1
|
Zhang Y, Wen Z, Shi X, Liu YJ, Eriksson JE, Jiu Y. The diverse roles and dynamic rearrangement of vimentin during viral infection. J Cell Sci 2020; 134:134/5/jcs250597. [PMID: 33154171 DOI: 10.1242/jcs.250597] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Epidemics caused by viral infections pose a significant global threat. Cytoskeletal vimentin is a major intermediate filament (IF) protein, and is involved in numerous functions, including cell signaling, epithelial-mesenchymal transition, intracellular organization and cell migration. Vimentin has important roles for the life cycle of particular viruses; it can act as a co-receptor to enable effective virus invasion and guide efficient transport of the virus to the replication site. Furthermore, vimentin has been shown to rearrange into cage-like structures that facilitate virus replication, and to recruit viral components to the location of assembly and egress. Surprisingly, vimentin can also inhibit virus entry or egress, as well as participate in host-cell defense. Although vimentin can facilitate viral infection, how this function is regulated is still poorly understood. In particular, information is lacking on its interaction sites, regulation of expression, post-translational modifications and cooperation with other host factors. This Review recapitulates the different functions of vimentin in the virus life cycle and discusses how they influence host-cell tropism, virulence of the pathogens and the consequent pathological outcomes. These insights into vimentin-virus interactions emphasize the importance of cytoskeletal functions in viral cell biology and their potential for the identification of novel antiviral targets.
Collapse
Affiliation(s)
- Yue Zhang
- The Center for Microbes, Development and Health, Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China.,University of Chinese Academy of Sciences, Yuquan Road No. 19(A), Shijingshan District, Beijing 100049, China
| | - Zeyu Wen
- The Center for Microbes, Development and Health, Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China.,University of Chinese Academy of Sciences, Yuquan Road No. 19(A), Shijingshan District, Beijing 100049, China
| | - Xuemeng Shi
- The Center for Microbes, Development and Health, Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yan-Jun Liu
- Shanghai Institute of Cardiovascular Diseases, and Institutes of Biomedical Sciences, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - John E Eriksson
- Cell Biology, Biosciences, Faculty of Science and Engineering, Åbo Akademi University, Turku FI-20520, Finland .,Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku FI-20520, Finland
| | - Yaming Jiu
- The Center for Microbes, Development and Health, Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China .,University of Chinese Academy of Sciences, Yuquan Road No. 19(A), Shijingshan District, Beijing 100049, China
| |
Collapse
|
2
|
Biochemical Characterization of Human Retroviral-Like Aspartic Protease 1 (ASPRV1). Biomolecules 2020; 10:biom10071004. [PMID: 32640672 PMCID: PMC7408472 DOI: 10.3390/biom10071004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/26/2020] [Accepted: 06/30/2020] [Indexed: 12/25/2022] Open
Abstract
The human retroviral-like aspartic protease 1 (ASPRV1) is a mammalian retroviral-like enzyme that catalyzes a critical proteolytic step during epidermal differentiation; therefore, it is also referred to as skin-specific aspartic protease (SASPase). Neutrophil granulocytes were also found recently to express ASPRV1 that is involved in the progression of acute chronic inflammation of the central nervous system, especially in autoimmune encephalomyelitis. Thus, investigation of ASPRV1 is important due to its therapeutic or diagnostic potential. We investigated the structural characteristics of ASPRV1 by homology modeling; analysis of the proposed structure was used for interpretation of in vitro specificity studies. For in-vitro characterization, activities of SASP28 and SASP14 enzyme forms were measured using synthetic oligopeptide substrates. We demonstrated that self-processing of SASP28 precursor causes autoactivation of the protease. The highest activity was measured for GST-SASP14 at neutral pH and at high ionic strength, and we proved that pepstatin A and acetyl-pepstatin can also inhibit the protease. In agreement with the structural characteristics, the relatively lower urea dissociation constant implied lower dimer stability of SASP14 compared to that of HIV-1 protease. The obtained structural and biochemical characteristics support better understanding of ASPRV1 function in the skin and central nervous system.
Collapse
|
3
|
Yue Q, Feng L, Cao B, Liu M, Zhang D, Wu W, Jiang B, Yang M, Liu X, Guo D. Proteomic Analysis Revealed the Important Role of Vimentin in Human Cervical Carcinoma HeLa Cells Treated With Gambogic Acid. Mol Cell Proteomics 2015; 15:26-44. [PMID: 26499837 DOI: 10.1074/mcp.m115.053272] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Indexed: 12/20/2022] Open
Abstract
Gambogic acid (GA) is an anticancer agent in phase IIb clinical trial in China. In HeLa cells, GA inhibited cell proliferation, induced cell cycle arrest at G2/M phase and apoptosis, as showed by results of MTT assay and flow cytometric analysis. Possible target-related proteins of GA were searched using comparative proteomic analysis (2-DE) and nine proteins at early (3 h) stage together with nine proteins at late (24 h) stage were found. Vimentin was the only target-related protein found at both early and late stage. Results of both 2-DE analysis and Western blotting assay suggested cleavage of vimentin induced by GA. MS/MS analysis of cleaved vimentin peptides indicated possible cleavage sites of vimentin at or near ser51 and glu425. Results of targeted proteomic analysis showed that GA induced change in phosphorylation state of the vimentin head domain (aa51-64). Caspase inhibitors could not abrogate GA-induced cleavage of vimentin. Over-expression of vimentin ameliorated cytotoxicity of GA in HeLa cells. The GA-activated signal transduction, from p38 MAPK, heat shock protein 27 (HSP27), vimentin, dysfunction of cytoskeleton, to cell death, was predicted and then confirmed. Results of animal study showed that GA treatment inhibited tumor growth in HeLa tumor-bearing mice and cleavage of vimentin could be observed in tumor xenografts of GA-treated animals. Results of immunohistochemical staining also showed down-regulated vimentin level in tumor xenografts of GA-treated animals. Furthermore, compared with cytotoxicity of GA in HeLa cells, cytotoxicity of GA in MCF-7 cells with low level of vimentin was weaker whereas cytotoxicity of GA in MG-63 cells with high level of vimentin was stronger. These results indicated the important role of vimentin in the cytotoxicity of GA. The effects of GA on vimentin and other epithelial-to-mesenchymal transition (EMT) markers provided suggestion for better usage of GA in clinic.
Collapse
Affiliation(s)
- Qingxi Yue
- From the ‡Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China; §Institute of Oncology, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; ¶College of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China;
| | - Lixing Feng
- From the ‡Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Biyin Cao
- ‖College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Miao Liu
- From the ‡Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Dongmei Zhang
- From the ‡Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Wanying Wu
- From the ‡Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Baohong Jiang
- From the ‡Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Min Yang
- From the ‡Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Xuan Liu
- From the ‡Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Dean Guo
- From the ‡Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China; ¶College of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
4
|
Kontijevskis A, Wikberg JES, Komorowski J. Computational proteomics analysis of HIV-1 protease interactome. Proteins 2007; 68:305-12. [PMID: 17427231 DOI: 10.1002/prot.21415] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
HIV-1 protease is a small homodimeric enzyme that ensures maturation of HIV virions by cleaving the viral precursor Gag and Gag-Pol polyproteins into structural and functional elements. The cleavage sites in the viral polyproteins share neither sequence homology nor binding motif and the specificity of the HIV-1 protease is therefore only partially understood. Using an extensive data set collected from 16 years of HIV proteome research we have here created a general and predictive rule-based model for HIV-1 protease specificity based on rough sets. We demonstrate that HIV-1 protease specificity is much more complex than previously anticipated, which cannot be defined based solely on the amino acids at the substrate's scissile bond or by any other single substrate amino acid position only. Our results show that the combination of at least three particular amino acids is needed in the substrate for a cleavage event to occur. Only by combining and analyzing massive amounts of HIV proteome data it was possible to discover these novel and general patterns of physico-chemical substrate cleavage determinants. Our study is an example how computational biology methods can advance the understanding of the viral interactomes.
Collapse
|
5
|
Kontijevskis A, Prusis P, Petrovska R, Yahorava S, Mutulis F, Mutule I, Komorowski J, Wikberg JES. A look inside HIV resistance through retroviral protease interaction maps. PLoS Comput Biol 2007; 3:e48. [PMID: 17352531 PMCID: PMC1817660 DOI: 10.1371/journal.pcbi.0030048] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2006] [Accepted: 01/24/2007] [Indexed: 11/19/2022] Open
Abstract
Retroviruses affect a large number of species, from fish and birds to mammals and humans, with global socioeconomic negative impacts. Here the authors report and experimentally validate a novel approach for the analysis of the molecular networks that are involved in the recognition of substrates by retroviral proteases. Using multivariate analysis of the sequence-based physiochemical descriptions of 61 retroviral proteases comprising wild-type proteases, natural mutants, and drug-resistant forms of proteases from nine different viral species in relation to their ability to cleave 299 substrates, the authors mapped the physicochemical properties and cross-dependencies of the amino acids of the proteases and their substrates, which revealed a complex molecular interaction network of substrate recognition and cleavage. The approach allowed a detailed analysis of the molecular-chemical mechanisms involved in substrate cleavage by retroviral proteases.
Collapse
Affiliation(s)
- Aleksejs Kontijevskis
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
- Linnaeus Centre for Bioinformatics, Uppsala University, Uppsala, Sweden
| | - Peteris Prusis
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - Ramona Petrovska
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - Sviatlana Yahorava
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - Felikss Mutulis
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - Ilze Mutule
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - Jan Komorowski
- Linnaeus Centre for Bioinformatics, Uppsala University, Uppsala, Sweden
| | - Jarl E. S Wikberg
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| |
Collapse
|
6
|
Devroe E, Silver PA, Engelman A. HIV-1 incorporates and proteolytically processes human NDR1 and NDR2 serine-threonine kinases. Virology 2005; 331:181-9. [PMID: 15582665 DOI: 10.1016/j.virol.2004.10.023] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2004] [Revised: 10/11/2004] [Accepted: 10/12/2004] [Indexed: 01/11/2023]
Abstract
Mammalian genomes encode two related serine-threonine kinases, nuclear Dbf2 related (NDR)1 and NDR2, which are homologous to the Saccharomyces cerevisiae Dbf2 kinase. Recently, a yeast genetic screen implicated the Dbf2 kinase in Ty1 retrotransposition. Since several virion-incorporated kinases regulate the infectivity of human immunodeficiency virus type 1 (HIV-1), we speculated that the human NDR1 and NDR2 kinases might play a role in the HIV-1 life cycle. Here we show that the NDR1 and NDR2 kinases were incorporated into HIV-1 particles. Furthermore, NDR1 and NDR2 were cleaved by the HIV-1 protease (PR), both within virions and within producer cells. Truncation at the PR cleavage site altered NDR2 subcellular localization and inhibited NDR1 and NDR2 enzymatic activity. These studies identify two new virion-associated host cell enzymes and suggest a novel mechanism by which HIV-1 alters the intracellular environment of human cells.
Collapse
Affiliation(s)
- Eric Devroe
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | | | | |
Collapse
|
7
|
de Oliveira T, Engelbrecht S, Janse van Rensburg E, Gordon M, Bishop K, zur Megede J, Barnett SW, Cassol S. Variability at human immunodeficiency virus type 1 subtype C protease cleavage sites: an indication of viral fitness? J Virol 2003; 77:9422-30. [PMID: 12915557 PMCID: PMC187406 DOI: 10.1128/jvi.77.17.9422-9430.2003] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2003] [Accepted: 06/03/2003] [Indexed: 01/17/2023] Open
Abstract
Naturally occurring polymorphisms in the protease of human immunodeficiency virus type 1 (HIV-1) subtype C would be expected to lead to adaptive (compensatory) changes in protease cleavage sites. To test this hypothesis, we examined the prevalences and patterns of cleavage site polymorphisms in the Gag, Gag-Pol, and Nef cleavage sites of C compared to those in non-C subtypes. Codon-based maximum-likelihood methods were used to assess the natural selection and evolutionary history of individual cleavage sites. Seven cleavage sites (p17/p24, p24/p2, NC/p1, NC/TFP, PR/RT, RT/p66, and p66/IN) were well conserved over time and in all HIV-1 subtypes. One site (p1/p6(gag)) exhibited moderate variation, and four sites (p2/NC, TFP/p6(pol), p6(pol)/PR, and Nef) were highly variable, both within and between subtypes. Three of the variable sites are known to be major determinants of polyprotein processing and virion production. P2/NC controls the rate and order of cleavage, p6(gag) is an important phosphoprotein required for virion release, and TFP/p6(pol), a novel cleavage site in the transframe domain, influences the specificity of Gag-Pol processing and the activation of protease. Overall, 58.3% of the 12 HIV-1 cleavage sites were significantly more diverse in C than in B viruses. When analyzed as a single concatenated fragment of 360 bp, 96.0% of group M cleavage site sequences fell into subtype-specific phylogenetic clusters, suggesting that they coevolved with the virus. Natural variation at C cleavage sites may play an important role, not only in regulation of the viral cycle but also in disease progression and response to therapy.
Collapse
Affiliation(s)
- Tulio de Oliveira
- HIV-1 Molecular Virology and Bioinformatics Unit, Africa Centre for Health and Population Studies, and the Nelson R. Mandela School of Medicine, University of Natal, Durban, South Africa
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Tözsér J, Bagossi P, Zahuczky G, Specht SI, Majerova E, Copeland TD. Effect of caspase cleavage-site phosphorylation on proteolysis. Biochem J 2003; 372:137-43. [PMID: 12589706 PMCID: PMC1223375 DOI: 10.1042/bj20021901] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2002] [Revised: 02/14/2003] [Accepted: 02/17/2003] [Indexed: 02/07/2023]
Abstract
Caspases are important mediators of apoptotic cell death. Several cellular protein substrates of caspases contain potential phosphorylation site(s) at the cleavage-site region, and some of these sites have been verified to be phosphorylated. Since phosphorylation may affect substantially the substrate susceptibility towards proteolysis, phosphorylated, non-phosphorylated and substituted oligopeptides representing such cleavage sites were studied as substrates of apoptotic caspases 3, 7 and 8. Peptides containing phosphorylated serine residues at P4 and P1' positions were found to be substantially less susceptible towards proteolysis as compared with the serine-containing analogues, while phosphoserine at P3 did not have a substantial effect. P1 serine as well as P1-phosphorylated, serine-containing analogues of an oligopeptide representing the poly(ADP-ribose) polymerase cleavage site of caspase-3 were not hydrolysed by any of these enzymes, whereas the P1 aspartate-containing peptides were efficiently hydrolysed. These findings were interpreted with the aid of molecular modelling. Our results suggest that cleavage-site phosphorylation in certain positions could be disadvantageous or detrimental with respect to cleavability by caspases. Cleavage-site phosphorylation may therefore provide a regulatory mechanism to protect substrates from caspase-mediated degradation.
Collapse
Affiliation(s)
- József Tözsér
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Debrecen University, H-4012 Debrecen, Hungary.
| | | | | | | | | | | |
Collapse
|
9
|
Gordon M, De Oliveira T, Bishop K, Coovadia HM, Madurai L, Engelbrecht S, Janse van Rensburg E, Mosam A, Smith A, Cassol S. Molecular characteristics of human immunodeficiency virus type 1 subtype C viruses from KwaZulu-Natal, South Africa: implications for vaccine and antiretroviral control strategies. J Virol 2003; 77:2587-99. [PMID: 12551997 PMCID: PMC141090 DOI: 10.1128/jvi.77.4.2587-2599.2003] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The KwaZulu-Natal region of South Africa is experiencing an explosive outbreak of human immunodeficiency virus type 1 (HIV-1) subtype C infections. Understanding the genetic diversity of C viruses and the biological consequences of this diversity is important for the design of effective control strategies. We analyzed the protease gene, the first 935 nucleotides of reverse transcriptase, and the C2V5 envelope region of a representative set of 72 treatment-naïve patients from KwaZulu-Natal and correlated the results with amino acid signature and resistance patterns. Phylogenetic analysis revealed multiple clusters or "lineages" of HIV-1 subtype C that segregated with other C viruses from southern Africa. The same pattern was observed for both black and Indian subgroups and for retrospective specimens collected prior to 1990, indicating that multiple sublineages of HIV-1 C have been present in KwaZulu-Natal since the early stages of the epidemic. With the exception of three nonnucleoside reverse transcriptase inhibitor mutations, no primary resistance mutations were identified. Numerous accessory polymorphisms were present in the protease, but none were located at drug-binding or active sites of the enzyme. One frequent polymorphism, I93L, was located near the protease/reverse transcriptase cleavage site. In the envelope, disruption of the glycosylation motif at the beginning of V3 was associated with the presence of an extra protein kinase C phosphorylation site at codon 11. Many polymorphisms were embedded within cytotoxic T lymphocyte or overlapping cytotoxic T-lymphocyte/T-helper epitopes, as defined for subtype B. This work forms a baseline for future studies aimed at understanding the impact of genetic diversity on vaccine efficacy and on natural susceptibility to antiretroviral drugs.
Collapse
Affiliation(s)
- M Gordon
- HIV-1 Molecular Virology and Bioinformatics Laboratories, Africa Centre for Health and Population Studies and the Nelson R. Mandela School of Medicine, University of Natal, Congella 4013, Durban, South Africa
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Yuan S, Mickelson D, Murtaugh MP, Faaberg KS. Complete genome comparison of porcine reproductive and respiratory syndrome virus parental and attenuated strains. Virus Res 2001; 79:189-200. [PMID: 11551659 PMCID: PMC7125757 DOI: 10.1016/s0168-1702(01)00295-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Two full-length porcine reproductive and respiratory syndrome virus (PRRSV) genomes, strain VR-2332 and its cell culture passaged descendent RespPRRS vaccine strain, were compared and analyzed in order to identify possible sites of attenuation. Of the 41 nucleotide changes, 12 resulted in conservative changes and 18 produced non-conservative changes. The results suggest that key amino acids in ORF1 may contribute to the phenotype of RespPRRS, which includes increased growth rate on MA-104 cells and decreased virulence in swine. The results provide a genetic basis for future manipulation of a PRRSV reverse genetics system.
Collapse
Affiliation(s)
- S Yuan
- Department of Veterinary PathoBiology, 205 Veterinary Science Building, University of Minnesota, 1971 Commonwealth Avenue, 55108, St. Paul, MN, USA
| | | | | | | |
Collapse
|
11
|
Yuan S, Mickelson D, Murtaugh MP, Faaberg KS. Complete genome comparison of porcine reproductive and respiratory syndrome virus parental and attenuated strains. Virus Res 2001; 74:99-110. [PMID: 11226578 PMCID: PMC7125765 DOI: 10.1016/s0168-1702(00)00250-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Two full-length porcine reproductive and respiratory syndrome virus (PRRSV) genomes, strain VR-2332 and its cell culture passaged descendent RespPRRS vaccine strain, were compared and analyzed in order to identify possible sites of attenuation. Of the 44 nucleotide changes, 13 resulted in conservative changes and 18 produced non-conservative changes. The results suggest that key amino acids in ORF1 may contribute to the phenotype of RespPRRS, which includes increased growth rate on MA-104 cells and decreased virulence in swine. The results provide a genetic basis for future manipulation of a PRRSV reverse genetics system.
Collapse
Affiliation(s)
| | | | | | - Kay S. Faaberg
- Corresponding author. Tel.: +1-612-6249746; fax: +1-612-6255203
| |
Collapse
|