain group II introns, and their splicing is critical for chloroplast biogenesis and photosynthesis processes. The structure of chloroplast group II introns was altered during evolution, resulting in the loss of intron self-splicing. Therefore, the assistance of protein factors was required for their splicing processes. As an increasing number of studies focus on the mechanism of chloroplast intron splicing; many new nuclear-encoded splicing factors that are involved in the chloroplast intron splicing process have been reported. This report reviewed the research progress of the updated splicing factors found to be involved in the splicing of chloroplast group II introns. We discuss the main problems that remain in this research field and suggest future research directions.
Collapse
Affiliation(s)
- Chu Zeng
- Jiangsu Provincial Key Laboratory of Crop Genetics and Physiology/Jiangsu Provincial Key Laboratory of Crop Genomics and Molecular Breeding/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou 225009, China
- Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province/Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Qingsong Jiao
- Jiangsu Provincial Key Laboratory of Crop Genetics and Physiology/Jiangsu Provincial Key Laboratory of Crop Genomics and Molecular Breeding/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou 225009, China
- Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province/Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Ting Jia
- Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province/Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Xueyun Hu
- Jiangsu Provincial Key Laboratory of Crop Genetics and Physiology/Jiangsu Provincial Key Laboratory of Crop Genomics and Molecular Breeding/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou 225009, China
- Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province/Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
- Correspondence:
| |
Collapse
|
5
|
Wang X, Wang J, Li S, Lu C, Sui N. An overview of RNA splicing and functioning of splicing factors in land plant chloroplasts. RNA Biol 2022; 19:897-907. [PMID: 35811474 PMCID: PMC9275481 DOI: 10.1080/15476286.2022.2096801] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
RNA splicing refers to a process by which introns of a pre-mRNA are excised and the exons at both ends are joined together. Chloroplast introns are inherently self-splicing ribozymes, but over time, they have lost self-splicing ability due to the degeneration of intronic elements. Thus, the splicing of chloroplast introns relies heavily on nuclear-encoded splicing factors, which belong to diverse protein families. Different splicing factors and their shared intron targets are supposed to form ribonucleoprotein particles (RNPs) to facilitate intron splicing. As characterized in a previous review, around 14 chloroplast intron splicing factors were identified until 2010. However, only a few genetic and biochemical evidence has shown that these splicing factors are required for the splicing of one or several introns. The roles of splicing factors are generally believed to facilitate intron folding; however, the precise role of each protein in RNA splicing remains ambiguous. This may be because the precise binding site of most of these splicing factors remains unexplored. In the last decade, several new splicing factors have been identified. Also, several splicing factors were found to bind to specific sequences within introns, which enhanced the understanding of splicing factors. Here, we summarize recent progress on the splicing factors in land plant chloroplasts and discuss their possible roles in chloroplast RNA splicing based on previous studies.
Collapse
Affiliation(s)
- Xuemei Wang
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan, Western Shandong, China
| | - Jingyi Wang
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan, Western Shandong, China
| | - Simin Li
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan, Western Shandong, China
| | - Congming Lu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Western Shandong, China
| | - Na Sui
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan, Western Shandong, China
| |
Collapse
|
6
|
Wang M, Yang C, Wei K, Zhao M, Shen L, Ji J, Wang L, Zhang D, Guo J, Zheng Y, Yu J, Zhu M, Liu H, Li YF. Temporal expression study of miRNAs in the crown tissues of winter wheat grown under natural growth conditions. BMC Genomics 2021; 22:793. [PMID: 34736408 PMCID: PMC8567549 DOI: 10.1186/s12864-021-08048-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 09/30/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Winter wheat requires prolonged exposure to low temperature to initiate flowering (vernalization). Shoot apical meristem of the crown is the site of cold perception, which produces leaf primordia during vegetative growth before developing into floral primordia at the initiation of the reproductive phase. Although many essential genes for winter wheat cold acclimation and floral initiation have been revealed, the importance of microRNA (miRNA) meditated post-transcriptional regulation in crowns is not well understood. To understand the potential roles of miRNAs in crown tissues, we performed a temporal expression study of miRNAs in crown tissues at the three-leaf stage, winter dormancy stage, spring green-up stage, and jointing stage of winter wheat grown under natural growth conditions. RESULTS In total, 348 miRNAs belonging to 298 miRNA families, were identified in wheat crown tissues. Among them, 92 differentially expressed miRNAs (DEMs) were found to be significantly regulated from the three-leaf stage to the jointing stage. Most of these DEMs were highly expressed at the three-leaf stage and winter dormancy stage, and then declined in later stages. Six DEMs, including miR156a-5p were markedly induced during the winter dormancy stage. Eleven DEMs, including miR159a.1, miR390a-5p, miR393-5p, miR160a-5p, and miR1436, were highly expressed at the green-up stage. Twelve DEMs, such as miR172a-5p, miR394a, miR319b-3p, and miR9676-5p were highly induced at the jointing stage. Moreover, 14 novel target genes of nine wheat or Pooideae-specific miRNAs were verified using RLM-5' RACE assay. Notably, six mTERFs and two Rf1 genes, which are associated with mitochondrial gene expression, were confirmed as targets of three wheat-specific miRNAs. CONCLUSIONS The present study not only confirmed the known miRNAs associated with phase transition and floral development, but also identified a number of wheat or Pooideae-specific miRNAs critical for winter wheat cold acclimation and floral development. Most importantly, this study provided experimental evidence that miRNA could regulate mitochondrial gene expression by targeting mTERF and Rf1 genes. Our study provides valuable information for further exploration of the mechanism of miRNA mediated post-transcriptional regulation during winter wheat vernalization and inflorescent initiation.
Collapse
Affiliation(s)
- Menglei Wang
- College of Life Sciences, Henan Normal University, Xinxiang, 453007, Henan, China.,Henan International Joint Laboratory of Agricultural Microbial Ecology and Technology, Henan Normal University, Xinxiang, 453007, China.,Present address: National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Chenhui Yang
- College of Life Sciences, Henan Normal University, Xinxiang, 453007, Henan, China
| | - Kangning Wei
- College of Life Sciences, Henan Normal University, Xinxiang, 453007, Henan, China
| | - Miao Zhao
- College of Life Sciences, Henan Normal University, Xinxiang, 453007, Henan, China
| | - Liqiang Shen
- Jindal School of Management, University of Texas at Dallas, 800 W Campbell RD, Richardson, TX, 75080, USA
| | - Jie Ji
- College of Life Sciences, Henan Normal University, Xinxiang, 453007, Henan, China
| | - Li Wang
- College of Life Sciences, Henan Normal University, Xinxiang, 453007, Henan, China.,Henan International Joint Laboratory of Agricultural Microbial Ecology and Technology, Henan Normal University, Xinxiang, 453007, China
| | - Daijing Zhang
- College of Life Sciences, Henan Normal University, Xinxiang, 453007, Henan, China
| | - Junqiang Guo
- Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming, 650500, Yunnan, China
| | - Yun Zheng
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, 650500, Yunnan, China
| | - Juanjuan Yu
- College of Life Sciences, Henan Normal University, Xinxiang, 453007, Henan, China.,Henan International Joint Laboratory of Agricultural Microbial Ecology and Technology, Henan Normal University, Xinxiang, 453007, China
| | - Mo Zhu
- College of Life Sciences, Henan Normal University, Xinxiang, 453007, Henan, China.,Henan International Joint Laboratory of Agricultural Microbial Ecology and Technology, Henan Normal University, Xinxiang, 453007, China
| | - Haiying Liu
- College of Life Sciences, Henan Normal University, Xinxiang, 453007, Henan, China
| | - Yong-Fang Li
- College of Life Sciences, Henan Normal University, Xinxiang, 453007, Henan, China. .,Henan International Joint Laboratory of Agricultural Microbial Ecology and Technology, Henan Normal University, Xinxiang, 453007, China.
| |
Collapse
|
7
|
Identification and characterization of a silent mutation in RNA binding domain of N protein coding gene from SARS-CoV-2. BMC Res Notes 2021; 14:10. [PMID: 33407800 PMCID: PMC7787625 DOI: 10.1186/s13104-020-05439-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 12/29/2020] [Indexed: 12/15/2022] Open
Abstract
Objective This study describes the occurrence of a silent mutation in the RNA binding domain of nucleocapsid phosphoprotein (N protein) coding gene from SARS-CoV-2 that may consequence to a missense mutation by onset of another single nucleotide mutation. Results In the DNA sequence isolated from severe acute respiratory syndrome (SARS-CoV-2) in Iran, a coding sequence for the RNA binding domain of N protein was detected. The comparison of Chinese and Iranian DNA sequences displayed that a thymine (T) was mutated to cytosine (C), so “TTG” from China was changed to “CTG” in Iran. Both DNA sequences from Iran and China have been encoded for leucine. In addition, the second T in “CTG” in the DNA or uracil (U) in “CUG” in the RNA sequences from Iran can be mutated to another C by a missense mutation resulting from thymine DNA glycosylase (TDG) of human and base excision repair mechanism to produce “CCG” encoding for proline, which consequently may increase the affinity of the RNA binding domain of N protein to viral RNA and improve the transcription rate, pathogenicity, evasion from human immunity system, spreading in the human body, and risk of human-to-human transmission rate of SARS-CoV-2.
Collapse
|
8
|
Farooq MA, Zhang X, Zafar MM, Ma W, Zhao J. Roles of Reactive Oxygen Species and Mitochondria in Seed Germination. FRONTIERS IN PLANT SCIENCE 2021; 12:781734. [PMID: 34956279 PMCID: PMC8695494 DOI: 10.3389/fpls.2021.781734] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 11/18/2021] [Indexed: 05/14/2023]
Abstract
Seed germination is crucial for the life cycle of plants and maximum crop production. This critical developmental step is regulated by diverse endogenous [hormones, reactive oxygen species (ROS)] and exogenous (light, temperature) factors. Reactive oxygen species promote the release of seed dormancy by biomolecules oxidation, testa weakening and endosperm decay. Reactive oxygen species modulate metabolic and hormone signaling pathways that induce and maintain seed dormancy and germination. Endosperm provides nutrients and senses environmental signals to regulate the growth of the embryo by secreting timely signals. The growing energy demand of the developing embryo and endosperm is fulfilled by functional mitochondria. Mitochondrial matrix-localized heat shock protein GhHSP24.7 controls seed germination in a temperature-dependent manner. In this review, we summarize comprehensive view of biochemical and molecular mechanisms, which coordinately control seed germination. We also discuss that the accurate and optimized coordination of ROS, mitochondria, heat shock proteins is required to permit testa rupture and subsequent germination.
Collapse
Affiliation(s)
- Muhammad Awais Farooq
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, Baoding, China
- Department of Plant Breeding and Genetics, University of Agriculture, Faisalabad, Pakistan
| | - Xiaomeng Zhang
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, Baoding, China
| | | | - Wei Ma
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, Baoding, China
- *Correspondence: Wei Ma,
| | - Jianjun Zhao
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, Baoding, China
- Jianjun Zhao,
| |
Collapse
|
9
|
Castandet B, Germain A, Hotto AM, Stern DB. Systematic sequencing of chloroplast transcript termini from Arabidopsis thaliana reveals >200 transcription initiation sites and the extensive imprints of RNA-binding proteins and secondary structures. Nucleic Acids Res 2020; 47:11889-11905. [PMID: 31732725 PMCID: PMC7145512 DOI: 10.1093/nar/gkz1059] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 10/02/2019] [Accepted: 11/05/2019] [Indexed: 12/23/2022] Open
Abstract
Chloroplast transcription requires numerous quality control steps to generate the complex but selective mixture of accumulating RNAs. To gain insight into how this RNA diversity is achieved and regulated, we systematically mapped transcript ends by developing a protocol called Terminome-seq. Using Arabidopsis thaliana as a model, we catalogued >215 primary 5′ ends corresponding to transcription start sites (TSS), as well as 1628 processed 5′ ends and 1299 3′ ends. While most termini were found in intergenic regions, numerous abundant termini were also found within coding regions and introns, including several major TSS at unexpected locations. A consistent feature was the clustering of both 5′ and 3′ ends, contrasting with the prevailing description of discrete 5′ termini, suggesting an imprecision of the transcription and/or RNA processing machinery. Numerous termini correlated with the extremities of small RNA footprints or predicted stem-loop structures, in agreement with the model of passive RNA protection. Terminome-seq was also implemented for pnp1–1, a mutant lacking the processing enzyme polynucleotide phosphorylase. Nearly 2000 termini were altered in pnp1–1, revealing a dominant role in shaping the transcriptome. In summary, Terminome-seq permits precise delineation of the roles and regulation of the many factors involved in organellar transcriptome quality control.
Collapse
Affiliation(s)
- Benoît Castandet
- Boyce Thompson Institute, Ithaca, NY 14853, USA.,Institut des Sciences des Plantes de Paris Saclay (IPS2), UEVE, INRA, CNRS, Univ. Paris Sud, Université Paris-Saclay, F-91192 Gif sur Yvette, France.,Université de Paris, IPS2, F-91192 Gif sur Yvette, France
| | | | | | | |
Collapse
|
10
|
Wang HC, Chen Z, Yang YZ, Sun F, Ding S, Li XL, Xu C, Tan BC. PPR14 Interacts With PPR-SMR1 and CRM Protein Zm-mCSF1 to Facilitate Mitochondrial Intron Splicing in Maize. FRONTIERS IN PLANT SCIENCE 2020; 11:814. [PMID: 32595685 PMCID: PMC7304344 DOI: 10.3389/fpls.2020.00814] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 05/20/2020] [Indexed: 05/17/2023]
Abstract
In plants, splicing of organellar group II introns involves numerous nucleus-encoded trans-factors. But, how these trans-factors function and interact is not well understood. Here we report the function of a pentatricopeptide repeat (PPR) protein PPR14 and its physical relationship with other splicing factors in mitochondria. Null mutations of PPR14 severely arrest the embryo and endosperm development, causing an empty pericarp phenotype. PPR14 is required for the splicing of NADH dehydrogenase 2 (nad2) intron 3 and nad7 introns 1 and 2 in mitochondria. The absence of nad2 and nad7 transcripts leads to disruption of the mitochondrial complex I assembly and abolishes its NADH dehydrogenase activity. This is accompanied with increased levels of other mitochondrial complexes and elevated expression of the alternative oxidase proteins. As the function of PPR14 overlaps with PPR-SMR1 and the CRM-domain containing protein Zm-mCSF1, we tested their interactions. Protein-protein interaction analysis indicated that PPR14 interacts with PPR-SMR1 and Zm-mCSF1, suggesting that these three proteins may form a complex. As PPR proteins and CRM-domain containing proteins have many members in mitochondria and chloroplasts, we propose that organellar group II intron splicing is probably mediated by a dynamic complex that includes different PPR and CRM proteins in plants.
Collapse
|
11
|
Du H, Zhang H, Wei L, Li C, Duan Y, Wang H. A high-density genetic map constructed using specific length amplified fragment (SLAF) sequencing and QTL mapping of seed-related traits in sesame (Sesamum indicum L.). BMC PLANT BIOLOGY 2019; 19:588. [PMID: 31881840 PMCID: PMC6935206 DOI: 10.1186/s12870-019-2172-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 11/28/2019] [Indexed: 05/20/2023]
Abstract
BACKGROUND Sesame (Sesamum indicum L., 2n = 2x = 26) is an important oilseed crop with high oil content but small seed size. To reveal the genetic loci of the quantitative seed-related traits, we constructed a high-density single nucleotide polymorphism (SNP) linkage map of an F2 population by using specific length amplified fragment (SLAF) technique and determined the quantitative trait loci (QTLs) of seed-related traits for sesame based on the phenotypes of F3 progeny. RESULTS The genetic map comprised 2159 SNP markers distributed on 13 linkage groups (LGs) and was 2128.51 cM in length, with an average distance of 0.99 cM between adjacent markers. QTL mapping revealed 19 major-effect QTLs with the phenotypic effect (R2) more than 10%, i.e., eight QTLs for seed coat color, nine QTLs for seed size, and two QTLs for 1000-seed weight (TSW), using composite interval mapping method. Particularly, LG04 and LG11 contained collocated QTL regions for the seed coat color and seed size traits, respectively, based on their close or identical locations. In total, 155 candidate genes for seed coat color, 22 for seed size traits, and 54 for TSW were screened and analyzed. CONCLUSIONS This report presents the first QTL mapping of seed-related traits in sesame using an F2 population. The results reveal the location of specific markers associated with seed-related traits in sesame and provide the basis for further seed quality traits research.
Collapse
Affiliation(s)
- Hua Du
- Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou, Henan 450002 People’s Republic of China
| | - Haiyang Zhang
- Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou, Henan 450002 People’s Republic of China
| | - Libin Wei
- Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou, Henan 450002 People’s Republic of China
| | - Chun Li
- Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou, Henan 450002 People’s Republic of China
| | - Yinghui Duan
- Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou, Henan 450002 People’s Republic of China
| | - Huili Wang
- Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou, Henan 450002 People’s Republic of China
| |
Collapse
|
12
|
Lee K, Park SJ, Han JH, Jeon Y, Pai HS, Kang H. A chloroplast-targeted pentatricopeptide repeat protein PPR287 is crucial for chloroplast function and Arabidopsis development. BMC PLANT BIOLOGY 2019; 19:244. [PMID: 31174473 PMCID: PMC6555926 DOI: 10.1186/s12870-019-1857-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 05/30/2019] [Indexed: 05/05/2023]
Abstract
BACKGROUND Even though the roles of pentatricopeptide repeat (PPR) proteins are essential in plant organelles, the function of many chloroplast-targeted PPR proteins remains unknown. Here, we characterized the function of a chloroplast-localized PPR protein (At3g59040), which is classified as the 287th PPR protein among the 450 PPR proteins in Arabidopsis ( http://ppr.plantenergy.uwa.edu.au ). RESULTS The homozygous ppr287 mutant with the T-DNA inserted into the last exon displayed pale-green and yellowish phenotypes. The microRNA-mediated knockdown mutants were generated to further confirm the developmental defect phenotypes of ppr287 mutants. All mutants had yellowish leaves, shorter roots and height, and less seed yield, indicating that PPR287 is crucial for normal Arabidopsis growth and development. The photosynthetic activity and chlorophyll content of ppr287 mutants were markedly reduced, and the chloroplast structures of the mutants were abnormal. The levels of chloroplast rRNAs were decreased in ppr287 mutants. CONCLUSIONS These results suggest that PPR287 plays an essential role in chloroplast biogenesis and function, which is crucial for the normal growth and development of Arabidopsis.
Collapse
Affiliation(s)
- Kwanuk Lee
- Department of Applied Biology, College of Agriculture and Life Sciences, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju, 61186 South Korea
| | - Su Jung Park
- Department of Applied Biology, College of Agriculture and Life Sciences, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju, 61186 South Korea
| | - Ji Hoon Han
- Department of Applied Biology, College of Agriculture and Life Sciences, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju, 61186 South Korea
| | - Young Jeon
- Department of Systems Biology, Yonsei University, Seoul, 03722 South Korea
| | - Hyun-Sook Pai
- Department of Systems Biology, Yonsei University, Seoul, 03722 South Korea
| | - Hunseung Kang
- Department of Applied Biology, College of Agriculture and Life Sciences, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju, 61186 South Korea
| |
Collapse
|
13
|
Zhao N, Wang Y, Hua J. Genomewide identification of PPR gene family and prediction analysis on restorer gene in Gossypium. J Genet 2018. [DOI: 10.1007/s12041-018-0993-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
14
|
RNA-stabilization factors in chloroplasts of vascular plants. Essays Biochem 2018; 62:51-64. [PMID: 29453323 PMCID: PMC5897788 DOI: 10.1042/ebc20170061] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 01/02/2018] [Accepted: 01/12/2018] [Indexed: 12/23/2022]
Abstract
In contrast to the cyanobacterial ancestor, chloroplast gene expression is predominantly governed on the post-transcriptional level such as modifications of the RNA sequence, decay rates, exo- and endonucleolytic processing as well as translational events. The concerted function of numerous chloroplast RNA-binding proteins plays a fundamental and often essential role in all these processes but our understanding of their impact in regulation of RNA degradation is only at the beginning. Moreover, metabolic processes and post-translational modifications are thought to affect the function of RNA protectors. These protectors contain a variety of different RNA-recognition motifs, which often appear as multiple repeats. They are required for normal plant growth and development as well as diverse stress responses and acclimation processes. Interestingly, most of the protectors are plant specific which reflects a fast-evolving RNA metabolism in chloroplasts congruent with the diverging RNA targets. Here, we mainly focused on the characteristics of known chloroplast RNA-binding proteins that protect exonuclease-sensitive sites in chloroplasts of vascular plants.
Collapse
|
15
|
Bai JF, Wang YK, Wang P, Duan WJ, Yuan SH, Sun H, Yuan GL, Ma JX, Wang N, Zhang FT, Zhang LP, Zhao CP. Uncovering Male Fertility Transition Responsive miRNA in a Wheat Photo-Thermosensitive Genic Male Sterile Line by Deep Sequencing and Degradome Analysis. FRONTIERS IN PLANT SCIENCE 2017; 8:1370. [PMID: 28848574 PMCID: PMC5550412 DOI: 10.3389/fpls.2017.01370] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 07/24/2017] [Indexed: 05/30/2023]
Abstract
MicroRNAs (miRNAs) are endogenous small RNAs which play important negative regulatory roles at both the transcriptional and post-transcriptional levels in plants. Wheat is the most commonly cultivated plant species worldwide. In this study, RNA-seq analysis was used to examine the expression profiles of miRNA in the spikelets of photo-thermosenisitive genic male sterile (PTGMS) wheat line BS366 during male fertility transition. Through mapping on their corresponding precursors, 917-7,762 novel miRNAs were found in six libraries. Six novel miRNAs were selected for examination of their secondary structures and confirmation by stem-loop RT-PCR. In a differential expression analysis, 20, 22, and 58 known miRNAs exhibited significant differential expression between developmental stages 1 (secondary sporogenous cells had formed), 2 (all cells layers were present and mitosis had ceased), and 3 (meiotic division stage), respectively, of fertile and sterile plants. Some of these differential expressed miRNAs, such as tae-miR156, tae-miR164, tae-miR171, and tae-miR172, were shown to be associated with their targets. These targets were previously reported to be related to pollen development and/or male sterility, indicating that these miRNAs and their targets may be involved in the regulation of male fertility transition in the PTGMS wheat line BS366. Furthermore, target genes of miRNA cleavage sites were validated by degradome sequencing. In this study, a possible signal model for the miRNA-mediated signaling pathway during the process of male fertility transition in the PTGMS wheat line BS366 was developed. This study provides a new perspective for understanding the roles of miRNAs in male fertility in PTGMS lines of wheat.
Collapse
Affiliation(s)
- Jian-Fang Bai
- Beijing Engineering and Technique Research Center for Hybrid Wheat, Beijing Academy of Agriculture and Forestry SciencesBeijing, China
- The Municipal Key Laboratory of Molecular Genetic of Hybrid Wheat, Beijing Academy of Agriculture and Forestry SciencesBeijing, China
| | - Yu-Kun Wang
- Beijing Engineering and Technique Research Center for Hybrid Wheat, Beijing Academy of Agriculture and Forestry SciencesBeijing, China
- The Municipal Key Laboratory of Molecular Genetic of Hybrid Wheat, Beijing Academy of Agriculture and Forestry SciencesBeijing, China
| | - Peng Wang
- Beijing Engineering and Technique Research Center for Hybrid Wheat, Beijing Academy of Agriculture and Forestry SciencesBeijing, China
- The Municipal Key Laboratory of Molecular Genetic of Hybrid Wheat, Beijing Academy of Agriculture and Forestry SciencesBeijing, China
- College of Plant Science and Technology, Beijing University of AgricultureBeijing, China
| | - Wen-Jing Duan
- Beijing Engineering and Technique Research Center for Hybrid Wheat, Beijing Academy of Agriculture and Forestry SciencesBeijing, China
- The Municipal Key Laboratory of Molecular Genetic of Hybrid Wheat, Beijing Academy of Agriculture and Forestry SciencesBeijing, China
- College of Life Science, Capital Normal UniversityBeijing, China
| | - Shao-Hua Yuan
- Beijing Engineering and Technique Research Center for Hybrid Wheat, Beijing Academy of Agriculture and Forestry SciencesBeijing, China
- The Municipal Key Laboratory of Molecular Genetic of Hybrid Wheat, Beijing Academy of Agriculture and Forestry SciencesBeijing, China
| | - Hui Sun
- Beijing Engineering and Technique Research Center for Hybrid Wheat, Beijing Academy of Agriculture and Forestry SciencesBeijing, China
- The Municipal Key Laboratory of Molecular Genetic of Hybrid Wheat, Beijing Academy of Agriculture and Forestry SciencesBeijing, China
| | - Guo-Liang Yuan
- Beijing Engineering and Technique Research Center for Hybrid Wheat, Beijing Academy of Agriculture and Forestry SciencesBeijing, China
- The Municipal Key Laboratory of Molecular Genetic of Hybrid Wheat, Beijing Academy of Agriculture and Forestry SciencesBeijing, China
| | - Jing-Xiu Ma
- Beijing Engineering and Technique Research Center for Hybrid Wheat, Beijing Academy of Agriculture and Forestry SciencesBeijing, China
- The Municipal Key Laboratory of Molecular Genetic of Hybrid Wheat, Beijing Academy of Agriculture and Forestry SciencesBeijing, China
| | - Na Wang
- Beijing Engineering and Technique Research Center for Hybrid Wheat, Beijing Academy of Agriculture and Forestry SciencesBeijing, China
- The Municipal Key Laboratory of Molecular Genetic of Hybrid Wheat, Beijing Academy of Agriculture and Forestry SciencesBeijing, China
| | - Feng-Ting Zhang
- Beijing Engineering and Technique Research Center for Hybrid Wheat, Beijing Academy of Agriculture and Forestry SciencesBeijing, China
- The Municipal Key Laboratory of Molecular Genetic of Hybrid Wheat, Beijing Academy of Agriculture and Forestry SciencesBeijing, China
| | - Li-Ping Zhang
- Beijing Engineering and Technique Research Center for Hybrid Wheat, Beijing Academy of Agriculture and Forestry SciencesBeijing, China
- The Municipal Key Laboratory of Molecular Genetic of Hybrid Wheat, Beijing Academy of Agriculture and Forestry SciencesBeijing, China
| | - Chang-Ping Zhao
- Beijing Engineering and Technique Research Center for Hybrid Wheat, Beijing Academy of Agriculture and Forestry SciencesBeijing, China
- The Municipal Key Laboratory of Molecular Genetic of Hybrid Wheat, Beijing Academy of Agriculture and Forestry SciencesBeijing, China
| |
Collapse
|
16
|
Reeves G, Grangé-Guermente MJ, Hibberd JM. Regulatory gateways for cell-specific gene expression in C4 leaves with Kranz anatomy. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:107-116. [PMID: 27940469 DOI: 10.1093/jxb/erw438] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
C4 photosynthesis is a carbon-concentrating mechanism that increases delivery of carbon dioxide to RuBisCO and as a consequence reduces photorespiration. The C4 pathway is therefore beneficial in environments that promote high photorespiration. This pathway has evolved many times, and involves restricting gene expression to either mesophyll or bundle sheath cells. Here we review the regulatory mechanisms that control cell-preferential expression of genes in the C4 cycle. From this analysis, it is clear that the C4 pathway has a complex regulatory framework, with control operating at epigenetic, transcriptional, post-transcriptional, translational, and post-translational levels. Some genes of the C4 pathway are regulated at multiple levels, and we propose that this ensures robust expression in each cell type. Accumulating evidence suggests that multiple genes of the C4 pathway may share the same regulatory mechanism. The control systems for C4 photosynthesis gene expression appear to operate in C3 plants, and so it appears that pre-existing mechanisms form the basis of C4 photosynthesis gene expression.
Collapse
Affiliation(s)
- Gregory Reeves
- Department of Plant Sciences, Downing Street, University of Cambridge, Cambridge CB2 3EA, UK
| | | | - Julian M Hibberd
- Department of Plant Sciences, Downing Street, University of Cambridge, Cambridge CB2 3EA, UK
| |
Collapse
|
17
|
Wang Y, Ren Y, Zhou K, Liu L, Wang J, Xu Y, Zhang H, Zhang L, Feng Z, Wang L, Ma W, Wang Y, Guo X, Zhang X, Lei C, Cheng Z, Wan J. WHITE STRIPE LEAF4 Encodes a Novel P-Type PPR Protein Required for Chloroplast Biogenesis during Early Leaf Development. FRONTIERS IN PLANT SCIENCE 2017; 8:1116. [PMID: 28694820 PMCID: PMC5483476 DOI: 10.3389/fpls.2017.01116] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 06/09/2017] [Indexed: 05/18/2023]
Abstract
Pentatricopeptide repeat (PPR) proteins comprise a large family in higher plants and perform diverse functions in organellar RNA metabolism. Despite the rice genome encodes 477 PRR proteins, the regulatory effects of PRR proteins on chloroplast development remains unknown. In this study, we report the functional characterization of the rice white stripe leaf4 (wsl4) mutant. The wsl4 mutant develops white-striped leaves during early leaf development, characterized by decreased chlorophyll content and malformed chloroplasts. Positional cloning of the WSL4 gene, together with complementation and RNA-interference tests, reveal that it encodes a novel P-family PPR protein with 12 PPR motifs, and is localized to chloroplast nucleoids. Quantitative RT-PCR analyses demonstrate that WSL4 is a low temperature response gene abundantly expressed in young leaves. Further expression analyses show that many nuclear- and plastid-encoded genes in the wsl4 mutant are significantly affected at the RNA and protein levels. Notably, the wsl4 mutant causes defects in the splicing of atpF, ndhA, rpl2, and rps12. Our findings identify WSL4 as a novel P-family PPR protein essential for chloroplast RNA group II intron splicing during early leaf development in rice.
Collapse
Affiliation(s)
- Ying Wang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural SciencesBeijing, China
| | - Yulong Ren
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural SciencesBeijing, China
| | - Kunneng Zhou
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural SciencesBeijing, China
| | - Linglong Liu
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural UniversityNanjing, China
| | - Jiulin Wang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural SciencesBeijing, China
| | - Yang Xu
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural UniversityNanjing, China
| | - Huan Zhang
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural UniversityNanjing, China
| | - Long Zhang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural SciencesBeijing, China
| | - Zhiming Feng
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural SciencesBeijing, China
| | - Liwei Wang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural SciencesBeijing, China
| | - Weiwei Ma
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural SciencesBeijing, China
| | - Yunlong Wang
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural UniversityNanjing, China
| | - Xiuping Guo
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural SciencesBeijing, China
| | - Xin Zhang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural SciencesBeijing, China
| | - Cailin Lei
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural SciencesBeijing, China
| | - Zhijun Cheng
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural SciencesBeijing, China
| | - Jianmin Wan
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural SciencesBeijing, China
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural UniversityNanjing, China
- *Correspondence: Jianmin Wan, ;,
| |
Collapse
|
18
|
Liu JM, Xu ZS, Lu PP, Li WW, Chen M, Guo CH, Ma YZ. Genome-wide investigation and expression analyses of the pentatricopeptide repeat protein gene family in foxtail millet. BMC Genomics 2016; 17:840. [PMID: 27793078 PMCID: PMC5084403 DOI: 10.1186/s12864-016-3184-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2016] [Accepted: 10/22/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Pentatricopeptide repeat (PPR) proteins are encoded by a large gene family of approximately 450 members in Arabidopsis and 477 in rice, which characterized by tandem repetitions of a degenerate 35 amino acid characteristic sequence motifs. A large majority of the PPR genes in the higher plants are localized in organelles. Their functions remain as yet largely unknown. The majority of characterized PPR proteins have been found to function in modulating the expression plastid and mitochondrial genes in plants. RESULTS Here, a genome-wide identification and comparison of the PPR genes from 5 organisms was performed, including the moss Physcomitrella patens, the lycophyte Selaginella moellendorffii, the eudicot Arabidopsis, and the monocots rice and foxtail millet. It appears that the expansion of this gene family prior to the divergence of the euphyllophytes and the lycophytes in land plants. The duplication and divergence rates of the foxtail millet PPR genes (SiPPRs) showed that the expansion period of this gene family around 400 Mya, and indicated that genome segmental duplication was very likely the primary mechanism underlying the expansion of the PPR gene family in vascular plants. An analysis of a complete set of SiPPR genes/proteins that included classification, chromosomal location, orthologous relationships, duplication analysis, and auxiliary motifs is presented. Expression analysis of the SiPPR genes under stress conditions revealed that the expression of 24 SiPPR genes was responsive to abiotic stress. Subcellular localization analysis of 11 PPR proteins indicated that 5 proteins were localized to chloroplasts, that 4 were localized to mitochondria, and that 2 were localized to the cytoplasm. CONCLUSIONS Our results contribute to a more comprehensive understanding the roles of PPR proteins and will be useful in the prioritization of particular PPR proteins for subsequent functional validation studies in foxtail millet.
Collapse
Affiliation(s)
- Jia-Ming Liu
- Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang Province, College of Life Science and Technology, Harbin Normal University, Harbin, 150025, China.,Institute of Crop Science, Chinese Academy of Agricultural Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, 100081, China
| | - Zhao-Shi Xu
- Institute of Crop Science, Chinese Academy of Agricultural Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, 100081, China.
| | - Pan-Pan Lu
- Institute of Crop Science, Chinese Academy of Agricultural Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, 100081, China
| | - Wei-Wei Li
- Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang Province, College of Life Science and Technology, Harbin Normal University, Harbin, 150025, China.,Institute of Crop Science, Chinese Academy of Agricultural Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, 100081, China
| | - Ming Chen
- Institute of Crop Science, Chinese Academy of Agricultural Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, 100081, China
| | - Chang-Hong Guo
- Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang Province, College of Life Science and Technology, Harbin Normal University, Harbin, 150025, China.
| | - You-Zhi Ma
- Institute of Crop Science, Chinese Academy of Agricultural Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, 100081, China
| |
Collapse
|
19
|
Du K, Liu Q, Wu X, Jiang J, Wu J, Fang Y, Li A, Wang Y. Morphological Structure and Transcriptome Comparison of the Cytoplasmic Male Sterility Line in Brassica napus (SaNa-1A) Derived from Somatic Hybridization and Its Maintainer Line SaNa-1B. FRONTIERS IN PLANT SCIENCE 2016; 7:1313. [PMID: 27656189 PMCID: PMC5011408 DOI: 10.3389/fpls.2016.01313] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 08/16/2016] [Indexed: 05/21/2023]
Abstract
SaNa-1A is a novel cytoplasmic male sterility (CMS) line in Brassica napus derived from progenies of somatic hybrids between B.napus and Sinapis alba, and SaNa-1B is the corresponding maintainer line. In this study, phenotypic differences of floral organs between CMS and the maintainer lines were observed. By microscope observation in different anther developmental stages of two lines, we found the anther development in SaNa-1A was abnormal since the tetrad stage, and microspore development was ceased during the uninucleate stage. Transcriptomic sequencing for floral buds of sterile and fertile plants were conducted to elucidate gene expression and regulation caused by the alien chromosome and cytoplasm from S. alba. Clean tags obtained were assembled into 195,568 unigenes, and 7811 unigenes distributed in the metabolic and protein synthesis pathways were identified with significant expression differences between two libraries. We also observed that genes participating in carbon metabolism, tricarboxylic acid cycle, oxidative phosphorylation, oxidation-reduction system, pentatricopeptide repeat, and anther development were downregulated in the sterile line. Some of them are candidates for researches on the sterility mechanism in the CMS material, fertility restoration, and improvement of economic traits in the maintainer line. Further research on the tags with expressional specificity in the fertile line would be helpful to explore desirable agronomic traits from wild species of rapeseed.
Collapse
Affiliation(s)
- Kun Du
- Jiangsu Provincial Key Laboratory of Crop Genetics and Physiology, Yangzhou UniversityYangzhou, China
| | - Qier Liu
- Jiangsu Provincial Key Laboratory of Crop Genetics and Physiology, Yangzhou UniversityYangzhou, China
| | - Xinyue Wu
- Jiangsu Provincial Key Laboratory of Crop Genetics and Physiology, Yangzhou UniversityYangzhou, China
| | - Jinjin Jiang
- Jiangsu Provincial Key Laboratory of Crop Genetics and Physiology, Yangzhou UniversityYangzhou, China
| | - Jian Wu
- Jiangsu Provincial Key Laboratory of Crop Genetics and Physiology, Yangzhou UniversityYangzhou, China
| | - Yujie Fang
- Jiangsu Provincial Key Laboratory of Crop Genetics and Physiology, Yangzhou UniversityYangzhou, China
| | - Aimin Li
- Institute of Agricultural Sciences for Lixiahe Region in Jiangsu, Jiangsu Academy of Agricultural SciencesYangzhou, China
| | - Youping Wang
- Jiangsu Provincial Key Laboratory of Crop Genetics and Physiology, Yangzhou UniversityYangzhou, China
| |
Collapse
|
20
|
Siniauskaya MG, Danilenko NG, Lukhanina NV, Shymkevich AM, Davydenko OG. Expression of the chloroplast genome: Modern concepts and experimental approaches. ACTA ACUST UNITED AC 2016. [DOI: 10.1134/s2079059716050117] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
21
|
Karasik A, Shanmuganathan A, Howard MJ, Fierke CA, Koutmos M. Nuclear Protein-Only Ribonuclease P2 Structure and Biochemical Characterization Provide Insight into the Conserved Properties of tRNA 5' End Processing Enzymes. J Mol Biol 2015; 428:26-40. [PMID: 26655022 DOI: 10.1016/j.jmb.2015.11.025] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 11/03/2015] [Accepted: 11/10/2015] [Indexed: 10/22/2022]
Abstract
Protein-only RNase Ps (PRORPs) are a recently discovered class of RNA processing enzymes that catalyze maturation of the 5' end of precursor tRNAs in Eukaryotes. PRORPs are found in the nucleus and/or organelles of most eukaryotic organisms. Arabidopsis thaliana is a representative organism that contains PRORP enzymes (PRORP1, PRORP2 and PRORP3) in both its nucleus and its organelles; PRORP2 and PRORP3 localize to the nucleus and PRORP1 localizes to the chloroplast and the mitochondria. Apart from their identification, almost nothing is known about the structure and function of PRORPs that act in the nucleus. Here, we use a combination of biochemical assays and X-ray crystallography to characterize A. thaliana PRORP2. We solved the crystal structure of PRORP2 (3.2Å) revealing an overall V-shaped protein and conserved metallonuclease active-site structure. Our biochemical studies indicate that PRORP2 requires Mg(2+) for catalysis and catalyzes the maturation of nuclear encoded substrates up to 10-fold faster than mitochondrial encoded precursor nad6 t-element under single-turnover conditions. We also demonstrate that PRORP2 preferentially binds precursor tRNAs containing short 5' leaders and 3' trailers; however, leader and trailer lengths do not significantly alter the observed rate constants of PRORP2 in single-turnover cleavage assays. Our data provide a biochemical and structural framework to begin understanding how nuclear localized PRORPs recognize and cleave their substrates.
Collapse
Affiliation(s)
- Agnes Karasik
- Department of Biochemistry, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 28104, USA
| | - Aranganathan Shanmuganathan
- Department of Biochemistry, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 28104, USA
| | - Michael J Howard
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Carol A Fierke
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109, USA; Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Markos Koutmos
- Department of Biochemistry, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 28104, USA.
| |
Collapse
|
22
|
Manna S. An overview of pentatricopeptide repeat proteins and their applications. Biochimie 2015; 113:93-9. [PMID: 25882680 DOI: 10.1016/j.biochi.2015.04.004] [Citation(s) in RCA: 151] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Accepted: 04/03/2015] [Indexed: 01/24/2023]
Abstract
Pentatricopeptide repeat (PPR) proteins are a large family of modular RNA-binding proteins which mediate several aspects of gene expression primarily in organelles but also in the nucleus. These proteins facilitate processing, splicing, editing, stability and translation of RNAs. While major advances in PPR research have been achieved with plant PPR proteins, the significance of non-plant PPR proteins is becoming of increasing importance. PPR proteins are classified into different subclasses based on their domain architecture, which is often a reflection of their function. This review provides an overview of the significant findings regarding the functions, evolution and applications of PPR proteins. Horizontal gene transfer appears to have played a major role in the sporadic phylogenetic distribution of different PPR subclasses in both eukaryotes and prokaryotes. Additionally, the use of synthetic biology and protein engineering to create designer PPR proteins to control gene expression in vivo is discussed. This review also highlights some of the aspects of PPR research that require more attention particularly in non-plant organisms. This includes the lack of research into the recently discovered PPR-TGM subclass, which is not only the first PPR subclass absent from plants but present in economically and clinically-relevant pathogens. Investigation into the structure and function of PPR-TGM proteins in these pathogens presents a novel opportunity for the exploitation of PPR proteins as drug targets to prevent disease.
Collapse
Affiliation(s)
- Sam Manna
- Department of Microbiology, La Trobe University, Melbourne, Victoria, Australia.
| |
Collapse
|
23
|
Jalal A, Schwarz C, Schmitz-Linneweber C, Vallon O, Nickelsen J, Bohne AV. A small multifunctional pentatricopeptide repeat protein in the chloroplast of Chlamydomonas reinhardtii. MOLECULAR PLANT 2015; 8:412-26. [PMID: 25702521 DOI: 10.1016/j.molp.2014.11.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Revised: 11/10/2014] [Accepted: 11/24/2014] [Indexed: 05/21/2023]
Abstract
Organellar biogenesis is mainly regulated by nucleus-encoded factors, which act on various steps of gene expression including RNA editing, processing, splicing, stabilization, and translation initiation. Among these regulatory factors, pentatricopeptide repeat (PPR) proteins form the largest family of RNA binding proteins, with hundreds of members in flowering plants. In striking contrast, the genome of the unicellular green alga Chlamydomonas reinhardtii encodes only 14 such proteins. In this study, we analyzed PPR7, the smallest and most highly expressed PPR protein in C. reinhardtii. Green fluorescent protein-based localization and gel-filtration analysis revealed that PPR7 forms a part of a high-molecular-weight ribonucleoprotein complex in the chloroplast stroma. RIP-chip analysis of PPR7-bound RNAs demonstrated that the protein associates with a diverse set of chloroplast transcripts in vivo, i.e. rrnS, psbH, rpoC2, rbcL, atpA, cemA-atpH, tscA, and atpI-psaJ. Furthermore, the investigation of PPR7 RNAi strains revealed that depletion of PPR7 results in a light-sensitive phenotype, accompanied by altered levels of its target RNAs that are compatible with the defects in their maturation or stabilization. PPR7 is thus an unusual type of small multifunctional PPR protein, which interacts, probably in conjunction with other RNA binding proteins, with numerous target RNAs to promote a variety of post-transcriptional events.
Collapse
Affiliation(s)
- Abdullah Jalal
- Molecular Plant Sciences, Ludwig-Maximillians-University, Grosshaderner Straße 2-4, 82152 Planegg-Martinsried, Germany
| | - Christian Schwarz
- Molecular Plant Sciences, Ludwig-Maximillians-University, Grosshaderner Straße 2-4, 82152 Planegg-Martinsried, Germany
| | | | - Olivier Vallon
- UMR7141 CNRS/Université Pierre et Marie Curie, Institut de Biologie Physico-Chimique, 13 Rue Pierre et Marie Curie, 75005 Paris, France
| | - Jörg Nickelsen
- Molecular Plant Sciences, Ludwig-Maximillians-University, Grosshaderner Straße 2-4, 82152 Planegg-Martinsried, Germany
| | - Alexandra-Viola Bohne
- Molecular Plant Sciences, Ludwig-Maximillians-University, Grosshaderner Straße 2-4, 82152 Planegg-Martinsried, Germany.
| |
Collapse
|
24
|
Li Q, Yan C, Xu H, Wang Z, Long J, Li W, Wu J, Yin P, Yan N. Examination of the dimerization states of the single-stranded RNA recognition protein pentatricopeptide repeat 10 (PPR10). J Biol Chem 2014; 289:31503-12. [PMID: 25231995 DOI: 10.1074/jbc.m114.575472] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Pentatricopeptide repeat (PPR) proteins, particularly abundant in plastids and mitochrondria of angiosperms, include a large number of sequence-specific RNA binding proteins that are involved in diverse aspects of organelle RNA metabolisms. PPR proteins contain multiple tandom repeats, and each repeat can specifically recognize a RNA base through residues 2, 5, and 35 in a modular fashion. The crystal structure of PPR10 from maize chloroplast exhibits dimeric existence both in the absence and presence of the 18-nucleotide psaJ RNA element. However, previous biochemical analysis suggested a monomeric shift of PPR10 upon RNA binding. In this report, we show that the amino-terminal segments of PPR10 determine the dimerization state of PPR10. A single amino acid alteration of cysteine to serine within repeat 10 of PPR10 further drives dimerization of PPR10. The biochemical elucidation of the determinants for PPR10 dimerization may provide an important foundation to understand the working mechanisms of PPR proteins underlying their diverse physiological functions.
Collapse
Affiliation(s)
- Quanxiu Li
- From the State Key Laboratory of Bio-membrane and Membrane Biotechnology, Center for Structural Biology, School of Life Sciences and School of Medicine, Tsinghua-Peking Center for Life Sciences, and
| | - Chuangye Yan
- Center for Structural Biology, School of Life Sciences and School of Medicine, Tsinghua-Peking Center for Life Sciences, and Ministry of Education Key Laboratory of Protein Science, Tsinghua University, Beijing 100084, China
| | - Huisha Xu
- the State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin 300071, China, and
| | - Zheng Wang
- the State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin 300071, China, and
| | - Jiafu Long
- the State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin 300071, China, and
| | - Wenqi Li
- From the State Key Laboratory of Bio-membrane and Membrane Biotechnology, Center for Structural Biology, School of Life Sciences and School of Medicine, Tsinghua-Peking Center for Life Sciences, and
| | - Jianping Wu
- Center for Structural Biology, School of Life Sciences and School of Medicine, Tsinghua-Peking Center for Life Sciences, and Ministry of Education Key Laboratory of Protein Science, Tsinghua University, Beijing 100084, China
| | - Ping Yin
- the National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, and College of Life Sciences and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Nieng Yan
- From the State Key Laboratory of Bio-membrane and Membrane Biotechnology, Center for Structural Biology, School of Life Sciences and School of Medicine, Tsinghua-Peking Center for Life Sciences, and
| |
Collapse
|
25
|
Yu C, Wang L, Chen C, He C, Hu J, Zhu Y, Huang W. Protoplast: a more efficient system to study nucleo-cytoplasmic interactions. Biochem Biophys Res Commun 2014; 450:1575-80. [PMID: 25026554 DOI: 10.1016/j.bbrc.2014.07.043] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Accepted: 07/07/2014] [Indexed: 01/07/2023]
Abstract
Agrobacterium tumefaciens-mediated genetic transformation is a powerful tool for plant research, but it can be labor-intensive and time-consuming. Here, we report a protoplast-based approach to study nucleo-cytoplasmic interactions, such as cytoplasmic male sterility/fertility restoration (CMS/Rf) and organellar RNA editing. To test the system, we transfected the fertility restorer gene Rf5, which is involved in the rice HL-CMS/Rf system, into rice protoplasts prepared from the HL-CMS line. As the Rf5 protein accumulated in the transformed protoplasts, the CMS-associated transcripts were endonucleolytically cleaved. There were much lower levels of the CMS-associated protein ORFH79 in the transfected protoplasts than in the mock-transfected protoplasts. Next, we used a dsRNA-mediated gene silencing approach to down-regulate the pentatricopeptide protein gene MPR25, which participates in RNA editing of the organellar transcript nad5. The editing efficiency of mitochondrial transcripts of nad5 at nucleotide 1580 was much lower in the transfected protoplasts than in the mock-transfected protoplasts. Together, these results show that protoplast is a simple and efficient system to study interactions between the nucleus and organelles.
Collapse
Affiliation(s)
- Changchun Yu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, China
| | - Lili Wang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, China
| | - Cong Chen
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, China
| | - Chunlan He
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, China
| | - Jun Hu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, China
| | - Yingguo Zhu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, China.
| | - Wenchao Huang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, China.
| |
Collapse
|
26
|
Law SR, Narsai R, Whelan J. Mitochondrial biogenesis in plants during seed germination. Mitochondrion 2014; 19 Pt B:214-21. [PMID: 24727594 DOI: 10.1016/j.mito.2014.04.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2014] [Revised: 03/29/2014] [Accepted: 04/01/2014] [Indexed: 10/25/2022]
Abstract
Mitochondria occupy a central role in the eukaryotic cell. In addition to being major sources of cellular energy, mitochondria are also involved in a diverse range of functions including signalling, the synthesis of many essential organic compounds and a role in programmed cell death. The active proliferation and differentiation of mitochondria is termed mitochondrial biogenesis and necessitates the coordinated communication of mitochondrial status within an integrated cellular network. Two models of mitochondrial biogenesis have been defined previously, the growth and division model and the maturation model. The former describes the growth and division of pre-existing mature organelles through a form of binary fission, while the latter describes the propagation of mitochondria from structurally and biochemically simple promitochondrial structures that upon appropriate stimuli, mature into fully functional mitochondria. In the last decade, a number of studies have utilised seed germination in plants as a platform for the examination of the processes occurring during mitochondrial biogenesis. These studies have revealed many new aspects of the tightly regulated procession of events that define mitochondrial biogenesis during this period of rapid development. A model for mitochondrial biogenesis that supports the maturation of mitochondria from promitochondrial structures has emerged, where mitochondrial signalling plays a crucial role in the early steps of seed germination.
Collapse
Affiliation(s)
- Simon R Law
- Australian Research Council Centre of Excellence in Plant Energy Biology, University of Western Australia, 35 Stirling Highway, Crawley, Western Australia, 6009, Australia
| | - Reena Narsai
- Department of Botany, Australian Research Council Centre of Excellence in Plant Energy Biology, School of Life Science, La Trobe University, Bundoora, Victoria, 3086, Australia
| | - James Whelan
- Department of Botany, Australian Research Council Centre of Excellence in Plant Energy Biology, School of Life Science, La Trobe University, Bundoora, Victoria, 3086, Australia.
| |
Collapse
|
27
|
Abstract
Pentatricopeptide repeat (PPR) proteins constitute one of the largest protein families in land plants, with more than 400 members in most species. Over the past decade, much has been learned about the molecular functions of these proteins, where they act in the cell, and what physiological roles they play during plant growth and development. A typical PPR protein is targeted to mitochondria or chloroplasts, binds one or several organellar transcripts, and influences their expression by altering RNA sequence, turnover, processing, or translation. Their combined action has profound effects on organelle biogenesis and function and, consequently, on photosynthesis, respiration, plant development, and environmental responses. Recent breakthroughs in understanding how PPR proteins recognize RNA sequences through modular base-specific contacts will help match proteins to potential binding sites and provide a pathway toward designing synthetic RNA-binding proteins aimed at desired targets.
Collapse
Affiliation(s)
- Alice Barkan
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon 97405;
| | | |
Collapse
|
28
|
Ke J, Chen RZ, Ban T, Zhou XE, Gu X, Tan MHE, Chen C, Kang Y, Brunzelle JS, Zhu JK, Melcher K, Xu HE. Structural basis for RNA recognition by a dimeric PPR-protein complex. Nat Struct Mol Biol 2013; 20:1377-82. [PMID: 24186060 DOI: 10.1038/nsmb.2710] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Accepted: 10/08/2013] [Indexed: 02/04/2023]
Abstract
Thylakoid assembly 8 (THA8) is a pentatricopeptide repeat (PPR) RNA-binding protein required for the splicing of the transcript of ycf3, a gene involved in chloroplast thylakoid-membrane biogenesis. Here we report the identification of multiple THA8-binding sites in the ycf3 intron and present crystal structures of Brachypodium distachyon THA8 either free of RNA or bound to two of the identified RNA sites. The apostructure reveals a THA8 monomer with five tandem PPR repeats arranged in a planar fold. The complexes of THA8 bound to the two short RNA fragments surprisingly reveal asymmetric THA8 dimers with the bound RNAs at the dimeric interface. RNA binding induces THA8 dimerization, with a conserved G nucleotide of the bound RNAs making extensive contacts with both monomers. Together, these results establish a new model of RNA recognition by RNA-induced formation of an asymmetric dimer of a PPR protein.
Collapse
Affiliation(s)
- Jiyuan Ke
- 1] Laboratory of Structural Sciences, Center for Structural Biology and Drug Discovery, Van Andel Research Institute, Grand Rapids, Michigan, USA. [2]
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Luro S, Germain A, Sharwood RE, Stern DB. RNase J participates in a pentatricopeptide repeat protein-mediated 5' end maturation of chloroplast mRNAs. Nucleic Acids Res 2013; 41:9141-51. [PMID: 23921629 PMCID: PMC3799425 DOI: 10.1093/nar/gkt640] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Revised: 06/26/2013] [Accepted: 06/28/2013] [Indexed: 11/29/2022] Open
Abstract
Nucleus-encoded ribonucleases and RNA-binding proteins influence chloroplast gene expression through their roles in RNA maturation and stability. One mechanism for mRNA 5' end maturation posits that sequence-specific pentatricopeptide repeat (PPR) proteins define termini by blocking the 5'→3' exonucleolytic activity of ribonuclease J (RNase J). To test this hypothesis in vivo, virus-induced gene silencing was used to reduce the expression of three PPR proteins and RNase J, both individually and jointly, in Nicotiana benthamiana. In accordance with the stability-conferring function of the PPR proteins PPR10, HCF152 and MRL1, accumulation of the cognate RNA species atpH, petB and rbcL was reduced when the PPR-encoding genes were silenced. In contrast, RNase J reduction alone or combined with PPR deficiency resulted in reduced abundance of polycistronic precursor transcripts and mature counterparts, which were replaced by intermediately sized species with heterogeneous 5' ends. We conclude that RNase J deficiency can partially mask the absence of PPR proteins, and that RNase J is capable of processing chloroplast mRNAs up to PPR protein-binding sites. These findings support the hypothesis that RNase J is the major ribonuclease responsible for maturing chloroplast mRNA 5' termini, with RNA-binding proteins acting as barriers to its activity.
Collapse
Affiliation(s)
- Scott Luro
- Boyce Thompson Institute for Plant Research, Ithaca, New York 14850, USA and Hawkesbury Institute for the Environment, University of Western Sydney, Richmond 2753, Australia
| | - Arnaud Germain
- Boyce Thompson Institute for Plant Research, Ithaca, New York 14850, USA and Hawkesbury Institute for the Environment, University of Western Sydney, Richmond 2753, Australia
| | - Robert E. Sharwood
- Boyce Thompson Institute for Plant Research, Ithaca, New York 14850, USA and Hawkesbury Institute for the Environment, University of Western Sydney, Richmond 2753, Australia
| | - David B. Stern
- Boyce Thompson Institute for Plant Research, Ithaca, New York 14850, USA and Hawkesbury Institute for the Environment, University of Western Sydney, Richmond 2753, Australia
| |
Collapse
|
30
|
Hammani K, Bonnard G, Bouchoucha A, Gobert A, Pinker F, Salinas T, Giegé P. Helical repeats modular proteins are major players for organelle gene expression. Biochimie 2013; 100:141-50. [PMID: 24021622 DOI: 10.1016/j.biochi.2013.08.031] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Accepted: 08/30/2013] [Indexed: 11/18/2022]
Abstract
Mitochondria and chloroplasts are often described as semi-autonomous organelles because they have retained a genome. They thus require fully functional gene expression machineries. Many of the required processes going all the way from transcription to translation have specificities in organelles and arose during eukaryote history. Most factors involved in these RNA maturation steps have remained elusive for a long time. The recent identification of a number of novel protein families including pentatricopeptide repeat proteins, half-a-tetratricopeptide proteins, octotricopeptide repeat proteins and mitochondrial transcription termination factors has helped to settle long-standing questions regarding organelle gene expression. In particular, their functions have been related to replication, transcription, RNA processing, RNA editing, splicing, the control of RNA turnover and translation throughout eukaryotes. These families of proteins, although evolutionary independent, seem to share a common overall architecture. For all of them, proteins contain tandem arrays of repeated motifs. Each module is composed of two to three α-helices and their succession forms a super-helix. Here, we review the features characterising these protein families, in particular, their distribution, the identified functions and mode of action and propose that they might share similar substrate recognition mechanisms.
Collapse
|
31
|
Wang ZW, Wang C, Gao L, Mei SY, Zhou Y, Xiang CP, Wang T. Heterozygous alleles restore male fertility to cytoplasmic male-sterile radish (Raphanus sativus L.): a case of overdominance. JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:2041-2048. [PMID: 23630327 PMCID: PMC3638831 DOI: 10.1093/jxb/ert065] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
The practice of hybridization has greatly contributed to the increase in crop productivity. A major component that exploits heterosis in crops is the cytoplasmic male sterility (CMS)/nucleus-controlled fertility restoration (Rf) system. Through positional cloning, it is shown that heterozygous alleles (RsRf3-1/RsRf3-2) encoding pentatricopeptide repeat (PPR) proteins are responsible for restoring fertility to cytoplasmic male-sterile radish (Raphanus sativus L.). Furthermore, it was found that heterozygous alleles (RsRf3-1/RsRf3-2) show higher expression and RNA polymerase II occupancy in the CMS cytoplasmic background compared with their homozygous alleles (RsRf3-1/RsRf3-1 or RsRf3-2/RsRf3-2). These data provide new insights into the molecular mechanism of fertility restoration to cytoplasmic male-sterile plants and illustrate a case of overdominance.
Collapse
Affiliation(s)
- Zhi Wei Wang
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, PR China
| | - Chuan Wang
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, PR China
- Graduate University of the Chinese Academy of Sciences, Beijing 100049, PR China
| | - Lei Gao
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, PR China
| | - Shi Yong Mei
- Hubei Academy of Agricultural Sciences, Wuhan 430064, PR China
| | - Yuan Zhou
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, PR China
| | - Chang Ping Xiang
- Key Laboratory of Ministry of Education for Horticultural Plant Biology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Ting Wang
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, PR China
| |
Collapse
|
32
|
Stoppel R, Meurer J. Complex RNA metabolism in the chloroplast: an update on the psbB operon. PLANTA 2013; 237:441-9. [PMID: 23065055 PMCID: PMC3555233 DOI: 10.1007/s00425-012-1782-z] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Accepted: 09/28/2012] [Indexed: 05/03/2023]
Abstract
Expression of most plastid genes involves multiple post-transcriptional processing events, such as splicing, editing, and intercistronic processing. The latter involves the formation of mono-, di-, and multicistronic transcripts, which can further be regulated by differential stability and expression. The plastid pentacistronic psbB transcription unit has been well characterized in vascular plants. It encodes the subunits CP47 (psbB), T (psbT), and H (psbH) of photosystem II as well as cytochrome b (6) (petB) and subunit IV (petD) of the cytochrome b (6) f complex. Each of the petB and petD genes contains a group II intron, which is spliced during post-transcriptional modification. The small subunit of photosystem II, PsbN, is encoded in the intercistronic region between psbH and psbT but is transcribed in the opposite direction. Expression of the psbB gene cluster necessitates different processing events along with numerous newly evolved specificity factors conferring stability to many of the processed RNA transcripts, and thus exemplarily shows the complexity of RNA metabolism in the chloroplast.
Collapse
Affiliation(s)
- Rhea Stoppel
- Plant Molecular Biology (Botany), Department Biology I, Ludwig Maximilians University, Großhadernerstrasse 2-4, Planegg-Martinsried, Germany.
| | | |
Collapse
|
33
|
Yan X, Dong C, Yu J, Liu W, Jiang C, Liu J, Hu Q, Fang X, Wei W. Transcriptome profile analysis of young floral buds of fertile and sterile plants from the self-pollinated offspring of the hybrid between novel restorer line NR1 and Nsa CMS line in Brassica napus. BMC Genomics 2013; 14:26. [PMID: 23324545 PMCID: PMC3556089 DOI: 10.1186/1471-2164-14-26] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Accepted: 01/02/2013] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND The fertile and sterile plants were derived from the self-pollinated offspring of the F1 hybrid between the novel restorer line NR1 and the Nsa CMS line in Brassica napus. To elucidate gene expression and regulation caused by the A and C subgenomes of B. napus, as well as the alien chromosome and cytoplasm from Sinapis arvensis during the development of young floral buds, we performed a genome-wide high-throughput transcriptomic sequencing for young floral buds of sterile and fertile plants. RESULTS In this study, equal amounts of total RNAs taken from young floral buds of sterile and fertile plants were sequenced using the Illumina/Solexa platform. After filtered out low quality data, a total of 2,760,574 and 2,714,441 clean tags were remained in the two libraries, from which 242,163 (Ste) and 253,507 (Fer) distinct tags were obtained. All distinct sequencing tags were annotated using all possible CATG+17-nt sequences of the genome and transcriptome of Brassica rapa and those of Brassica oleracea as the reference sequences, respectively. In total, 3231 genes of B. rapa and 3371 genes of B. oleracea were detected with significant differential expression levels. GO and pathway-based analyses were performed to determine and further to understand the biological functions of those differentially expressed genes (DEGs). In addition, there were 1089 specially expressed unknown tags in Fer, which were neither mapped to B. oleracea nor to B. rapa, and these unique tags were presumed to arise basically from the added alien chromosome of S. arvensis. Fifteen genes were randomly selected and their expression levels were confirmed by quantitative RT-PCR, and fourteen of them showed consistent expression patterns with the digital gene expression (DGE) data. CONCLUSIONS A number of genes were differentially expressed between the young floral buds of sterile and fertile plants. Some of these genes may be candidates for future research on CMS in Nsa line, fertility restoration and improved agronomic traits in NR1 line. Further study of the unknown tags which were specifically expressed in Fer will help to explore desirable agronomic traits from wild species.
Collapse
Affiliation(s)
- Xiaohong Yan
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan, 430062, China
| | - Caihua Dong
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan, 430062, China
| | - Jingyin Yu
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan, 430062, China
| | - Wanghui Liu
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan, 430062, China
| | - Chenghong Jiang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan, 430062, China
| | - Jia Liu
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan, 430062, China
| | - Qiong Hu
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan, 430062, China
| | - Xiaoping Fang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan, 430062, China
| | - Wenhui Wei
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan, 430062, China
| |
Collapse
|
34
|
Rahire M, Laroche F, Cerutti L, Rochaix JD. Identification of an OPR protein involved in the translation initiation of the PsaB subunit of photosystem I. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2012; 72:652-61. [PMID: 22817760 DOI: 10.1111/j.1365-313x.2012.05111.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Genetic analysis of mutants deficient in the biosynthesis of the photosystem I complex has revealed several nucleus-encoded factors that act at different post-transcriptional steps of chloroplast gene expression. Here we have identified and characterized the gene affected in the tab 1-F15 mutant, which is specifically deficient in the translation of the photosystem I reaction center protein PsaB as the result of a single nucleotide deletion. This gene encodes Tab 1, a 1287 amino acid protein that contains 10 tandem 38-40 amino acid degenerate repeats of the PPPEW/OPR (octatricopeptide repeat) family, first described for the chloroplast translation factor Tbc2. These repeats are involved in the binding of Tab 1 to the 5'-untranslated region of the psaB mRNA based on gel mobility shift assays. Tab 1 is part of a large family of proteins in Chlamydomonas that are also found in several bacteria and protozoans, but are rare in land plants.
Collapse
Affiliation(s)
- Michèle Rahire
- Departments of Molecular Biology and Plant Biology, University of Geneva, 30, Quai Ernest Ansermet, Geneva 1211, Switzerland
| | | | | | | |
Collapse
|
35
|
Toda T, Fujii S, Noguchi K, Kazama T, Toriyama K. Rice MPR25 encodes a pentatricopeptide repeat protein and is essential for RNA editing of nad5 transcripts in mitochondria. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2012; 72:450-60. [PMID: 22747551 DOI: 10.1111/j.1365-313x.2012.05091.x] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Pentatricopeptide repeat (PPR) proteins are involved in the modification of organelle transcripts. In this study, we investigated the molecular function in rice of the mitochondrial PPR-encoding gene MITOCHONDRIAL PPR25 (MPR25), which belongs to the E subgroup of the PPR family. A Tos17 knockout mutant of MPR25 exhibited growth retardation and pale-green leaves with reduced chlorophyll content during the early stages of plant development. The photosynthetic rate in the mpr25 mutant was significantly decreased, especially under strong light conditions, although the respiration rate did not differ from that of wild-type plants. MPR25 was preferentially expressed in leaves. FLAG-tagged MPR25 accumulated in mitochondria but not in chloroplasts. Direct sequencing revealed that the mpr25 mutant fails to edit a C-U RNA editing site at nucleotide 1580 of nad5, which encodes a subunit of complex I (NADH dehydrogenase) of the respiratory chain in mitochondria. RNA editing of this site is responsible for a change in amino acid from serine to leucine. Recombinant MPR25 directly interacted with the proximal region of the editing site of nad5 transcripts. However, the NADH dehydrogenase activity of complex I was not affected in the mutant. By contrast, genes encoding alternative NADH dehydrogenases and alternative oxidase were up-regulated. The mpr25 mutant may therefore provide new information on the coordinated interaction between mitochondria and chloroplasts.
Collapse
MESH Headings
- Amino Acid Substitution
- Cell Respiration
- Chloroplasts/genetics
- Chloroplasts/metabolism
- Gene Expression Regulation, Plant/genetics
- Gene Knockout Techniques
- Light
- Mitochondria/genetics
- Mitochondria/metabolism
- Mitochondrial Proteins/genetics
- Mitochondrial Proteins/metabolism
- Mutagenesis, Insertional
- NADH Dehydrogenase/genetics
- NADH Dehydrogenase/metabolism
- Oryza/enzymology
- Oryza/genetics
- Oryza/growth & development
- Oryza/radiation effects
- Oxidoreductases/genetics
- Oxidoreductases/metabolism
- Phenotype
- Photosynthesis
- Plant Components, Aerial/enzymology
- Plant Components, Aerial/genetics
- Plant Components, Aerial/growth & development
- Plant Components, Aerial/radiation effects
- Plant Proteins/genetics
- Plant Proteins/metabolism
- Plant Roots/enzymology
- Plant Roots/genetics
- Plant Roots/growth & development
- Plant Roots/radiation effects
- Protein Transport
- RNA Editing
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Plant/genetics
- RNA, Plant/metabolism
- RNA-Binding Proteins/genetics
- RNA-Binding Proteins/metabolism
- Recombinant Fusion Proteins
- Seedlings/enzymology
- Seedlings/genetics
- Seedlings/growth & development
- Seedlings/radiation effects
- Sequence Analysis, DNA
Collapse
Affiliation(s)
- Takushi Toda
- Laboratory of Environmental Plant Biotechnology, Graduate School of Agricultural Science, Tohoku University, 1-1 Tsutsumidori-Amamiyamachi, Sendai 981-8555, Japan
| | | | | | | | | |
Collapse
|
36
|
Nakamura T, Yagi Y, Kobayashi K. Mechanistic insight into pentatricopeptide repeat proteins as sequence-specific RNA-binding proteins for organellar RNAs in plants. PLANT & CELL PHYSIOLOGY 2012; 53:1171-9. [PMID: 22576772 DOI: 10.1093/pcp/pcs069] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The pentatricopeptide repeat (PPR) protein family is highly expanded in terrestrial plants. Arabidopsis contains 450 PPR genes, which represents 2% of the total protein-coding genes. PPR proteins are eukaryote-specific RNA-binding proteins implicated in multiple aspects of RNA metabolism of organellar genes. Most PPR proteins affect a single or small subset of gene(s), acting in a gene-specific manner. Studies over the last 10 years have revealed the significance of this protein family in coordinated gene expression in different compartments: the nucleus, chloroplast and mitochondrion. Here, we summarize recent studies addressing the mechanistic aspect of PPR proteins.
Collapse
Affiliation(s)
- Takahiro Nakamura
- Department of Research Superstar Program, Institute of Advanced Study, Kyushu University, Fukuoka 812-8581, Japan.
| | | | | |
Collapse
|
37
|
Soto IC, Fontanesi F, Liu J, Barrientos A. Biogenesis and assembly of eukaryotic cytochrome c oxidase catalytic core. BIOCHIMICA ET BIOPHYSICA ACTA 2012; 1817:883-97. [PMID: 21958598 PMCID: PMC3262112 DOI: 10.1016/j.bbabio.2011.09.005] [Citation(s) in RCA: 160] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2011] [Revised: 09/07/2011] [Accepted: 09/12/2011] [Indexed: 10/17/2022]
Abstract
Eukaryotic cytochrome c oxidase (COX) is the terminal enzyme of the mitochondrial respiratory chain. COX is a multimeric enzyme formed by subunits of dual genetic origin which assembly is intricate and highly regulated. The COX catalytic core is formed by three mitochondrial DNA encoded subunits, Cox1, Cox2 and Cox3, conserved in the bacterial enzyme. Their biogenesis requires the action of messenger-specific and subunit-specific factors which facilitate the synthesis, membrane insertion, maturation or assembly of the core subunits. The study of yeast strains and human cell lines from patients carrying mutations in structural subunits and COX assembly factors has been invaluable to identify these ancillary factors. Here we review the current state of knowledge of the biogenesis and assembly of the eukaryotic COX catalytic core and discuss the degree of conservation of the players and mechanisms operating from yeast to human. This article is part of a Special Issue entitled: Biogenesis/Assembly of Respiratory Enzyme Complexes.
Collapse
Affiliation(s)
- Ileana C. Soto
- Department of Biochemistry & Molecular Biology, University of Miami Miller School of Medicine. Miami, FL
| | - Flavia Fontanesi
- Department of Neurology. University of Miami Miller School of Medicine. Miami, FL
| | - Jingjing Liu
- Department of Biochemistry & Molecular Biology, University of Miami Miller School of Medicine. Miami, FL
| | - Antoni Barrientos
- Department of Biochemistry & Molecular Biology, University of Miami Miller School of Medicine. Miami, FL
- Department of Neurology. University of Miami Miller School of Medicine. Miami, FL
| |
Collapse
|
38
|
Yuan H, Liu D. Functional disruption of the pentatricopeptide protein SLG1 affects mitochondrial RNA editing, plant development, and responses to abiotic stresses in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2012; 70:432-44. [PMID: 22248025 DOI: 10.1111/j.1365-313x.2011.04883.x] [Citation(s) in RCA: 97] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Land plants contain a large family of genes that encode for pentatricopeptide (PPR) proteins. To date, few of these PPR proteins have been functionally characterized. In this study, we have analyzed an Arabidopsis mutant, slg1, which exhibits slow growth and delayed development. In addition, slg1 shows an enhanced response to ABA and increased tolerance to drought stress. The SLG1 gene encodes a PPR protein that is localized in mitochondria. In the slg1 mutant, RNA editing in a single site of the mitochondrial transcript nad3 is abolished. nad3 is a subunit of complex I of the electron transport chain in mitochondria. As a consequence, the NADH dehydrogenase activity of complex I in slg1 is strongly impaired and production of ATP is reduced. When responding to ABA treatment, slg1 accumulates more H(2) O(2) in its guard cells than the wild type. The slg1 mutant also has an increased expression of genes involved in the alternative respiratory pathway, which may compensate for the disrupted function of complex I and help scavenge the excess accumulation of H(2) O(2). Our functional characterization of the slg1 mutant revealed a putative link between mitochondrial RNA editing and plant responses to abiotic stress.
Collapse
Affiliation(s)
- Hui Yuan
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | | |
Collapse
|
39
|
Zhelyazkova P, Hammani K, Rojas M, Voelker R, Vargas-Suárez M, Börner T, Barkan A. Protein-mediated protection as the predominant mechanism for defining processed mRNA termini in land plant chloroplasts. Nucleic Acids Res 2012; 40:3092-105. [PMID: 22156165 PMCID: PMC3326301 DOI: 10.1093/nar/gkr1137] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2011] [Revised: 10/19/2011] [Accepted: 11/09/2011] [Indexed: 11/12/2022] Open
Abstract
Most chloroplast mRNAs are processed from larger precursors. Several mechanisms have been proposed to mediate these processing events, including site-specific cleavage and the stalling of exonucleases by RNA structures. A protein barrier mechanism was proposed based on analysis of the pentatricopeptide repeat (PPR) protein PPR10: PPR10 binds two intercistronic regions and impedes 5'- and 3'-exonucleases, resulting in processed RNAs with PPR10 bound at the 5'- or 3'-end. In this study, we provide evidence that protein barriers are the predominant means for defining processed mRNA termini in chloroplasts. First, we map additional RNA termini whose arrangement suggests biogenesis via a PPR10-like mechanism. Second, we show that the PPR protein HCF152 binds to the immediate 5'- or 3'-termini of transcripts that require HCF152 for their accumulation, providing evidence that HCF152 defines RNA termini by blocking exonucleases. Finally, we build on the observation that the PPR10 and HCF152 binding sites accumulate as small chloroplast RNAs to infer binding sites of other PPR proteins. We show that most processed mRNA termini are represented by small RNAs whose sequences are highly conserved. We suggest that each such small RNA is the footprint of a PPR-like protein that protects the adjacent RNA from degradation.
Collapse
Affiliation(s)
- Petya Zhelyazkova
- Institute for Biology (Genetics), Humboldt-University Berlin, D-10115 Berlin, Max Delbrück Center for Molecular Medicine, D-13092 Berlin, Germany and Institute of Molecular Biology, University of Oregon, Eugene, OR 97403, USA
| | - Kamel Hammani
- Institute for Biology (Genetics), Humboldt-University Berlin, D-10115 Berlin, Max Delbrück Center for Molecular Medicine, D-13092 Berlin, Germany and Institute of Molecular Biology, University of Oregon, Eugene, OR 97403, USA
| | - Margarita Rojas
- Institute for Biology (Genetics), Humboldt-University Berlin, D-10115 Berlin, Max Delbrück Center for Molecular Medicine, D-13092 Berlin, Germany and Institute of Molecular Biology, University of Oregon, Eugene, OR 97403, USA
| | - Rodger Voelker
- Institute for Biology (Genetics), Humboldt-University Berlin, D-10115 Berlin, Max Delbrück Center for Molecular Medicine, D-13092 Berlin, Germany and Institute of Molecular Biology, University of Oregon, Eugene, OR 97403, USA
| | - Martín Vargas-Suárez
- Institute for Biology (Genetics), Humboldt-University Berlin, D-10115 Berlin, Max Delbrück Center for Molecular Medicine, D-13092 Berlin, Germany and Institute of Molecular Biology, University of Oregon, Eugene, OR 97403, USA
| | - Thomas Börner
- Institute for Biology (Genetics), Humboldt-University Berlin, D-10115 Berlin, Max Delbrück Center for Molecular Medicine, D-13092 Berlin, Germany and Institute of Molecular Biology, University of Oregon, Eugene, OR 97403, USA
| | - Alice Barkan
- Institute for Biology (Genetics), Humboldt-University Berlin, D-10115 Berlin, Max Delbrück Center for Molecular Medicine, D-13092 Berlin, Germany and Institute of Molecular Biology, University of Oregon, Eugene, OR 97403, USA
| |
Collapse
|
40
|
|
41
|
Kobayashi K, Kawabata M, Hisano K, Kazama T, Matsuoka K, Sugita M, Nakamura T. Identification and characterization of the RNA binding surface of the pentatricopeptide repeat protein. Nucleic Acids Res 2011; 40:2712-23. [PMID: 22127869 PMCID: PMC3315335 DOI: 10.1093/nar/gkr1084] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The expressions of chloroplast and mitochondria genes are tightly controlled by numerous nuclear-encoded proteins, mainly at the post-transcriptional level. Recent analyses have identified a large, plant-specific family of pentatricopeptide repeat (PPR) motif-containing proteins that are exclusively involved in RNA metabolism of organelle genes via sequence-specific RNA binding. A tandem array of PPR motifs within the protein is believed to facilitate the RNA interaction, although little is known of the mechanism. Here, we describe the RNA interacting framework of a PPR protein, Arabidopsis HCF152. First, we demonstrated that a Pfam model could be relevant to the PPR motif function. A series of proteins with two PPR motifs showed significant differences in their RNA binding affinities, indicating functional differences among PPR motifs. Mutagenesis and informatics analysis putatively identified five amino acids organizing its RNA binding surface [the 1st, 4th, 8th, 12th and ‘ii’(-2nd) amino acids] and their complex connections. SELEX (Systematic evolution of ligands by exponential enrichment) and nucleobase preference assays determined the nucleobases with high affinity for HCF152 and suggested several characteristic amino acids that may be involved in determining specificity and/or affinity of the PPR/RNA interaction.
Collapse
Affiliation(s)
- Keiko Kobayashi
- Faculty of Agriculture, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka 812-8581, Japan
| | | | | | | | | | | | | |
Collapse
|
42
|
Lu Y, Li C, Wang H, Chen H, Berg H, Xia Y. AtPPR2, an Arabidopsis pentatricopeptide repeat protein, binds to plastid 23S rRNA and plays an important role in the first mitotic division during gametogenesis and in cell proliferation during embryogenesis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2011; 67:13-25. [PMID: 21435048 PMCID: PMC3214271 DOI: 10.1111/j.1365-313x.2011.04569.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Pentatricopeptide repeat (PPR) proteins are mainly involved in regulating post-transcriptional processes in mitochondria and plastids, including chloroplasts. Mutations in the Arabidopsis PPR2 gene have previously been found to cause defects in seed development and reduced transmission through male and female gametophytes. However, the exact function of AtPPR2 has not been defined. We found that a loss-of-function mutation of AtPPR2 leads to arrest of the first mitotic division during both male and female gametogenesis. In addition, the Atppr2 mutation causes delayed embryogenesis, leading to embryonic lethality. Mutation in emb2750, which appears to be a weak mutant allele of the AtPPR2 locus, also results in defective seeds. However, a majority of emb2750 seeds were able to germinate, but their cotyledons were albino and often deformed, and growth of the emb2750 seedlings were arrested after germination. AtPPR2 is mainly expressed in plant parts that undergo cell division, and AtPPR2 protein was localized to chloroplasts. RNA immunoprecipitation and protein gel mobility shift assays showed that AtPPR2 binds to plastid 23S rRNA. Our study adds to a growing body of evidence that plastids and/or chloroplasts play a key role in cell division. AtPPR2 may modulate the translational process to fine-tune plastid function, thereby regulating cell division.
Collapse
Affiliation(s)
- Yuqing Lu
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- Donald Danforth Plant Science Center, St Louis, MO, USA
- Hong Kong Baptist University, Kowloon, Hong Kong
| | - Cong Li
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hai Wang
- Donald Danforth Plant Science Center, St Louis, MO, USA
- Hong Kong Baptist University, Kowloon, Hong Kong
| | - Hao Chen
- Donald Danforth Plant Science Center, St Louis, MO, USA
| | - Howard Berg
- Donald Danforth Plant Science Center, St Louis, MO, USA
| | - Yiji Xia
- Donald Danforth Plant Science Center, St Louis, MO, USA
- Hong Kong Baptist University, Kowloon, Hong Kong
| |
Collapse
|
43
|
Cai W, Okuda K, Peng L, Shikanai T. PROTON GRADIENT REGULATION 3 recognizes multiple targets with limited similarity and mediates translation and RNA stabilization in plastids. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2011; 67:318-27. [PMID: 21457370 DOI: 10.1111/j.1365-313x.2011.04593.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
PROTON GRADIENT REGULATION 3 (PGR3) contains 27 pentatricopeptide repeat (PPR) motifs and belongs to the P-subfamily. Previous studies have suggested that PGR3 functions in the stabilization of petL operon RNA and also in the translation of petL and one, or some, of the 11 plastid ndh genes encoding subunits of chloroplast NADH dehydrogenase-like complex (NDH). The pgr3-3 allele has been suggested to be specifically defective in the putative PGR3 function of translation. Herein, we show that the polysome association of the monocistronic petL transcript is impaired in pgr3-3. We detected sequences weakly conserved in the 5' untranslated regions (UTRs) of petL and ndhA, and these putative elements were recognized by recombinant PGR3 in vitro. Previously, pgr3-2 was shown to be specifically defective in stabilizing petL operon RNA and to accumulate NDH at wild-type levels. Consistent with this pgr3-2 phenotype, we show here that a recombinant protein carrying the pgr3-2 mutation in the 12th PPR motif bound to the 5' UTR of ndhA but not of petL. This indicates that a single amino acid alteration changes the binding specificity of PGR3. In contrast, the recombinant protein carrying the pgr3-3 mutation in the final, 27th, incomplete PPR motif can bind to both petL and ndhA 5' UTRs, suggesting that the C-terminal end of PGR3 is not required for binding to targets but is essential for translation of petL and probably also ndhA. Our results fully support the model in which PGR3 recognizes two target sequences and is involved in multiple functions, i.e. stabilizing RNA and activating translation.
Collapse
Affiliation(s)
- Wenhe Cai
- Department of Botany, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto, Japan
| | | | | | | |
Collapse
|
44
|
Lipinski KA, Puchta O, Surendranath V, Kudla M, Golik P. Revisiting the yeast PPR proteins--application of an Iterative Hidden Markov Model algorithm reveals new members of the rapidly evolving family. Mol Biol Evol 2011; 28:2935-48. [PMID: 21546354 DOI: 10.1093/molbev/msr120] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Pentatricopeptide repeat (PPR) proteins are the largest known RNA-binding protein family, and are found in all eukaryotes, being particularly abundant in higher plants. PPR proteins localize mostly to mitochondria and chloroplasts, and many were shown to modulate organellar genome expression on the posttranscriptional level. Although the genomes of land plants encode hundreds of PPR proteins, only a few have been identified in Fungi and Metazoa. As the current PPR motif profiles are built mainly on the basis of the predominant plant sequences, they are unlikely to be optimal for detecting fungal and animal members of the family, and many putative PPR proteins in these genomes may remain undetected. In order to verify this hypothesis, we designed a hidden Markov model-based bioinformatic tool called Supervised Clustering-based Iterative Phylogenetic Hidden Markov Model algorithm for the Evaluation of tandem Repeat motif families (SCIPHER) using sequence data from orthologous clusters from available yeast genomes. This approach allowed us to assign 12 new proteins in Saccharomyces cerevisiae to the PPR family. Similarly, in other yeast species, we obtained a 5-fold increase in the detection of PPR motifs, compared with the previous tools. All the newly identified S. cerevisiae PPR proteins localize in the mitochondrion and are a part of the RNA processing interaction network. Furthermore, the yeast PPR proteins seem to undergo an accelerated divergent evolution. Analysis of single and double amino acid substitutions in the Dmr1 protein of S. cerevisiae suggests that cooperative interactions between motifs and pseudoreversion could be the force driving this rapid evolution.
Collapse
Affiliation(s)
- Kamil A Lipinski
- Institute of Genetics and Biotechnology, University of Warsaw, Warsaw, Poland
| | | | | | | | | |
Collapse
|
45
|
Cao ZL, Yu QB, Sun Y, Lu Y, Cui YL, Yang ZN. A point mutation in the pentatricopeptide repeat motif of the AtECB2 protein causes delayed chloroplast development. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2011; 53:258-69. [PMID: 21294841 DOI: 10.1111/j.1744-7909.2011.01030.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
AtECB2 encodes a pentatricopeptide repeat (PPR) protein that regulates the editing of the plastid genes accD and ndhF. The ecb2-1 knockout shows an albino phenotype and is seedling lethal. In this study, we isolated an allelic mutant of the AtECB2 gene, ecb2-2, which showed delayed greening phenotype but could complete their life cycle. In this mutant, the Thr(500) is converted to Ile(500) in the 13(th) PPR motif of the AtECB2 protein. Transmission electron microscopy demonstrated that chloroplast development was delayed in both the cotyledons and leaves of the mutant. An investigation of the chloroplast gene expression profile indicated that PEP (plastid-encoded RNA polymerase) activity in ecb2-2 cotyledons was not obviously affected, whereas it was severely impaired in ecb2-1. This result suggests that the PEP activities cause the different phenotypes of the ecb2-1 and ecb2-2 mutants. The editing efficiency of the three editing sites of accD (C794 and C1568) and ndhF (C290) in the mutant was dynamically altered, which was in agreement with the phenotype. This result indicates that the editing efficiency of accD and ndhF in the ecb2-2 mutant is associated with a delayed greening phenotype. As ecb2-2 can survive and set seeds, this mutant can be used for further investigation of RNA editing and chloroplast development in arabidopsis.
Collapse
Affiliation(s)
- Zhi-Lin Cao
- College of Life and Environmental Sciences, Shanghai Normal University, Shanghai 200234, China
| | | | | | | | | | | |
Collapse
|
46
|
Mao D, Yu H, Liu T, Yang G, Xing Y. Two complementary recessive genes in duplicated segments control etiolation in rice. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2011; 122:373-383. [PMID: 20872210 DOI: 10.1007/s00122-010-1453-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2010] [Accepted: 09/08/2010] [Indexed: 05/29/2023]
Abstract
The main objective of this study was to identify the genes causing etiolation in a rice mutant, the thylakoids of which were scattered. Three populations were employed to map the genes for etiolation using bulked segregant analysis. Genetic analysis confirmed that etiolation was controlled by two recessive genes, et11 and et12, which were fine mapped to an approximately 147-kb region and an approximately 209-kb region on the short arms of chromosomes 11 and 12, respectively. Both regions were within the duplicated segments on chromosomes 11 and 12. They possessed a highly similar sequence of 38 kb at the locations of a pair of duplicated genes with protein sequences very similar to that of HCF152 in Arabidopsis that are required for the processing of chloroplast RNA. These genes are likely the candidates for et11 and et12. Expression profiling was used to compare the expression patterns of paralogs in the duplicated segments. Expression profiling indicated that the duplicated segments had been undergone concerted evolution, and a large number of the paralogs within the duplicated segments were functionally redundant like et11 and et12.
Collapse
Affiliation(s)
- Donghai Mao
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| | | | | | | | | |
Collapse
|
47
|
Hayes ML, Mulligan RM. Pentatricopeptide repeat proteins constrain genome evolution in chloroplasts. Mol Biol Evol 2011; 28:2029-39. [PMID: 21263042 DOI: 10.1093/molbev/msr023] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Higher plants encode hundreds of pentatricopeptide repeat proteins (PPRs) that are involved in several types of RNA processing reactions. Most PPR genes are predicted to be targeted to chloroplasts or mitochondria, and many are known to affect organellar gene expression. In some cases, RNA binding has been directly demonstrated, and the sequences of the cis-elements are known. In this work, we demonstrate that RNA cis-elements recognized by PPRs are constrained in chloroplast genome evolution. Cis-elements for two PPR genes and several RNA editing sites were analyzed for sequence changes by pairwise nucleotide substitution frequency, pairwise indel frequency, and maximum likelihood (ML) phylogenetic distances. All three of these analyses demonstrated that sequences within the cis-element are highly conserved compared with surrounding sequences. In addition, we have compared sequences around chloroplast editing sites and homologous sequences in species that lack an editing site due to the presence of a genomic T. Cis-elements for RNA editing sites are highly conserved in angiosperms; by contrast, comparable sequences around a genomically encoded T exhibit higher rates of nucleotide substitution, higher frequencies of indels, and greater ML distances. The loss in requirement for editing to create the ndhD start codon has resulted in the conversion of the PPR gene responsible for editing that site to a pseudogene. We show that organellar dependence on nuclear-encoded PPR proteins for gene expression has constrained the evolution of cis-elements that are required at the level of RNA processing. Thus, the expansion of the PPR gene family in plants has had a dramatic effect on the evolution of plant organelle genomes.
Collapse
Affiliation(s)
- Michael L Hayes
- Developmental and Cell Biology, University of California, Irvine, USA
| | | |
Collapse
|
48
|
Boulouis A, Raynaud C, Bujaldon S, Aznar A, Wollman FA, Choquet Y. The nucleus-encoded trans-acting factor MCA1 plays a critical role in the regulation of cytochrome f synthesis in Chlamydomonas chloroplasts. THE PLANT CELL 2011; 23:333-49. [PMID: 21216944 PMCID: PMC3051260 DOI: 10.1105/tpc.110.078170] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2010] [Revised: 11/26/2010] [Accepted: 12/07/2010] [Indexed: 05/18/2023]
Abstract
Organelle gene expression is characterized by nucleus-encoded trans-acting factors that control posttranscriptional steps in a gene-specific manner. As a typical example, in Chlamydomonas reinhardtii, expression of the chloroplast petA gene encoding cytochrome f, a major subunit of the cytochrome b(6)f complex, depends on MCA1 and TCA1, required for the accumulation and translation of the petA mRNA. Here, we show that these two proteins associate in high molecular mass complexes that also contain the petA mRNA. We demonstrate that MCA1 is degraded upon interaction with unassembled cytochrome f that transiently accumulates during the biogenesis of the cytochrome b(6)f complex. Strikingly, this interaction relies on the very same residues that form the repressor motif involved in the Control by Epistasy of cytochrome f Synthesis (CES), a negative feedback mechanism that downregulates cytochrome f synthesis when its assembly within the cytochrome b(6)f complex is compromised. Based on these new findings, we present a revised picture for the CES regulation of petA mRNA translation that involves proteolysis of the translation enhancer MCA1, triggered by its interaction with unassembled cytochrome f.
Collapse
Affiliation(s)
| | | | | | | | | | - Yves Choquet
- Unité Mixte de Recherche 7141, Centre National de la Recherche Scientifique/Université Pierre et Marie Curie, Institut de Biologie Physico-Chimique, F-75005 Paris, France
| |
Collapse
|
49
|
Sung TY, Tseng CC, Hsieh MH. The SLO1 PPR protein is required for RNA editing at multiple sites with similar upstream sequences in Arabidopsis mitochondria. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2010; 63:499-511. [PMID: 20497377 DOI: 10.1111/j.1365-313x.2010.04258.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
In Arabidopsis, RNA editing changes more than 500 cytidines to uridines in mitochondrial transcripts. The editing enzyme and co-factors involved in these processes are largely unknown. We have identified a nuclear gene SLOW GROWTH1 (SLO1) encoding an E motif-containing pentatricopeptide repeat protein that is required for RNA editing of nad4 and nad9 in Arabidopsis mitochondria. The SLO1 protein is localized to the mitochondrion, and its absence gives rise to small plants with slow growth and delayed development. A survey of approximately 500 mitochondrial RNA editing sites in Arabidopsis reveals that the editing of two sites, nad4-449 and nad9-328, is abolished in the slo1 mutants. Sequence comparison in the upstream (from -1 to -15 bp) of nad4-449 and nad9-328 editing sites shows that nine of the 15 nucleotides are identical. In addition to RNA editing, we used RNA gel blot analysis to compare the abundance and banding patterns of mitochondrial transcripts between the wild type and slo1 mutants. Of the 79 genes and open reading frames examined, steady-state levels of 56 mitochondrial transcripts are increased in the slo1 mutants. These results suggest that the SLO1 protein may indirectly regulate plant growth and development via affecting mitochondrial RNA editing and gene expression.
Collapse
Affiliation(s)
- Tzu-Ying Sung
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
| | | | | |
Collapse
|
50
|
de Longevialle AF, Small ID, Lurin C. Nuclearly encoded splicing factors implicated in RNA splicing in higher plant organelles. MOLECULAR PLANT 2010; 3:691-705. [PMID: 20603383 DOI: 10.1093/mp/ssq025] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Plant organelles arose from two independent endosymbiosis events. Throughout evolutionary history, tight control of chloroplasts and mitochondria has been gained by the nucleus, which regulates most steps of organelle genome expression and metabolism. In particular, RNA maturation, including RNA splicing, is highly dependent on nuclearly encoded splicing factors. Most introns in organelles are group II introns, whose catalytic mechanism closely resembles that of the nuclear spliceosome. Plant group II introns have lost the ability to self-splice in vivo and require nuclearly encoded proteins as cofactors. Since the first splicing factor was identified in chloroplasts more than 10 years ago, many other proteins have been shown to be involved in splicing of one or more introns in chloroplasts or mitochondria. These new proteins belong to a variety of different families of RNA binding proteins and provide new insights into ribonucleo-protein complexes and RNA splicing machineries in organelles. In this review, we describe how splicing factors, encoded by the nucleus and targeted to the organelles, take part in post-transcriptional steps in higher plant organelle gene expression. We go on to discuss the potential for these factors to regulate organelle gene expression.
Collapse
Affiliation(s)
- Andéol Falcon de Longevialle
- Unité Mixte de Recherche en Génomique Végétale (Institut National de la Recherche Agronomique/Centre National de la Recherche Scientifique/Université d'Evry Val d'Essonne), 91057 Evry, France
| | | | | |
Collapse
|