1
|
Vinces TC, de Souza AS, Carvalho CF, Visnardi AB, Teixeira RD, Llontop EE, Bismara BAP, Vicente EJ, Pereira JO, de Souza RF, Yonamine M, Marana SR, Farah CS, Guzzo CR. Monomeric Esterase: Insights into Cooperative Behavior, Hysteresis/Allokairy. Biochemistry 2024; 63:1178-1193. [PMID: 38669355 DOI: 10.1021/acs.biochem.3c00668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2024]
Abstract
Herein, we present a novel esterase enzyme, Ade1, isolated from a metagenomic library of Amazonian dark earths soils, demonstrating its broad substrate promiscuity by hydrolyzing ester bonds linked to aliphatic groups. The three-dimensional structure of the enzyme was solved in the presence and absence of substrate (tributyrin), revealing its classification within the α/β-hydrolase superfamily. Despite being a monomeric enzyme, enzymatic assays reveal a cooperative behavior with a sigmoidal profile (initial velocities vs substrate concentrations). Our investigation brings to light the allokairy/hysteresis behavior of Ade1, as evidenced by a transient burst profile during the hydrolysis of substrates such as p-nitrophenyl butyrate and p-nitrophenyl octanoate. Crystal structures of Ade1, coupled with molecular dynamics simulations, unveil the existence of multiple conformational structures within a single molecular state (E̅1). Notably, substrate binding induces a loop closure that traps the substrate in the catalytic site. Upon product release, the cap domain opens simultaneously with structural changes, transitioning the enzyme to a new molecular state (E̅2). This study advances our understanding of hysteresis/allokairy mechanisms, a temporal regulation that appears more pervasive than previously acknowledged and extends its presence to metabolic enzymes. These findings also hold potential implications for addressing human diseases associated with metabolic dysregulation.
Collapse
Affiliation(s)
- Tania Churasacari Vinces
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo CEP 05508-000, Brazil
| | - Anacleto Silva de Souza
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo CEP 05508-000, Brazil
| | - Cecília F Carvalho
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo CEP 05508-000, Brazil
| | - Aline Biazola Visnardi
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo CEP 05508-000, Brazil
| | - Raphael D Teixeira
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo CEP 05508-000, Brazil
| | - Edgar E Llontop
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo CEP 05508-000, Brazil
| | - Beatriz Aparecida Passos Bismara
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo CEP 05508-000, Brazil
| | - Elisabete J Vicente
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo CEP 05508-000, Brazil
| | - José O Pereira
- Biotechnology Group, Federal University of Amazonas, Amazonas CEP 69077-000, Brazil
| | - Robson Francisco de Souza
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo CEP 05508-000, Brazil
| | - Mauricio Yonamine
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo CEP 05508-000, Brazil
| | - Sandro Roberto Marana
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo CEP 05508-000, Brazil
| | - Chuck Shaker Farah
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo CEP 05508-000, Brazil
| | - Cristiane R Guzzo
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo CEP 05508-000, Brazil
| |
Collapse
|
2
|
Mukhametgalieva A, Mir SA, Shaihutdinova Z, Masson P. Human Plasma Butyrylcholinesterase Hydrolyzes Atropine: Kinetic and Molecular Modeling Studies. Molecules 2024; 29:2140. [PMID: 38731631 PMCID: PMC11085540 DOI: 10.3390/molecules29092140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 04/29/2024] [Accepted: 05/02/2024] [Indexed: 05/13/2024] Open
Abstract
The participation of butyrylcholinesterase (BChE) in the degradation of atropine has been recurrently addressed for more than 70 years. However, no conclusive answer has been provided for the human enzyme so far. In the present work, a steady-state kinetic analysis performed by spectrophotometry showed that highly purified human plasma BChE tetramer slowly hydrolyzes atropine at pH 7.0 and 25 °C. The affinity of atropine for the enzyme is weak, and the observed kinetic rates versus the atropine concentration was of the first order: the maximum atropine concentration in essays was much less than Km. Thus, the bimolecular rate constant was found to be kcat/Km = 7.7 × 104 M-1 min-1. Rough estimates of catalytic parameters provided slow kcat < 40 min-1 and high Km = 0.3-3.3 mM. Then, using a specific organophosphoryl agent, echothiophate, the time-dependent irreversible inhibition profiles of BChE for hydrolysis of atropine and the standard substrate butyrylthiocholine (BTC) were investigated. This established that both substrates are hydrolyzed at the same site, i.e., S198, as for all substrates of this enzyme. Lastly, molecular docking provided evidence that both atropine isomers bind to the active center of BChE. However, free energy perturbations yielded by the Bennett Acceptance Ratio method suggest that the L-atropine isomer is the most reactive enantiomer. In conclusion, the results provided evidence that plasma BChE slowly hydrolyzes atropine but should have no significant role in its metabolism under current conditions of medical use and even under administration of the highest possible doses of this antimuscarinic drug.
Collapse
Affiliation(s)
- Aliya Mukhametgalieva
- Laboratory of Biochemical Neuropharmacology, Kazan Federal University, Kremlevskaya Str. 18, 420008 Kazan, Russia; (A.M.); (Z.S.)
| | - Showkat Ahmad Mir
- School of Life Sciences, Sambalpur University, Jyotivihar, Burla 768019, India;
| | - Zukhra Shaihutdinova
- Laboratory of Biochemical Neuropharmacology, Kazan Federal University, Kremlevskaya Str. 18, 420008 Kazan, Russia; (A.M.); (Z.S.)
| | - Patrick Masson
- Laboratory of Biochemical Neuropharmacology, Kazan Federal University, Kremlevskaya Str. 18, 420008 Kazan, Russia; (A.M.); (Z.S.)
| |
Collapse
|
3
|
Ranganath VA, Maity I. Artificial Homeostasis Systems Based on Feedback Reaction Networks: Design Principles and Future Promises. Angew Chem Int Ed Engl 2024; 63:e202318134. [PMID: 38226567 DOI: 10.1002/anie.202318134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/15/2024] [Accepted: 01/16/2024] [Indexed: 01/17/2024]
Abstract
Feedback-controlled chemical reaction networks (FCRNs) are indispensable for various biological processes, such as cellular mechanisms, patterns, and signaling pathways. Through the intricate interplay of many feedback loops (FLs), FCRNs maintain a stable internal cellular environment. Currently, creating minimalistic synthetic cells is the long-term objective of systems chemistry, which is motivated by such natural integrity. The design, kinetic optimization, and analysis of FCRNs to exhibit functions akin to those of a cell still pose significant challenges. Indeed, reaching synthetic homeostasis is essential for engineering synthetic cell components. However, maintaining homeostasis in artificial systems against various agitations is a difficult task. Several biological events can provide us with guidelines for a conceptual understanding of homeostasis, which can be further applicable in designing artificial synthetic systems. In this regard, we organize our review with artificial homeostasis systems driven by FCRNs at different length scales, including homogeneous, compartmentalized, and soft material systems. First, we stretch a quick overview of FCRNs in different molecular and supramolecular systems, which are the essential toolbox for engineering different nonlinear functions and homeostatic systems. Moreover, the existing history of synthetic homeostasis in chemical and material systems and their advanced functions with self-correcting, and regulating properties are also emphasized.
Collapse
Affiliation(s)
- Vinay Ambekar Ranganath
- Centre for Nano and Material Sciences, Jain (Deemed-to-be University), Jain Global Campus, Bangalore, 562112, Karnataka, India
| | - Indrajit Maity
- Centre for Nano and Material Sciences, Jain (Deemed-to-be University), Jain Global Campus, Bangalore, 562112, Karnataka, India
| |
Collapse
|
4
|
Mukhametgalieva AR, Nemtarev AV, Sykaev VV, Pashirova TN, Masson P. Activation/Inhibition of Cholinesterases by Excess Substrate: Interpretation of the Phenomenological b Factor in Steady-State Rate Equation. Int J Mol Sci 2023; 24:10472. [PMID: 37445649 DOI: 10.3390/ijms241310472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 06/19/2023] [Accepted: 06/19/2023] [Indexed: 07/15/2023] Open
Abstract
Cholinesterases (ChEs) display a non-michaelian behavior with positively charged substrates. In the steady-state rate equation, the b factor describes this behavior: if b > 1 there is substrate activation, if b < 1 there is substrate inhibition. The mechanistic significance of the b factor was investigated to determine whether this behavior depends on acylation, deacylation or on both steps. Kinetics of human acetyl- (AChE) and butyryl-cholinesterase (BChE) were performed under steady-state conditions and using a time-course of complete substrate hydrolysis. For the hydrolysis of short acyl(thio)esters, where acylation and deacylation are partly rate-limiting, steady-state kinetic analysis could not decide which step determines b. However, the study of the hydrolysis of an arylacylamide, 3-(acetamido)-N,N,N-trimethylanilinium (ATMA), where acetylation is rate-limiting, showed that b depends on the acylation step. The magnitude of b and opposite b values between AChE and BChE for the hydrolysis of acetyl(thio)- versus benzoyl-(thio) esters, then indicated that the productive adjustment of substrates in the active center at high concentration depends on motions of both the Ω and the acyl-binding loops. Benzoylcholine was shown to be a poor substrate of AChE, and steady-state kinetics showed a sudden inhibition at high concentration, likely due to the non-dissociation of hydrolysis products. The poor catalytic hydrolysis of this bulky ester by AChE illustrates the importance of the fine adjustment of substrate acyl moiety in the acyl-binding pocket. Molecular modeling and QM/MM simulations should definitively provide evidence for this statement.
Collapse
Affiliation(s)
- Aliya R Mukhametgalieva
- Biochemical Neuropharmacology Laboratory, Kazan Federal University, 18 Ul. Kremlevskaya, 420008 Kazan, Russia
| | - Andrey V Nemtarev
- Arbuzov Institute of Organic and Physical Chemistry, Kazan Scientific Center, Russian Academy of Sciences, 8 Ul. Arbuzov, 420088 Kazan, Russia
| | - Viktor V Sykaev
- Arbuzov Institute of Organic and Physical Chemistry, Kazan Scientific Center, Russian Academy of Sciences, 8 Ul. Arbuzov, 420088 Kazan, Russia
| | - Tatiana N Pashirova
- Arbuzov Institute of Organic and Physical Chemistry, Kazan Scientific Center, Russian Academy of Sciences, 8 Ul. Arbuzov, 420088 Kazan, Russia
| | - Patrick Masson
- Biochemical Neuropharmacology Laboratory, Kazan Federal University, 18 Ul. Kremlevskaya, 420008 Kazan, Russia
| |
Collapse
|
5
|
Mukhametgalieva AR, Aglyamova AR, Lushchekina SV, Goličnik M, Masson P. Time-course of human cholinesterases-catalyzed competing substrate kinetics. Chem Biol Interact 2019; 310:108702. [DOI: 10.1016/j.cbi.2019.06.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 05/23/2019] [Accepted: 06/06/2019] [Indexed: 02/07/2023]
|
6
|
Insight into the Mechanistic Basis of the Hysteretic-Like Kinetic Behavior of Thioredoxin-Glutathione Reductase (TGR). Enzyme Res 2018; 2018:3215462. [PMID: 30254758 PMCID: PMC6145155 DOI: 10.1155/2018/3215462] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 06/29/2018] [Accepted: 07/29/2018] [Indexed: 11/29/2022] Open
Abstract
A kinetic study of thioredoxin-glutathione reductase (TGR) from Taenia crassiceps metacestode (cysticerci) was carried out. The results obtained from both initial velocity and product inhibition experiments suggest the enzyme follows a two-site ping-pong bi bi kinetic mechanism, in which both substrates and products are bound in rapid equilibrium fashion. The substrate GSSG exerts inhibition at moderate or high concentrations, which is concomitant with the observation of hysteretic-like progress curves. The effect of NADPH on the apparent hysteretic behavior of TGR was also studied. At low concentrations of NADPH in the presence of moderate concentrations of GSSG, atypical time progress curves were observed, consisting of an initial burst-like stage, followed by a lag whose amplitude and duration depended on the concentration of both NADPH and GSSG. Based on all the kinetic and structural evidence available on TGR, a mechanism-based model was developed. The model assumes a noncompetitive mode of inhibition by GSSG in which the disulfide behaves as an affinity label-like reagent through its binding and reduction at an alternative site, leading the enzyme into an inactive state. The critical points of the model are the persistence of residual GSSG reductase activity in the inhibited GSSG-enzyme complexes and the regeneration of the active form of the enzyme by GSH. Hence, the hysteretic-like progress curves of GSSG reduction by TGR are the result of a continuous competition between GSH and GSSG for driving the enzyme into active or inactive states, respectively. By using an arbitrary but consistent set of rate constants, the experimental full progress curves were successfully reproduced in silico.
Collapse
|
7
|
In Vitro Evaluation of Serine Hydrolase Inhibitors. METHODS IN PHARMACOLOGY AND TOXICOLOGY 2018. [DOI: 10.1007/7653_2018_11] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
8
|
Lushchekina SV, Nemukhin AV, Varfolomeev SD, Masson P. Molecular modeling evidence for His438 flip in the mechanism of butyrylcholinesterase hysteretic behavior. J Mol Neurosci 2013; 52:434-45. [PMID: 24310732 DOI: 10.1007/s12031-013-0178-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Accepted: 11/07/2013] [Indexed: 11/24/2022]
Abstract
Cholinesterases display a hysteretic behavior with certain substrates and irreversible inhibitors. For years, this behavior has remained puzzling. However, several lines of evidence indicated that it is caused by perturbation of the catalytic triad and its water environment. In the present study, using molecular dynamics simulations of Ala328Cys BuChE mutant and wild-type BuChE in the absence and presence of a co-solvent (sucrose, glycerol), we provide evidence that hysteresis originates in a flip of the catalytic triad histidine (His438). This event is controlled by water molecules that interact with active site residues. The physiological significance of this phenomenon is still an issue.
Collapse
Affiliation(s)
- Sofya V Lushchekina
- Computer Modeling of Biomolecular Systems Lab, N.M. Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, 4 Kosygina St., 119334, Moscow, Russia,
| | | | | | | |
Collapse
|
9
|
Masson P. Time-dependent kinetic complexities in cholinesterase-catalyzed reactions. BIOCHEMISTRY (MOSCOW) 2013; 77:1147-61. [PMID: 23157295 DOI: 10.1134/s0006297912100070] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Cholinesterases (ChEs) display a hysteretic behavior with certain substrates and inhibitors. Kinetic cooperativity in hysteresis of ChE-catalyzed reactions is characterized by a lag or burst phase in the approach to steady state. With some substrates damped oscillations are shown to superimpose on hysteretic lags. These time dependent peculiarities are observed for both butyrylcholinesterase and acetylcholinesterase from different sources. Hysteresis in ChE-catalyzed reactions can be interpreted in terms of slow transitions between two enzyme conformers E and E'. Substrate can bind to E and/or E', both Michaelian complexes ES and Ε'S can be catalytically competent, or only one of them can make products. The formal reaction pathway depends on both the chemical structure of the substrate and the type of enzyme. In particular, damped oscillations develop when substrate exists in different, slowly interconvertible, conformational, and/or micellar forms, of which only the minor form is capable of binding and reacting with the enzyme. Biphasic pseudo-first-order progressive inhibition of ChEs by certain carbamates and organophosphates also fits with a slow equilibrium between two reactive enzyme forms. Hysteresis can be modulated by medium parameters (pH, chaotropic and kosmotropic salts, organic solvents, temperature, osmotic pressure, and hydrostatic pressure). These studies showed that water structure plays a role in hysteretic behavior of ChEs. Attempts to provide a molecular mechanism for ChE hysteresis from mutagenesis studies or crystallographic studies failed so far. In fact, several lines of evidence suggest that hysteresis is controlled by the conformation of His438, a key residue in the catalytic triad of cholinesterases. Induction time may depend on the probability of His438 to adopt the operative conformation in the catalytic triad. The functional significance of ChE hysteresis is puzzling. However, the accepted view that proteins are in equilibrium between preexisting functional and non-functional conformers, and that binding of a ligand to the functional form shifts equilibrium towards the functional conformation, suggests that slow equilibrium between two conformational states of these enzymes may have a regulatory function in damping out the response to certain ligands and irreversible inhibitors. This is particularly true for immobilized (membrane bound) enzymes where the local substrate and/or inhibitor concentrations depend on influx in crowded organellar systems, e.g. cholinergic synaptic clefts. Therefore, physiological or toxicological relevance of the hysteretic behavior and damped oscillations in ChE-catalyzed reactions and inhibition cannot be ruled out.
Collapse
Affiliation(s)
- P Masson
- Institut de Recherches Biomédicales des Armées-CRSSA, La Tronche, Cedex 38702, France.
| |
Collapse
|
10
|
Abstract
The proprotein convertases (PCs) are calcium-dependent proteases responsible for processing precursor proteins into their active forms in eukariotes. The PC1/3 is a pivotal enzyme of this family that participates in the proteolytic maturation of prohormones and neuropeptides inside the regulated secretory pathway. In this paper we demonstrate that mouse proprotein convertase 1/3 (mPC1/3) has a lag phase of activation by substrates that can be interpreted as a hysteretic behavior of the enzyme for their hydrolysis. This is an unprecedented observation in peptidases, but is frequent in regulatory enzymes with physiological relevance. The lag phase of mPC1/3 is dependent on substrate, calcium concentration and pH. This hysteretic behavior may have implications in the physiological processes in which PC1/3 participates and could be considered an additional control step in the peptide hormone maturation processes as for instance in the transformation of proinsulin to insulin.
Collapse
|
11
|
Debouzy JC, Crouzier D, Favier AL, Perino J. ESR and NMR studies provide evidence that phosphatidyl glycerol specifically interacts with poxvirus membranes. Virol J 2010; 7:379. [PMID: 21194478 PMCID: PMC3023795 DOI: 10.1186/1743-422x-7-379] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2010] [Accepted: 12/31/2010] [Indexed: 11/21/2022] Open
Abstract
Background The lung would be the first organ targeted in case of the use of Variola virus (the causative agent of smallpox) as a bioweapon. Pulmonary surfactant composed of lipids (90%) and proteins (10%) is considered the major physiological barrier against airborne pathogens. The principle phospholipid components of lung surfactant were examined in an in vitro model to characterize their interactions with VACV, a surrogate for variola virus. One of them, Dipalmitoyl phosphatidylglycerol (DPPG), was recently shown to inhibit VACV cell infection. Results The interactions of poxvirus particles from the Western Reserve strain (VACV-WR) and the Lister strain (VACV-List) with model membranes for pulmonary surfactant phospholipids, in particular DPPG, were studied by Electron Spin Resonance (ESR) and proton Nuclear Magnetic Resonance (1H-NMR). ESR experiments showed that DPPG exhibits specific interactions with both viruses, while NMR experiments allowed us to deduce its stoichiometry and to propose a model for the mechanism of interaction at the molecular level. Conclusions These results confirm the ability of DPPG to strongly bind to VACV and suggest that similar interactions occur with variola virus. Similar studies of the interactions between lipids and other airborne pathogens are warranted.
Collapse
Affiliation(s)
- Jean-Claude Debouzy
- Unité de biophysique cellulaire et moléculaire, CRSSA-IRBA, 24 avenue des maquis du Grésivaudan, 38702 La Tronche cedex, France
| | | | | | | |
Collapse
|
12
|
Butyrylcholinesterase for protection from organophosphorus poisons: catalytic complexities and hysteretic behavior. Arch Biochem Biophys 2009; 494:107-20. [PMID: 20004171 DOI: 10.1016/j.abb.2009.12.005] [Citation(s) in RCA: 163] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2009] [Revised: 11/24/2009] [Accepted: 12/01/2009] [Indexed: 12/13/2022]
Abstract
Butyrylcholinesterase is a promiscuous enzyme that displays complex kinetic behavior. It is toxicologically important because it detoxifies organophosphorus poisons (OP) by making a covalent bond with the OP. The OP and the butyrylcholinesterase are both inactivated in the process. Inactivation of butyrylcholinesterase has no adverse effects. However, inactivation of acetylcholinesterase in nerve synapses can be lethal. OP-inhibited butyrylcholinesterase and acetylcholinesterase can be reactivated with oximes provided the OP has not aged. Strategies for preventing the toxicity of OP include (a) treatment with an OP scavenger, (b) reaction of non-aged enzyme with oximes, (c) reactivation of aged enzyme, (d) slowing down aging with peripheral site ligands, and (e) design of mutants that rapidly hydrolyze OP. Option (a) has progressed through phase I clinical trials with human butyrylcholinesterase. Option (b) is in routine clinical use. The others are at the basic research level. Butyrylcholinesterase displays complex kinetic behavior including activation by positively charged esters, ability to hydrolyze amides, and a lag time (hysteresis) preceding hydrolysis of benzoylcholine and N-methylindoxyl acetate. Mass spectrometry has identified new OP binding motifs on tyrosine and lysine in proteins that have no active site serine. It is proposed, but not yet proven, that low dose exposure involves OP modification of proteins that have no active site serine.
Collapse
|
13
|
Dahl G, Arenas OG, Danielson UH. Hepatitis C Virus NS3 Protease Is Activated by Low Concentrations of Protease Inhibitors. Biochemistry 2009; 48:11592-602. [DOI: 10.1021/bi9016928] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Göran Dahl
- Department of Biochemistry and Organic Chemistry, Uppsala University, BMC, Box 576, SE-751 23 Uppsala, Sweden
| | - Omar Gutiérrez Arenas
- Department of Biochemistry and Organic Chemistry, Uppsala University, BMC, Box 576, SE-751 23 Uppsala, Sweden
| | - U. Helena Danielson
- Department of Biochemistry and Organic Chemistry, Uppsala University, BMC, Box 576, SE-751 23 Uppsala, Sweden
| |
Collapse
|
14
|
Old and new questions about cholinesterases. Chem Biol Interact 2008; 175:30-44. [DOI: 10.1016/j.cbi.2008.04.039] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2007] [Revised: 04/25/2008] [Accepted: 04/28/2008] [Indexed: 01/21/2023]
|
15
|
Bakes D, Schreiberová L, Schreiber I, Hauser MJB. Mixed-mode oscillations in a homogeneous pH-oscillatory chemical reaction system. CHAOS (WOODBURY, N.Y.) 2008; 18:015102. [PMID: 18377083 DOI: 10.1063/1.2779857] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
We examine experimentally a chemical system in a flow-through stirred reactor, which is known to provide large-amplitude oscillations of the pH value. By systematic variation of the flow rate, we find that the system displays hysteresis between a steady state and oscillations, and more interestingly, a transition to chaos involving mixed-mode oscillations. The basic pattern of the measured pH in the mixed-mode regime includes a large-scale peak followed by a series of oscillations on a much smaller scale, which are usually highly irregular and of variable duration. The bifurcation diagram shows that chaos sets in via a period-doubling route observed on the large-amplitude scale, but simultaneously small-amplitude oscillations are involved. Beyond the apparent accumulation of period doubling bifurcations, a mixed-mode regime with irregular oscillations on both scales is observed, occasionally interrupted by windows of periodicity. As the flow rate is further increased, chaos turns into quasiperiodicity and later to a simple small-amplitude periodic regime. Dynamics of selected typical regimes were examined with the tools of nonlinear time-series analysis, which include phase space reconstruction of an attractor and calculation of the maximal Lyapunov exponent. The analysis points to deterministic chaos, which appears via a period doubling route from below and via a route involving quasiperiodicity from above, when the flow rate is varied.
Collapse
Affiliation(s)
- Daniel Bakes
- Department of Chemical Engineering and Center for Nonlinear Dynamics of Chemical and Biological Systems, Institute of Chemical Technology, Prague, Technická 5, 166 28 Prague 6, Czech Republic
| | | | | | | |
Collapse
|
16
|
Goldstein BN, Aksirov AM, Zakrjevskaya DT. Calmodulin can induce and control damped oscillations in plasma membrane Ca2+-ATPase activity: A kinetic model. Biophysics (Nagoya-shi) 2007. [DOI: 10.1134/s0006350907060115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
17
|
Masson P, Froment MT, Gillon E, Nachon F, Darvesh S, Schopfer LM. Kinetic analysis of butyrylcholinesterase-catalyzed hydrolysis of acetanilides. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2007; 1774:1139-47. [PMID: 17690023 DOI: 10.1016/j.bbapap.2007.06.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Received: 03/08/2007] [Revised: 06/09/2007] [Accepted: 06/13/2007] [Indexed: 10/23/2022]
Abstract
The aryl-acylamidase (AAA) activity of butyrylcholinesterase (BuChE) has been known for a long time. However, the kinetic mechanism of aryl-acylamide hydrolysis by BuChE has not been investigated. Therefore, the catalytic properties of human BuChE and its peripheral site mutant (D70G) toward neutral and charged aryl-acylamides were determined. Three neutral (o-nitroacetanilide, m-nitroacetanilide, o-nitrophenyltrifluoroacetamide) and one positively charged (3-(acetamido) N,N,N-trimethylanilinium, ATMA) acetanilides were studied. Hydrolysis of ATMA by wild-type and D70G enzymes showed a long transient phase preceding the steady state. The induction phase was characterized by a hysteretic "burst". This reflects the existence of two enzyme states in slow equilibrium with different catalytic properties. Steady-state parameters for hydrolysis of the three acetanilides were compared to catalytic parameters for hydrolysis of esters giving the same acetyl intermediate. Wild-type BuChE showed substrate activation while D70G displayed a Michaelian behavior with ATMA as with positively charged esters. Owing to the low affinity of BuChE for amide substrates, the hydrolysis kinetics of neutral amides was first order. Acylation was the rate-determining step for hydrolysis of aryl-acetylamide substrates. Slow acylation of the enzyme, relative to that by esters may, in part, be due suboptimal fit of the aryl-acylamides in the active center of BuChE. The hypothesis that AAA and esterase active sites of BuChE are non-identical was tested with mutant BuChE. It was found that mutations on the catalytic serine, S198C and S198D, led to complete loss of both activities. The silent variant (FS117) had neither esterase nor AAA activity. Mutation in the peripheral site (D70G) had the same effect on esterase and AAA activities. Echothiophate inhibited both activities identically. It was concluded that the active sites for esterase and AAA activities are identical, i.e. S198. This excludes any other residue present in the gorge for being the catalytic nucleophile pole.
Collapse
Affiliation(s)
- Patrick Masson
- Centre de Recherches du Service de Santé des Armées, Département de Toxicologie, Unité d'Enzymologie, BP 87, 38702 La Tronche cedex, France.
| | | | | | | | | | | |
Collapse
|
18
|
Goldstein BN, Aksirov AM, Zakrjevskaya DT. Substrate influx can modulate the persistence of the active state in hysteretic enzymes: A theoretical analysis. Biophysics (Nagoya-shi) 2007. [DOI: 10.1134/s0006350907030128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
19
|
Goldstein B. Switching mechanism for branched biochemical fluxes: Graph-theoretical analysis. Biophys Chem 2007; 125:314-9. [PMID: 17011698 DOI: 10.1016/j.bpc.2006.09.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2006] [Revised: 09/08/2006] [Accepted: 09/08/2006] [Indexed: 11/22/2022]
Abstract
A graph-theoretical method is applied to characterize the structure of a simplest switching mechanism of common biochemical importance. This mechanism is based on competition of two coupled substrate-binding pathways for a single substrate. No other regulatory interactions are shown to be needed for the switching phenomenon to be observed. It is shown that switch in branch effluxes is observed as bistability or reciprocal oscillations, depending on the value of steady influx. Frequency of reciprocal efflux oscillations in branches is regulated by steady influx. Therefore, the switching mechanism can function as the coding mechanism in the manner of "influx steady level-efflux frequency". The calculated kinetic equations for the switching mechanism demonstrate very steep transitions in the branch fluxes without using high non-linearity of these equations.
Collapse
Affiliation(s)
- Boris Goldstein
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, 142290 Russia.
| |
Collapse
|
20
|
|
21
|
Masson P, Froment MT, Gillon E, Nachon F, Lockridge O, Schopfer LM. Hydrolysis of oxo- and thio-esters by human butyrylcholinesterase. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2006; 1774:16-34. [PMID: 17182295 DOI: 10.1016/j.bbapap.2006.10.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Received: 01/07/2006] [Revised: 10/25/2006] [Accepted: 10/26/2006] [Indexed: 11/16/2022]
Abstract
Catalytic parameters of human butyrylcholinesterase (BuChE) for hydrolysis of homologous pairs of oxo-esters and thio-esters were compared. Substrates were positively charged (benzoylcholine versus benzoylthiocholine) and neutral (phenylacetate versus phenylthioacetate). In addition to wild-type BuChE, enzymes containing mutations were used. Single mutants at positions: G117, a key residue in the oxyanion hole, and D70, the main component of the peripheral anionic site were tested. Double mutants containing G117H and mutations on residues of the oxyanion hole (G115, A199), or the pi-cation binding site (W82), or residue E197 that is involved in stabilization of tetrahedral intermediates were also studied. A mathematical analysis was used to compare data for BuChE-catalyzed hydrolysis of various pairs of oxo-esters and thio-esters and to determine the rate-limiting step of catalysis for each substrate. The interest and limitation of this method is discussed. Molecular docking was used to analyze how the mutations could have altered the binding of the oxo-ester or the thio-ester. Results indicate that substitution of the ethereal oxygen for sulfur in substrates may alter the adjustment of substrate in the active site and stabilization of the transition-state for acylation. This affects the k2/k3 ratio and, in turn, controls the rate-limiting step of the hydrolytic reaction. Stabilization of the transition state is modulated both by the alcohol and acyl moieties of substrate. Interaction of these groups with the ethereal hetero-atom can have a neutral, an additive or an antagonistic effect on transition state stabilization, depending on their molecular structure, size and enantiomeric configuration.
Collapse
Affiliation(s)
- Patrick Masson
- Centre de Recherches du Service de Santé des Armées, Unité d'Enzymologie, BP 87, 38702 La Tronche Cedex, France.
| | | | | | | | | | | |
Collapse
|
22
|
Hrabovská A, Debouzy JC, Froment MT, Devínsky F, Pauliková I, Masson P. Rat butyrylcholinesterase-catalysed hydrolysis of N-alkyl homologues of benzoylcholine. FEBS J 2006; 273:1185-97. [PMID: 16519684 DOI: 10.1111/j.1742-4658.2006.05144.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The purpose of this work was to study the catalytic properties of rat butyrylcholinesterase with benzoylcholine (BzCh) and N-alkyl derivatives of BzCh (BCHn) as substrates. Complex hysteretic behaviour was observed in the approach to steady-state kinetics for each ester. Hysteresis consisted of a long lag phase with damped oscillation. The presence of a long lag phase, with no oscillations, in substrate hydrolysis by rat butyrylcholinesterase was also observed with N-methylindoxyl acetate as substrate. Hysteretic behaviour was explained by the existence of two interconvertible butyrylcholinesterase forms in slow equilibrium, while just one of them is catalytically active. The damped oscillations were explained by the existence of different substrate conformational states and/or aggregates (micelles) in slow equilibrium. Different substrate conformational states were confirmed by 1H-NMR. The K(m) values for substrates decreased as the length of the alkyl chain increased. High affinity of the enzyme for the longest alkyl chain length substrates was explained by multiple hydrophobic interactions of the alkyl chain with amino acid residues lining the active site gorge. Molecular modelling studies supported this interpretation; docking energy decreased as the length of the alkyl chain increased. The long-chain substrates had reduced k(cat) values. Docking studies showed that long-chain substrates were not optimally oriented in the active site for catalysis, thus explaining the slow rate of hydrolysis. The hydrolytic rate of BCH12 and longer alkyl chain esters vs. substrate concentration showed a premature plateau far below V(max). This was due to the loss of substrate availability. The best substrates for rat butyrylcholinesterase were short alkyl homologues, BzCh - BCH4.
Collapse
Affiliation(s)
- Anna Hrabovská
- Comenius University, Faculty of Pharmacy, Department of Cell and Molecular Biology of Drugs, Bratislava, Slovakia.
| | | | | | | | | | | |
Collapse
|
23
|
Grigoryan AA, Ambartsumyan AA, Mkrtchyan MV, Topuzyan VO, Alebyan GP, Asatryan RS. Synthesis and anticholinesterase activity of 2-(dimethylamino)ethyl and choline esters of n-substituted α, β-dehydroamino acids. Pharm Chem J 2006. [DOI: 10.1007/s11094-006-0077-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
24
|
Rosenfeld CA, Sultatos LG. Concentration-Dependent Kinetics of Acetylcholinesterase Inhibition by the Organophosphate Paraoxon. Toxicol Sci 2006; 90:460-9. [PMID: 16403852 DOI: 10.1093/toxsci/kfj094] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
For decades the interaction of the anticholinesterase organophosphorus compounds with acetylcholinesterase has been characterized as a straightforward phosphylation of the active site serine (Ser-203) which can be described kinetically by the inhibitory rate constant k(i). However, more recently certain kinetic complexities in the inhibition of acetylcholinesterase by organophosphates such as paraoxon (O,O-diethyl O-(p-nitrophenyl) phosphate) and chlorpyrifos oxon (O,O-diethyl O-(3,5,6-trichloro-2-pyridyl) phosphate) have raised questions regarding the adequacy of the kinetic scheme on which k(i) is based. The present article documents conditions in which the inhibitory capacity of paraoxon towards human recombinant acetylcholinesterase appears to change as a function of oxon concentration (as evidenced by a changing k(i)), with the inhibitory capacity of individual oxon molecules increasing at lower oxon concentrations. Optimization of a computer model based on an Ordered Uni Bi kinetic mechanism for phosphylation of acetylcholinesterse determined k(1) to be 0.5 nM(-1)h(-1), and k(-1) to be 169.5 h(-1). These values were used in a comparison of the Ordered Uni Bi model versus a k(i) model in order to assess the capacity of k(i) to describe accurately the inhibition of acetylcholinesterase by paraoxon. Interestingly, the k(i) model was accurate only at equilibrium (or near equilibrium), and when the inhibitor concentration was well below its K(d) (pseudo first order conditions). Comparisons of the Ordered Uni Bi and k(i) models demonstrate the changing k(i) as a function of inhibitor concentrations is not an artifact resulting from inappropriate inhibitor concentrations.
Collapse
Affiliation(s)
- Clint A Rosenfeld
- Drug Metabolism and Pharmacokinetics, Schering-Plough Research Institute, Lafayette, New Jersey 07843, USA
| | | |
Collapse
|
25
|
Davis KL, Roussel MR. Optimal observability of sustained stochastic competitive inhibition oscillations at organellar volumes. FEBS J 2006; 273:84-95. [PMID: 16367750 DOI: 10.1111/j.1742-4658.2005.05043.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
When molecules are present in small numbers, such as is frequently the case in cells, the usual assumptions leading to differential rate equations are invalid and it is necessary to use a stochastic description which takes into account the randomness of reactive encounters in solution. We display a very simple biochemical model, ordinary competitive inhibition with substrate inflow, which is only capable of damped oscillations in the deterministic mass-action rate equation limit, but which displays sustained oscillations in stochastic simulations. We define an observability parameter, which is essentially just the ratio of the amplitude of the oscillations to the mean value of the concentration. A maximum in the observability is seen as the volume is varied, a phenomenon we name system-size observability resonance by analogy with other types of stochastic resonance. For the parameters of this study, the maximum in the observability occurs at volumes similar to those of bacterial cells or of eukaryotic organelles.
Collapse
Affiliation(s)
- Kevin L Davis
- Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, Alberta, Canada
| | | |
Collapse
|
26
|
Masson P, Schopfer LM, Froment MT, Debouzy JC, Nachon F, Gillon E, Lockridge O, Hrabovska A, Goldstein BN. Hysteresis of butyrylcholinesterase in the approach to steady-state kinetics. Chem Biol Interact 2005; 157-158:143-52. [PMID: 16256969 DOI: 10.1016/j.cbi.2005.10.019] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Butyrylcholinesterase (BChE) displays hysteretic behavior with certain neutral and charged substrates in the approach to steady state. Previous studies led us to interpret this phenomenon in terms of slow transitions between two enzyme conformers E and E'. This kinetic peculiarity is observed in human, horse and rat BChE. Oscillations that superimpose on the hysteretic lag are observed when benzoylcholine and N-alkyl derivatives of benzoylcholine are used as substrate. Hysteresis of BChE can be modulated by medium parameters (pH, salts, temperature, and pressure). Though mutant enzymes show different hysteretic behavior, so far attempts to provide a molecular mechanism of BChE hysteresis from mutagenesis studies have been unproductive. However, the substrate dependence of the hysteretic induction times, using wild-type BChE and several mutants, allowed us to build a general, mechanistic model for the hysteresis. In this model, substrate can bind to E, E', or both conformers, and ES and/or E'S can be catalytically active. The exact pathway followed depends on both the nature of the substrate and the structure of the BChE mutant under study. We propose that oscillations develop when substrate exists in different, slowly interconvertible, conformational and/or aggregation forms, of which only the minor form is capable of reacting with BChE. In support of this proposal, NMR studies have provided direct evidence for slow equilibria between monomeric and micellar forms of long-chain, alkyl derivatives of benzoyl-(N-substituted) choline. There is no direct evidence that hysteresis plays a role in BChE function(s). However, the "new view" of protein dynamics proposes that proteins are normally in equilibrium between pre-existing, functional and non-functional conformers; and that binding a ligand to the functional form shifts that equilibrium towards the functional conformation. Therefore, a physiological or toxicological relevance for the hysteresis in BChE cannot be ruled out.
Collapse
Affiliation(s)
- Patrick Masson
- Centre de Recherches du Service de Santé des Armées, BP. 87, 38702 La Tronche cédex, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Marchal S, Torrent J, Masson P, Kornblatt JM, Tortora P, Fusi P, Lange R, Balny C. The powerful high pressure tool for protein conformational studies. Braz J Med Biol Res 2005; 38:1175-83. [PMID: 16082457 DOI: 10.1590/s0100-879x2005000800004] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The pressure behavior of proteins may be summarized as a the pressure-induced disordering of their structures. This thermodynamic parameter has effects on proteins that are similar but not identical to those induced by temperature, the other thermodynamic parameter. Of particular importance are the intermolecular interactions that follow partial protein unfolding and that give rise to the formation of fibrils. Because some proteins do not form fibrils under pressure, these observations can be related to the shape of the stability diagram. Weak interactions which are differently affected by hydrostatic pressure or temperature play a determinant role in protein stability. Pressure acts on the 2 degrees, 3 degrees and 4 degrees structures of proteins which are maintained by electrostatic and hydrophobic interactions and by hydrogen bonds. We present some typical examples of how pressure affects the tertiary structure of proteins (the case of prion proteins), induces unfolding (ataxin), is a convenient tool to study enzyme dissociation (enolase), and provides arguments to understand the role of the partial volume of an enzyme (butyrylcholinesterase). This approach may have important implications for the understanding of the basic mechanism of protein diseases and for the development of preventive and therapeutic measures.
Collapse
Affiliation(s)
- S Marchal
- INSERM U431, Université Montpellier II, Montpellier, France
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Masson P, Balny C. Linear and non-linear pressure dependence of enzyme catalytic parameters. Biochim Biophys Acta Gen Subj 2005; 1724:440-50. [PMID: 15951113 DOI: 10.1016/j.bbagen.2005.05.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2005] [Revised: 05/03/2005] [Accepted: 05/04/2005] [Indexed: 11/21/2022]
Abstract
The pressure dependence of enzyme catalytic parameters allows volume changes associated with substrate binding and activation volumes for the chemical steps to be determined. Because catalytic constants are composite parameters, elementary volume change contributions can be calculated from the pressure differentiation of kinetic constants. Linear and non-linear pressure-dependence of single-step enzyme reactions and steady-state catalytic parameters can be observed. Non-linearity can be interpreted either in terms of interdependence between the pressure and other environmental parameters (i.e., temperature, solvent composition, pH), pressure-induced enzyme unfolding, compressibility changes and pressure-induced rate limiting changes. These different situations are illustrated with several examples.
Collapse
Affiliation(s)
- Patrick Masson
- Centre de Recherches du Service de Santé des Armées, Département de Toxicologie, Unité d'Enzymologie, BP. 87, 38702 La Tronche cédex, France.
| | | |
Collapse
|
29
|
Rider CV, LeBlanc GA. An integrated addition and interaction model for assessing toxicity of chemical mixtures. Toxicol Sci 2005; 87:520-8. [PMID: 16002478 DOI: 10.1093/toxsci/kfi247] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The high propensity for simultaneous exposure to multiple environmental chemicals necessitates the development and use of models that provide insight into the toxicity of chemical mixtures. In this study, we developed a mathematical model that combines concepts of concentration addition, response addition, and toxicokinetic chemical interaction to assess toxicity of chemical mixtures. A ternary mixture of acetylcholinesterase inhibiting organophosphates (malathion and parathion) and the P450 inhibitor piperonyl butoxide was used to model toxicity. Concentration-response curves were generated for individual chemicals as well as for mixtures of the chemicals using acute toxicity tests with Daphnia magna. The toxicity of binary combinations of malathion and parathion adhered to the principles of concentration addition. The contribution of piperonyl butoxide to mixture toxicity was integrated using a model for response addition. Piperonyl butoxide also modified the toxicity of the organophosphates by inhibiting their metabolic activation. The antagonistic effects of piperonyl butoxide towards the organophosphates were quantified as coefficients of interactions (K-functions) and incorporated into the mixture model. Finally, toxicity of the ternary mixture was modeled at 30 different mixture formulations using three additive models that assumed no interaction (concentration addition, response addition, and integrated addition) and using the integrated addition and interaction (IAI) model. Toxicity of the 30 mixtures was then experimentally determined and compared to model results. Only the IAI model accurately predicted the toxicity of the mixtures. The IAI model holds promise as a means for assessing hazard of complex chemical mixtures.
Collapse
Affiliation(s)
- Cynthia V Rider
- Department of Environmental and Molecular Toxicology, North Carolina State University, Raleigh, 27695, USA
| | | |
Collapse
|
30
|
Masson P, Bec N, Froment MT, Nachon F, Balny C, Lockridge O, Schopfer LM. Rate-determining step of butyrylcholinesterase-catalyzed hydrolysis of benzoylcholine and benzoylthiocholine. Volumetric study of wild-type and D70G mutant behaviour. ACTA ACUST UNITED AC 2004; 271:1980-90. [PMID: 15128307 DOI: 10.1111/j.1432-1033.2004.04110.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The rate-limiting step for hydrolysis of the positively charged oxoester benzoylcholine (BzCh) by human butyrylcholinesterase (BuChE) is deacylation (k(3)), whereas it is acylation (k(2)) for hydrolysis of the homologous thioester benzoylthiocholine (BzSCh). Steady-state hydrolysis of BzCh and BzSCh by wild-type BuChE and its peripheral anionic site mutant D70G was investigated at different hydrostatic pressures, which allowed determination of volume changes associated with substrate binding, and the activation volumes for the chemical steps. A differential nonlinear pressure-dependence of the catalytic parameters for hydrolysis of both substrates by both enzymes was shown. Nonlinearity of the plots may be explained in terms of compressibility changes or rate-limiting changes. To distinguish between these two possibilities, enzyme phosphorylation by diisopropylfluorophosphate (DFP) in the presence of substrate (BzSCh) under pressure was studied. There was no pressure dependence of volume changes for DFP binding or for phosphorylation of either wild-type or D70G. Analysis of the pressure dependence for steady-state hydrolysis of substrates, and for phosphorylation by DFP provided evidence that no enzyme compressibility changes occurred during the catalyzed reactions. Thus, the nonlinear pressure dependence of substrate hydrolysis reflects changes in the rate-limiting step with pressure. Change in rate-determining step occurred at a pressure of 100 MPa for hydrolysis of BzCh by wild-type and at 75 MPa for D70G. For hydrolysis of BzSCh the change occurred at higher pressures because k(2) << k(3) at atmospheric pressure for this substrate. Elementary volume change contributions upon initial binding, productive binding, acylation and deacylation were calculated from the pressure differentiation of kinetic constants. This analysis shed light on the molecular events taking place along the hydrolysis pathways of BzCh and BzSCh by wild-type BuChE and the D70G mutant. In addition, volume change differences between wild-type and D70G provided new evidence that residue D70 in the peripheral site controls hydration of the active site gorge and the dynamics of the water molecule network during catalysis. Finally, a steady-state kinetic study of the oxyanion hole mutant (G117H) showed that substitution of the ethereal sulfur for oxygen in the substrate alters the final adjustment of substrate in the active site and stabilization of the acylation transition state.
Collapse
Affiliation(s)
- Patrick Masson
- Centre de Recherches du Service de Santé des Armées (CRSSA), Département de Toxicologie, Unité d'Enzymologie, 38702 La Tronche cedex, France.
| | | | | | | | | | | | | |
Collapse
|