1
|
Jennings EA, Abi-Rached ZH, Ryan RO. Metabolic origin and significance of 3-methylglutaryl CoA. Clin Chim Acta 2025; 574:120320. [PMID: 40252717 DOI: 10.1016/j.cca.2025.120320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2025] [Revised: 04/15/2025] [Accepted: 04/16/2025] [Indexed: 04/21/2025]
Abstract
3-Methylglutaryl (3MG) CoA is not part of any biochemical pathway, yet its byproducts, 3MG carnitine and 3MG acid, are disease biomarkers. Both compounds are excreted in HMG CoA lyase deficiency, while 3MG aciduria occurs in inborn errors of metabolism (IEM) associated with compromised mitochondrial energy metabolism. In one such disorder (i.e., TMEM70 deficiency), 3MG carnitine is also present. Moreover, in a number of chronic and acute maladies, elevated levels of 3MG carnitine are present. The precursor of 3MG CoA istrans-3-methylglutaconyl (3MGC) CoA. Whentrans-3MGC CoA levels rise, a portion of this metabolite pool is reduced to 3MG CoA, potentially via a side reaction involving glutaryl CoA dehydrogenase (GCDH), which normally catalyzes the oxidative decarboxylation of glutaryl CoA to crotonyl CoA and CO2. This reaction occurs via a two-step process wherein glutaryl CoA is initially oxidized to glutaconyl CoA, coupled to reduction of the enzyme's FAD prosthetic group. Enzyme-bound glutaconyl CoA is then decarboxylated to the reaction product, crotonyl CoA. Before GCDH can accept another glutaryl CoA the flavin prosthetic group must be oxidized to FAD by donating electrons to electron transferring flavoprotein (ETF). However, genetic- or disease-induced defects in electron transport chain function can impede this reaction. We propose thattrans-3MGC CoA is a substrate for reduced GCDH and, when glutaryl CoA andtrans-3MGC CoA are present, GCDH is able to bypass ETF and cycle between oxidized and reduced states, producing crotonyl CoA and CO2from glutaryl CoA, and 3MG CoA fromtrans-3MGC CoA.
Collapse
Affiliation(s)
- Elizabeth A Jennings
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, Reno, NV 89557, USA
| | - Zane H Abi-Rached
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, Reno, NV 89557, USA
| | - Robert O Ryan
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, Reno, NV 89557, USA.
| |
Collapse
|
2
|
Fabbian S, Masciovecchio B, Schievano E, Giachin G. Hidden β-γ Dehydrogenation Products in Long-Chain Fatty Acid Oxidation Unveiled by NMR: Implications on Lipid Metabolism. ACS BIO & MED CHEM AU 2025; 5:262-267. [PMID: 40255280 PMCID: PMC12006827 DOI: 10.1021/acsbiomedchemau.4c00140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 02/19/2025] [Accepted: 03/07/2025] [Indexed: 04/22/2025]
Abstract
We present a comprehensive analysis of the initial α,β-dehydrogenation step in long-chain fatty acid β-oxidation (FAO). We focused on palmitoyl-CoA oxidized by two mitochondrial acyl-CoA dehydrogenases, very-long-chain acyl-CoA dehydrogenase (VLCAD) and acyl-CoA dehydrogenase family member 9 (ACAD9), both implicated in mitochondrial diseases. By combining MS and NMR, we identified the (2E)-hexadecenoyl-CoA as the expected α-β-dehydrogenation product and also the E and Z stereoisomers of 3-hexadecenoyl-CoA: a "γ-oxidation" product. This finding reveals an alternative catalytic pathway in mitochondrial FAO, suggesting a potential regulatory role for ACAD9 and VLCAD during fatty acid metabolism.
Collapse
Affiliation(s)
- Simone Fabbian
- Department
of Chemical Sciences, University of Padua, via F. Marzolo 1, 35131 Padova, Italy
- Department
of Pharmaceutical and Pharmacological Sciences, University of Padua, via F. Marzolo 5, 35131 Padova, Italy
| | - Beatrice Masciovecchio
- Department
of Chemical Sciences, University of Padua, via F. Marzolo 1, 35131 Padova, Italy
| | - Elisabetta Schievano
- Department
of Chemical Sciences, University of Padua, via F. Marzolo 1, 35131 Padova, Italy
| | - Gabriele Giachin
- Department
of Chemical Sciences, University of Padua, via F. Marzolo 1, 35131 Padova, Italy
| |
Collapse
|
3
|
Yuan S, Shuyao T, Jingwei L, Bing W, Jingwen X, Busu L, Bing Z, Kunqian J, Chuanzhu Y. Growth differentiation factor 15: a valuable biomarker for the diagnosis and prognosis of late-onset form of multiple Acyl-CoA dehydrogenation deficiency. Orphanet J Rare Dis 2025; 20:159. [PMID: 40181460 PMCID: PMC11969926 DOI: 10.1186/s13023-025-03651-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Accepted: 03/02/2025] [Indexed: 04/05/2025] Open
Abstract
BACKGROUND Multiple acyl-CoA Dehydrogenation Deficiency (MADD) is a hereditary metabolic disorder affecting the metabolism of fatty acids, amino acids, and choline, typically presenting with fat accumulation and mitochondrial abnormalities in muscle pathology. Growth differentiation factor 15 (GDF15) is a stress-responsive cytokine implicated in energy metabolism. Therefore, this study aimed to assess the level of GDF15 in patients with late-onset MADD and to evaluate its potential as a reliable biomarker for diagnosing symptoms and determining the severity of late-onset MADD. METHODS In this study, consecutive patients with MADD mitochondrial diseases were recruited from the Neuromuscular Center of Qilu Hospital, Shandong University, between April 2015 and October 2021. We measured serum GDF15 levels in patients with late-onset MADD and healthy controls. Additionally, we analyzed the messenger RNA(mRNA) expression of GDF15 and integrated stress response (ISR)-related factors, including CHOP, ATF5, and TRIB3, in the muscles. RESULTS Serum GDF15 levels in patients with late-onset MADD were 18.8 times higher than those in healthy controls. GDF15 levels decreased as the disease progressed, and its elecated levels correlated with anorexia symptoms. The mRNA expression of GDF15 and ISR-related factors in the muscles was higher in patients with late-onset MADD than in controls. CONCLUSION GDF15 levels were significantly elevated in symptomatic patients with late-onset MADD, likely due to mitochondrial dysfunction activating the ISR pathway. These findings suggest that GDF15 is a valuable biomarker for monitoring disease severity and symptomatology in patients with late-onset MADD.
Collapse
Affiliation(s)
- Sun Yuan
- Neurology, Cheeloo College of Medicine, Qilu Hospital, Shandong University, Qingdao, 266035, China
- Department of Neurology, Shandong Key Laboratory of Mitochondrial Medicine and Rare Diseases, Research Institute of Neuromuscular and Neurodegenerative Diseases, Cheeloo College of Medicine, Qilu Hospital, Shandong University, Jinan, 250012, Shandong, China
| | - Tang Shuyao
- Department of Neurology, Shandong Key Laboratory of Mitochondrial Medicine and Rare Diseases, Research Institute of Neuromuscular and Neurodegenerative Diseases, Cheeloo College of Medicine, Qilu Hospital, Shandong University, Jinan, 250012, Shandong, China
| | - Lyu Jingwei
- Department of Neurology, Shandong Key Laboratory of Mitochondrial Medicine and Rare Diseases, Research Institute of Neuromuscular and Neurodegenerative Diseases, Cheeloo College of Medicine, Qilu Hospital, Shandong University, Jinan, 250012, Shandong, China
| | - Wen Bing
- Department of Neurology, Shandong Key Laboratory of Mitochondrial Medicine and Rare Diseases, Research Institute of Neuromuscular and Neurodegenerative Diseases, Cheeloo College of Medicine, Qilu Hospital, Shandong University, Jinan, 250012, Shandong, China
| | - Xu Jingwen
- Department of Neurology, Shandong Key Laboratory of Mitochondrial Medicine and Rare Diseases, Research Institute of Neuromuscular and Neurodegenerative Diseases, Cheeloo College of Medicine, Qilu Hospital, Shandong University, Jinan, 250012, Shandong, China
| | - Li Busu
- Department of Neurology, Shandong Key Laboratory of Mitochondrial Medicine and Rare Diseases, Research Institute of Neuromuscular and Neurodegenerative Diseases, Cheeloo College of Medicine, Qilu Hospital, Shandong University, Jinan, 250012, Shandong, China
| | - Zhao Bing
- Neurology, Cheeloo College of Medicine, Qilu Hospital, Shandong University, Qingdao, 266035, China
- Department of Neurology, Shandong Key Laboratory of Mitochondrial Medicine and Rare Diseases, Research Institute of Neuromuscular and Neurodegenerative Diseases, Cheeloo College of Medicine, Qilu Hospital, Shandong University, Jinan, 250012, Shandong, China
| | - Ji Kunqian
- Department of Neurology, Shandong Key Laboratory of Mitochondrial Medicine and Rare Diseases, Research Institute of Neuromuscular and Neurodegenerative Diseases, Cheeloo College of Medicine, Qilu Hospital, Shandong University, Jinan, 250012, Shandong, China.
- Shandong Key Laboratory: Magnetic Field-free Medicine & Functional Imaging, Shandong University, Jinan, 250012, Shandong, China.
| | - Yan Chuanzhu
- Neurology, Cheeloo College of Medicine, Qilu Hospital, Shandong University, Qingdao, 266035, China.
- Department of Neurology, Shandong Key Laboratory of Mitochondrial Medicine and Rare Diseases, Research Institute of Neuromuscular and Neurodegenerative Diseases, Cheeloo College of Medicine, Qilu Hospital, Shandong University, Jinan, 250012, Shandong, China.
| |
Collapse
|
4
|
Sharma S, McKenzie M. The Pathogenesis of Very Long-Chain Acyl-CoA Dehydrogenase Deficiency. Biomolecules 2025; 15:416. [PMID: 40149952 PMCID: PMC11940467 DOI: 10.3390/biom15030416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Revised: 03/11/2025] [Accepted: 03/12/2025] [Indexed: 03/29/2025] Open
Abstract
Living systems require energy to maintain their existence and perform tasks such as cell division. This energy is stored in several molecular forms in nature, specifically lipids, carbohydrates, and amino acids. At a cellular level, energy is extracted from these complex molecules and transferred to adenosine triphosphate (ATP) in the cytoplasm and mitochondria. Within the mitochondria, fatty acid β-oxidation (FAO) and oxidative phosphorylation (OXPHOS) are crucial metabolic processes involved in generating ATP, with defects in these pathways causing mitochondrial disease. Very long-chain acyl-CoA dehydrogenase deficiency (VLCADD) is a fatty acid β-oxidation disorder (FAOD) affecting 1 to 2 individuals per 100,000. Similar to other mitochondrial disorders, there is no cure for VLCADD, with symptomatic treatment comprising dietary management and supplementation with medium-chain fatty acids to bypass the enzyme deficiency. While this addresses the primary defect in VLCADD, there is growing evidence that other aspects of mitochondrial function are also affected in VLCADD, including secondary defects in OXPHOS function. Here, we review our current understanding of VLCADD with a focus on the associated biochemical and molecular defects that can disrupt multiple aspects of mitochondrial function. We describe the interactions between FAO proteins and the OXPHOS complexes and how these interactions are critical for maintaining the activity of both metabolic pathways. In particular, we describe what is now known about the protein-protein interactions between VLCAD and the OXPHOS supercomplex and how their disruption contributes to overall VLCADD pathogenesis.
Collapse
Affiliation(s)
- Shashwat Sharma
- School of Life and Environmental Sciences, Faculty of Science, Engineering and Built Environment, Deakin University, 75 Pigdons Road, Waurn Ponds, VIC 3216, Australia;
| | - Matthew McKenzie
- School of Life and Environmental Sciences, Faculty of Science, Engineering and Built Environment, Deakin University, 75 Pigdons Road, Waurn Ponds, VIC 3216, Australia;
- Institute for Physical Activity and Nutrition, Deakin University, 75 Pigdons Road, Waurn Ponds, VIC 3216, Australia
| |
Collapse
|
5
|
Wang M, Medarametla P, Kronenberger T, Deingruber T, Brear P, Figueroa W, Ho PM, Krueger T, Pearce JC, Poso A, Wakefield JG, Spring DR, Welch M. Pseudomonas aeruginosa acyl-CoA dehydrogenases and structure-guided inversion of their substrate specificity. Nat Commun 2025; 16:2334. [PMID: 40057486 PMCID: PMC11890623 DOI: 10.1038/s41467-025-57532-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 02/26/2025] [Indexed: 05/13/2025] Open
Abstract
Fatty acids are a primary source of carbon for Pseudomonas aeruginosa (PA) in the airways of people with cystic fibrosis (CF). Here, we use tandem mass-tag proteomics to analyse the protein expression profile of a CF clinical isolate grown on different fatty acids. Two fatty acyl-CoA dehydrogenases (designated FadE1 and FadE2) are strongly induced during growth on fatty acids. FadE1 displays a strong preference for long-chain acyl-CoAs, whereas FadE2 exclusively utilizes medium-chain acyl-CoAs. Structural analysis of the enzymes enables us to identify residues comprising the substrate selectivity filter in each. Engineering these residues enables us to invert the substrate specificity of each enzyme. Mutants in fadE1 displayed impaired virulence in an infection model, and decreased growth on long chain fatty acids. The unique features of the substrate binding pocket enable us to identify an inhibitor that is differentially active against FadE1 and FadE2.
Collapse
Affiliation(s)
- Meng Wang
- Department of Biochemistry, Tennis Court Road, Cambridge, UK
| | - Prasanthi Medarametla
- Department of Biochemistry, Tennis Court Road, Cambridge, UK
- School of Pharmacy, University of Eastern Finland, Kuopio, Finland
| | - Thales Kronenberger
- School of Pharmacy, University of Eastern Finland, Kuopio, Finland
- Interfaculty Institute of Microbiology and Infection Medicine (IMIT), University of Tübingen, Tübingen, Germany
- Partner-site Tübingen, German Center for Infection Research (DZIF), Tübingen, Germany
| | - Tomas Deingruber
- Yusuf Hamied Department of Chemistry, Lensfield Road, Cambridge, UK
| | - Paul Brear
- Department of Biochemistry, Tennis Court Road, Cambridge, UK
| | - Wendy Figueroa
- Department of Biochemistry, Tennis Court Road, Cambridge, UK
| | - Pok-Man Ho
- Department of Biochemistry, Tennis Court Road, Cambridge, UK
| | - Thomas Krueger
- Department of Biochemistry, Tennis Court Road, Cambridge, UK
| | - James C Pearce
- Living System Institute, Department of Biosciences, University of Exeter, Exeter, UK
| | - Antti Poso
- School of Pharmacy, University of Eastern Finland, Kuopio, Finland
| | - James G Wakefield
- Living System Institute, Department of Biosciences, University of Exeter, Exeter, UK
| | - David R Spring
- Yusuf Hamied Department of Chemistry, Lensfield Road, Cambridge, UK
| | - Martin Welch
- Department of Biochemistry, Tennis Court Road, Cambridge, UK.
| |
Collapse
|
6
|
Zhang B, Gao Y, Shao Y, Li Y, Ma J, Xie S, Li J, Ma T, Wang Z. Riboflavin improves meat quality, antioxidant capacity, muscle development, and lipids composition of breast muscle in pigeon. Poult Sci 2025; 104:104856. [PMID: 39970516 PMCID: PMC11880711 DOI: 10.1016/j.psj.2025.104856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/20/2025] [Accepted: 01/24/2025] [Indexed: 02/21/2025] Open
Abstract
This study investigated the effects of different dietary riboflavin supplementation levels on riboflavin status, meat quality, antioxidant capacity, breast muscle development, and lipid composition in pigeons. Squabs were fed diets with five riboflavin concentrations ranging from 1.20 to 16.20 mg/kg. Riboflavin, flavin adenine dinucleotide, and flavin mononucleotide concentrations in the liver and breast muscle were significantly lower in the riboflavin-deficient group (P < 0.05) and increased with higher riboflavin levels. Regarding meat quality, riboflavin supplementation improved shear force, redness, breast muscle weight, and percentage (P < 0.05), whereas riboflavin deficiency exhibited poorer meat characteristics. Riboflavin enhanced antioxidant capacity, as shown by reduced MDA and increased T-SOD and GR activity in the supplemented groups (P < 0.05). Histological analysis revealed that riboflavin-deficient pigeons had smaller muscle fiber diameter and greater fiber density (P < 0.05). Riboflavin supplementation also improved lipid composition by reducing saturated fatty acids and increasing polyunsaturated fatty acids, particularly arachidonic acid (P < 0.05). Additionally, riboflavin influenced the expression of key genes involved in lipid metabolism and antioxidant function, with downregulation of ACADL and ACADS in the deficient group (P < 0.05). These results indicate adequate riboflavin supplementation enhances pigeon meat quality, muscle development, antioxidant defense, and lipid metabolism. In conclusion, riboflavin supplements in the pigeon diet can improve the quality of pigeon meat by maintaining muscle development, enhancing antioxidant function, and stabilizing lipid metabolism.
Collapse
Affiliation(s)
- Bo Zhang
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, PR China
| | - Yusheng Gao
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, PR China
- School of Life Science and Food Engineering, Hebei University of Science and Technology, Shijiazhuang 050091, PR China
| | - Yuxin Shao
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, PR China
| | - Yipu Li
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, PR China
- School of Life Science and Food Engineering, Hebei University of Science and Technology, Shijiazhuang 050091, PR China
| | - Jianyuan Ma
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, PR China
| | - Shuxian Xie
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, PR China
| | - Jing Li
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, PR China
| | - Tenghe Ma
- School of Life Science and Food Engineering, Hebei University of Science and Technology, Shijiazhuang 050091, PR China
| | - Zheng Wang
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, PR China
| |
Collapse
|
7
|
Wang H, Gao B, Cheng H, Cao S, Ma X, Chen Y, Ye Y. Unmasking the reverse catalytic activity of 'ene'-reductases for asymmetric carbonyl desaturation. Nat Chem 2024:10.1038/s41557-024-01671-1. [PMID: 39592841 DOI: 10.1038/s41557-024-01671-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 10/10/2024] [Indexed: 11/28/2024]
Abstract
Carbonyl desaturation is a fundamental reaction widely practised in organic synthesis. While numerous methods have been developed to expand the scope of this important transformation, most of them necessitate multi-step protocols or suffer from the use of high loadings of metal or strong oxidizing conditions. Moreover, approaches that can achieve precise stereochemical control of the desaturation process are extremely rare. Here we report a biocatalytic platform for desymmetrizing desaturation of cyclohexanones to generate diverse cyclohexenones bearing a remote quaternary stereogenic centre, by reengineering 'ene'-reductases to efficiently mediate dehydrogenation, the reverse process of their native activity. This 'ene'-reductase-based desaturation system operates under mild conditions with air as the terminal oxidant, tolerates oxidation-sensitive or metal-incompatible functional groups and, more importantly, exhibits unparalleled stereoselectivity compared with those achieved with small-molecule catalysts. Mechanistic investigations suggest that the reaction proceeded through α-deprotonation followed by a rate-determining β-hydride transfer.
Collapse
Affiliation(s)
- Hui Wang
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, Hangzhou, China
| | - Bin Gao
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, Hangzhou, China
| | - Heli Cheng
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, Hangzhou, China
| | - Shixuan Cao
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, Hangzhou, China
| | - Xinyi Ma
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, Hangzhou, China
| | - Yinjuan Chen
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, Instrumentation and Service Center for Molecular Sciences, Westlake University, Hangzhou, China
| | - Yuxuan Ye
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, Hangzhou, China.
| |
Collapse
|
8
|
Zhang J, Lei J, Liu X, Zhang N, Wu L, Li Y. LC-MS simultaneous profiling of acyl-CoA and acyl-carnitine in dynamic metabolic status. Anal Chim Acta 2024; 1329:343235. [PMID: 39396298 DOI: 10.1016/j.aca.2024.343235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/08/2024] [Accepted: 09/09/2024] [Indexed: 10/15/2024]
Affiliation(s)
- Jiangang Zhang
- Department of Medical Oncology, Chongqing University Cancer Hospital, Chongqing, 400030, China
| | - Juan Lei
- Department of Medical Oncology, Chongqing University Cancer Hospital, Chongqing, 400030, China
| | - Xudong Liu
- Department of Medical Oncology, Chongqing University Cancer Hospital, Chongqing, 400030, China
| | - Nan Zhang
- Department of Medical Oncology, Chongqing University Cancer Hospital, Chongqing, 400030, China
| | - Lei Wu
- Department of Medical Oncology, Chongqing University Cancer Hospital, Chongqing, 400030, China
| | - Yongsheng Li
- Department of Medical Oncology, Chongqing University Cancer Hospital, Chongqing, 400030, China.
| |
Collapse
|
9
|
Yu M, Li Z, Cui Y, Rong T, Tian Z, Deng D, Liu Z, Zhang R, Ma X. An Integrated Profiling of Liver Metabolome and Transcriptome of Pigs Fed Diets with Different Starch Sources. Animals (Basel) 2024; 14:3192. [PMID: 39595245 PMCID: PMC11591517 DOI: 10.3390/ani14223192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/31/2024] [Accepted: 11/04/2024] [Indexed: 11/28/2024] Open
Abstract
Diets containing higher-amylose-content starches were proved to have some beneficial effects on monogastric animals, such as promoting the proliferation of intestinal probiotics. However, current research on the effects of diets with different starch sources on animals at the extraintestinal level is still very limited. We hypothesized that diets with different starch sources may affect lipid-related gene expression and metabolism in the liver of pigs. This study aimed to use adult pig models to evaluate the effects of diets with different starch sources (tapioca starch, TS; pea starch, PS) on the liver gene expressions and metabolism. In total, 48 growing pigs were randomly assigned to the TS and PS diets with 8 replicate pens/group and 3 pigs per pen. On day 44 of the experiment, liver samples were collected for metabolome and transcriptome analysis. Metabolome data suggested that different starch sources affected (p < 0.05) the metabolic patterns of liver. Compared with the TS diet, the PS diet increased (p < 0.05) some unsaturated fatty acids and several amino acids or peptide levels in the liver of pigs. Moreover, transcriptome data indicated the PS diets elevated (p < 0.05) fatty acid β-oxidation-related gene expression in the liver of pigs, and reduced (p < 0.05) unsaturated fatty acid metabolism-related gene expression. The results of quantitative real-time PCR confirmed that the PS diet upregulated (p < 0.05) the expression of acyl-CoA dehydrogenase very long chain (ACADVL), carnitine palmitoyl transferase (CPT) 1A, and malonyl-CoA decarboxylase (MLYCD), and downregulated (p < 0.05) the expression level of cytochrome P450 2U1 (CYP2U1) and aldehyde dehydrogenase 1B1 (ALDH1B1) in the liver. In addition, the results of a Mantel test indicated the muscle fatty acids were significantly closely correlated (p < 0.05) with liver gene expressions and metabolites. In summary, these findings suggest that diets containing higher amylose starches improved the lipid degradation and the unsaturated fatty acid levels in pig livers, and thus can generate some potential beneficial effects (such as anti-inflammatory and antioxidant) on pig health.
Collapse
Affiliation(s)
- Miao Yu
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong En-gineering Technology Research Center of animal Meat quality and Safety Control and Evaluation, Guangzhou 510640, China; (M.Y.); (Z.L.); (Y.C.); (T.R.); (Z.T.); (D.D.); (Z.L.)
| | - Zhenming Li
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong En-gineering Technology Research Center of animal Meat quality and Safety Control and Evaluation, Guangzhou 510640, China; (M.Y.); (Z.L.); (Y.C.); (T.R.); (Z.T.); (D.D.); (Z.L.)
| | - Yiyan Cui
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong En-gineering Technology Research Center of animal Meat quality and Safety Control and Evaluation, Guangzhou 510640, China; (M.Y.); (Z.L.); (Y.C.); (T.R.); (Z.T.); (D.D.); (Z.L.)
| | - Ting Rong
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong En-gineering Technology Research Center of animal Meat quality and Safety Control and Evaluation, Guangzhou 510640, China; (M.Y.); (Z.L.); (Y.C.); (T.R.); (Z.T.); (D.D.); (Z.L.)
| | - Zhimei Tian
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong En-gineering Technology Research Center of animal Meat quality and Safety Control and Evaluation, Guangzhou 510640, China; (M.Y.); (Z.L.); (Y.C.); (T.R.); (Z.T.); (D.D.); (Z.L.)
| | - Dun Deng
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong En-gineering Technology Research Center of animal Meat quality and Safety Control and Evaluation, Guangzhou 510640, China; (M.Y.); (Z.L.); (Y.C.); (T.R.); (Z.T.); (D.D.); (Z.L.)
| | - Zhichang Liu
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong En-gineering Technology Research Center of animal Meat quality and Safety Control and Evaluation, Guangzhou 510640, China; (M.Y.); (Z.L.); (Y.C.); (T.R.); (Z.T.); (D.D.); (Z.L.)
| | - Ruiyang Zhang
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
| | - Xianyong Ma
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong En-gineering Technology Research Center of animal Meat quality and Safety Control and Evaluation, Guangzhou 510640, China; (M.Y.); (Z.L.); (Y.C.); (T.R.); (Z.T.); (D.D.); (Z.L.)
| |
Collapse
|
10
|
Lin CY, Liang WC, Yu YC, Chang SC, Lai MC, Jong YJ. ETFDH mutation involves excessive apoptosis and neurite outgrowth defect via Bcl2 pathway. Sci Rep 2024; 14:25374. [PMID: 39455656 PMCID: PMC11511830 DOI: 10.1038/s41598-024-75286-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Accepted: 10/03/2024] [Indexed: 10/28/2024] Open
Abstract
The most common mutation in southern Chinese individuals with late-onset multiple acyl-coenzyme A dehydrogenase deficiency (MADD; a fatty acid metabolism disorder) is c.250G > A (p.Ala84Thr) in the electron transfer flavoprotein dehydrogenase gene (ETFDH). Various phenotypes, including episodic weakness or rhabdomyolysis, exercise intolerance, and peripheral neuropathy, have been reported in both muscular and neuronal contexts. Our cellular models of MADD exhibit neurite growth defects and excessive apoptosis. Given that axonal degeneration and neuronal apoptosis may be regulated by B-cell lymphoma (BCL)-2 family proteins and mitochondrial outer membrane permeabilization through the activation of proapoptotic molecules, we measured the expression levels of proapoptotic BCL-2 family proteins (e.g., BCL-2-associated X protein and p53-upregulated modulator of apoptosis), cytochrome c, caspase-3, and caspase-9 in NSC-34 cells carrying the most common ETFDH mutation. The levels of these proteins were higher in the mutant cells than in the wide-type cells. Subsequent treatment of the mutant cells with coenzyme Q10 downregulated activated protein expression and mitigated neurite growth defects. These results suggest that the activation of the BCL-2/mitochondrial outer membrane permeabilization/apoptosis pathway promotes apoptosis in cellular models of MADD and that coenzyme Q10 can reverse this effect. Our findings aid the development of novel therapeutic strategies for reducing axonal degeneration and neuronal apoptosis in MADD.
Collapse
Affiliation(s)
- Chuang-Yu Lin
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung, Taiwan
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Wen-Chen Liang
- Departments of Pediatrics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.
- Department of Pediatrics, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.
- Department of Pediatrics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.
| | - Yi-Chen Yu
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Shin-Cheng Chang
- Departments of Pediatrics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ming-Chi Lai
- Department of Pediatrics, Chi-Mei Medical Center, Tainan, Taiwan.
| | - Yuh-Jyh Jong
- Departments of Pediatrics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Laboratory Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
11
|
Sirithanakorn C, Imlay JA. Evidence for endogenous hydrogen peroxide production by E. coli fatty acyl-CoA dehydrogenase. PLoS One 2024; 19:e0309988. [PMID: 39436877 PMCID: PMC11495604 DOI: 10.1371/journal.pone.0309988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 08/21/2024] [Indexed: 10/25/2024] Open
Abstract
Aerobic organisms continuously generate internal superoxide and hydrogen peroxide, which can damage enzymes and impair growth. To avoid this problem cells maintain high levels of superoxide dismutases, catalases, and peroxidases. Surprisingly, we do not know the primary sources of these reactive oxygen species (ROS) in living cells. However, in vitro studies have shown that flavoenzymes can inadvertently transfer electrons to oxygen. Therefore, it seems plausible that substantial ROS may be generated when large metabolic fluxes flow through flavoproteins. Such a situation may arise during the catabolism of fatty acids. Acyl-CoA dehydrogenase (FadE) is a flavoprotein involved in each turn of the beta-oxidation cycle. In the present study the catabolism of dodecanoic acid specifically impaired the growth of strains that lack enzymes to scavenge hydrogen peroxide. The defect was absent from fadE mutants. Direct measurements confirmed that the beta-oxidation pathway amplified the rate of intracellular hydrogen peroxide formation. Scavenging-proficient cells did not display the FadE-dependent growth defect. Those cells also did not induce the peroxide stress response during dodecanoate catabolism, indicating that the basal defenses are sufficient to cope with moderately elevated peroxide formation. In vitro work still is needed to test whether the ROS evolve specifically from the FadE flavin site and to determine whether superoxide as well as peroxide is released. At present such experiments are challenging because the natural redox partner of FadE has not been identified. This study supports the hypothesis that the degree of internal ROS production can depend upon the type of active metabolism inside cells.
Collapse
Affiliation(s)
- Chaiyos Sirithanakorn
- Division of Molecular and Cellular Medicine, King Mongkut’s Institute of Technology Ladkrabang, Faculty of Medicine, Bangkok, Thailand
- Department of Microbiology, University of Illinois, Urbana, Illinois, United States of America
| | - James A. Imlay
- Department of Microbiology, University of Illinois, Urbana, Illinois, United States of America
| |
Collapse
|
12
|
Zhang Z, Sun Y, Wang YY, Ma DY, Wang X, Cheng W, Jiang T. Retrospective analysis of isobutyryl CoA dehydrogenase deficiency. Minerva Pediatr (Torino) 2024; 76:645-651. [PMID: 34647701 DOI: 10.23736/s2724-5276.21.06179-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND Isobutyryl-CoA dehydrogenase deficiency is a rare, autosomal recessive hereditary disease caused by a disorder in valine metabolism due to the deficiency of isobutyryl-CoA dehydrogenase. We provided two new mutations for ACAD8 and analyzed new sight to explore the association between the clinical phenotype and genotype of this disease. METHODS The concentration of butyrylcarnitine was tested by tandem mass spectrometry. Butyryl carnitine and isobutyryl glycine levels were determined based on urine organic acid analysis. Gene mutations were analyzed through gene sequencing. RESULTS Five individuals were diagnosed with isobutyryl-CoA dehydrogenase deficiency via newborn screening, and new mutations of ACAD8 encoding isobutyryl-CoA dehydrogenase were found. The mutations were c.1166G>A in exon 10 and c.986C>T in exon 9, which were analyzed as pathogenic sites. Both manifested as an increase in butyrylcarnitine and slightly elevated isobutyryl glycine levels. No abnormalities in growth and development were observed during follow-up. Additionally, we summarized 32 types of ACAD8 mutations reported worldwide, analyzed the distribution of mutations with clinical symptoms, and found them to be mainly concentrated in the N-terminal domain and C-terminal domain. These findings may provide new clues for the clinical diagnosis and management of isobutyryl-CoA dehydrogenase deficiency. CONCLUSIONS In this study, we reported new mutations of ACAD8 and performed a retrospective analysis of isobutyryl CoA dehydrogenase deficiency worldwide. Isobutyryl CoA dehydrogenase deficiency may pose a disease risk during the growth process, thereby requiring long-term follow-up.
Collapse
Affiliation(s)
- Zhilei Zhang
- Center of Newborn Screening, Center of Genetic Medicine, The Affiliated Obstetrics and Gynecology Hospital with Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Yun Sun
- Center of Newborn Screening, Center of Genetic Medicine, The Affiliated Obstetrics and Gynecology Hospital with Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Yan-Yun Wang
- Center of Newborn Screening, Center of Genetic Medicine, The Affiliated Obstetrics and Gynecology Hospital with Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Ding-Yuan Ma
- Center of Newborn Screening, Center of Genetic Medicine, The Affiliated Obstetrics and Gynecology Hospital with Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Xin Wang
- Center of Newborn Screening, Center of Genetic Medicine, The Affiliated Obstetrics and Gynecology Hospital with Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Wei Cheng
- Center of Newborn Screening, Center of Genetic Medicine, The Affiliated Obstetrics and Gynecology Hospital with Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Tao Jiang
- Center of Newborn Screening, Center of Genetic Medicine, The Affiliated Obstetrics and Gynecology Hospital with Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China -
| |
Collapse
|
13
|
Bystrom LT, Wolthers KR. New Electron-Transfer Chain to a Flavodiiron Protein in Fusobacterium nucleatum Couples Butyryl-CoA Oxidation to O 2 Reduction. Biochemistry 2024; 63:2352-2368. [PMID: 39206807 DOI: 10.1021/acs.biochem.4c00279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Fusobacterium nucleatum, a Gram-negative obligate anaerobe, is common to the oral microbiota, but the species is known to infect other sites of the body where it is associated with a range of pathologies. At present, little is known about the mechanisms by which F. nucleatum mitigates against oxidative and nitrosative stress. Inspection of the F. nucleatum subsp. polymorphum ATCC 10953 genome reveals that it encodes a flavodiiron protein (FDP; FNP2073) that is known in other organisms to reduce NO to N2O and/or O2 to H2O. FNP2073 is dicistronic with a gene encoding a multicomponent enzyme termed BCR for butyryl-CoA reductase. BCR is composed of a butyryl-CoA dehydrogenase domain (BCD), the C-terminal domain of the α-subunit of the electron-transfer flavoprotein (Etfα), and a rubredoxin domain. We show that BCR and the FDP form an α4β4 heterotetramic complex and use butyryl-CoA to selectively reduce O2 to H2O. The FAD associated with the Etfα domain (α-FAD) forms red anionic semiquinone (FAD•-), whereas the FAD present in the BCD domain (δ-FAD) forms the blue-neutral semiquinone (FADH•), indicating that both cofactors participate in one-electron transfers. This was confirmed in stopped-flow studies where the reduction of oxidized BCR with an excess of butyryl-CoA resulted in rapid (<1.6 ms) interflavin electron transfer evidenced by the formation of the FAD•-. Analysis of bacterial genomes revealed that the dicistron is present in obligate anaerobic gut bacteria considered to be beneficial by virtue of their ability to produce butyrate. Thus, BCR-FDP may help to maintain anaerobiosis in the colon.
Collapse
Affiliation(s)
- Liam T Bystrom
- Department of Chemistry, University of British Columbia, Okanagan Campus, 3247 University Way, Kelowna V1 V 1 V7, Canada
| | - Kirsten R Wolthers
- Department of Chemistry, University of British Columbia, Okanagan Campus, 3247 University Way, Kelowna V1 V 1 V7, Canada
| |
Collapse
|
14
|
Paquay S, Duraffourd J, Bury M, Heremans IP, Caligiore F, Gerin I, Stroobant V, Jacobs J, Pinon A, Graff J, Vertommen D, Van Schaftingen E, Dewulf JP, Bommer GT. ACAD10 and ACAD11 allow entry of 4-hydroxy fatty acids into β-oxidation. Cell Mol Life Sci 2024; 81:367. [PMID: 39174697 PMCID: PMC11342911 DOI: 10.1007/s00018-024-05397-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 08/02/2024] [Accepted: 08/05/2024] [Indexed: 08/24/2024]
Abstract
Hydroxylated fatty acids are important intermediates in lipid metabolism and signaling. Surprisingly, the metabolism of 4-hydroxy fatty acids remains largely unexplored. We found that both ACAD10 and ACAD11 unite two enzymatic activities to introduce these metabolites into mitochondrial and peroxisomal β-oxidation, respectively. First, they phosphorylate 4-hydroxyacyl-CoAs via a kinase domain, followed by an elimination of the phosphate to form enoyl-CoAs catalyzed by an acyl-CoA dehydrogenase (ACAD) domain. Studies in knockout cell lines revealed that ACAD10 preferentially metabolizes shorter chain 4-hydroxy fatty acids than ACAD11 (i.e. 6 carbons versus 10 carbons). Yet, recombinant proteins showed comparable activity on the corresponding 4-hydroxyacyl-CoAs. This suggests that the localization of ACAD10 and ACAD11 to mitochondria and peroxisomes, respectively, might influence their physiological substrate spectrum. Interestingly, we observed that ACAD10 is cleaved internally during its maturation generating a C-terminal part consisting of the ACAD domain, and an N-terminal part comprising the kinase domain and a haloacid dehalogenase (HAD) domain. HAD domains often exhibit phosphatase activity, but negligible activity was observed in the case of ACAD10. Yet, inactivation of a presumptive key residue in this domain significantly increased the kinase activity, suggesting that this domain might have acquired a regulatory function to prevent accumulation of the phospho-hydroxyacyl-CoA intermediate. Taken together, our work reveals that 4-hydroxy fatty acids enter mitochondrial and peroxisomal fatty acid β-oxidation via two enzymes with an overlapping substrate repertoire.
Collapse
Affiliation(s)
- Stéphanie Paquay
- Metabolic Research Group, de Duve Institute & WELRI, Université Catholique de Louvain, 1200, Brussels, Belgium
- WELBIO Department, WEL Research Institute, avenue Pasteur, 6, 1300, Wavre, Belgium
- Department of Pediatric Neurology and Metabolic Diseases, Cliniques Universitaires St. Luc, Université Catholique de Louvain, 1200, Brussels, Belgium
| | - Julia Duraffourd
- Metabolic Research Group, de Duve Institute & WELRI, Université Catholique de Louvain, 1200, Brussels, Belgium
- WELBIO Department, WEL Research Institute, avenue Pasteur, 6, 1300, Wavre, Belgium
| | - Marina Bury
- Metabolic Research Group, de Duve Institute & WELRI, Université Catholique de Louvain, 1200, Brussels, Belgium
- WELBIO Department, WEL Research Institute, avenue Pasteur, 6, 1300, Wavre, Belgium
| | - Isaac P Heremans
- Metabolic Research Group, de Duve Institute & WELRI, Université Catholique de Louvain, 1200, Brussels, Belgium
- WELBIO Department, WEL Research Institute, avenue Pasteur, 6, 1300, Wavre, Belgium
| | - Francesco Caligiore
- Metabolic Research Group, de Duve Institute & WELRI, Université Catholique de Louvain, 1200, Brussels, Belgium
- WELBIO Department, WEL Research Institute, avenue Pasteur, 6, 1300, Wavre, Belgium
| | - Isabelle Gerin
- Metabolic Research Group, de Duve Institute & WELRI, Université Catholique de Louvain, 1200, Brussels, Belgium
- WELBIO Department, WEL Research Institute, avenue Pasteur, 6, 1300, Wavre, Belgium
| | | | - Jean Jacobs
- Metabolic Research Group, de Duve Institute & WELRI, Université Catholique de Louvain, 1200, Brussels, Belgium
- WELBIO Department, WEL Research Institute, avenue Pasteur, 6, 1300, Wavre, Belgium
| | - Aymeric Pinon
- Metabolic Research Group, de Duve Institute & WELRI, Université Catholique de Louvain, 1200, Brussels, Belgium
- WELBIO Department, WEL Research Institute, avenue Pasteur, 6, 1300, Wavre, Belgium
| | - Julie Graff
- Metabolic Research Group, de Duve Institute & WELRI, Université Catholique de Louvain, 1200, Brussels, Belgium
- WELBIO Department, WEL Research Institute, avenue Pasteur, 6, 1300, Wavre, Belgium
| | - Didier Vertommen
- Protein Phosphorylation Unit, de Duve Institute & MASSPROT Platform, Université Catholique de Louvain, 1200, Brussels, Belgium
| | - Emile Van Schaftingen
- Metabolic Research Group, de Duve Institute & WELRI, Université Catholique de Louvain, 1200, Brussels, Belgium
- WELBIO Department, WEL Research Institute, avenue Pasteur, 6, 1300, Wavre, Belgium
| | - Joseph P Dewulf
- Metabolic Research Group, de Duve Institute & WELRI, Université Catholique de Louvain, 1200, Brussels, Belgium
- WELBIO Department, WEL Research Institute, avenue Pasteur, 6, 1300, Wavre, Belgium
- Department of Laboratory Medicine, Cliniques Universitaires St. Luc, Université Catholique de Louvain, 1200, Brussels, Belgium
| | - Guido T Bommer
- Metabolic Research Group, de Duve Institute & WELRI, Université Catholique de Louvain, 1200, Brussels, Belgium.
- WELBIO Department, WEL Research Institute, avenue Pasteur, 6, 1300, Wavre, Belgium.
| |
Collapse
|
15
|
Flores L, Shene C. Single Amino Acids as Sole Nitrogen Source for the Production of Lipids and Coenzyme Q by Thraustochytrium sp. RT2316-16. Microorganisms 2024; 12:1428. [PMID: 39065196 PMCID: PMC11279195 DOI: 10.3390/microorganisms12071428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/08/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
This work analyzes the production of total lipids and the content of CoQ9 and CoQ10 in the biomass of Thraustochytrium sp. RT2316-16 grown in media containing a single amino acid at a concentration of 1 g L-1 as the sole nitrogen source; glucose (5 g L-1) was used as the carbon source. Biomass concentration and the content of total lipids and CoQ were determined as a function of the incubation time; ten amino acids were evaluated. The final concentration of the total biomass was found to be between 2.2 ± 0.1 (aspartate) and 3.9 ± 0.1 g L-1 (glutamate). The biomass grown in media containing glutamate, serine or phenylalanine reached a content of total lipids higher than 20% of the cell dry weight (DW) after 72, 60 and 72 h of incubation, respectively. The highest contents of CoQ9 (39.0 ± 0.7 µg g-1 DW) and CoQ10 (167.4 ± 3.4 mg g-1 DW) in the biomass of the thraustochytrid were obtained when glutamate and cysteine were used as the nitrogen source, respectively. Fatty acid oxidation, which decreased the total lipid content during the first 12 h of incubation, and the oxidation of hydrogen sulfide when cysteine was the nitrogen source, might be related to the content of CoQ10 in the biomass of the thraustochytrid.
Collapse
Affiliation(s)
| | - Carolina Shene
- Department of Chemical Engineering, Center of Food Biotechnology and Bioseparations, BIOREN, and Centre of Biotechnology and Bioengineering (CeBiB), Universidad de La Frontera, Temuco 4780000, Chile;
| |
Collapse
|
16
|
Zhang Q, Chen Q, Shaik S, Wang B. Flavin-N5OOH Functions as both a Powerful Nucleophile and a Base in the Superfamily of Flavoenzymes. Angew Chem Int Ed Engl 2024; 63:e202318629. [PMID: 38299700 DOI: 10.1002/anie.202318629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/30/2024] [Accepted: 01/31/2024] [Indexed: 02/02/2024]
Abstract
Flavoenzymes can mediate a large variety of oxidation reactions through the activation of oxygen. However, the O2 activation chemistry of flavin enzymes is not yet fully exploited. Normally, the O2 activation occurs at the C4a site of the flavin cofactor, yielding the flavin C4a-(hydro)hydroperoxyl species in monooxygenases or oxidases. Using extensive MD simulations, QM/MM calculations and QM calculations, our studies reveal the formation of the common nucleophilic species, Flavin-N5OOH, in two distinct flavoenzymes (RutA and EncM). Our studies show that Flavin-N5OOH acts as a powerful nucleophile that promotes C-N cleavage of uracil in RutA, and a powerful base in the deprotonation of substrates in EncM. We reason that Flavin-N5OOH can be a common reactive species in the superfamily of flavoenzymes, which accomplish generally selective general base catalysis and C-X (X=N, S, Cl, O) cleavage reactions that are otherwise challenging with solvated hydroxide ion base. These results expand our understanding of the chemistry and catalysis of flavoenzymes.
Collapse
Affiliation(s)
- Qiaoyu Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Qianqian Chen
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Sason Shaik
- Institute of Chemistry and the Lise Meitner-Minerva Center for Computational Quantum Chemistry, The Hebrew University of Jerusalem, 91904, Jerusalem, Israel
| | - Binju Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| |
Collapse
|
17
|
Ikeda N, Wada Y, Izumi T, Munakata Y, Katagiri H, Kure S. Stealthy progression of type 2 diabetes mellitus due to impaired ketone production in an adult patient with multiple acyl-CoA dehydrogenase deficiency. Mol Genet Metab Rep 2024; 38:101061. [PMID: 38469101 PMCID: PMC10926221 DOI: 10.1016/j.ymgmr.2024.101061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 01/21/2024] [Accepted: 01/22/2024] [Indexed: 03/13/2024] Open
Abstract
Background Multiple acyl-CoA dehydrogenase deficiency (MADD) is an inherited metabolic disorder caused by biallelic pathogenic variants in genes related to the flavoprotein complex. Dysfunction of the complex leads to impaired fatty acid oxidation and ketone body production which can cause hypoketotic hypoglycemia with prolonged fasting. Patients with fatty acid oxidation disorders (FAODs) such as MADD are treated primarily with a dietary regimen consisting of high-carbohydrate foods and avoidance of prolonged fasting. However, information on the long-term sequelae associated with this diet have not been accumulated. In general, high-carbohydrate diets can induce diseases such as type 2 diabetes mellitus (T2DM), although few patients with both MADD and T2DM have been reported. Case We present the case of a 32-year-old man with MADD who was on a high-carbohydrate diet for >30 years and exhibited symptoms resembling diabetic ketoacidosis. He presented with polydipsia, polyuria, and weight loss with a decrease in body mass index from 31 to 25 kg/m2 over 2 months. Laboratory tests revealed a HbA1c level of 13.9%; however, the patient did not show metabolic acidosis but only mild ketosis. Discussion/conclusion This report emphasizes the potential association between long-term adherence to high-carbohydrate dietary therapy and T2DM development. Moreover, this case underscores the difficulty of detecting diabetic ketosis in patients with FAODs such as MADD due to their inability to produce ketone bodies. These findings warrant further research of the long-term complications associated with this diet as well as warning of the potential progression of diabetes in patients with FAODs such as MADD.
Collapse
Affiliation(s)
- Nodoka Ikeda
- Department of Pediatrics, Tohoku University School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8574, Japan
| | - Yoichi Wada
- Department of Pediatrics, Tohoku University School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8574, Japan
| | - Tomohito Izumi
- Department of Metabolism and Diabetes, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| | - Yuichiro Munakata
- Department of Metabolism and Diabetes, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| | - Hideki Katagiri
- Department of Metabolism and Diabetes, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| | - Shigeo Kure
- Department of Pediatrics, Tohoku University School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8574, Japan
| |
Collapse
|
18
|
Fang K, Xu Z, Yang L, Cui Q, Du B, Liu H, Wang R, Li P, Su J, Wang J. Biosynthesis of 10-Hydroxy-2-decenoic Acid through a One-Step Whole-Cell Catalysis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:1190-1202. [PMID: 38175798 DOI: 10.1021/acs.jafc.3c08142] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Abstract
10-Hydroxy-2-decenoic acid (10-HDA) is an important component of royal jelly, known for its antimicrobial, anti-inflammatory, blood pressure-lowering, and antiradiation effects. Currently, 10-HDA biosynthesis is limited by the substrate selectivity of acyl-coenzyme A dehydrogenase, which restricts the technique to a two-step process. This study aimed to develop an efficient and simplified method for synthesizing 10-HDA. In this study, ACOX from Candida tropicalis 1798, which catalyzes 10-hydroxydecanoyl coenzyme A desaturation for 10-HDA synthesis, was isolated and heterologously coexpressed with FadE, Macs, YdiI, and CYP in Escherichia coli/SK after knocking out FadB, FadJ, and FadR genes. The engineered E. coli/AKS strain achieved a 49.8% conversion of decanoic acid to 10-HDA. CYP expression was improved through ultraviolet mutagenesis and high-throughput screening, increased substrate conversion to 75.6%, and the synthesis of 10-HDA was increased to 0.628 g/L in 10 h. This is the highest conversion rate and product concentration achieved in the shortest time to date. This study provides a simple and efficient method for 10-HDA biosynthesis and offers an effective method for developing strains with high product yields.
Collapse
Affiliation(s)
- Ke Fang
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP) (Qilu University of Technology), Jinan 250353, Shandong, Republic of China
- School of Bioengineering, Qilu University of Technology, Jinan 250353, Shandong, Republic of China
| | - Ziting Xu
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP) (Qilu University of Technology), Jinan 250353, Shandong, Republic of China
- School of Bioengineering, Qilu University of Technology, Jinan 250353, Shandong, Republic of China
| | - Lu Yang
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP) (Qilu University of Technology), Jinan 250353, Shandong, Republic of China
- School of Bioengineering, Qilu University of Technology, Jinan 250353, Shandong, Republic of China
| | - Quan Cui
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP) (Qilu University of Technology), Jinan 250353, Shandong, Republic of China
- School of Bioengineering, Qilu University of Technology, Jinan 250353, Shandong, Republic of China
| | - Bowen Du
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP) (Qilu University of Technology), Jinan 250353, Shandong, Republic of China
- School of Bioengineering, Qilu University of Technology, Jinan 250353, Shandong, Republic of China
| | - Huijing Liu
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP) (Qilu University of Technology), Jinan 250353, Shandong, Republic of China
- School of Bioengineering, Qilu University of Technology, Jinan 250353, Shandong, Republic of China
| | - Ruiming Wang
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP) (Qilu University of Technology), Jinan 250353, Shandong, Republic of China
- School of Bioengineering, Qilu University of Technology, Jinan 250353, Shandong, Republic of China
| | - Piwu Li
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP) (Qilu University of Technology), Jinan 250353, Shandong, Republic of China
- School of Bioengineering, Qilu University of Technology, Jinan 250353, Shandong, Republic of China
| | - Jing Su
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP) (Qilu University of Technology), Jinan 250353, Shandong, Republic of China
- School of Bioengineering, Qilu University of Technology, Jinan 250353, Shandong, Republic of China
| | - Junqing Wang
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP) (Qilu University of Technology), Jinan 250353, Shandong, Republic of China
- School of Bioengineering, Qilu University of Technology, Jinan 250353, Shandong, Republic of China
| |
Collapse
|
19
|
Bisschoff M, Smuts I, Dercksen M, Schoonen M, Vorster BC, van der Watt G, Spencer C, Naidu K, Henning F, Meldau S, McFarland R, Taylor RW, Patel K, Fassad MR, Vandrovcova J, Wanders RJA, van der Westhuizen FH. Clinical, biochemical, and genetic spectrum of MADD in a South African cohort: an ICGNMD study. Orphanet J Rare Dis 2024; 19:15. [PMID: 38221620 PMCID: PMC10789041 DOI: 10.1186/s13023-023-03014-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 12/20/2023] [Indexed: 01/16/2024] Open
Abstract
BACKGROUND Multiple acyl-CoA dehydrogenase deficiency (MADD) is an autosomal recessive disorder resulting from pathogenic variants in three distinct genes, with most of the variants occurring in the electron transfer flavoprotein-ubiquinone oxidoreductase gene (ETFDH). Recent evidence of potential founder variants for MADD in the South African (SA) population, initiated this extensive investigation. As part of the International Centre for Genomic Medicine in Neuromuscular Diseases study, we recruited a cohort of patients diagnosed with MADD from academic medical centres across SA over a three-year period. The aim was to extensively profile the clinical, biochemical, and genomic characteristics of MADD in this understudied population. METHODS Clinical evaluations and whole exome sequencing were conducted on each patient. Metabolic profiling was performed before and after treatment, where possible. The recessive inheritance and phase of the variants were established via segregation analyses using Sanger sequencing. Lastly, the haplotype and allele frequencies were determined for the two main variants in the four largest SA populations. RESULTS Twelve unrelated families (ten of White SA and two of mixed ethnicity) with clinically heterogeneous presentations in 14 affected individuals were observed, and five pathogenic ETFDH variants were identified. Based on disease severity and treatment response, three distinct groups emerged. The most severe and fatal presentations were associated with the homozygous c.[1067G > A];c.[1067G > A] and compound heterozygous c.[976G > C];c.[1067G > A] genotypes, causing MADD types I and I/II, respectively. These, along with three less severe compound heterozygous genotypes (c.[1067G > A];c.[1448C > T], c.[740G > T];c.[1448C > T], and c.[287dupA*];c.[1448C > T]), resulting in MADD types II/III, presented before the age of five years, depending on the time and maintenance of intervention. By contrast, the homozygous c.[1448C > T];c.[1448C > T] genotype, which causes MADD type III, presented later in life. Except for the type I, I/II and II cases, urinary metabolic markers for MADD improved/normalised following treatment with riboflavin and L-carnitine. Furthermore, genetic analyses of the most frequent variants (c.[1067G > A] and c.[1448C > T]) revealed a shared haplotype in the region of ETFDH, with SA population-specific allele frequencies of < 0.00067-0.00084%. CONCLUSIONS This study reveals the first extensive genotype-phenotype profile of a MADD patient cohort from the diverse and understudied SA population. The pathogenic variants and associated variable phenotypes were characterised, which will enable early screening, genetic counselling, and patient-specific treatment of MADD in this population.
Collapse
Affiliation(s)
- Michelle Bisschoff
- Focus area for Human Metabolomics, North-West University, Potchefstroom, South Africa
| | - Izelle Smuts
- Department of Paediatrics, Steve Biko Academic Hospital, University of Pretoria, Pretoria, South Africa
| | - Marli Dercksen
- Centre for Human Metabolomics, North-West University, Potchefstroom, South Africa
| | - Maryke Schoonen
- Focus area for Human Metabolomics, North-West University, Potchefstroom, South Africa
| | - Barend C Vorster
- Centre for Human Metabolomics, North-West University, Potchefstroom, South Africa
| | - George van der Watt
- Division of Chemical Pathology, National Health Laboratory Services, University of Cape Town, Cape Town, South Africa
| | - Careni Spencer
- Division of Human Genetics, Department of Medicine, University of Cape Town and Groote Schuur Hospital, Cape Town, South Africa
| | - Kireshnee Naidu
- Division of Neurology, Department of Medicine, Faculty of Medicine and Health Sciences, Stellenbosch University, Stellenbosch, South Africa
| | - Franclo Henning
- Division of Neurology, Department of Medicine, Faculty of Medicine and Health Sciences, Stellenbosch University, Stellenbosch, South Africa
| | - Surita Meldau
- Division of Chemical Pathology, National Health Laboratory Services, University of Cape Town, Cape Town, South Africa
| | - Robert McFarland
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
- NHS Highly Specialised Service for Rare Mitochondrial Disorders, Newcastle Upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, NE1 4LP, UK
| | - Robert W Taylor
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
- NHS Highly Specialised Service for Rare Mitochondrial Disorders, Newcastle Upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, NE1 4LP, UK
| | - Krutik Patel
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Mahmoud R Fassad
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Jana Vandrovcova
- Centre for Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK
| | - Ronald J A Wanders
- Department of Clinical Chemistry, Laboratory Genetic Metabolic Diseases, Amsterdam University Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| | | |
Collapse
|
20
|
Oleson BJ, Bhattrai J, Zalubas SL, Kravchenko TR, Ji Y, Jiang EL, Lu CC, Madden CR, Coffman JG, Bazopoulou D, Jones JW, Jakob U. Early life changes in histone landscape protect against age-associated amyloid toxicities through HSF-1-dependent regulation of lipid metabolism. NATURE AGING 2024; 4:48-61. [PMID: 38057386 PMCID: PMC11481004 DOI: 10.1038/s43587-023-00537-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 11/02/2023] [Indexed: 12/08/2023]
Abstract
Transient events during development can exert long-lasting effects on organismal lifespan. Here we demonstrate that exposure of Caenorhabditis elegans to reactive oxygen species during development protects against amyloid-induced proteotoxicity later in life. We show that this protection is initiated by the inactivation of the redox-sensitive H3K4me3-depositing COMPASS complex and conferred by a substantial increase in the heat-shock-independent activity of heat shock factor 1 (HSF-1), a longevity factor known to act predominantly during C. elegans development. We show that depletion of HSF-1 leads to marked rearrangements of the organismal lipid landscape and a significant decrease in mitochondrial β-oxidation and that both lipid and metabolic changes contribute to the protective effects of HSF-1 against amyloid toxicity. Together, these findings link developmental changes in the histone landscape, HSF-1 activity and lipid metabolism to protection against age-associated amyloid toxicities later in life.
Collapse
Affiliation(s)
- Bryndon J Oleson
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Janakraj Bhattrai
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Sarah L Zalubas
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Tessa R Kravchenko
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Yuanyuan Ji
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD, USA
| | - Emily L Jiang
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Christine C Lu
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Ciara R Madden
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Julia G Coffman
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Daphne Bazopoulou
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
- Department of Biology, University of Crete, Heraklion, Greece
| | - Jace W Jones
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD, USA
| | - Ursula Jakob
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA.
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI, USA.
| |
Collapse
|
21
|
Madeira CA, Anselmo C, Costa JM, Bonito CA, Ferreira RJ, Santos DJVA, Wanders RJ, Vicente JB, Ventura FV, Leandro P. Functional and structural impact of 10 ACADM missense mutations on human medium chain acyl-Coa dehydrogenase. Biochim Biophys Acta Mol Basis Dis 2023; 1869:166766. [PMID: 37257730 DOI: 10.1016/j.bbadis.2023.166766] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 05/10/2023] [Accepted: 05/23/2023] [Indexed: 06/02/2023]
Abstract
Medium chain acyl-CoA dehydrogenase (MCAD) deficiency (MCADD) is associated with ACADM gene mutations, leading to an impaired function and/or structure of MCAD. Importantly, after import into the mitochondria, MCAD must incorporate a molecule of flavin adenine dinucleotide (FAD) per subunit and assemble into tetramers. However, the effect of MCAD amino acid substitutions on FAD incorporation has not been investigated. Herein, the commonest MCAD variant (p.K304E) and 11 additional rare variants (p.Y48C, p.R55G, p.A88P, p.Y133C, p.A140T, p.D143V, p.G224R, p.L238F, p.V264I, p.Y372N, and p.G377V) were functionally and structurally characterized. Half of the studied variants presented a FAD content <65 % compared to the wild-type. Most of them were recovered as tetramers, except the p.Y372N (mainly as dimers). No correlation was found between the levels of tetramers and FAD content. However, a correlation between FAD content and the cofactor's affinity, proteolytic stability, thermostability, and thermal inactivation was established. We showed that the studied amino acid changes in MCAD may alter the substrate chain-length dependence and the interaction with electron-transferring-flavoprotein (ETF) necessary for a proper functioning electron transfer thus adding additional layers of complexity to the pathological effect of ACADM missense mutations. Although the majority of the variant MCADs presented an impaired capacity to retain FAD during their synthesis, some of them were structurally rescued by cofactor supplementation, suggesting that in the mitochondrial environment the levels and activity of those variants may be dependent of FAD's availability thus contributing for the heterogeneity of the MCADD phenotype found in patients presenting the same genotype.
Collapse
Affiliation(s)
- Catarina A Madeira
- Research Institute for Medicines, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Carolina Anselmo
- Research Institute for Medicines, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - João M Costa
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Cátia A Bonito
- LAQV@REQUIMTE/Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal
| | | | - Daniel J V A Santos
- LAQV@REQUIMTE/Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal; Center for Research in Biosciences & Health Technologies (CBIOS), Universidade Lusófona de Humanidades e Tecnologias, Lisboa, Portugal
| | - Ronald J Wanders
- Laboratory Genetic Metabolic Diseases, Department of Clinical Chemistry, Amsterdam University Medical Centers-University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - João B Vicente
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal.
| | - Fátima V Ventura
- Research Institute for Medicines, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal.
| | - Paula Leandro
- Research Institute for Medicines, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal.
| |
Collapse
|
22
|
Kozyryev A, Boucher PA, Quiñones-Jurgensen CM, Rokita SE. The 2'-hydroxy group of flavin mononucleotide influences the catalytic function and promiscuity of the flavoprotein iodotyrosine dehalogenase. RSC Chem Biol 2023; 4:698-705. [PMID: 37654510 PMCID: PMC10467613 DOI: 10.1039/d3cb00094j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 08/03/2023] [Indexed: 09/02/2023] Open
Abstract
The isoalloxazine ring system of the flavin cofactor is responsible for much of the catalytic power and diversity associated with flavoproteins. While the specificity of these enzymes is greatly influenced by the surrounding protein environment, the ribityl group of the cofactor may also participate in stabilizing transient intermediates formed by substrates and flavin. A conserved interaction between the phenolate oxygen of l-iodotyrosine and the 2'-hydroxy group of flavin mononucleotide (FMN) bound to iodotyrosine deiodianase (IYD) implied such a contribution to catalysis. Reconstitution of this deiodinase with 2'-deoxyflavin mononucleotide (2'-deoxyFMN) decreased the overall catalytic efficiency of l-iodotyrosine dehalogenation (kcat/Km) by more than 5-fold but increased kcat by over 2-fold. These affects are common to human IYD and its homolog from Thermotoga neapolitana and are best explained by an ability of the 2'-hydroxy group of FMN to stabilize association of the substrate in its phenolate form. Loss of this 2'-hydroxy group did not substantially affect the formation of the one electron reduced semiquinone form of FMN but its absence released constraints that otherwise suppresses the ability of IYD to promote hydride transfer as measured by a competing nitroreductase activity. Generation of IYD containing 2'-deoxyFMN also removed steric constraints that had previously limited the use of certain mechanistic probes. For example, l-O-methyl iodotyrosine could be accommodated in the active site lacking the 2'-hydroxy of FMN and shown to be inert to dehalogenation as predicted from a mechanism requiring ketonization of the phenolic oxygen. In the future, ancillary sites within a cofactor should now be considered when engineering new functions within existing protein architectures as demonstrated by the ability of IYD to promote nitroreduction after loss of the 2'-hydroxy group of FMN.
Collapse
Affiliation(s)
- Anton Kozyryev
- Department of Chemistry, Johns Hopkins University 3400 N. Charles St. Maryland 21218 USA +1-410-516-5793
| | - Petrina A Boucher
- Department of Chemistry, Johns Hopkins University 3400 N. Charles St. Maryland 21218 USA +1-410-516-5793
| | - Carla M Quiñones-Jurgensen
- Department of Chemistry, Johns Hopkins University 3400 N. Charles St. Maryland 21218 USA +1-410-516-5793
| | - Steven E Rokita
- Department of Chemistry, Johns Hopkins University 3400 N. Charles St. Maryland 21218 USA +1-410-516-5793
| |
Collapse
|
23
|
Li B, Li J, Gao J, Guo Z, Li J. Long-term tracking robust removal of Microcystis-dominated bloom and microcystin-pollution risk by luteolin continuous-release microsphere at different nitrogen levels-Mechanisms from proteomics and gene expression. CHEMOSPHERE 2023:139365. [PMID: 37392791 DOI: 10.1016/j.chemosphere.2023.139365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 06/20/2023] [Accepted: 06/27/2023] [Indexed: 07/03/2023]
Abstract
Luteolin continuous-release microsphere (CRM) has promising algicidal effect against Microcystis, but how nitrogen (N) level impacted CRM effects on Microcystis growth and microcystins (MCs) pollution was never tracked along long term. This study revealed that luteolin CRM exerted long-term and robust inhibitory effects on Microcystis growth and MC-pollution by sharply decreasing extracellular and total MCs content at each N level, with growth inhibition ratio of 88.18-96.03%, 92.91-97.17% and 91.36-95.55% at 0.5, 5 and 50 mg/L N, respectively, during day 8-30. Further analyses revealed that CRM-stress inhibited transferase, GTPase and ATPase activities, ATP binding, metal ion binding, fatty acid biosynthesis, transmembrane transport and disrupted redox homeostasis to pose equally robust algicidal effect at each N level. At lower N level, CRM-stress tended to induce cellular metabolic mode towards stronger energy supply/acquisition but weaker energy production/consumption, while triggered a shift towards stronger energy production/storage but weaker energy acquisition/consumption as N level elevated, thus disturbing metabolic balance and strongly inhibiting Microcystis growth at each N level. Long-term robust algicidal effect of CRM against other common cyanobacteria besides Microcystis was evident in natural water. This study shed novel insights into inhibitory effects and mechanisms of luteolin CRM on Microcystis growth and MC-pollution in different N-level waters.
Collapse
Affiliation(s)
- Biying Li
- College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China; Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing, 100193, China; Organic Recycling Institute (Suzhou), China Agricultural University, Jiangsu, 215128, China
| | - Jieming Li
- College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China; Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing, 100193, China.
| | - Jiaqian Gao
- College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China; Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing, 100193, China; Organic Recycling Institute (Suzhou), China Agricultural University, Jiangsu, 215128, China
| | - Zhonghui Guo
- College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China; Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing, 100193, China
| | - Ji Li
- College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China; Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing, 100193, China; Organic Recycling Institute (Suzhou), China Agricultural University, Jiangsu, 215128, China
| |
Collapse
|
24
|
Shu P, Liang H, Zhang J, Lin Y, Chen W, Zhang D. Reactive oxygen species formation and its effect on CD4 + T cell-mediated inflammation. Front Immunol 2023; 14:1199233. [PMID: 37304262 PMCID: PMC10249013 DOI: 10.3389/fimmu.2023.1199233] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 05/16/2023] [Indexed: 06/13/2023] Open
Abstract
Reactive oxygen species (ROS) are produced both enzymatically and non-enzymatically in vivo. Physiological concentrations of ROS act as signaling molecules that participate in various physiological and pathophysiological activities and play an important role in basic metabolic functions. Diseases related to metabolic disorders may be affected by changes in redox balance. This review details the common generation pathways of intracellular ROS and discusses the damage to physiological functions when the ROS concentration is too high to reach an oxidative stress state. We also summarize the main features and energy metabolism of CD4+ T-cell activation and differentiation and the effects of ROS produced during the oxidative metabolism of CD4+ T cells. Because the current treatment for autoimmune diseases damages other immune responses and functional cells in the body, inhibiting the activation and differentiation of autoreactive T cells by targeting oxidative metabolism or ROS production without damaging systemic immune function is a promising treatment option. Therefore, exploring the relationship between T-cell energy metabolism and ROS and the T-cell differentiation process provides theoretical support for discovering effective treatments for T cell-mediated autoimmune diseases.
Collapse
Affiliation(s)
| | | | | | | | | | - Dunfang Zhang
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
25
|
Rindone GM, Dasso ME, Centola CL, Pellizzari EH, Camberos MDC, Toneatto J, Galardo MN, Meroni SB, Riera MF. Sertoli cell adaptation to glucose deprivation: Potential role of AMPK in the regulation of lipid metabolism. J Cell Biochem 2023; 124:716-730. [PMID: 36946523 DOI: 10.1002/jcb.30399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 01/17/2023] [Accepted: 03/02/2023] [Indexed: 03/23/2023]
Abstract
Sertoli cells (SCs) provide an adequate environment for germ cell development. SCs possess unique features that meet germ cells' metabolic demands: they produce lactate from glucose, which is delivered as energy substrate to germ cells. SCs store fatty acids (FAs) as triacylglycerols (TAGs) in lipid droplets (LDs) and can oxidize FAs to sustain their own energetic demands. They also produce ketone bodies from FAs. It has been shown that exposure of SCs to metabolic stresses, such as glucose deprivation, triggers specific adaptive responses that sustain cell survival and preserve lactate supply to germ cells. The aim of the present study was to investigate whether there are modifications in rat SCs lipid metabolism, including LD content, FA oxidation, and ketone bodies production, as part of their adaptive response to glucose deprivation. The present study was performed in 20-day-old rat SCs cultures. We determined LD content by Oil Red O staining, FA oxidation by measuring the release of 3 H2 O from [3 H] palmitate, TAGs and 3-hydroxybutyrate levels by spectrophotometric methods, and mRNA levels by RT-qPCR. Results show that the absence of glucose in SC culture medium entails: (1) a decrease in LD content and TAGs levels that is accompanied by decreased perilipin 1 mRNA levels, (2) an increase in FA oxidation that is in part mediated by AMP kinase (AMPK) activation and (3) a decrease in 3-hydroxybutyrate production. Additionally, we studied whether sestrins (SESN1, 2 and 3), proteins involved in the cellular response to stress, are regulated in glucose deprivation conditions. We show that there is an increase in SESN2 mRNA levels in deprived conditions. In conclusion, glucose deprivation affects SC lipid metabolism promoting FA mobilization from LDs to be used as energy source.
Collapse
Affiliation(s)
- Gustavo M Rindone
- Centro de Investigaciones Endocrinológicas "Dr. César Bergadá" (CEDIE)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-FEI-División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Buenos Aires, Argentina
| | - Marina E Dasso
- Centro de Investigaciones Endocrinológicas "Dr. César Bergadá" (CEDIE)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-FEI-División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Buenos Aires, Argentina
| | - Cecilia L Centola
- Centro de Investigaciones Endocrinológicas "Dr. César Bergadá" (CEDIE)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-FEI-División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Buenos Aires, Argentina
| | - Eliana H Pellizzari
- Centro de Investigaciones Endocrinológicas "Dr. César Bergadá" (CEDIE)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-FEI-División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Buenos Aires, Argentina
| | - María Del C Camberos
- Centro de Investigaciones Endocrinológicas "Dr. César Bergadá" (CEDIE)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-FEI-División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Buenos Aires, Argentina
| | - Judith Toneatto
- Instituto de Biología y Medicina Experimental (IBYME), CONICET, Buenos Aires, Argentina
| | - María N Galardo
- Centro de Investigaciones Endocrinológicas "Dr. César Bergadá" (CEDIE)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-FEI-División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Buenos Aires, Argentina
| | - Silvina B Meroni
- Centro de Investigaciones Endocrinológicas "Dr. César Bergadá" (CEDIE)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-FEI-División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Buenos Aires, Argentina
| | - María F Riera
- Centro de Investigaciones Endocrinológicas "Dr. César Bergadá" (CEDIE)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-FEI-División de Endocrinología, Hospital de Niños Ricardo Gutiérrez, Buenos Aires, Argentina
| |
Collapse
|
26
|
Orrego AH, Rubanu MG, López IL, Andrés-Sanz D, García-Marquina G, Pieslinger GE, Salassa L, López-Gallego F. ATP-Independent and Cell-Free Biosynthesis of β-Hydroxy Acids Using Vinyl Esters as Smart Substrates. Angew Chem Int Ed Engl 2023; 62:e202218312. [PMID: 36718873 DOI: 10.1002/anie.202218312] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/30/2023] [Accepted: 01/31/2023] [Indexed: 02/01/2023]
Abstract
In vitro biosynthetic pathways that condense and reduce molecules through coenzyme A (CoASH) activation demand energy and redox power in the form of ATP and NAD(P)H, respectively. These coenzymes must be orthogonally recycled by ancillary reactions that consume chemicals, electricity, or light, impacting the atom economy and/or the energy consumption of the biosystem. In this work, we have exploited vinyl esters as dual acyl and electron donor substrates to synthesize β-hydroxy acids through a non-decarboxylating Claisen condensation, reduction and hydrolysis stepwise cascade, including a NADH recycling step, catalyzed by a total of 4 enzymes. Herein, the chemical energy to activate the acyl group with CoASH and the redox power for the reduction are embedded into the vinyl esters. Upon optimization, this self-sustaining cascade reached a titer of (S)-3-hydroxy butyrate of 24 mM without requiring ATP and simultaneously recycling CoASH and NADH. This work illustrates the potential of in vitro biocatalysis to transform simple molecules into multi-functional ones.
Collapse
Affiliation(s)
- Alejandro H Orrego
- Heterogeneous Biocatalysis laboratory. Center for Cooperative Research in Biomaterials (CIC biomaGUNE)-Basque Research and Technology Alliance (BRTA), Paseo de Miramón,182., 20014, Donostia-San Sebastián, Spain
| | - Maria Grazia Rubanu
- Heterogeneous Biocatalysis laboratory. Center for Cooperative Research in Biomaterials (CIC biomaGUNE)-Basque Research and Technology Alliance (BRTA), Paseo de Miramón,182., 20014, Donostia-San Sebastián, Spain
| | - Idania L López
- Heterogeneous Biocatalysis laboratory. Center for Cooperative Research in Biomaterials (CIC biomaGUNE)-Basque Research and Technology Alliance (BRTA), Paseo de Miramón,182., 20014, Donostia-San Sebastián, Spain
| | - Daniel Andrés-Sanz
- Heterogeneous Biocatalysis laboratory. Center for Cooperative Research in Biomaterials (CIC biomaGUNE)-Basque Research and Technology Alliance (BRTA), Paseo de Miramón,182., 20014, Donostia-San Sebastián, Spain
| | - Guillermo García-Marquina
- Heterogeneous Biocatalysis laboratory. Center for Cooperative Research in Biomaterials (CIC biomaGUNE)-Basque Research and Technology Alliance (BRTA), Paseo de Miramón,182., 20014, Donostia-San Sebastián, Spain
| | - German E Pieslinger
- CONICET-Universidad de Buenos Aires. Instituto de Química y Fisicoquímica Biológicas (IQUIFIB), Buenos Aires, Argentina.,Donostia International Physics Center, Paseo Manuel de Lardizabal 4, 20018, Donostia, Spain
| | - Luca Salassa
- Donostia International Physics Center, Paseo Manuel de Lardizabal 4, 20018, Donostia, Spain.,Polimero eta Material Aurreratuak: Fisika, Kimika eta Teknologia, Kimika Fakultatea, Euskal Herriko Unibertsitatea UPV/EHU, Paseo Manuel de Lardizabal 3, 20018, Donostia, Spain.,Ikerbasque, Basque Foundation for Science, Plaza Euskadi, 5., 48009, . Bilbao, Spain
| | - Fernando López-Gallego
- Heterogeneous Biocatalysis laboratory. Center for Cooperative Research in Biomaterials (CIC biomaGUNE)-Basque Research and Technology Alliance (BRTA), Paseo de Miramón,182., 20014, Donostia-San Sebastián, Spain.,Ikerbasque, Basque Foundation for Science, Plaza Euskadi, 5., 48009, . Bilbao, Spain
| |
Collapse
|
27
|
Zhang T, Wen H, Xu D, Lv G, Zhou Y. PacBio Full-Length and Illumina Transcriptomes of the Gill Reveal the Molecular Response of Corbicula fluminea under Aerial Exposure. Int J Mol Sci 2022; 23:11474. [PMID: 36232776 PMCID: PMC9570311 DOI: 10.3390/ijms231911474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/09/2022] [Accepted: 08/30/2022] [Indexed: 11/16/2022] Open
Abstract
Air exposure is a common stress for Corbicula fluminea, an economically important freshwater shellfish consumed in China, during aquaculture and transportation. However, little is known about its molecular responses to air exposure. Therefore, this study used a combination of PacBio full-length and Illumina transcriptomes to investigate its molecular responses to air exposure. A total of 36,772 transcripts were obtained using PacBio sequencing. Structural analysis identified 32,069 coding sequences, 1906 transcription factors, 8873 simple sequence repeats, and 17,815 long non-coding RNAs. Subcellular localization analysis showed that most transcripts were located in the cytoplasm and nucleus. After 96-h of air exposure, 210 differentially expressed genes (DEGs) in the gill were obtained via Illumina sequencing. Among these DEGs, most of the genes related to glycolysis, tricarboxylic acid cycle, lipid metabolism, and amino acid metabolism were upregulated. Additionally, many DEGs associated with immunity, cytoskeleton reorganization, autophagy, and ferroptosis were identified. These findings indicated that metabolic strategy change, immune response, cytoskeleton reconstruction, autophagy, and ferroptosis might be the important mechanisms that C. fluminea use to cope with air exposure. This study will enrich the gene resources of C. fluminea and provide valuable data for studying the molecular mechanisms coping with air exposure in C. fluminea and other freshwater mollusks.
Collapse
Affiliation(s)
| | | | | | | | - Yanfeng Zhou
- Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| |
Collapse
|
28
|
Wei J, Chen B, Dong J, Wang X, Li Y, Liu Y, Guan W. Salinomycin biosynthesis reversely regulates the β-oxidation pathway in Streptomyces albus by carrying a 3-hydroxyacyl-CoA dehydrogenase gene in its biosynthetic gene cluster. Microb Biotechnol 2022; 15:2890-2904. [PMID: 36099515 PMCID: PMC9733648 DOI: 10.1111/1751-7915.14145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 08/31/2022] [Indexed: 12/14/2022] Open
Abstract
Streptomyces is well known for synthesis of many biologically active secondary metabolites, such as polyketides and non-ribosomal peptides. Understanding the coupling mechanisms of primary and secondary metabolism can help develop strategies to improve secondary metabolite production in Streptomyces. In this work, Streptomyces albus ZD11, an oil-preferring industrial Streptomyces strain, was proved to have a remarkable capability to generate abundant acyl-CoA precursors for salinomycin biosynthesis with the aid of its enhanced β-oxidation pathway. It was found that the salinomycin biosynthetic gene cluster contains a predicted 3-hydroxyacyl-CoA dehydrogenase (FadB3), which is the third enzyme of β-oxidation cycle. Deletion of fadB3 significantly reduced the production of salinomycin. A variety of experimental evidences showed that FadB3 was mainly involved in the β-oxidation pathway rather than ethylmalonyl-CoA biosynthesis and played a very important role in regulating the rate of β-oxidation in S. albus ZD11. Our findings elucidate an interesting coupling mechanism by which a PKS biosynthetic gene cluster could regulate the β-oxidation pathway by carrying β-oxidation genes, enabling Streptomyces to efficiently synthesize target polyketides and economically utilize environmental nutrients.
Collapse
Affiliation(s)
- Jiaxiu Wei
- The Fourth Affiliated HospitalZhejiang University School of MedicineHangzhouChina,Zhejiang Provincial Key Laboratory for Microbial Biochemistry and Metabolic EngineeringHangzhouChina
| | - Binbin Chen
- ZJU‐Hangzhou Global Scientific and Technological Innovation CenterHangzhouChina
| | - Jianxin Dong
- The Fourth Affiliated HospitalZhejiang University School of MedicineHangzhouChina,Zhejiang Provincial Key Laboratory for Microbial Biochemistry and Metabolic EngineeringHangzhouChina
| | - Xueyu Wang
- The Fourth Affiliated HospitalZhejiang University School of MedicineHangzhouChina,Zhejiang Provincial Key Laboratory for Microbial Biochemistry and Metabolic EngineeringHangzhouChina
| | - Yongquan Li
- The Fourth Affiliated HospitalZhejiang University School of MedicineHangzhouChina,Zhejiang Provincial Key Laboratory for Microbial Biochemistry and Metabolic EngineeringHangzhouChina
| | - Yingchun Liu
- Department of ChemistryZhejiang UniversityHangzhouChina
| | - Wenjun Guan
- The Fourth Affiliated HospitalZhejiang University School of MedicineHangzhouChina,Zhejiang Provincial Key Laboratory for Microbial Biochemistry and Metabolic EngineeringHangzhouChina
| |
Collapse
|
29
|
De Pasquale L, Meo P, Fulia F, Anania A, Meli V, Mondello A, Raimondo MT, Tulino V, Coletta MS, Cacace C. A fatal case of neonatal onset multiple acyl-CoA dehydrogenase deficiency caused by novel mutation of ETFDH gene: case report. Ital J Pediatr 2022; 48:164. [PMID: 36064718 PMCID: PMC9446717 DOI: 10.1186/s13052-022-01356-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 08/27/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Multiple acyl-CoA dehydrogenase deficiency (MADD) or glutaric aciduria type II is an extremely rare autosomal recessive inborn error of fatty acid beta oxidation and branched-chain amino acids, secondary to mutations in the genes encoding the electron transfer flavoproteins A and B (ETFs; ETFA or ETFB) or ETF dehydrogenase (ETFDH). The clinical manifestation of MADD are heterogeneous, from severe neonatal forms to mild late-onset forms. CASE PRESENTATION We report the case of a preterm newborn who died a few days after birth for a severe picture of untreatable metabolic acidosis. The diagnosis of neonatal onset MADD was suggested on the basis of clinical features displaying congenital abnormalities and confirmed by the results of expanded newborn screening, which arrived the day the newborn died. Molecular genetic test revealed a homozygous indel variant c.606 + 1 _606 + 2insT in the ETFDH gene, localized in a canonical splite site. This variant, segregated from the two heterozygous parents, is not present in the general population frequency database and has never been reported in the literature. DISCUSSION AND CONCLUSION Recently introduced Expanded Newborn Screening is very important for a timely diagnosis of Inherited Metabolic Disorders like MADD. In some cases which are the most severe, diagnosis may arrive after symptoms are already present or may be the neonate already died. This stress the importance of collecting all possible samples to give parents a proper diagnosis and a genetic counselling for future pregnacies.
Collapse
Affiliation(s)
- Loredana De Pasquale
- Azienda Sanitaria Provinciale di Messina - Neonatal Intensive Care Unit, Barone Romeo Hospital, Patti, ME, Italy.
| | - Petronilla Meo
- Azienda Sanitaria Provinciale di Messina - Neonatal Intensive Care Unit, Barone Romeo Hospital, Patti, ME, Italy
| | - Francesco Fulia
- Azienda Sanitaria Provinciale di Messina - Neonatal Intensive Care Unit, Barone Romeo Hospital, Patti, ME, Italy
| | - Antonio Anania
- Azienda Sanitaria Provinciale di Messina - Neonatal Intensive Care Unit, Barone Romeo Hospital, Patti, ME, Italy
| | - Valerio Meli
- Azienda Sanitaria Provinciale di Messina - Neonatal Intensive Care Unit, Barone Romeo Hospital, Patti, ME, Italy
| | - Antonina Mondello
- Azienda Sanitaria Provinciale di Messina - Neonatal Intensive Care Unit, Barone Romeo Hospital, Patti, ME, Italy
| | - Maria Tindara Raimondo
- Azienda Sanitaria Provinciale di Messina - Neonatal Intensive Care Unit, Barone Romeo Hospital, Patti, ME, Italy
| | - Viviana Tulino
- Azienda Sanitaria Provinciale di Messina - Neonatal Intensive Care Unit, Barone Romeo Hospital, Patti, ME, Italy
| | - Maria Sole Coletta
- Azienda Sanitaria Provinciale di Messina - Neonatal Intensive Care Unit, Barone Romeo Hospital, Patti, ME, Italy
| | - Caterina Cacace
- Azienda Sanitaria Provinciale di Messina - Neonatal Intensive Care Unit, Barone Romeo Hospital, Patti, ME, Italy
| |
Collapse
|
30
|
Nyunoya H, Ishibashi Y, Ito M, Okino N. Significance of mitochondrial fatty acid β-oxidation for the survivability of Aurantiochytrium limacinum ATCC MYA-1381 during sugar starvation. Biosci Biotechnol Biochem 2022; 86:1524-1535. [PMID: 35998312 DOI: 10.1093/bbb/zbac141] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 08/10/2022] [Indexed: 11/12/2022]
Abstract
Thraustochytrids are marine protists that accumulate large amounts of palmitic acid and docosahexaenoic acid in lipid droplets. Random insertional mutagenesis was adopted for Aurantiochytrium limacinum ATCC MYA-1381 to search for genes that regulate lipid metabolism in thraustochytrids. A mutant strain, M17, was selected because of its significant decrease in myristic acid, palmitic acid, and triacylglycerol contents and cell growth defect. Genome analysis revealed that the gene encoding for mitochondrial electron-transfer flavoprotein ubiquinone oxidoreductase (ETFQO) was lacking in the M17 strain. This mutant strain exhibited a growth defect at the stationary phase, possibly due to stagnation of mitochondrial fatty acid β-oxidation and branched-chain amino acid degradation, both of which were caused by lack of ETFQO. This study shows the usability of random insertional mutagenesis to obtain mutants of lipid metabolism in A. limacinum and clarifies that ETFQO is integral for survival under sugar starvation in A. limacinum.
Collapse
Affiliation(s)
- Hayato Nyunoya
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Yohei Ishibashi
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Makoto Ito
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Nozomu Okino
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| |
Collapse
|
31
|
Riboflavin (Vitamin B2) Deficiency Induces Apoptosis Mediated by Endoplasmic Reticulum Stress and the CHOP Pathway in HepG2 Cells. Nutrients 2022; 14:nu14163356. [PMID: 36014863 PMCID: PMC9414855 DOI: 10.3390/nu14163356] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/12/2022] [Accepted: 08/12/2022] [Indexed: 11/17/2022] Open
Abstract
Riboflavin is an essential micronutrient and a precursor of flavin mononucleotide and flavin adenine dinucleotide for maintaining cell homeostasis. Riboflavin deficiency (RD) induces cell apoptosis. Endoplasmic reticulum (ER) stress is considered to induce apoptosis, and C/EBP homologous protein (CHOP) is a key pathway involved in this process. However, whether RD-induced apoptosis is mediated by ER stress and the CHOP pathway remains unclear and needs further investigation. Therefore, the current study presents the effect of RD on ER stress and apoptosis in the human hepatoma cell line (HepG2). Firstly, cells were cultured in a RD medium (4.55 nM riboflavin) and a control (CON) medium (1005 nM riboflavin). We conducted an observation of cell microstructure characterization and determining apoptosis. Subsequently, 4-phenyl butyric acid (4-PBA), an ER stress inhibitor, was used in HepG2 cells to investigate the role of ER stress in RD-induced apoptosis. Finally, CHOP siRNA was transfected into HepG2 cells to validate whether RD triggered ER stress-mediated apoptosis by the CHOP pathway. The results show that RD inhibited cell proliferation and caused ER stress, as well as increased the expression of ER stress markers (CHOP, 78 kDa glucose-regulated protein, activating transcription factor 6) (p < 0.05). Furthermore, RD increased the cell apoptosis rate, enhanced the expression of proapoptotic markers (B-cell lymphoma 2-associated X, Caspase 3), and decreased the expression of the antiapoptotic marker (B-cell lymphoma 2) (p < 0.05). The 4-PBA treatment and CHOP knockdown markedly alleviated RD-induced cell apoptosis. These results demonstrate that RD induces cell apoptosis by triggering ER stress and the CHOP pathway.
Collapse
|
32
|
Taiwo G, Idowu MD, Wilson M, Pech-Cervantes A, Estrada-Reyes ZM, Ogunade IM. Residual Feed Intake in Beef Cattle Is Associated With Differences in Hepatic mRNA Expression of Fatty Acid, Amino Acid, and Mitochondrial Energy Metabolism Genes. FRONTIERS IN ANIMAL SCIENCE 2022. [DOI: 10.3389/fanim.2022.828591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We evaluated the mRNA expression of genes involved in hepatic fatty acid, amino acid, and mitochondrial energy metabolism in crossbred beef steers with divergent low and high residual feed intake (RFI). Low-RFI beef steers (n = 8; RFI = - 1.93 kg/d) and high-RFI beef steers (n = 8; RFI = + 2.01kg/d) were selected from a group of 56 growing crossbred beef steers (average BW = 261 ± 18.5 kg) fed a high-forage total mixed ration after a 49-d performance testing period. At the end of the 49-d performance testing period, liver biopsies were collected from the low-RFI and high-RFI beef steers for RNA extraction and cDNA synthesis. The mRNA expression of 84 genes each related to fatty acid metabolism, amino acid metabolism, and mitochondrial energy metabolism were analyzed using pathway-focused PCR-based arrays. The mRNA expression of 8 genes (CRAT, SLC27A5, SLC27A2, ACSBG2, ACADL, ACADSB, ACAA1, and ACAA2) involved fatty acid transport and β-oxidation were upregulated (FC ≥ 2.0, FDR ≤ 0.05) in low-RFI, compared to high-RFI steers. Among those involved in amino acid metabolism, hepatic mRNA expression of a gene encoding for aminoadipate aminotransferase, an enzyme related to lysine degradation, was downregulated (FC = -5.45, FDR = 0.01) in low-RFI steers, whereas those of methionine adenosyltransferase I and aspartate aminotransferase 2, which both link amino acid and lipid metabolism, were upregulated (FC ≥ 2.0, FDR ≤ 0.05). Two mitochondrial energy metabolism genes (UQCRC1 and ATP5G1) involved in ATP synthesis via oxidative phosphorylation were upregulated (FC ≥ 2.0, FDR ≤ 0.05) in low-RFI beef steers, compared to high-RFI beef steers. The results of this study demonstrated that low-RFI beef steers exhibit upregulation of molecular mechanisms related to fatty acid transport, fatty acid β-oxidation, and mitochondrial ATP synthesis, which suggest that low-RFI beef steers have enhanced metabolic capacity to maximize capture of energy and nutrients from feeds consumed.
Collapse
|
33
|
Yan Y, Yu Z, Zhong W, Hou X, Tao Q, Cao M, Wang L, Cai X, Rao Y, Huang SX. Characterization of Multifunctional and Non-stereoselective Oxidoreductase RubE7/IstO, Expanding the Functional Diversity of the Flavoenzyme Superfamily. Angew Chem Int Ed Engl 2022; 61:e202200189. [PMID: 35191152 DOI: 10.1002/anie.202200189] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Indexed: 12/23/2022]
Abstract
Flavin-dependent enzymes enable a broad range of redox transformations and generally act as monofunctional and stereoselective catalysts. Herein, we report the investigation of a multifunctional and non-stereoselective FMN-dependent oxidoreductase RubE7 from the rubrolone biosynthetic pathway. Our study outlines a single RubE7-catalysed sequential reduction of three spatially distinct bonds in a tropolone ring and a reversible double-bond reduction and dehydrogenation. The crystal structure of IstO (a RubE7 homologue) with 2.0 Å resolution reveals the location of the active site at the interface of two monomers, and the size of active site is large enough to permit both flipping and free rotation of the substrate, resulting in multiple nonselective reduction reactions. Molecular docking and site mutation studies demonstrate that His106 is oriented towards the substrate and is important for the reverse dehydrogenation reaction.
Collapse
Affiliation(s)
- Yijun Yan
- State Key Laboratory of Phytochemistry and Plant Resources in West China, CAS Center for Excellence in Molecular Plant Sciences, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Zhiyin Yu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, CAS Center for Excellence in Molecular Plant Sciences, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Wei Zhong
- State Key Laboratory of Phytochemistry and Plant Resources in West China, CAS Center for Excellence in Molecular Plant Sciences, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China.,University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaodong Hou
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Qiaoqiao Tao
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Minhang Cao
- State Key Laboratory of Phytochemistry and Plant Resources in West China, CAS Center for Excellence in Molecular Plant Sciences, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Li Wang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, CAS Center for Excellence in Molecular Plant Sciences, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Xiaofeng Cai
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yijian Rao
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Sheng-Xiong Huang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, CAS Center for Excellence in Molecular Plant Sciences, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| |
Collapse
|
34
|
Cheng LM, Zhang SF, Xie ZX, Li DX, Lin L, Wang MH, Wang DZ. Metabolic Adaptation of a Globally Important Diatom following 700 Generations of Selection under a Warmer Temperature. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:5247-5255. [PMID: 35352563 DOI: 10.1021/acs.est.1c08584] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Diatoms, accounting for 40% of the marine primary production and 20% of global carbon dioxide fixation, are threatened by the ongoing ocean warming (OW). However, whether and how these ecologically important phytoplankton adapt to OW remains poorly unknown. Here, we experimentally examined the metabolic adaptation of a globally important diatom species Skeletonema dohrnii (S. dohrnii) to OW at two elevated temperatures (24 and 28 °C compared with 20 °C) under short-term (∼300 generations) and long-term (∼700 generations) selection. Both warming levels significantly increased the cell growth rate but decreased the chlorophyll a content. The contents of particulate organic carbon (POC) and particulate organic nitrogen (PON) decreased significantly initially (i.e., until 300 generations) at two temperature treatments but completely recovered after 700 generations of selection, suggesting that S. dohrnii ultimately developed thermal adaptation. Proteomic analysis demonstrated that elevated temperatures upregulated energy metabolism via glycolysis, tricarboxylic acid cycle, and fatty acid oxidation as well as nitrogen acquisition and utilization, which in turn reduced substance storage because of trade-off in the 300th generation, thus decreasing POC and PON. Interestingly, populations at both elevated temperatures exhibited significant proteome plasticity in the 700th generation, as primarily demonstrated by the increased lipid catabolism and glucose accumulation, accounting for the recovery of POC and PON. Changes occurring in cells at the 300th and 700th generations demonstrate that S. dohrnii can adapt to the projected OW, and readjusting the energy metabolism is an important adaptive strategy.
Collapse
Affiliation(s)
- Lu-Man Cheng
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems/College of the Environment & Ecology, Xiamen University, Xiamen 361102, China
| | - Shu-Feng Zhang
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems/College of the Environment & Ecology, Xiamen University, Xiamen 361102, China
| | - Zhang-Xian Xie
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems/College of the Environment & Ecology, Xiamen University, Xiamen 361102, China
| | - Dong-Xu Li
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems/College of the Environment & Ecology, Xiamen University, Xiamen 361102, China
| | - Lin Lin
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems/College of the Environment & Ecology, Xiamen University, Xiamen 361102, China
| | - Ming-Hua Wang
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems/College of the Environment & Ecology, Xiamen University, Xiamen 361102, China
| | - Da-Zhi Wang
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems/College of the Environment & Ecology, Xiamen University, Xiamen 361102, China
| |
Collapse
|
35
|
Yan Y, Yu Z, Zhong W, Hou X, Tao Q, Cao M, Wang L, Cai X, Rao Y, Huang S. Characterization of Multifunctional and Non‐stereoselective Oxidoreductase RubE7/IstO, Expanding the Functional Diversity of the Flavoenzyme Superfamily. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202200189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Yijun Yan
- State Key Laboratory of Phytochemistry and Plant Resources in West China CAS Center for Excellence in Molecular Plant Sciences Kunming Institute of Botany Chinese Academy of Sciences Kunming 650201 China
| | - Zhiyin Yu
- State Key Laboratory of Phytochemistry and Plant Resources in West China CAS Center for Excellence in Molecular Plant Sciences Kunming Institute of Botany Chinese Academy of Sciences Kunming 650201 China
| | - Wei Zhong
- State Key Laboratory of Phytochemistry and Plant Resources in West China CAS Center for Excellence in Molecular Plant Sciences Kunming Institute of Botany Chinese Academy of Sciences Kunming 650201 China
- University of the Chinese Academy of Sciences Beijing 100049 China
| | - Xiaodong Hou
- Key Laboratory of Carbohydrate Chemistry and Biotechnology Ministry of Education School of Biotechnology Jiangnan University Wuxi 214122 China
| | - Qiaoqiao Tao
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation School of Pharmacy Tongji Medical College Huazhong University of Science and Technology Wuhan 430030 China
| | - Minhang Cao
- State Key Laboratory of Phytochemistry and Plant Resources in West China CAS Center for Excellence in Molecular Plant Sciences Kunming Institute of Botany Chinese Academy of Sciences Kunming 650201 China
| | - Li Wang
- State Key Laboratory of Phytochemistry and Plant Resources in West China CAS Center for Excellence in Molecular Plant Sciences Kunming Institute of Botany Chinese Academy of Sciences Kunming 650201 China
| | - Xiaofeng Cai
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation School of Pharmacy Tongji Medical College Huazhong University of Science and Technology Wuhan 430030 China
| | - Yijian Rao
- Key Laboratory of Carbohydrate Chemistry and Biotechnology Ministry of Education School of Biotechnology Jiangnan University Wuxi 214122 China
| | - Sheng‐Xiong Huang
- State Key Laboratory of Phytochemistry and Plant Resources in West China CAS Center for Excellence in Molecular Plant Sciences Kunming Institute of Botany Chinese Academy of Sciences Kunming 650201 China
| |
Collapse
|
36
|
Acharya A, Yi D, Pavlova A, Agarwal V, Gumbart JC. Resolving the Hydride Transfer Pathway in Oxidative Conversion of Proline to Pyrrole. Biochemistry 2022; 61:206-215. [DOI: 10.1021/acs.biochem.1c00741] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Atanu Acharya
- School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Dongqi Yi
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Anna Pavlova
- School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Vinayak Agarwal
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - James C. Gumbart
- School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
37
|
Ye J, Li J. First analyses of lysine succinylation proteome and overlap between succinylation and acetylation in Solenopsis invicta Buren (Hymenoptera: Formicidae). BMC Genomics 2022; 23:61. [PMID: 35039013 PMCID: PMC8764763 DOI: 10.1186/s12864-021-08285-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Accepted: 12/28/2021] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Lysine succinylation (Ksu) exists in both eukaryotes and prokaryotes, and influences a variety of metabolism processes. However, little attention has been paid to Ksu in insects, especially the notorious invasive pest Solenopsis invicta. RESULTS In this study, the first analyses of Ksu proteome and overlap between Ksu and lysine acetylation (Kac) in S. invicta were presented. 3753 succinylated sites in 893 succinylated proteins were tested. The dihydrolipoyl dehydrogenase, V-type proton ATPase subunit G, and tubulin alpha chain all had evolutionary conservatism among diverse ant or bee species. Immunoblotting validation showed that there were many Ksu protein bands with a wide range of molecular mass. In addition, 1230 sites in 439 proteins were highly overlapped between Ksu and Kac. 54.05% of Ksu proteins in cytoplasm were acetylated. The results demonstrated that Ksu may play a vital part in the allergization, redox metabolism, sugar, fat, and protein metabolism, energy production, immune response, and biosynthesis of various secondary metabolites. CONCLUSIONS Ksu and Kac were two ubiquitous protein post-translational modifications participated in a variety of biological processes. Our results may supply rich resources and a starting point for the molecular basic research of regulation on metabolic pathways and other biological processes by succinylation and acetylation.
Collapse
Affiliation(s)
- Jingwen Ye
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of zoology, Guangdong Academy of Sciences, Xingang West Road 105, Guangzhou, Guangdong Province, 510260, People's Republic of China
| | - Jun Li
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of zoology, Guangdong Academy of Sciences, Xingang West Road 105, Guangzhou, Guangdong Province, 510260, People's Republic of China.
| |
Collapse
|
38
|
Teixeira PC, Ducret A, Langen H, Nogoceke E, Santos RHB, Silva Nunes JP, Benvenuti L, Levy D, Bydlowski SP, Bocchi EA, Kuramoto Takara A, Fiorelli AI, Stolf NA, Pomeranzeff P, Chevillard C, Kalil J, Cunha-Neto E. Impairment of Multiple Mitochondrial Energy Metabolism Pathways in the Heart of Chagas Disease Cardiomyopathy Patients. Front Immunol 2021; 12:755782. [PMID: 34867990 PMCID: PMC8633876 DOI: 10.3389/fimmu.2021.755782] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 10/26/2021] [Indexed: 12/26/2022] Open
Abstract
Chagas disease cardiomyopathy (CCC) is an inflammatory dilated cardiomyopathy occurring in 30% of the 6 million infected with the protozoan Trypanosoma cruzi in Latin America. Survival is significantly lower in CCC than ischemic (IC) and idiopathic dilated cardiomyopathy (DCM). Previous studies disclosed a selective decrease in mitochondrial ATP synthase alpha expression and creatine kinase activity in CCC myocardium as compared to IDC and IC, as well as decreased in vivo myocardial ATP production. Aiming to identify additional constraints in energy metabolism specific to CCC, we performed a proteomic study in myocardial tissue samples from CCC, IC and DCM obtained at transplantation, in comparison with control myocardial tissue samples from organ donors. Left ventricle free wall myocardial samples were subject to two-dimensional electrophoresis with fluorescent labeling (2D-DIGE) and protein identification by mass spectrometry. We found altered expression of proteins related to mitochondrial energy metabolism, cardiac remodeling, and oxidative stress in the 3 patient groups. Pathways analysis of proteins differentially expressed in CCC disclosed mitochondrial dysfunction, fatty acid metabolism and transmembrane potential of mitochondria. CCC patients’ myocardium displayed reduced expression of 22 mitochondrial proteins belonging to energy metabolism pathways, as compared to 17 in DCM and 3 in IC. Significantly, 6 beta-oxidation enzymes were reduced in CCC, while only 2 of them were down-regulated in DCM and 1 in IC. We also observed that the cytokine IFN-gamma, previously described with increased levels in CCC, reduces mitochondrial membrane potential in cardiomyocytes. Results suggest a major reduction of mitochondrial energy metabolism and mitochondrial dysfunction in CCC myocardium which may be in part linked to IFN-gamma. This may partially explain the worse prognosis of CCC as compared to DCM or IC.
Collapse
Affiliation(s)
- Priscila Camillo Teixeira
- Laboratory of Immunology, Heart Institute (Incor) Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil.,Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche, Basel, Switzerland
| | - Axel Ducret
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche, Basel, Switzerland
| | - Hanno Langen
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche, Basel, Switzerland
| | - Everson Nogoceke
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche, Basel, Switzerland
| | | | - João Paulo Silva Nunes
- Laboratory of Immunology, Heart Institute (Incor) Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil.,INSERM, UMR_1090, Aix Marseille Université, TAGC Theories and Approaches of Genomic Complexity, Institut MarMaRa, Marseille, France.,Division of Clinical Immunology and Allergy, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil.,Instituto Nacional de Ciência e Tecnologia, INCT, iii- Institute for Investigation in Immunology, São Paulo, Brazil
| | - Luiz Benvenuti
- Anatomical Pathology Division, Heart Institute (Incor) Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Debora Levy
- Laboratory of Immunology, Heart Institute (Incor) Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Sergio Paulo Bydlowski
- Laboratory of Immunology, Heart Institute (Incor) Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Edimar Alcides Bocchi
- Heart Failure Team, Heart Institute (Incor) Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Andréia Kuramoto Takara
- Laboratory of Immunology, Heart Institute (Incor) Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Alfredo Inácio Fiorelli
- Division of Surgery, Heart Institute, School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Noedir Antonio Stolf
- Division of Surgery, Heart Institute, School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Pablo Pomeranzeff
- Division of Surgery, Heart Institute, School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Christophe Chevillard
- INSERM, UMR_1090, Aix Marseille Université, TAGC Theories and Approaches of Genomic Complexity, Institut MarMaRa, Marseille, France
| | - Jorge Kalil
- Laboratory of Immunology, Heart Institute (Incor) Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil.,Division of Clinical Immunology and Allergy, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil.,Instituto Nacional de Ciência e Tecnologia, INCT, iii- Institute for Investigation in Immunology, São Paulo, Brazil
| | - Edecio Cunha-Neto
- Laboratory of Immunology, Heart Institute (Incor) Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil.,Division of Clinical Immunology and Allergy, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil.,Instituto Nacional de Ciência e Tecnologia, INCT, iii- Institute for Investigation in Immunology, São Paulo, Brazil
| |
Collapse
|
39
|
Ma S, Mandalapu D, Wang S, Zhang Q. Biosynthesis of cyclopropane in natural products. Nat Prod Rep 2021; 39:926-945. [PMID: 34860231 DOI: 10.1039/d1np00065a] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Covering: 2012 to 2021Cyclopropane attracts wide interests in the fields of synthetic and pharmaceutical chemistry, and chemical biology because of its unique structural and chemical properties. This structural motif is widespread in natural products, and is usually essential for biological activities. Nature has evolved diverse strategies to access this structural motif, and increasing knowledge of the enzymes forming cyclopropane (i.e., cyclopropanases) has been revealed over the last two decades. Here, the scientific literature from the last two decades relating to cyclopropane biosynthesis is summarized, and the enzymatic cyclopropanations, according to reaction mechanism, which can be grouped into two major pathways according to whether the reaction involves an exogenous C1 unit from S-adenosylmethionine (SAM) or not, is discussed. The reactions can further be classified based on the key intermediates required prior to cyclopropane formation, which can be carbocations, carbanions, or carbon radicals. Besides the general biosynthetic pathways of the cyclopropane-containing natural products, particular emphasis is placed on the mechanism and engineering of the enzymes required for forming this unique structure motif.
Collapse
Affiliation(s)
- Suze Ma
- Department of Chemistry, Fudan University, Shanghai, 200433, China.
| | | | - Shu Wang
- Department of Chemistry, Fudan University, Shanghai, 200433, China.
| | - Qi Zhang
- Department of Chemistry, Fudan University, Shanghai, 200433, China.
| |
Collapse
|
40
|
Tang Z, Gao S, He M, Chen Q, Fang J, Luo Y, Yan W, Shi X, Huang H, Tang J. Clinical Presentations and Genetic Characteristics of Late-Onset MADD Due to ETFDH Mutations in Five Patients: A Case Series. Front Neurol 2021; 12:747360. [PMID: 34819910 PMCID: PMC8606537 DOI: 10.3389/fneur.2021.747360] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 10/05/2021] [Indexed: 01/24/2023] Open
Abstract
Background: Late-onset multiple acyl-CoA dehydrogenase deficiency (LO-MADD) describes a curable autosomal recessive genetic disease caused by ETFDH mutations that result in defects in ETF-ubiquinone oxidoreductase. Almost all patients are responsive to riboflavin. This study describes the clinical presentations and genetic characteristics of five LO-MADD patients. Methods: From 2018 to 2021, we collected clinical and genetic data on five patients diagnosed with LO-MADD at our hospital and retrospectively analyzed their clinical characteristics, laboratory examination, electromyography, muscle biopsy, genetic analysis, and outcome data. Results: This study included three males and two females with mean onset age of 37.8 years. Fluctuating exercise intolerance was the most common presentation. Serum creatine kinase (CK) levels were significantly elevated in all patients, and plasma acylcarnitine profiles revealed an increase in long-chain acylcarnitine species in three cases. The urinary organic acid study revealed a high level of hydroxyglutaric acid in all patients. Electrophysiology demonstrated myogenic impairment. Muscle biopsies revealed lipid storage myopathy. Molecular analysis identified nine mutations (three novels and six reported) in ETFDH. Exercise intolerance and muscle weakness were dramatically improved in all patients treated with riboflavin (100 mg) daily following diagnosis. Conclusions: LO-MADD is caused by ETFDH variants and responds well to riboflavin. Three novel ETFDH pathogenic variants were identified, expanding their spectrum in the Chinese population and facilitating future interpretation and analysis of ETFDH mutations.
Collapse
Affiliation(s)
- Zhenchu Tang
- Department of Neurology, Second Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Tumor Models and Individualized Medicine, Second Xiangya Hospital, Central South University, Changsha, China
| | - Shan Gao
- Department of Gastroenterology, Second Xiangya Hospital, Central South University, Changsha, China
| | - Miao He
- Department of Neurology, Second Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Tumor Models and Individualized Medicine, Second Xiangya Hospital, Central South University, Changsha, China
| | - Qihua Chen
- Department of Neurology, Second Xiangya Hospital, Central South University, Changsha, China
| | - Jia Fang
- Department of Neurology, Second Xiangya Hospital, Central South University, Changsha, China
| | - Yingying Luo
- Department of Neurology, Second Xiangya Hospital, Central South University, Changsha, China
| | - Weiqian Yan
- Department of Neurology, Second Xiangya Hospital, Central South University, Changsha, China
| | - Xiaoliu Shi
- Department of Medical Genetics, Second Xiangya Hospital, Central South University, Changsha, China
| | - Hui Huang
- Department of Medical Genetics, Second Xiangya Hospital, Central South University, Changsha, China
| | - Jianguang Tang
- Department of Neurology, Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
41
|
Kar RK, Chasen S, Mroginski MA, Miller AF. Tuning the Quantum Chemical Properties of Flavins via Modification at C8. J Phys Chem B 2021; 125:12654-12669. [PMID: 34784473 DOI: 10.1021/acs.jpcb.1c07306] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Flavins are central to countless enzymes but display different reactivities depending on their environments. This is understood to reflect modulation of the flavin electronic structure. To understand changes in orbital natures, energies, and correlation over the ring system, we begin by comparing seven flavin variants differing at C8, exploiting their different electronic spectra to validate quantum chemical calculations. Ground state calculations replicate a Hammett trend and reveal the significance of the flavin π-system. Comparison of higher-level theories establishes CC2 and ACD(2) as methods of choice for characterization of electronic transitions. Charge transfer character and electron correlation prove responsive to the identity of the substituent at C8. Indeed, bond length alternation analysis demonstrates extensive conjugation and delocalization from the C8 position throughout the ring system. Moreover, we succeed in replicating a particularly challenging UV/Vis spectrum by implementing hybrid QM/MM in explicit solvents. Our calculations reveal that the presence of nonbonding lone pairs correlates with the change in the UV/Vis spectrum observed when the 8-methyl is replaced by NH2, OH, or SH. Thus, our computations offer routes to understanding the spectra of flavins with different modifications. This is a first step toward understanding how the same is accomplished by different binding environments.
Collapse
Affiliation(s)
- Rajiv K Kar
- Faculty II-Mathematics and Natural Sciences, Technische Universität Berlin, Sekr. PC 14, Strasse des 17. Juni 135, D-10623 Berlin, Germany
| | - Sam Chasen
- Department of Chemistry, University of Kentucky, Lexington, Kentucky 40506, United States
| | - Maria-Andrea Mroginski
- Faculty II-Mathematics and Natural Sciences, Technische Universität Berlin, Sekr. PC 14, Strasse des 17. Juni 135, D-10623 Berlin, Germany
| | - Anne-Frances Miller
- Faculty II-Mathematics and Natural Sciences, Technische Universität Berlin, Sekr. PC 14, Strasse des 17. Juni 135, D-10623 Berlin, Germany.,Department of Chemistry, University of Kentucky, Lexington, Kentucky 40506, United States
| |
Collapse
|
42
|
Substrate specificity of the 3-methylmercaptopropionyl-CoA (DmdC1) dehydrogenase from Ruegeria pomeroyi DSS-3. Appl Environ Microbiol 2021; 88:e0172921. [PMID: 34818101 DOI: 10.1128/aem.01729-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The acyl-CoA dehydrogenase family enzyme DmdC catalyzes the third step in the dimethylsulfoniopropionate (DMSP) demethylation pathway, the oxidation of 3-methylmercaptopropionyl-CoA (MMPA-CoA) to 3-methylthioacryloyl-CoA (MTA-CoA). To study its substrate specificity, the recombinant DmdC1 from Ruegeria pomeroyi was characterized. In addition to MMPA-CoA, the enzyme was highly active with short chain acyl-CoAs, with Km values for MMPA-CoA, butyryl-CoA, valeryl-CoA, caproyl-CoA, heptanoyl-CoA, caprylyl-CoA and isobutyryl-CoA of 36, 19, 7, 11, 14, 10, and 149 μM, respectively, and kcat values of 1.48, 0.40, 0.48, 0.73, 0.46, 0.23 and 0.01 sec-1, respectively. Among these compounds, MMPA-CoA was the best substrate. The high affinity of DmdC1 for its substrate supports the model for kinetic regulation of the demethylation pathway. In contrast to DmdB, which catalyzes the formation of MMPA-CoA from MMPA, CoA and ATP, DmdC1 was not affected by physiological concentrations of potential effectors, such as DMSP, MMPA, ATP and ADP. Thus, compared to the other enzymes of the DMSP demethylation pathway, DmdC1 has only minimal adaptations for DMSP metabolism compared to other enzymes in the same family with similar substrates, supporting the hypothesis that it evolved relatively recently from a short chain acyl-CoA dehydrogenase involved in fatty acid oxidation. Importance We report the kinetic properties of DmdC1 from the model organism R. pomeroyi and close an important gap in the literature. While the crystal structure of this enzyme was recently solved and its mechanism of action described (X. Shao, H. Y. Cao, F. Zhao, M. Peng, et al., Mol Microbiol 111:1057-1073, 2019, https://doi.org/10.1111/mmi.14211), its substrate specificity and sensitivity to potential effectors was never examined. We show that DmdC1 has a high affinity for other short chain acyl-CoAs in addition to MMPA-CoA, which is the natural substrate in DMSP metabolism and is not affected by the potential effectors tested. This evidence supports the hypothesis that DmdC1 possesses few adaptations to DMSP metabolism and likely evolved relatively recently from a short chain acyl-CoA dehydrogenase involved in fatty acid oxidation. This work is important because it expands our understanding about the adaptation of marine bacteria to the increased availability of DMSP about 250 million years ago.
Collapse
|
43
|
Cui Z, Nguyen H, Bhardwaj M, Wang X, Büschleb M, Lemke A, Schütz C, Rohrbacher C, Junghanns P, Koppermann S, Ducho C, Thorson JS, Van Lanen SG. Enzymatic C β-H Functionalization of l-Arg and l-Leu in Nonribosomally Derived Peptidyl Natural Products: A Tale of Two Oxidoreductases. J Am Chem Soc 2021; 143:19425-19437. [PMID: 34767710 DOI: 10.1021/jacs.1c08177] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Muraymycins are peptidyl nucleoside antibiotics that contain two Cβ-modified amino acids, (2S,3S)-capreomycidine and (2S,3S)-β-OH-Leu. The former is also a component of chymostatins, which are aldehyde-containing peptidic protease inhibitors that─like muraymycin─are derived from nonribosomal peptide synthetases (NRPSs). Using feeding experiments and in vitro characterization of 12 recombinant proteins, the biosynthetic mechanism for both nonproteinogenic amino acids is now defined. The formation of (2S,3S)-capreomycidine is shown to involve an FAD-dependent dehydrogenase:cyclase that requires an NRPS-bound pathway intermediate as a substrate. This cryptic dehydrogenation strategy is both temporally and mechanistically distinct in comparison to the biosynthesis of other capreomycidine diastereomers, which has previously been shown to proceed by Cβ-hydroxylation of free l-Arg catalyzed by a member of the nonheme Fe2+- and α-ketoglutarate (αKG)-dependent dioxygenase family and (eventually) a dehydration-mediated cyclization process catalyzed by a distinct enzyme(s). Contrary to our initial expectation, the sole nonheme Fe2+- and αKG-dependent dioxygenase candidate Mur15 encoded within the muraymycin gene cluster is instead demonstrated to catalyze specific Cβ hydroxylation of the Leu residue to generate (2S,3S)-β-OH-Leu that is found in most muraymycin congeners. Importantly, and in contrast to known l-Arg-Cβ-hydroxylases, the Mur15-catalyzed reaction occurs after the NRPS-mediated assembly of the peptide scaffold. This late-stage functionalization affords the opportunity to exploit Mur15 as a biocatalyst, proof of concept of which is provided.
Collapse
Affiliation(s)
- Zheng Cui
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, United States
| | - Han Nguyen
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, United States
| | - Minakshi Bhardwaj
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, United States
| | - Xiachang Wang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, United States
| | - Martin Büschleb
- Department of Chemistry, Institute of Organic and Biomolecular Chemistry, Georg-August-University, GöTammannstr. 2, 37077 Göttingen, Germany
| | - Anke Lemke
- Department of Pharmacy, Pharmaceutical and Medicinal Chemistry, Saarland University, Campus C2 3, 66123 Saarbrücken, Germany
| | - Christian Schütz
- Department of Pharmacy, Pharmaceutical and Medicinal Chemistry, Saarland University, Campus C2 3, 66123 Saarbrücken, Germany
| | - Christian Rohrbacher
- Department of Pharmacy, Pharmaceutical and Medicinal Chemistry, Saarland University, Campus C2 3, 66123 Saarbrücken, Germany
| | - Pierre Junghanns
- Department of Pharmacy, Pharmaceutical and Medicinal Chemistry, Saarland University, Campus C2 3, 66123 Saarbrücken, Germany
| | - Stefan Koppermann
- Department of Pharmacy, Pharmaceutical and Medicinal Chemistry, Saarland University, Campus C2 3, 66123 Saarbrücken, Germany
| | - Christian Ducho
- Department of Pharmacy, Pharmaceutical and Medicinal Chemistry, Saarland University, Campus C2 3, 66123 Saarbrücken, Germany
| | - Jon S Thorson
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, United States
| | - Steven G Van Lanen
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536, United States
| |
Collapse
|
44
|
Kung JW, Meier AK, Willistein M, Weidenweber S, Demmer U, Ermler U, Boll M. Structural Basis of Cyclic 1,3-Diene Forming Acyl-Coenzyme A Dehydrogenases. Chembiochem 2021; 22:3173-3177. [PMID: 34555236 PMCID: PMC9293079 DOI: 10.1002/cbic.202100421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/15/2021] [Indexed: 11/20/2022]
Abstract
The biologically important, FAD‐containing acyl‐coenzyme A (CoA) dehydrogenases (ACAD) usually catalyze the anti‐1,2‐elimination of a proton and a hydride of aliphatic CoA thioesters. Here, we report on the structure and function of an ACAD from anaerobic bacteria catalyzing the unprecedented 1,4‐elimination at C3 and C6 of cyclohex‐1‐ene‐1‐carboxyl‐CoA (Ch1CoA) to cyclohex‐1,5‐diene‐1‐carboxyl‐CoA (Ch1,5CoA) and at C3 and C4 of the latter to benzoyl‐CoA. Based on high‐resolution Ch1CoA dehydrogenase crystal structures, the unorthodox reactivity is explained by the presence of a catalytic aspartate base (D91) at C3, and by eliminating the catalytic glutamate base at C1. Moreover, C6 of Ch1CoA and C4 of Ch1,5CoA are positioned towards FAD‐N5 to favor the biologically relevant C3,C6‐ over the C3,C4‐dehydrogenation activity. The C1,C2‐dehydrogenation activity was regained by structure‐inspired amino acid exchanges. The results provide the structural rationale for the extended catalytic repertoire of ACADs and offer previously unknown biocatalytic options for the synthesis of cyclic 1,3‐diene building blocks.
Collapse
Affiliation(s)
- Johannes W Kung
- Faculty of Biology - Microbiology, Albert-Ludwigs-Universität Freiburg, Schänzlestrasse 1, 79104, Freiburg, Germany
| | - Anne-Katrin Meier
- Faculty of Biology - Microbiology, Albert-Ludwigs-Universität Freiburg, Schänzlestrasse 1, 79104, Freiburg, Germany
| | - Max Willistein
- Faculty of Biology - Microbiology, Albert-Ludwigs-Universität Freiburg, Schänzlestrasse 1, 79104, Freiburg, Germany
| | - Sina Weidenweber
- Max-Planck-Institute for Biophysics, Max-von-Laue-Strasse 3, 60438, Frankfurt, Germany
| | - Ulrike Demmer
- Max-Planck-Institute for Biophysics, Max-von-Laue-Strasse 3, 60438, Frankfurt, Germany
| | - Ulrich Ermler
- Max-Planck-Institute for Biophysics, Max-von-Laue-Strasse 3, 60438, Frankfurt, Germany
| | - Matthias Boll
- Faculty of Biology - Microbiology, Albert-Ludwigs-Universität Freiburg, Schänzlestrasse 1, 79104, Freiburg, Germany
| |
Collapse
|
45
|
Li B, Li J, An G, Zhao C, Wang C. Long-term and strong suppression against Microcystis growth and microcystin-release by luteolin continuous-release microsphere: Optimal construction, characterization, effects and proteomic mechanisms. WATER RESEARCH 2021; 202:117448. [PMID: 34364065 DOI: 10.1016/j.watres.2021.117448] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 06/21/2021] [Accepted: 07/14/2021] [Indexed: 06/13/2023]
Abstract
Microcystis-dominated cyanobacterial blooms (MCBs) severely threaten ecological health by causing hypoxia and releasing microcystins (MCs). Luteolin has potential as low-cost eco-safe algaecide against Microcystis, but to enhance sustainability of its algicidal effect and elucidate underlying mechanisms at proteomic level are urgently desirable. This study optimally constructed continuous-release microsphere (CRM) of luteolin with strong solidity and durability even after long-term immersion. Applying luteolin CRM, this study developed a long-term algicidal option to strongly inhibit Microcystis growth and MC-release until 49 days, with inhibition ratios of growth and MC-release (both ≥ 98%) and inhibitory effect-lasting time (nearly 50 days) of CRM superior to most former reports, and long-term strong inhibitory effects of CRM on Microcystis growth and MC-release kept stable at various nitrogen levels. Also, luteolin CRM rendered extracellular MCs content decrease to nearby acceptable threshold for drinking water. These signified a promising prospect of luteolin CRM in sustained effective control against toxigenic MCBs in waters of different eutrophic states. Comparative proteomic analysis showed that luteolin CRM significantly up-regulated photosynthesis and protein homestasis, but down-regulated other processes including stress response, MC-synthesis/release, glycolysis, amino acid synthesis, fatty acid synthesis/β-oxidation, tricarboxylic acid cycle, transcription, translation, transport, cell shaping and cell division. These implied that continuous stress of luteolin released from CRM induced Microcystis proteome towards a shift of higher energy storage but lower energy release/consumption, which largely disturbed its physiological metabolic processes and thus negatively impact its growth. Proteomics results shed newly deep insights on algicidal mechanisms of flavonoid in the form of CRM.
Collapse
Affiliation(s)
- Biying Li
- College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China; Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing 100193, China
| | - Jieming Li
- College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China; Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing 100193, China.
| | - Guangqi An
- College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China; Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing 100193, China
| | - Caihong Zhao
- College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China; Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing 100193, China
| | - Chengyu Wang
- College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China; Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing 100193, China
| |
Collapse
|
46
|
Effects of riboflavin deficiency on the lipid metabolism of duck breeders and duck embryos. Poult Sci 2021; 100:101342. [PMID: 34438327 PMCID: PMC8383102 DOI: 10.1016/j.psj.2021.101342] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 06/10/2021] [Accepted: 06/18/2021] [Indexed: 11/22/2022] Open
Abstract
This study aimed to evaluate the effects of dietary riboflavin deficiency (RD) on the lipid metabolism of duck breeders and duck embryos. A total of 40 female 40-wk-old white Pekin duck breeders were randomly divided into 2 groups, received either RD diet (1.48 mg riboflavin/kg) or control diet (16.48 mg riboflavin/kg, CON) for 14 wk. Each group consisted of 20 duck breeders (10 replicates per group, 2 birds per replicate), and all experiment birds were single-caged. At the end of the experiment, reproductive performance, hepatic riboflavin, hepatic flavin mononucleotide (FMN), hepatic flavin adenine dinucleotide (FAD), hepatic morphology, hepatic lipid contents, and hepatic protein expression of duck breeders and duck embryos were measured. The results showed that the RD had no effect on egg production and egg fertility but reduced egg hatchability, duck embryo weight, hepatic riboflavin, FMN, and FAD status compared to results obtained in the CON group (all P < 0.05). Livers from RD ducks presented enlarged lipid droplets, excessive accumulation of total lipids, triglycerides, and free fatty acids (all P < 0.05). In addition to excessive lipids accumulation, medium-chain specific acyl-CoA dehydrogenase expression was downregulated (P < 0.05), and short-chain specific acyl-CoA dehydrogenase expression was upregulated in maternal and embryonic livers (P < 0.05). RD did not affect maternal hepatic acyl-CoA dehydrogenase family member 9 (ACAD9) expression, but duck embryonic hepatic ACAD9 expression was reduced in the RD group (P < 0.05). Collectively, dietary RD conditioned lower egg hatchability and inhibited the development of duck embryos. Increased accumulation of lipids, both maternal and embryo, was impaired due to the reduced flavin protein expression, which caused inhibition of hepatic lipids utilization. These findings suggest that abnormal duck embryonic growth and low hatchability caused by RD might be associated with disorders of lipid metabolism in maternal as well as embryos.
Collapse
|
47
|
Xing Y, Thanasirungkul W, Aslam A, Niu F, Guo HR, Chi DF. Genes involved in the Type I pheromone biosynthesis pathway and chemoreception from the sex pheromone gland transcriptome of Dioryctria abietella. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2021; 40:100892. [PMID: 34428712 DOI: 10.1016/j.cbd.2021.100892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 07/31/2021] [Accepted: 08/03/2021] [Indexed: 11/15/2022]
Abstract
Dioryctria abietella is a coniferous seed orchard pest that can damage a series of host plants and cause huge losses to the forest economy. Sex pheromones play an important role in lepidopteran sex communication for reproduction and can be used as biological control agents to monitor and trap pests. However, the genes involved in the biosynthesis, transportation, and degradation of D. abietella sex pheromones have not been studied extensively. Transcriptome analysis of female D. abietella sex pheromone glands (PGs) revealed that 210 candidate genes might be involved in sex pheromone biosynthesis (139 genes) and chemoreception systems (71 genes). The gene expression patterns exhibited four desaturase genes (DabiDES4-7) and one fatty acid reductase gene (DabiFAR6), which were more highly expressed in sex pheromone glands than in other tissues, suggesting that these enzymes play an important role in D. abietella sex pheromone synthesis. In addition, most DabiOBPs showed high expression in antennae, but only DabiOBP4 exhibited specific expression in sex pheromone glands, suggesting that they may play many physiological roles in D. abietella. We put forth a reasonable hypothesis about type I pheromone biosynthesis pathways based on these genes identified in the D. abietella sex pheromone gland transcriptome. Our findings lay a foundation for population monitoring, mating disruption, mass trapping, and the development of ecologically acceptable management strategies.
Collapse
Affiliation(s)
- Ya Xing
- Key Laboratory for Sustainable Forest Ecosystem Management-Ministry of Education, College of Forestry, Northeast Forestry University, Harbin 150040, Heilongjiang, People's Republic of China
| | - Wariya Thanasirungkul
- Key Laboratory for Sustainable Forest Ecosystem Management-Ministry of Education, College of Forestry, Northeast Forestry University, Harbin 150040, Heilongjiang, People's Republic of China
| | - Asad Aslam
- Key Laboratory for Sustainable Forest Ecosystem Management-Ministry of Education, College of Forestry, Northeast Forestry University, Harbin 150040, Heilongjiang, People's Republic of China
| | - Fang Niu
- Key Laboratory for Sustainable Forest Ecosystem Management-Ministry of Education, College of Forestry, Northeast Forestry University, Harbin 150040, Heilongjiang, People's Republic of China
| | - Hong-Ru Guo
- Key Laboratory for Sustainable Forest Ecosystem Management-Ministry of Education, College of Forestry, Northeast Forestry University, Harbin 150040, Heilongjiang, People's Republic of China
| | - De-Fu Chi
- Key Laboratory for Sustainable Forest Ecosystem Management-Ministry of Education, College of Forestry, Northeast Forestry University, Harbin 150040, Heilongjiang, People's Republic of China.
| |
Collapse
|
48
|
Elucidation of an anaerobic pathway for metabolism of l-carnitine-derived γ-butyrobetaine to trimethylamine in human gut bacteria. Proc Natl Acad Sci U S A 2021; 118:2101498118. [PMID: 34362844 PMCID: PMC8364193 DOI: 10.1073/pnas.2101498118] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Trimethylamine (TMA) is an important gut microbial metabolite strongly associated with human disease. There are prominent gaps in our understanding of how TMA is produced from the essential dietary nutrient l-carnitine, particularly in the anoxic environment of the human gut where oxygen-dependent l-carnitine-metabolizing enzymes are likely inactive. Here, we elucidate the chemical and genetic basis for anaerobic TMA generation from the l-carnitine-derived metabolite γ-butyrobetaine (γbb) by the human gut bacterium Emergencia timonensis We identify a set of genes up-regulated by γbb and demonstrate that the enzymes encoded by the induced γbb utilization (bbu) gene cluster convert γbb to TMA. The key TMA-generating step is catalyzed by a previously unknown type of TMA-lyase enzyme that utilizes a putative flavin cofactor to catalyze a redox-neutral transformation. We identify additional cultured and uncultured host-associated bacteria that possess the bbu gene cluster, providing insights into the distribution of anaerobic γbb metabolism. Lastly, we present genetic, transcriptional, and metabolomic evidence that confirms the relevance of this metabolic pathway in the human gut microbiota. These analyses indicate that the anaerobic pathway is a more substantial contributor to TMA generation from l-carnitine in the human gut than the previously proposed aerobic pathway. The discovery and characterization of the bbu pathway provides the critical missing link in anaerobic metabolism of l-carnitine to TMA, enabling investigation into the connection between this microbial function and human disease.
Collapse
|
49
|
Tang J, Feng Y, Zhang B, Wu Y, Guo Z, Liang S, Zhou Z, Xie M, Hou S. Severe pantothenic acid deficiency induces alterations in the intestinal mucosal proteome of starter Pekin ducks. BMC Genomics 2021; 22:491. [PMID: 34193047 PMCID: PMC8246668 DOI: 10.1186/s12864-021-07820-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 06/18/2021] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Pantothenic acid deficiency (PAD) results in growth depression and intestinal hypofunction of animals. However, the underlying molecular mechanisms remain to be elucidated. Mucosal proteome might reflect dietary influences on physiological processes. RESULTS A total of 128 white Pekin ducks of one-day-old were randomly assigned to two groups, fed either a PAD or a pantothenic acid adequate (control, CON) diet. After a 16-day feeding period, two ducks from each replicate were sampled to measure plasma parameters, intestinal morphology, and mucosal proteome. Compared to the CON group, high mortality, growth retardation, fasting hypoglycemia, reduced plasma insulin, and oxidative stress were observed in the PAD group. Furthermore, PAD induced morphological alterations of the small intestine indicated by reduced villus height and villus surface area of duodenum, jejunum, and ileum. The duodenum mucosal proteome of ducks showed that 198 proteins were up-regulated and 223 proteins were down-regulated (> 1.5-fold change) in the PAD group compared to those in the CON group. Selected proteins were confirmed by Western blotting. Pathway analysis of these proteins exhibited the suppression of glycolysis and gluconeogenesis, fatty acid beta oxidation, tricarboxylic acid cycle, oxidative phosphorylation, oxidative stress, and intestinal absorption in the PAD group, indicating impaired energy generation and abnormal intestinal absorption. We also show that nine out of eleven proteins involved in regulation of actin cytoskeleton were up-regulated by PAD, probably indicates reduced intestinal integrity. CONCLUSION PAD leads to growth depression and intestinal hypofunction of ducks, which are associated with impaired energy generation, abnormal intestinal absorption, and regulation of actin cytoskeleton processes. These findings provide insights into the mechanisms of intestinal hypofunction induced by PAD.
Collapse
Affiliation(s)
- Jing Tang
- State Key Laboratory of Animal Nutrition, Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Yulong Feng
- State Key Laboratory of Animal Nutrition, Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.,Guizhou Animal Husbandry and Veterinary Research Institute, Guizhou Academy of Agricultural Sciences, Guiyang, 550000, Guizhou, China
| | - Bo Zhang
- State Key Laboratory of Animal Nutrition, Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Yongbao Wu
- State Key Laboratory of Animal Nutrition, Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Zhanbao Guo
- State Key Laboratory of Animal Nutrition, Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Suyun Liang
- State Key Laboratory of Animal Nutrition, Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Zhengkui Zhou
- State Key Laboratory of Animal Nutrition, Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Ming Xie
- State Key Laboratory of Animal Nutrition, Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Shuisheng Hou
- State Key Laboratory of Animal Nutrition, Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| |
Collapse
|
50
|
Zhang A, Mernitz K, Wu C, Xiong W, He Y, Wang G, Wang X. ATP Drives Efficient Terpene Biosynthesis in Marine Thraustochytrids. mBio 2021; 12:e0088121. [PMID: 34182781 PMCID: PMC8262955 DOI: 10.1128/mbio.00881-21] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 05/19/2021] [Indexed: 11/20/2022] Open
Abstract
Understanding carbon flux controlling mechanisms in a tangled metabolic network is an essential question of cell metabolism. Secondary metabolism, such as terpene biosynthesis, has evolved with low carbon flux due to inherent pathway constraints. Thraustochytrids are a group of heterotrophic marine unicellular protists and can accumulate terpenoids under the high-salt conditions in their natural environment. However, the mechanism behind terpene accumulation is not well understood. Here, we show that terpene biosynthesis in Thraustochytrium sp. ATCC 26185 is constrained by local thermodynamics in the mevalonate pathway. Thermodynamic analysis reveals metabolite limitation in the nondecarboxylative Claisen condensation of acetyl-coenzyme A (CoA) to the acetoacetyl-CoA step, catalyzed by the acetyl-CoA acetyltransferase (ACAT). Through a sodium-elicited mechanism, higher respiration leads to increased ATP investment into the mevalonate pathway, providing a strong thermodynamic driving force for enhanced terpene biosynthesis. Proteomic and metabolomic analyses further show that the increased ATP demands are fulfilled by shifting energy generation from carbohydrate to lipid oxidation. This study demonstrates a unique strategy in nature that uses ATP to drive a low-flux metabolic pathway, providing an alternative solution for efficient terpene metabolic engineering. IMPORTANCE Terpenoids are a large class of lipid molecules with important biological functions and diverse industrial and medicinal applications. Metabolic engineering for terpene production has been hindered by the low-flux distribution to its biosynthesis pathway. In practice, a high substrate load is generally required to reach high product titers. Here, we show that mevalonate-derived terpene biosynthesis is constrained by local pathway thermodynamics, which can only be partially relieved by increasing substrate levels. Through comparative omics and biochemical analyses, we discovered a unique mechanism for high terpene accumulation in marine protist thraustochytrids. Through a sodium-induced mechanism, thraustochytrids shift their energy metabolism from carbohydrate to lipid oxidation for enhanced ATP production, providing a strong thermodynamic driving force for efficient terpene biosynthesis. This study reveals an important mechanism in eukaryotes to overcome the thermodynamic constraint in low-flux pathways by increased ATP consumption. Engineering energy metabolism thus provides an important alternative to relieve flux constraints in low-flux and energy-consuming pathways.
Collapse
Affiliation(s)
- Aiqing Zhang
- School of Environmental Science and Engineering, Tianjin University, Tianjin, China
- Department of Microbiology, Miami University, Oxford, Ohio, USA
| | - Kaya Mernitz
- Department of Microbiology, Miami University, Oxford, Ohio, USA
| | - Chao Wu
- Biosciences Center, National Renewable Energy Laboratory, Golden, Colorado, USA
| | - Wei Xiong
- Biosciences Center, National Renewable Energy Laboratory, Golden, Colorado, USA
| | - Yaodong He
- School of Environmental Science and Engineering, Tianjin University, Tianjin, China
- Department of Microbiology, Miami University, Oxford, Ohio, USA
| | - Guangyi Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin, China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, China
| | - Xin Wang
- Department of Microbiology, Miami University, Oxford, Ohio, USA
| |
Collapse
|