1
|
Betancourt Moreira K, Collier MP, Leitner A, Li KH, Lachapel ILS, McCarthy F, Opoku-Nsiah KA, Morales-Polanco F, Barbosa N, Gestaut D, Samant RS, Roh SH, Frydman J. A hierarchical assembly pathway directs the unique subunit arrangement of TRiC/CCT. Mol Cell 2023; 83:3123-3139.e8. [PMID: 37625406 PMCID: PMC11209756 DOI: 10.1016/j.molcel.2023.07.031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 05/07/2023] [Accepted: 07/31/2023] [Indexed: 08/27/2023]
Abstract
How the essential eukaryotic chaperonin TRiC/CCT assembles from eight distinct subunits into a unique double-ring architecture remains undefined. We show TRiC assembly involves a hierarchical pathway that segregates subunits with distinct functional properties until holocomplex (HC) completion. A stable, likely early intermediate arises from small oligomers containing CCT2, CCT4, CCT5, and CCT7, contiguous subunits that constitute the negatively charged hemisphere of the TRiC chamber, which has weak affinity for unfolded actin. The remaining subunits CCT8, CCT1, CCT3, and CCT6, which comprise the positively charged chamber hemisphere that binds unfolded actin more strongly, join the ring individually. Unincorporated late-assembling subunits are highly labile in cells, which prevents their accumulation and premature substrate binding. Recapitulation of assembly in a recombinant system demonstrates that the subunits in each hemisphere readily form stable, noncanonical TRiC-like HCs with aberrant functional properties. Thus, regulation of TRiC assembly along a biochemical axis disfavors the formation of stable alternative chaperonin complexes.
Collapse
Affiliation(s)
| | | | - Alexander Leitner
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
| | - Kathy H Li
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, USA
| | | | | | | | | | - Natália Barbosa
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Daniel Gestaut
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Rahul S Samant
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Soung-Hun Roh
- School of Biological Sciences, Institute of Molecular Biology and Genetics, Seoul National University, Seoul, South Korea
| | - Judith Frydman
- Department of Biology, Stanford University, Stanford, CA, USA.
| |
Collapse
|
2
|
Ghozlan H, Cox A, Nierenberg D, King S, Khaled AR. The TRiCky Business of Protein Folding in Health and Disease. Front Cell Dev Biol 2022; 10:906530. [PMID: 35602608 PMCID: PMC9117761 DOI: 10.3389/fcell.2022.906530] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 04/20/2022] [Indexed: 01/03/2023] Open
Abstract
Maintenance of the cellular proteome or proteostasis is an essential process that when deregulated leads to diseases like neurological disorders and cancer. Central to proteostasis are the molecular chaperones that fold proteins into functional 3-dimensional (3D) shapes and prevent protein aggregation. Chaperonins, a family of chaperones found in all lineages of organisms, are efficient machines that fold proteins within central cavities. The eukaryotic Chaperonin Containing TCP1 (CCT), also known as Tailless complex polypeptide 1 (TCP-1) Ring Complex (TRiC), is a multi-subunit molecular complex that folds the obligate substrates, actin, and tubulin. But more than folding cytoskeletal proteins, CCT differs from most chaperones in its ability to fold proteins larger than its central folding chamber and in a sequential manner that enables it to tackle proteins with complex topologies or very large proteins and complexes. Unique features of CCT include an asymmetry of charges and ATP affinities across the eight subunits that form the hetero-oligomeric complex. Variable substrate binding capacities endow CCT with a plasticity that developed as the chaperonin evolved with eukaryotes and acquired functional capacity in the densely packed intracellular environment. Given the decades of discovery on the structure and function of CCT, much remains unknown such as the scope of its interactome. New findings on the role of CCT in disease, and potential for diagnostic and therapeutic uses, heighten the need to better understand the function of this essential molecular chaperone. Clues as to how CCT causes cancer or neurological disorders lie in the early studies of the chaperonin that form a foundational knowledgebase. In this review, we span the decades of CCT discoveries to provide critical context to the continued research on the diverse capacities in health and disease of this essential protein-folding complex.
Collapse
Affiliation(s)
- Heba Ghozlan
- Division of Cancer Research, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, United States
- Department of Physiology and Biochemistry, Jordan University of Science and Technology, Irbid, Jordan
| | - Amanda Cox
- Division of Cancer Research, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, United States
| | - Daniel Nierenberg
- Division of Cancer Research, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, United States
| | - Stephen King
- Division of Neuroscience, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, United States
| | - Annette R. Khaled
- Division of Cancer Research, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, United States
| |
Collapse
|
3
|
Sancho-Martínez SM, Sánchez-Juanes F, Blanco-Gozalo V, Fontecha-Barriuso M, Prieto-García L, Fuentes-Calvo I, González-Buitrago JM, Morales AI, Martínez-Salgado C, Ramos-Barron MA, Gómez-Alamillo C, Arias M, López-Novoa JM, López-Hernández FJ. Urinary TCP1-eta: A Cortical Damage Marker for the Pathophysiological Diagnosis and Prognosis of Acute Kidney Injury. Toxicol Sci 2021; 174:3-15. [PMID: 31825490 DOI: 10.1093/toxsci/kfz242] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Acute kidney injury (AKI) is a serious syndrome with increasing incidence and health consequences, and high mortality rate among critically ill patients. Acute kidney injury lacks a unified definition, has ambiguous semantic boundaries, and relies on defective diagnosis. This, in part, is due to the absence of biomarkers substratifying AKI patients into pathophysiological categories based on which prognosis can be assigned and clinical treatment differentiated. For instance, AKI involving acute tubular necrosis (ATN) is expected to have a worse prognosis than prerenal, purely hemodynamic AKI. However, no biomarker has been unambiguously associated with tubular cell death or is able to provide etiological distinction. We used a cell-based system to identify TCP1-eta in the culture medium as a noninvasive marker of damaged renal tubular cells. In rat models of AKI, TCP1-eta was increased in the urine co-relating with renal cortical tubule damage. When kidneys from ATN rats were perfused in situ with Krebs-dextran solution, a portion of the urinary TCP1-eta protein content excreted into urine disappeared, and another portion remained within the urine. These results indicated that TCP1-eta was secreted by tubule cells and was not fully reabsorbed by the damaged tubules, both effects contributing to the increased urinary excretion. Urinary TCP1-eta is found in many etiologically heterogeneous AKI patients, and is statistically higher in patients partially recovered from severe AKI. In conclusion, urinary TCP1-eta poses a potential, substratifying biomarker of renal cortical damage associated with bad prognosis.
Collapse
Affiliation(s)
- Sandra M Sancho-Martínez
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain.,Department of Physiology and Pharmacology, University of Salamanca, Salamanca, Spain.,Group of Translational Research on Renal and Cardiovascular Diseases (TRECARD), Salamanca, Spain.,Group of Biomedical Research on Critical Care (BioCritic), Valladolid, Spain.,Spanish Renal Research Network (REDinREN), Instituto de Salud Carlos III, Madrid, Spain
| | - Fernando Sánchez-Juanes
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain.,Instituto de Estudios de Ciencias de la Salud de Castilla y León (IECSCYL), Soria, Spain
| | - Víctor Blanco-Gozalo
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain.,Department of Physiology and Pharmacology, University of Salamanca, Salamanca, Spain.,Group of Translational Research on Renal and Cardiovascular Diseases (TRECARD), Salamanca, Spain
| | - Miguel Fontecha-Barriuso
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain.,Department of Physiology and Pharmacology, University of Salamanca, Salamanca, Spain.,Spanish Renal Research Network (REDinREN), Instituto de Salud Carlos III, Madrid, Spain
| | - Laura Prieto-García
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain.,Group of Translational Research on Renal and Cardiovascular Diseases (TRECARD), Salamanca, Spain.,Instituto de Estudios de Ciencias de la Salud de Castilla y León (IECSCYL), Soria, Spain
| | - Isabel Fuentes-Calvo
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain.,Department of Physiology and Pharmacology, University of Salamanca, Salamanca, Spain.,Group of Translational Research on Renal and Cardiovascular Diseases (TRECARD), Salamanca, Spain.,Group of Biomedical Research on Critical Care (BioCritic), Valladolid, Spain.,Spanish Renal Research Network (REDinREN), Instituto de Salud Carlos III, Madrid, Spain
| | - José M González-Buitrago
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain.,Group of Translational Research on Renal and Cardiovascular Diseases (TRECARD), Salamanca, Spain.,Instituto de Estudios de Ciencias de la Salud de Castilla y León (IECSCYL), Soria, Spain
| | - Ana I Morales
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain.,Department of Physiology and Pharmacology, University of Salamanca, Salamanca, Spain.,Group of Translational Research on Renal and Cardiovascular Diseases (TRECARD), Salamanca, Spain.,Group of Biomedical Research on Critical Care (BioCritic), Valladolid, Spain.,Spanish Renal Research Network (REDinREN), Instituto de Salud Carlos III, Madrid, Spain
| | - Carlos Martínez-Salgado
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain.,Department of Physiology and Pharmacology, University of Salamanca, Salamanca, Spain.,Group of Translational Research on Renal and Cardiovascular Diseases (TRECARD), Salamanca, Spain.,Group of Biomedical Research on Critical Care (BioCritic), Valladolid, Spain.,Spanish Renal Research Network (REDinREN), Instituto de Salud Carlos III, Madrid, Spain.,Instituto de Estudios de Ciencias de la Salud de Castilla y León (IECSCYL), Soria, Spain
| | - María A Ramos-Barron
- Department of Nephrology, Instituto de Investigación Sanitaria Valdecilla (IDIVAL), Hospital Universitario Marqués de Valdecilla, Santander, Spain
| | - Carlos Gómez-Alamillo
- Department of Nephrology, Instituto de Investigación Sanitaria Valdecilla (IDIVAL), Hospital Universitario Marqués de Valdecilla, Santander, Spain
| | - Manuel Arias
- Department of Nephrology, Instituto de Investigación Sanitaria Valdecilla (IDIVAL), Hospital Universitario Marqués de Valdecilla, Santander, Spain
| | - José M López-Novoa
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain.,Department of Physiology and Pharmacology, University of Salamanca, Salamanca, Spain.,Group of Translational Research on Renal and Cardiovascular Diseases (TRECARD), Salamanca, Spain
| | - Francisco J López-Hernández
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain.,Department of Physiology and Pharmacology, University of Salamanca, Salamanca, Spain.,Group of Translational Research on Renal and Cardiovascular Diseases (TRECARD), Salamanca, Spain.,Group of Biomedical Research on Critical Care (BioCritic), Valladolid, Spain.,Spanish Renal Research Network (REDinREN), Instituto de Salud Carlos III, Madrid, Spain.,Instituto de Estudios de Ciencias de la Salud de Castilla y León (IECSCYL), Soria, Spain
| |
Collapse
|
4
|
Swovick K, Firsanov D, Welle KA, Hryhorenko JR, Wise JP, George C, Sformo TL, Seluanov A, Gorbunova V, Ghaemmaghami S. Interspecies Differences in Proteome Turnover Kinetics Are Correlated With Life Spans and Energetic Demands. Mol Cell Proteomics 2021; 20:100041. [PMID: 33639418 PMCID: PMC7950207 DOI: 10.1074/mcp.ra120.002301] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 10/27/2020] [Accepted: 12/28/2020] [Indexed: 12/21/2022] Open
Abstract
Cells continually degrade and replace damaged proteins. However, the high energetic demand of protein turnover generates reactive oxygen species that compromise the long-term health of the proteome. Thus, the relationship between aging, protein turnover, and energetic demand remains unclear. Here, we used a proteomic approach to measure rates of protein turnover within primary fibroblasts isolated from a number of species with diverse life spans including the longest-lived mammal, the bowhead whale. We show that organismal life span is negatively correlated with turnover rates of highly abundant proteins. In comparison with mice, cells from long-lived naked mole rats have slower rates of protein turnover, lower levels of ATP production, and reduced reactive oxygen species levels. Despite having slower rates of protein turnover, naked mole rat cells tolerate protein misfolding stress more effectively than mouse cells. We suggest that in lieu of a rapid constitutive turnover, long-lived species may have evolved more energetically efficient mechanisms for selective detection and clearance of damaged proteins.
Collapse
Affiliation(s)
- Kyle Swovick
- Department of Biology, University of Rochester, Rochester, New York, USA
| | - Denis Firsanov
- Department of Biology, University of Rochester, Rochester, New York, USA
| | - Kevin A Welle
- Mass Spectrometry Resource Laboratory, University of Rochester, Rochester, New York, USA
| | - Jennifer R Hryhorenko
- Mass Spectrometry Resource Laboratory, University of Rochester, Rochester, New York, USA
| | - John P Wise
- Department of Pharmacology and Toxicology, Wise Laboratory for Environmental and Genetic Toxicology, University of Louisville, Louisville, Kentucky, USA
| | - Craig George
- North Slope Borough Department of Wildlife Management, Barrow, Alaska, USA
| | - Todd L Sformo
- North Slope Borough Department of Wildlife Management, Barrow, Alaska, USA; Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, Alaska, USA
| | - Andrei Seluanov
- Department of Biology, University of Rochester, Rochester, New York, USA
| | - Vera Gorbunova
- Department of Biology, University of Rochester, Rochester, New York, USA
| | - Sina Ghaemmaghami
- Department of Biology, University of Rochester, Rochester, New York, USA; Mass Spectrometry Resource Laboratory, University of Rochester, Rochester, New York, USA.
| |
Collapse
|
5
|
Blanco-Gozalo V, Casanova AG, Sancho-Martínez SM, Prieto M, Quiros Y, Morales AI, Martínez-Salgado C, Agüeros-Blanco C, Benito-Hernández A, Ramos-Barron MA, Gómez-Alamillo C, Arias M, López-Hernández FJ. Combined use of GM2AP and TCP1-eta urinary levels predicts recovery from intrinsic acute kidney injury. Sci Rep 2020; 10:11599. [PMID: 32665654 PMCID: PMC7360779 DOI: 10.1038/s41598-020-68398-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 06/15/2020] [Indexed: 12/21/2022] Open
Abstract
Deficient recovery from acute kidney injury (AKI) has immediate and long-term health, clinical and economic consequences. Pre-emptive recovery estimation may improve nephrology referral, optimize decision making, enrollment in trials, and provide key information for subsequent clinical handling and follow-up. For this purpose, new biomarkers are needed that predict outcome during the AKI episode. We hypothesized that damage pattern-specific biomarkers are expected to more closely associate to outcome within distinct subpopulations (i.e. those affected by specific pathological processes determining a specific outcome), as biomarker pleiotropy (i.e. associated to phenomena unrelated to AKI) introduced by unselected, heterogeneous populations may blur statistics. A panel of urinary biomarkers was measured in patients with AKI and their capacity to associate to normal or abnormal recovery was studied in the whole cohort or after sub-classification by AKI etiology, namely pre-renal and intrinsic AKI. A combination of urinary GM2AP and TCP1-eta best associates with recovery from AKI, specifically within the sub-population of renal AKI patients. This two-step strategy generates a multidimensional space in which patients with specific characteristics (i.e. renal AKI patients with good or bad prognosis) can be identified based on a collection of biomarkers working serially, applying pathophysiology-driven criteria to estimate AKI recovery, to facilitate pre-emptive and personalized handling.
Collapse
Affiliation(s)
- Víctor Blanco-Gozalo
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain.,Department of Physiology and Pharmacology, University of Salamanca, Edificio Departamental, S-20, Campus Miguel de Unamuno, 37007, Salamanca, Spain.,Group of Translational Research On Renal and Cardiovascular Diseases (TRECARD), Salamanca, Spain.,National Network for Kidney Research REDINREN, RD016/0009/0025, Instituto de Salud Carlos III, Madrid, Spain
| | - Alfredo G Casanova
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain.,Department of Physiology and Pharmacology, University of Salamanca, Edificio Departamental, S-20, Campus Miguel de Unamuno, 37007, Salamanca, Spain.,Instituto de Estudios de Ciencias de La Salud de Castilla y León (IECSCYL), Soria, Spain.,Group of Translational Research On Renal and Cardiovascular Diseases (TRECARD), Salamanca, Spain
| | - Sandra M Sancho-Martínez
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain.,Department of Physiology and Pharmacology, University of Salamanca, Edificio Departamental, S-20, Campus Miguel de Unamuno, 37007, Salamanca, Spain.,Group of Translational Research On Renal and Cardiovascular Diseases (TRECARD), Salamanca, Spain.,National Network for Kidney Research REDINREN, RD016/0009/0025, Instituto de Salud Carlos III, Madrid, Spain
| | - Marta Prieto
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain.,Department of Physiology and Pharmacology, University of Salamanca, Edificio Departamental, S-20, Campus Miguel de Unamuno, 37007, Salamanca, Spain.,Group of Translational Research On Renal and Cardiovascular Diseases (TRECARD), Salamanca, Spain.,National Network for Kidney Research REDINREN, RD016/0009/0025, Instituto de Salud Carlos III, Madrid, Spain
| | - Yaremi Quiros
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain.,Department of Physiology and Pharmacology, University of Salamanca, Edificio Departamental, S-20, Campus Miguel de Unamuno, 37007, Salamanca, Spain.,Instituto de Estudios de Ciencias de La Salud de Castilla y León (IECSCYL), Soria, Spain.,Group of Translational Research On Renal and Cardiovascular Diseases (TRECARD), Salamanca, Spain
| | - Ana I Morales
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain.,Department of Physiology and Pharmacology, University of Salamanca, Edificio Departamental, S-20, Campus Miguel de Unamuno, 37007, Salamanca, Spain.,Group of Translational Research On Renal and Cardiovascular Diseases (TRECARD), Salamanca, Spain.,Group of Biomedical Research on Critical Care (BioCritic), Valladolid, Spain.,National Network for Kidney Research REDINREN, RD016/0009/0025, Instituto de Salud Carlos III, Madrid, Spain
| | - Carlos Martínez-Salgado
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain.,Department of Physiology and Pharmacology, University of Salamanca, Edificio Departamental, S-20, Campus Miguel de Unamuno, 37007, Salamanca, Spain.,Instituto de Estudios de Ciencias de La Salud de Castilla y León (IECSCYL), Soria, Spain.,Group of Translational Research On Renal and Cardiovascular Diseases (TRECARD), Salamanca, Spain
| | - Consuelo Agüeros-Blanco
- Department of Nephrology, Hospital Universitario Marqués de Valdecilla, Instituto de Investigación Sanitaria Valdecilla (IDIVAL), Santander, Spain
| | - Adalberto Benito-Hernández
- Department of Nephrology, Hospital Universitario Marqués de Valdecilla, Instituto de Investigación Sanitaria Valdecilla (IDIVAL), Santander, Spain
| | - María A Ramos-Barron
- Department of Nephrology, Hospital Universitario Marqués de Valdecilla, Instituto de Investigación Sanitaria Valdecilla (IDIVAL), Santander, Spain
| | - Carlos Gómez-Alamillo
- Department of Nephrology, Hospital Universitario Marqués de Valdecilla, Instituto de Investigación Sanitaria Valdecilla (IDIVAL), Santander, Spain
| | - Manuel Arias
- Department of Nephrology, Hospital Universitario Marqués de Valdecilla, Instituto de Investigación Sanitaria Valdecilla (IDIVAL), Santander, Spain
| | - Francisco J López-Hernández
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain. .,Department of Physiology and Pharmacology, University of Salamanca, Edificio Departamental, S-20, Campus Miguel de Unamuno, 37007, Salamanca, Spain. .,Instituto de Estudios de Ciencias de La Salud de Castilla y León (IECSCYL), Soria, Spain. .,Group of Translational Research On Renal and Cardiovascular Diseases (TRECARD), Salamanca, Spain. .,Group of Biomedical Research on Critical Care (BioCritic), Valladolid, Spain. .,National Network for Kidney Research REDINREN, RD016/0009/0025, Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
6
|
Investigating Chaperonin-Containing TCP-1 subunit 2 as an essential component of the chaperonin complex for tumorigenesis. Sci Rep 2020; 10:798. [PMID: 31964905 PMCID: PMC6972895 DOI: 10.1038/s41598-020-57602-w] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 01/03/2020] [Indexed: 12/13/2022] Open
Abstract
Chaperonin-containing TCP-1 (CCT or TRiC) is a multi-subunit complex that folds many of the proteins essential for cancer development. CCT is expressed in diverse cancers and could be an ideal therapeutic target if not for the fact that the complex is encoded by eight distinct genes, complicating the development of inhibitors. Few definitive studies addressed the role of specific subunits in promoting the chaperonin’s function in cancer. To this end, we investigated the activity of CCT2 (CCTβ) by overexpressing or depleting the subunit in breast epithelial and breast cancer cells. We found that increasing total CCT2 in cells by 1.3-1.8-fold using a lentiviral system, also caused CCT3, CCT4, and CCT5 levels to increase. Likewise, silencing cct2 gene expression by ~50% caused other CCT subunits to decrease. Cells expressing CCT2 were more invasive and had a higher proliferative index. CCT2 depletion in a syngeneic murine model of triple negative breast cancer (TNBC) prevented tumor growth. These results indicate that the CCT2 subunit is integral to the activity of the chaperonin and is needed for tumorigenesis. Hence CCT2 could be a viable target for therapeutic development in breast and other cancers.
Collapse
|
7
|
Zhang C, Meng J. Identification of differentially expressed proteins in Ostrinia furnacalis adults after exposure to ultraviolet A. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:25071-25079. [PMID: 29936613 DOI: 10.1007/s11356-018-2580-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 06/18/2018] [Indexed: 06/08/2023]
Abstract
Ultraviolet A (UVA), the major component of solar UV irradiation, is an important environmental factor inducing damage to insects including cell death, photoreceptor damage, and oxidative stress. In order to improve understanding of the adaptation mechanisms of insect after UVA exposure, a comparative proteomic analysis was carried out to reveal differential protein expression in Ostrinia furnacalis. Three-day-old adults were treated with UVA for 1 h. Total proteins of control and UVA-treated insects were examined using two-dimensional electrophoresis (2-DE). 2-DE analysis demonstrated that 19 proteins were increased and 18 proteins were decreased significantly in O. furnacalis after UVA exposure, respectively. Thirty differentially expressed proteins were successfully identified by mass spectrometry. The identified proteins were involved in diverse biological processes, such as signal transduction, transport processing, cellular stress, metabolisms, and cytoskeleton organization. Our results reveal that the response patterns of O. furnacalis to UVA irradiation are complex and provide novel insights into the adaptation response to UVA irradiation stress.
Collapse
Affiliation(s)
- Changyu Zhang
- Guizhou Key Laboratory for Plant Pest Management of Mountain Region, College of Agriculture, Guizhou University, Guiyang, China.
| | - Jianyu Meng
- Guizhou Tobacco Science Research Institute, Guiyang, China
| |
Collapse
|
8
|
Kumar R, Subba A, Kaur C, Ariyadasa TU, Sharan A, Pareek A, Sopory SK, Singla-Pareek SL. OsCBSCBSPB4 is a Two Cystathionine-β-Synthase Domain-containing Protein from Rice that Functions in Abiotic Stress Tolerance. Curr Genomics 2017; 19:50-59. [PMID: 29491732 PMCID: PMC5817877 DOI: 10.2174/1389202918666170228141706] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 10/05/2016] [Accepted: 10/20/2016] [Indexed: 01/08/2023] Open
Abstract
Cystathionine β-synthase (CBS) domains have been identified in a wide range of proteins of unrelated functions such as, metabolic enzymes, kinases and channels, and usually occur as tandem re-peats, often in combination with other domains. In plants, CBS Domain-Containing Proteins (CDCPs) form a multi-gene family and only a few are so far been reported to have a role in development via regu-lation of thioredoxin system as well as in abiotic and biotic stress response. However, the function of majority of CDCPs still remains to be elucidated in plants. Here, we report the cloning, characterization and functional validation of a CBS domain containing protein, OsCBSCBSPB4 from rice, which pos-sesses two CBS domains and one PB1 domain. We show that OsCBSCBSPB4 encodes a nucleo-cytoplasmic protein whose expression is induced in response to various abiotic stress conditions in salt-sensitive IR64 and salt-tolerant Pokkali rice cultivars. Further, heterologous expression of OsCBSCB-SPB4 in E. coli and tobacco confers marked tolerance against various abiotic stresses. Transgenic tobac-co seedlings over-expressing OsCBSCBSPB4 were found to exhibit better growth in terms of delayed leaf senescence, profuse root growth and increased biomass in contrast to the wild-type seedlings when subjected to salinity, dehydration, oxidative and extreme temperature treatments. Yeast-two hybrid stud-ies revealed that OsCBSCBSPB4 interacts with various proteins. Of these, some are known to be in-volved in abiotic stress tolerance. Our results suggest that OsCBSCBSPB4 is involved in abiotic stress response and is a potential candidate for raising multiple abiotic stress tolerant plants.
Collapse
Affiliation(s)
- Ritesh Kumar
- Plant Stress Biology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Ashish Subba
- Plant Stress Biology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Charanpreet Kaur
- Plant Stress Biology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India.,School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Thilini U Ariyadasa
- Plant Stress Biology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Ashutosh Sharan
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Ashwani Pareek
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Sudhir K Sopory
- Plant Stress Biology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Sneh L Singla-Pareek
- Plant Stress Biology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| |
Collapse
|
9
|
Richard N, Silva TS, Wulff T, Schrama D, Dias JP, Rodrigues PML, Conceição LEC. Nutritional mitigation of winter thermal stress in gilthead seabream: Associated metabolic pathways and potential indicators of nutritional state. J Proteomics 2016; 142:1-14. [PMID: 27126605 DOI: 10.1016/j.jprot.2016.04.037] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 04/21/2016] [Accepted: 04/23/2016] [Indexed: 01/15/2023]
Abstract
A trial was carried out with gilthead seabream juveniles, aiming to investigate the ability of an enhanced dietary formulation (diet Winter Feed, WF, containing a higher proportion of marine-derived protein sources and supplemented in phospholipids, vitamin C, vitamin E and taurine) to assist fish in coping with winter thermal stress, compared to a low-cost commercial diet (diet CTRL). In order to identify the metabolic pathways affected by WF diet, a comparative two dimensional differential in-gel electrophoresis (2D-DIGE) analysis of fish liver proteome (pH 4–7) was undertaken at the end of winter. A total of 404 protein spots, out of 1637 detected, were differentially expressed between the two groups of fish. Mass spectrometry analysis of selected spots suggested that WF diet improved oxidative stress defense, reduced endoplasmic reticulum stress, enhanced metabolic flux through methionine cycle and phenylalanine/tyrosine catabolism, and induced higher aerobic metabolism and gluconeogenesis. Results support the notion that WF diet had a positive effect on fish nutritional state by partially counteracting the effect of thermal stress and underlined the sensitivity of proteome data for nutritional and metabolic profiling purposes. Intragroup variability and co-measured information were also used to pinpoint which proteins displayed a stronger relation with fish nutritional state. SIGNIFICANCE Winter low water temperature is a critical factor for gilthead seabream farming in the Mediterranean region, leading to a reduction of feed intake, which often results in metabolic and immunological disorders and stagnation of growth performances. In a recent trial, we investigated the ability of an enhanced dietary formulation (diet WF) to assist gilthead seabream in coping with winter thermal stress, compared to a standard commercial diet (diet CTRL). Within this context, in the present work, we identified metabolic processes that are involved in the stress-mitigating effect observed with diet WF, by undertaking a comparative analysis of fish liver proteome at the end of winter. This study brings information relative to biological processes that are involved in gilthead seabream winter thermal stress and shows that these can be mitigated through a nutritional strategy, assisting gilthead seabream to deal better with winter thermal conditions. Furthermore, the results show that proteomic information not only clearly distinguishes the two dietary groups from each other, but also captures heterogeneities that reflect intra-group differences in nutritional state. This was exploited in this work to refine the variable selection strategy so that protein spots displaying a stronger correlation with “nutritional state” could be identified as possible indicators of gilthead seabream metabolic and nutritional state. Finally, this study shows that gel-based proteomics seems to provide more reliable information than transmissive FT-IR spectroscopy, for the purposes of nutritional and metabolic profiling.
Collapse
Affiliation(s)
- Nadège Richard
- CCMAR, Centro de Ciências do Mar do Algarve, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal.
| | - Tomé S Silva
- SPAROS Lda, Área Empresarial de Marim, Lote C, 8700-221 Olhão, Portugal
| | - Tune Wulff
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kogle Allé 6, DK-2970 Hørsholm, Denmark
| | - Denise Schrama
- CCMAR, Centro de Ciências do Mar do Algarve, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Jorge P Dias
- SPAROS Lda, Área Empresarial de Marim, Lote C, 8700-221 Olhão, Portugal
| | - Pedro M L Rodrigues
- CCMAR, Centro de Ciências do Mar do Algarve, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | | |
Collapse
|
10
|
Yu K, Gong J, Huang C, Huang H, Ye H, Wang G, Zeng C. Characterization of CCTα and evaluating its expression in the mud crab Scylla paramamosain when challenged by low temperatures alone and in combination with high and low salinity. Cell Stress Chaperones 2015; 20:853-64. [PMID: 26122201 PMCID: PMC4529868 DOI: 10.1007/s12192-015-0612-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 06/10/2015] [Accepted: 06/11/2015] [Indexed: 11/28/2022] Open
Abstract
Chaperonin containing the T-complex polypeptide-1 (CCT), which is known to be involved in intracellular assembly and folding of proteins, is a class of chaperonin omnipresent in all forms of life. Previous studies showed that CCT played a vital role in cold hardiness of various animals. In order to understand the response of the polypeptide complex to low temperature challenge and other environmental stresses, a subunit of CCT (CCTα) was cloned from the mud crab Scylla paramamosain by expressed sequence tag (EST) analysis and rapid amplification of cDNA ends (RACE). The full-length cDNA SpCCTα was of 1972 bp and contained a 1668 bp open reading frame (ORF) encoding a polypeptide of 555 amino acids with four conserved motifs. The messenger ribonucleic acid (mRNA) levels of SpCCTα in ten tissues of adult S. paramamosain was subsequently examined and the highest expression was found in muscle, followed by gill, hepatopancreas, thoracic ganglion, hemocyte, heart, cerebral ganglion, stomach, eyestalk ganglion, and epidermis. The expressions of SpCCTα in the muscle of sub-adult crabs (pre-acclimated to 28 °C) subjected to the challenges of both lower temperatures (25, 20, 15, and 10 °C) alone and low temperatures (15 and 10 °C) in combination with salinity of 35 and 10 were further investigated by fluorescent quantitative real-time PCR (qPCR). It was revealed that when exposed to lower temperatures alone, the mRNA transcripts of the SpCCTα gene in the muscle were generally induced for significant higher expression at 10 °C treatment than the 25, 20, and 15 °C treatments; meanwhile, exposure to 15 °C also frequently led to significantly higher expression than those at 20 and 25 °C. This finding indicated that the up-regulation of SpCCTα was closely related to the cold hardiness of S. paramamosain. The results of an additional experiment challenging the sub-adult crabs with various combinations of low temperatures with different salinity conditions generally demonstrated that at both 10 and 15 °C, the expression of SpCCTα under the high salinity of 35 was significantly lower than that at low salinity of 10, implying that the damages caused by low temperatures with high salinity were less than that under low salinity.
Collapse
Affiliation(s)
- Kun Yu
- />College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361005 China
| | - Jie Gong
- />College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361005 China
| | - Chencui Huang
- />College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361005 China
| | - Huiyang Huang
- />College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361005 China
- />College of Marine and Environmental Sciences, James Cook University, Townsville, Queensland 4811 Australia
| | - Haihui Ye
- />College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361005 China
- />College of Marine and Environmental Sciences, James Cook University, Townsville, Queensland 4811 Australia
| | - Guizhong Wang
- />College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361005 China
| | - Chaoshu Zeng
- />College of Marine and Environmental Sciences, James Cook University, Townsville, Queensland 4811 Australia
| |
Collapse
|
11
|
Gpd1 Regulates the Activity of Tcp-1 and Heat Shock Response in Yeast Cells: Effect on Aggregation of Mutant Huntingtin. Mol Neurobiol 2015; 53:3900-3913. [PMID: 26164272 DOI: 10.1007/s12035-015-9329-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 06/26/2015] [Indexed: 01/27/2023]
Abstract
A significant correlation has been observed between the length of the polyglutamine tract in huntingtin, its aggregation and the progression of Huntington's disease (HD). The chaperonin TRiC is a potent antagonist of aggregation of mutant huntingtin. Using the well-validated Saccharomyces cerevisiae model of HD, we have investigated the role of age-related post-translational modifications of this heterooligomeric chaperonin on its ability to inhibit aggregation of the mutant protein. We show that the glycerol synthetic enzyme Gpd1 is involved in the post-translational modification of Tcp-1 (subunit of TRiC) by acetylation and glycation through the NAD(+)/NADH shuttle and the triose phosphate intermediate dihydroxyacetone phosphate, respectively. The extent of modification of Tcp-1 shows a negative correlation with the solubility of mutant huntingtin. The absence of Gpd1 also induces heat shock response in yeast cells, further inhibiting aggregation of the mutant protein. Thus, Gpd1 acts as a major regulator of the protein folding machinery in the yeast model of HD. Modification and inactivation of cellular chaperonin are accelerated in an aging cell, which has further deleterious effects for a cell harbouring misfolded/aggregated protein(s).
Collapse
|
12
|
Uren Webster TM, Perry MH, Santos EM. The herbicide linuron inhibits cholesterol biosynthesis and induces cellular stress responses in brown trout. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:3110-3118. [PMID: 25633873 DOI: 10.1021/es505498u] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The herbicide linuron is used worldwide, and has been detected in surface waters as well as in food and drinking water. Toxicological studies have reported that linuron acts as an antiandrogen in vitro and in vivo and disrupts mammalian male reproductive function. However, global mechanisms of linuron toxicity are poorly documented. We used RNA-seq to characterize the hepatic transcriptional response of mature male brown trout exposed for 4 days to 1.7, 15.3, and 225.9 μg/L linuron. We identified a striking decrease in the expression of transcripts encoding the majority of enzymes forming the cholesterol biosynthesis pathway. We also measured a very significant decrease in total hepatic cholesterol in fish exposed to 225.9 μg/L linuron and a negative correlation between total cholesterol and linuron treatment concentration. We hypothesize that inhibition of cholesterol biosynthesis may result from the disruption of androgen signaling by linuron. Additionally, there was increased expression of a number of transcripts involved in cellular stress responses, including cyp1a (up to 560-fold), molecular chaperones, and antioxidant enzymes. We found some evidence of similar patterns of transcriptional change in fish exposed to an environmentally relevant concentration of linuron, and further research should investigate the potential for adverse effects to occur following chronic environmental exposure.
Collapse
Affiliation(s)
- Tamsyn M Uren Webster
- Biosciences, College of Life & Environmental Sciences, Geoffrey Pope Building, University of Exeter , Exeter EX4 4QD, United Kingdom
| | | | | |
Collapse
|
13
|
The role of N1 domain on the activity, stability, substrate specificity and raw starch binding of amylopullulanase of the extreme thermophile Geobacillus thermoleovorans. Appl Microbiol Biotechnol 2015; 99:5461-74. [DOI: 10.1007/s00253-014-6345-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2014] [Revised: 12/19/2014] [Accepted: 12/21/2014] [Indexed: 11/25/2022]
|
14
|
Wang H, Sit WH, Tipoe GL, Wan JMF. Differential protective effects of extra virgin olive oil and corn oil in liver injury: a proteomic study. Food Chem Toxicol 2014; 74:131-8. [PMID: 25303780 DOI: 10.1016/j.fct.2014.09.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Revised: 08/30/2014] [Accepted: 09/02/2014] [Indexed: 12/27/2022]
Abstract
Extra virgin olive oil (EVOO) presents benefits against chronic liver injury induced by hepatotoxins such as carbon tetrachloride (CCl4); however, the protective mechanisms remain unclear. In the present study, a two-dimensional gel based proteomic approach was constructed to explore the mechanisms. Rats are injected with CCl4 twice a week for 4 weeks to induce liver fibrosis, and were fed laboratory chow plus 20% (w/w) of either corn oil or EVOO over the entire experimental period. Histological staining, MDA assay and fibrogenesis marker gene analysis illustrate that the CCl4-treated animals fed EVOO have a lower fibrosis and lipid peroxidation level in the liver than the corn oil fed group. The proteomic study indicates that the protein expression of thioredoxin domain-containing protein 12, peroxiredoxin-1, thiosulphate sulphurtransferase, calcium-binding protein 1, Annexin A2 and heat shock cognate 71 kDa protein are higher in livers from EVOO-fed rats with the CCl4 treatment compared with those from rats fed with corn oil, whereas the expression of COQ9, cAMP-dependent protein kinase type I-alpha regulatory subunit, phenylalanine hydroxylase and glycerate kinase are lower. Our findings confirmed the benefits of EVOO against chronic liver injury, which may be attributable to the antioxidant effects, hepatocellular function regulation and hepatic metabolism modification effects of EVOO.
Collapse
Affiliation(s)
- Hualin Wang
- School of Biology and Pharmaceutical Engineering, Wuhan Polytechnic University, Wuhan, Hubei, China; Food and Nutrition Division, School of Biological Sciences, The University of Hong Kong, Hong Kong, China
| | - Wat-Hung Sit
- Food and Nutrition Division, School of Biological Sciences, The University of Hong Kong, Hong Kong, China
| | - George Lim Tipoe
- Department of Anatomy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Jennifer Man-Fan Wan
- Food and Nutrition Division, School of Biological Sciences, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
15
|
Wang SH, Cheng CY, Chen CJ, Chen HH, Tang PC, Chen CF, Lee YP, Huang SY. Changes in protein expression in testes of L2 strain Taiwan country chickens in response to acute heat stress. Theriogenology 2014; 82:80-94. [DOI: 10.1016/j.theriogenology.2014.03.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Revised: 03/04/2014] [Accepted: 03/08/2014] [Indexed: 01/16/2023]
|
16
|
Zhang Y, Zhang L, Sun J, Qiu J, Hu X, Hu J, Bao Z. Proteomic analysis identifies proteins related to carotenoid accumulation in Yesso scallop (Patinopecten yessoensis). Food Chem 2014; 147:111-6. [DOI: 10.1016/j.foodchem.2013.09.078] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Revised: 01/08/2013] [Accepted: 09/14/2013] [Indexed: 12/19/2022]
|
17
|
Bach TMH, Takagi H. Properties, metabolisms, and applications of l-proline analogues. Appl Microbiol Biotechnol 2013; 97:6623-34. [DOI: 10.1007/s00253-013-5022-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Revised: 05/24/2013] [Accepted: 05/26/2013] [Indexed: 12/26/2022]
|
18
|
Differential in gel electrophoresis (DIGE) comparative proteomic analysis of macrophages cell cultures in response to perthamide C treatment. Mar Drugs 2013; 11:1288-99. [PMID: 23595056 PMCID: PMC3705404 DOI: 10.3390/md11041288] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Revised: 03/19/2013] [Accepted: 04/01/2013] [Indexed: 12/17/2022] Open
Abstract
Secondary metabolites contained in marine organisms disclose diverse pharmacological activities, due to their intrinsic ability to recognize bio-macromolecules, which alter their expression and modulate their function. Thus, the identification of the cellular pathways affected by marine natural products is crucial to provide important functional information concerning their mechanism of action at the molecular level. Perthamide C, a marine sponge metabolite isolated from the polar extracts of Theonella swinhoei and endowed with a broad and interesting anti-inflammatory profile, was found in a previous study to specifically interact with heat shock protein-90 and glucose regulated protein-94, also disclosing the ability to reduce cisplatin-mediated apoptosis. In this paper, we evaluated the effect of this compound on the whole proteome of murine macrophages cells by two-dimensional DIGE proteomics. Thirty-three spots were found to be altered in expression by at least 1.6-fold and 29 proteins were identified by LC ESI-Q/TOF-MS. These proteins are involved in different processes, such as metabolism, structural stability, protein folding assistance and gene expression. Among them, perthamide C modulates the expression of several chaperones implicated in the folding of proteins correlated to apoptosis, such as Hsp90 and T-complexes, and in this context our data shed more light on the cellular effects and pathways altered by this marine cyclo-peptide.
Collapse
|
19
|
Huang R, Yu M, Li CY, Zhan YQ, Xu WX, Xu F, Ge CH, Li W, Yang XM. New insights into the functions and localization of nuclear CCT protein complex in K562 leukemia cells. Proteomics Clin Appl 2013; 6:467-75. [PMID: 22821915 DOI: 10.1002/prca.201200009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
PURPOSE The eukaryotic cytosolic chaperonin containing TCP-1 (CCT) plays an important role in maintaining cellular homeostasis by assisting the folding of many proteins and is also well known for the critical roles in disease. However, the functions of CCT complex have not been established globally, especially when translocating into nuclear. The purpose of this study is to explore the function of CCT in nuclear and present a strategy in clinical proteomics studies. EXPERIMENTAL DESIGN Blue native polyacrylamide gel electrophoresis (BN-PAGE) combined with mass spectrometry was applied to separate and identify CCT protein complexes. RESULTS We isolated the CCT complex in K562 nucleus and identified a novel CCT complex containing 40 protein components involved in protein folding, RNA processing, apoptosis, and cell metabolism. The interactions between four candidate proteins and CCT were confirmed by immunoblotting. Computational biological analyses and independent biochemical assays validated the overall quality of interactions. CONCLUSIONS AND CLINICAL RELEVANCE Our results support clues that CCT might play an unexpected role in various biological processes including RNA processing. And we envision future applications for this system searching for new clues of CCT in disease and readily be applied to the clinic.
Collapse
Affiliation(s)
- Rui Huang
- Beijing Institute of Radiation Medicine, Beijing, China
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Comprehensive review on the HSC70 functions, interactions with related molecules and involvement in clinical diseases and therapeutic potential. Pharmacol Ther 2012; 136:354-74. [PMID: 22960394 DOI: 10.1016/j.pharmthera.2012.08.014] [Citation(s) in RCA: 209] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2012] [Accepted: 08/14/2012] [Indexed: 12/28/2022]
Abstract
Heat shock cognate protein 70 (HSC70) is a constitutively expressed molecular chaperone which belongs to the heat shock protein 70 (HSP70) family. HSC70 shares some of the structural and functional similarity with HSP70. HSC70 also has different properties compared with HSP70 and other heat shock family members. HSC70 performs its full functions by the cooperation of co-chaperones. It interacts with many other molecules as well and regulates various cellular functions. It is also involved in various diseases and may become a biomarker for diagnosis and potential therapeutic targets for design, discovery, and development of novel drugs to treat various diseases. In this article, we provide a comprehensive review on HSC70 from the literatures including the basic general information such as classification, structure and cellular location, genetics and function, as well as its protein association and interaction with other proteins. In addition, we also discussed the relationship of HSC70 and related clinical diseases such as cancer, cardiovascular, neurological, hepatic and many other diseases and possible therapeutic potential and highlight the progress and prospects of research in this field. Understanding the functions of HSC70 and its interaction with other molecules will help us to reveal other novel properties of this protein. Scientists may be able to utilize this protein as a biomarker and therapeutic target to make significant advancement in scientific research and clinical setting in the future.
Collapse
|
21
|
Poulter NS, Bosch M, Franklin-Tong VE. Proteins implicated in mediating self-incompatibility-induced alterations to the actin cytoskeleton of Papaver pollen. ANNALS OF BOTANY 2011; 108:659-75. [PMID: 21320881 PMCID: PMC3170148 DOI: 10.1093/aob/mcr022] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2010] [Accepted: 01/04/2011] [Indexed: 05/20/2023]
Abstract
BACKGROUND AND AIMS Sexual reproduction in angiosperms involves a network of signalling and interactions between pollen and pistil. To promote out-breeding, an additional layer of interactions, involving self-incompatibility (SI), is used to prevent self-fertilization. SI is generally controlled by the S-locus, and comprises allelic pollen and pistil S-determinants. This provides the basis of recognition, and consequent rejection, of incompatible pollen. In Papaver rhoeas, SI involves interaction of pistil PrsS and pollen PrpS, triggering a Ca(2+)-dependent signalling network. This results in rapid and distinctive alterations to both the actin and microtubule cytoskeleton being triggered in 'self' pollen. Some of these alterations are implicated in mediating programmed cell death, involving activation of several caspase-like proteases. SCOPE Here we review and discuss our current understanding of the cytoskeletal alterations induced in incompatible pollen during SI and their relationship with programmed cell death. We focus on data relating to the formation of F-actin punctate foci, which have, to date, not been well characterized. The identification of two actin-binding proteins that interact with these structures are reviewed. Using an approach that enriched for F-actin from SI-induced pollen tubes using affinity purification followed by mass spectrometry, further proteins were identified as putative interactors with the F-actin foci in an SI situation. KEY RESULTS Previously two important actin-binding proteins, CAP and ADF, had been identified whose localization altered with SI, both showing co-localization with the F-actin punctate foci based on immunolocalization studies. Further analysis has identified differences between proteins associated with F-actin from SI-induced pollen samples and those associated with F-actin in untreated pollen. This provides candidate proteins implicated in either the formation or stabilization of the punctate actin structures formed during SI. CONCLUSIONS This review brings together for the first time, our current understanding of proteins and events involved in SI-induced signalling to the actin cytoskeleton in incompatible Papaver pollen.
Collapse
|
22
|
Jeong DW, Park BY, Kim JH, Hwang IH. A Challenging Study to Identify Target Proteins by a Proteomics Approach and Their Validation by Raising Polyclonal Antibody. Korean J Food Sci Anim Resour 2011. [DOI: 10.5851/kosfa.2011.31.4.506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
23
|
Wang M, Wang Y, Wang J, Lin L, Hong H, Wang D. Proteome profiles in medaka (Oryzias melastigma) liver and brain experimentally exposed to acute inorganic mercury. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2011; 103:129-139. [PMID: 21458406 DOI: 10.1016/j.aquatox.2011.02.020] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2010] [Revised: 02/23/2011] [Accepted: 02/26/2011] [Indexed: 05/30/2023]
Abstract
Mercury is a widespread and persistent pollutant occurring in a variety of forms in freshwater and marine ecosystems. Using the proteomic approach, this study examined the protein profiles of the medaka (Oryzias melastigma) liver and brain exposed to an acute mercuric chloride (HgCl(2)) concentration (1000μg/L) for 8h. The results showed that acute exposure of medaka to inorganic mercury enhanced metal accumulation in both the liver and brain, and a higher content of mercury was detected in the latter. Comparison of the two-dimensional electrophoresis protein profiles of HgCl(2)-exposed and non-exposed group revealed that altered protein expression was quantitatively detected in 20 spots in the brain and 27 in the liver. The altered protein spots were subjected to matrix-assisted laser desorption/ionization tandem time-of-flight mass spectrometry analysis, with the resultant identification of 46 proteins. The proteins identified were involved in oxidative stress, cytoskeletonal assembly, signal transduction, protein modification, metabolism and other related functions (e.g. immune response, ionoregulation and transporting), highlighting the fact that inorganic mercury toxicity in fish seems to be complex and diverse. This study provided basic information to aid our understanding of the possible molecular mechanisms of acute inorganic mercury toxicity in aquatic organisms, as well as potential protein biomarker candidates for aquatic environmental monitoring.
Collapse
Affiliation(s)
- Minghua Wang
- State Key Laboratory of Marine Environmental Science/Environmental Science Research Center, Xiamen University, Xiamen 361005, China
| | | | | | | | | | | |
Collapse
|
24
|
Susta F, Chiasserini D, Fettucciari K, Orvietani PL, Quotadamo F, Noce R, Bartoli A, Marconi P, Corazzi L, Binaglia L. Protein expression changes induced in murine peritoneal macrophages by Group B Streptococcus. Proteomics 2010; 10:2099-112. [PMID: 20336680 DOI: 10.1002/pmic.200900642] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Protein expression changes induced in thioglycolate-elicited peritoneal murine macrophages (M Phi) by infection with type III Group B Streptococcus (GBS) are described. Proteins from control M Phi and M Phi incubated 2 h with live or heat-inactivated GBS were separated by 2-DE. Proteins whose expression was significantly different in infected M Phi, as compared with control cells, were identified by MS/MS analysis. Changes in the expression level of proteins involved in both positive and negative modulation of phagocytic functions, stress response and cell death were induced in M Phi by GBS infection. In particular, expression of enzymes playing a key role in production of reactive oxygen species was lowered in GBS-infected M Phi. Significant alterations in the expression of some metabolic enzymes were also observed, most of the glycolytic and of the pentose-cycle enzymes being down-regulated in M Phi infected with live GBS. Finally, evidence was obtained that GBS infection affects the expression of enzymes or enzyme subunits involved in ATP synthesis and in adenine nucleotides interconversion processes.
Collapse
Affiliation(s)
- Federica Susta
- Department of Experimental Medicine and Biochemical Sciences, University of Perugia, Perugia, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
De Wit M, Keil D, van der Ven K, Vandamme S, Witters E, De Coen W. An integrated transcriptomic and proteomic approach characterizing estrogenic and metabolic effects of 17 alpha-ethinylestradiol in zebrafish (Danio rerio). Gen Comp Endocrinol 2010; 167:190-201. [PMID: 20227414 DOI: 10.1016/j.ygcen.2010.03.003] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2009] [Revised: 02/28/2010] [Accepted: 03/08/2010] [Indexed: 01/07/2023]
Abstract
Nowadays there is much concern about the presence of endocrine disrupting compounds (EDCs) in the environment due to their ability to interfere with the endocrine system. In the presented study, adult zebrafish (Danio rerio) were exposed to 30 ng L(-1) 17alpha-ethinylestradiol (EE2) for 4 and 28 days. The underlying molecular mechanisms of EE2 were studied in the zebrafish liver by applying a combined transcriptomics and proteomics approach. In addition, we assessed the added value of such an integrated-omics approach. Oligo microarrays, spotted with 3479 zebrafish-specific oligos, were employed to generate differential gene expression levels. The proteomic responses were evaluated by means of differential in-gel electrophoresis (DiGE), combined with MALDI-tandem mass spectrometry. Assessment of the major biological functions of the differentially expressed transcripts and proteins illustrated that both individual platforms could profile a clear estrogenic interference, next to numerous metabolism-related effects and stress responses. Cross-comparison of both transcriptomics and proteomics datasets displayed limited concordance, though, thorough revision of the results illustrated that transcriptional effects were projected on protein level as downstream effects of affected signalling pathways. Overall, this study demonstrated that a proteomics approach can lift the biological interpretation of microarrays to a higher level, and moreover, opens a window for identification of possible new biomarkers.
Collapse
Affiliation(s)
- Marijke De Wit
- Laboratory for Ecophysiology, Biochemistry and Toxicology, Department of Biology, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp, Belgium.
| | | | | | | | | | | |
Collapse
|
26
|
Nyholt de Prada JK, Kellam LD, Patel BG, Latham KE, Vandevoort CA. Growth hormone and gene expression of in vitro-matured rhesus macaque oocytes. Mol Reprod Dev 2010; 77:353-62. [PMID: 20043319 DOI: 10.1002/mrd.21152] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Growth hormone (GH) in rhesus macaque in vitro oocyte maturation (IVM) has been shown to increase cumulus expansion and development of embryos to the 9-16 cell stage in response to 100 ng/ml recombinant human GH (r-hGH) supplementation during IVM. Although developmental endpoints for metaphase II (MII) oocytes and embryos are limited in the macaque, gene expression analysis can provide a mechanism to explore GH action on IVM. In addition, gene expression analysis may allow molecular events associated with improved cytoplasmic maturation to be detected. In this study, gene expression of specific mRNAs in MII oocytes and cumulus cells that have or have not been exposed to r-hGH during IVM was compared. In addition, mRNA expression was compared between in vitro and in vivo-matured metaphase II (MII) oocytes and germinal vesicle (GV)-stage oocytes. Only 2 of 17 genes, insulin-like growth factor 2 (IGF2) and steroidogenic acute regulator (STAR), showed increased mRNA expression in MII oocytes from the 100 ng/ml r-hGH treatment group compared with other IVM treatment groups, implicating insulin-like growth factor (IGF) and steroidogenesis pathways in the oocyte response to GH. The importance of IGF2 is notable, as expression of IGF1 was not detected in macaque GV-stage or MII oocytes or cumulus cells.
Collapse
Affiliation(s)
- Jenna K Nyholt de Prada
- California National Primate Research Center and the Molecular, Cellular and Integrative Physiology Graduate Group, University of California, Davis, CA 95616, USA
| | | | | | | | | |
Collapse
|
27
|
Martínez-Solano L, Reales-Calderón JA, Nombela C, Molero G, Gil C. Proteomics of RAW 264.7 macrophages upon interaction with heat-inactivatedCandida albicanscells unravel an anti-inflammatory response. Proteomics 2009; 9:2995-3010. [DOI: 10.1002/pmic.200800016] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
28
|
Jung EJ, Avliyakulov NK, Boontheung P, Loo JA, Nel AE. Pro-oxidative DEP chemicals induce heat shock proteins and an unfolding protein response in a bronchial epithelial cell line as determined by DIGE analysis. Proteomics 2008; 7:3906-18. [PMID: 17922515 DOI: 10.1002/pmic.200700377] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Ambient particulate matter (PM) induces adverse health effects through the ability of pro-oxidative chemicals to induce the production of oxygen radicals and oxidant injury. Utilizing a proteomics strategy involving 2-D DIGE, immunoblotting, and real-time PCR, we demonstrate that organic diesel exhaust particle (DEP) chemicals induce an unfolding protein response (UPR) and proinflammatory effects in the human bronchial epithelial cell line, BEAS-2B. DIGE and MS showed the induction of at least 14 proteins, among which heat shock protein 70 (HSP70), HSP40, TPR2, and T-complex protein 1 (zeta-subunit) are known to play a role in the UPR. Demonstrating increased HSP70 mRNA expression and nuclear translocation of HSF1, the key transcription factor responsible for HSP expression, further strengthened this notion. Immunoblotting demonstrated increased expression of ATF4, an ER stress-associated transcriptional enhancer responsible for differential protein translation under conditions of ER stress. Finally, the DEP extract induced the expression of IL-6 and IL-8 in the culture supernatant. The role of oxidative stress was demonstrated further by response subtraction in the presence of the thiol antioxidant, N-acetyl cysteine. Our data suggest that pro-oxidative DEP chemicals induce protein unfolding/misfolding that lead to UPR and proinflammatory effects in a cell type that is targeted by PM in the lung.
Collapse
Affiliation(s)
- EunMi Juliana Jung
- Department of Medicine, Division of Clinical Immunology and Allergy, and David Geffen School of Medicine, University of California-Los Angeles, CA 90095, USA
| | | | | | | | | |
Collapse
|
29
|
Meistertzheim AL, Tanguy A, Moraga D, Thébault MT. Identification of differentially expressed genes of the Pacific oyster Crassostrea gigas exposed to prolonged thermal stress. FEBS J 2007; 274:6392-402. [PMID: 18005253 DOI: 10.1111/j.1742-4658.2007.06156.x] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Groups of oysters (Crassostrea gigas) were exposed to 25 degrees C for 24 days (controls to 13 degrees C) to explore the biochemical and molecular pathways affected by prolonged thermal stress. This temperature is 4 degrees C above the summer seawater temperature encountered in western Brittany, France where the animals were collected. Suppression subtractive hybridization was used to identify specific up- and downregulated genes in gill and mantle tissues after 7-10 and 24 days of exposure. The resulting libraries contain 858 different sequences that potentially represent highly expressed genes in thermally stressed oysters. Expression of 17 genes identified in these libraries was studied using real-time PCR in gills and mantle at different time points over the course of the thermal stress. Differential gene expression levels were much higher in gills than in the mantle, showing that gills are more sensitive to thermal stress. Expression of most transcripts (mainly heat shock proteins and genes involved in cellular homeostasis) showed a high and rapid increase at 3-7 days of exposure, followed by a decrease at 14 days, and a second, less-pronounced increase at 17-24 days. A slow-down in protein synthesis occurred after 24 days of thermal stress.
Collapse
Affiliation(s)
- Anne-Leila Meistertzheim
- Laboratoire des Sciences de l'Environnement Marin, Institut Universitaire Européan de la Mer, Université de Bretagne occidentale, Plouzané, France
| | | | | | | |
Collapse
|
30
|
Coker JA, DasSarma P, Kumar J, Müller JA, DasSarma S. Transcriptional profiling of the model Archaeon Halobacterium sp. NRC-1: responses to changes in salinity and temperature. SALINE SYSTEMS 2007; 3:6. [PMID: 17651475 PMCID: PMC1971269 DOI: 10.1186/1746-1448-3-6] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2007] [Accepted: 07/25/2007] [Indexed: 11/10/2022]
Abstract
Background The model halophile Halobacterium sp. NRC-1 was among the first Archaea to be completely sequenced and many post-genomic tools, including whole genome DNA microarrays are now being applied to its analysis. This extremophile displays tolerance to multiple stresses, including high salinity, extreme (non-mesophilic) temperatures, lack of oxygen, and ultraviolet and ionizing radiation. Results In order to study the response of Halobacterium sp. NRC-1 to two common stressors, salinity and temperature, we used whole genome DNA microarrays to assay for changes in gene expression under differential growth conditions. Cultures grown aerobically in rich medium at 42°C were compared to cultures grown at elevated or reduced temperature and high or low salinity. The results obtained were analyzed using a custom database and microarray analysis tools. Growth under salt stress conditions resulted in the modulation of genes coding for many ion transporters, including potassium, phosphate, and iron transporters, as well as some peptide transporters and stress proteins. Growth at cold temperature altered the expression of genes involved in lipid metabolism, buoyant gas vesicles, and cold shock proteins. Heat shock showed induction of several known chaperone genes. The results showed that Halobacterium sp. NRC-1 cells are highly responsive to environmental changes at the level of gene expression. Conclusion Transcriptional profiling showed that Halobacterium sp. NRC-1 is highly responsive to its environment and provided insights into some of the specific responses at the level of gene expression. Responses to changes in salt conditions appear to be designed to minimize the loss of essential ionic species and abate possible toxic effects of others, while exposure to temperature extremes elicit responses to promote protein folding and limit factors responsible for growth inhibition. This work lays the foundation for further bioinformatic and genetic studies which will lead to a more comprehensive understanding of the biology of a model halophilic Archaeon.
Collapse
Affiliation(s)
- James A Coker
- University of Maryland Biotechnology Institute, Center of Marine Biotechnology, 701 East Pratt Street, Baltimore, MD 21202, USA
| | - Priya DasSarma
- University of Maryland Biotechnology Institute, Center of Marine Biotechnology, 701 East Pratt Street, Baltimore, MD 21202, USA
| | - Jeffrey Kumar
- University of Maryland Biotechnology Institute, Center of Marine Biotechnology, 701 East Pratt Street, Baltimore, MD 21202, USA
| | - Jochen A Müller
- University of Maryland Biotechnology Institute, Center of Marine Biotechnology, 701 East Pratt Street, Baltimore, MD 21202, USA
- Morgan State University, Department of Biology, 1700 East Cold Spring Lane, Baltimore, MD 21251, USA
| | - Shiladitya DasSarma
- University of Maryland Biotechnology Institute, Center of Marine Biotechnology, 701 East Pratt Street, Baltimore, MD 21202, USA
| |
Collapse
|
31
|
Kita K, Suzuki T, Ochi T. Down-regulation of glutaminase C in human hepatocarcinoma cell by diphenylarsinic acid, a degradation product of chemical warfare agents. Toxicol Appl Pharmacol 2007; 220:262-70. [PMID: 17321558 DOI: 10.1016/j.taap.2007.01.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2006] [Revised: 01/15/2007] [Accepted: 01/17/2007] [Indexed: 11/25/2022]
Abstract
In a poisonous incident in Kamisu, Japan, it is understood that diphenylarsinic acid (DPAA) was a critical contaminant of ground water. Most patients showed dysfunction of the central nervous system. To understand the overall mechanism of DPAA toxicity and to gain some insight into the application of a remedy specific for intoxication, the molecular target must be clarified. As an approach, a high throughput analysis of cell proteins in cultured human hepatocarcinoma HpG2 exposed to DPAA was performed by two-dimensional electrophoresis (2-DE). Four proteins, which were up- and down-regulated by exposure of cultured HepG2 cells to DPAA, were identified. They were chaperonin containing TCP-1 (CCT) beta subunit, aldehyde dehydrogenase 1 (ALDH1), ribosomal protein P0 and glutaminase C (GAC). Of these, GAC was the only protein that was down-regulated by DPAA exposure, and cellular expression levels were reduced by DPAA in a concentration- and time-dependent manner. Decrease in cellular GAC levels was accompanied by decreased activity of the enzyme, phosphate-activated glutaminase (PAG). Decreased expression of GAC by DPAA was also observed in human cervical carcinoma HeLa and neuroblastoma SH-SY5Y cells. By contrast, no significant changes in GAC protein expression were observed when cells were incubated with arsenite [iAs (III)] and trivalent dimethylarsinous acid [DMA (III)]. In the central nervous system, GAC plays a role in the production of the neurotransmitter glutamic acid. Selective inhibition of GAC expression by DPAA may be a cause of dysfunction of glutamatergic neuronal transmission and the resultant neurological impairments.
Collapse
Affiliation(s)
- Kayoko Kita
- Laboratory of Toxicology, Faculty of Pharmaceutical Sciences, Teikyo University, 1091-1 Sagamiko-chou, Sagamihara, Kanagawa 229-0195, Japan.
| | | | | |
Collapse
|
32
|
Al-Fageeh M, Smales C. Control and regulation of the cellular responses to cold shock: the responses in yeast and mammalian systems. Biochem J 2006; 397:247-59. [PMID: 16792527 PMCID: PMC1513281 DOI: 10.1042/bj20060166] [Citation(s) in RCA: 183] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Although the cold-shock response has now been studied in a number of different organisms for several decades, it is only in the last few years that we have begun to understand the molecular mechanisms that govern adaptation to cold stress. Notably, all organisms from prokaryotes to plants and higher eukaryotes respond to cold shock in a comparatively similar manner. The general response of cells to cold stress is the elite and rapid overexpression of a small group of proteins, the so-called CSPs (cold-shock proteins). The most well characterized CSP is CspA, the major CSP expressed in Escherichia coli upon temperature downshift. More recently, a number of reports have shown that exposing yeast or mammalian cells to sub-physiological temperatures (<30 or <37 degrees C respectively) invokes a co-ordinated cellular response involving modulation of transcription, translation, metabolism, the cell cycle and the cell cytoskeleton. In the present review, we summarize the regulation and role of cold-shock genes and proteins in the adaptive response upon decreased temperature with particular reference to yeast and in vitro cultured mammalian cells. Finally, we present an integrated model for the co-ordinated responses required to maintain the viability and integrity of mammalian cells upon mild hypothermic cold shock.
Collapse
Affiliation(s)
- Mohamed B. Al-Fageeh
- Protein Science Group, Department of Biosciences, University of Kent, Canterbury, Kent CT2 7NJ, U.K
| | - C. Mark Smales
- Protein Science Group, Department of Biosciences, University of Kent, Canterbury, Kent CT2 7NJ, U.K
- To whom correspondence should be addressed (email )
| |
Collapse
|
33
|
Buckley BA, Gracey AY, Somero GN. The cellular response to heat stress in the gobyGillichthys mirabilis: a cDNA microarray and protein-level analysis. J Exp Biol 2006; 209:2660-77. [PMID: 16809457 DOI: 10.1242/jeb.02292] [Citation(s) in RCA: 175] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARYThe cellular response to stress relies on the rapid induction of genes encoding proteins involved in preventing and repairing macromolecular damage incurred as a consequence of environmental insult. To increase our understanding of the scope of this response, a cDNA microarray, consisting of 9207 cDNA clones, was used to monitor gene expression changes in the gill and white muscle tissues of a eurythermic fish, Gillichthys mirabilis(Gobiidae) exposed to ecologically relevant heat stress. In each tissue, the induction or repression of over 200 genes was observed. These genes are associated with numerous biological processes, including the maintenance of protein homeostasis, cell cycle control, cytoskeletal reorganization,metabolic regulation and signal transduction, among many others. In both tissues, the molecular chaperones, certain transcription factors and a set of additional genes with various functions were induced in a similar manner;however, the majority of genes displayed tissue-specific responses. In gill,thermal stress induced the expression of the major structural components of the cytoskeleton, whereas these same genes did not respond to heat in muscle. In muscle, many genes involved in promoting cell growth and proliferation were repressed, perhaps to conserve energy for repair and replacement of damaged macromolecules, but a similar repression was not observed in the gill. Many of the observed changes in gene expression were similar to those described in model species whereas many others were unexpected. Measurements of the concentrations of the protein products of selected genes revealed that in each case an induction in mRNA synthesis correlated with an increase in protein production, though the timing and magnitude of the increase in protein was not consistently predicted by mRNA concentration, an important consideration in assessing the condition of the stressed cell using transcriptomic analysis.
Collapse
Affiliation(s)
- Bradley A Buckley
- Hopkins Marine Station, Stanford University, Pacific Grove, CA 93950, USA.
| | | | | |
Collapse
|
34
|
Haitani Y, Shimoi H, Takagi H. Rsp5 regulates expression of stress proteins via post-translational modification of Hsf1 and Msn4 in Saccharomyces cerevisiae. FEBS Lett 2006; 580:3433-8. [PMID: 16713599 DOI: 10.1016/j.febslet.2006.05.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2006] [Revised: 04/25/2006] [Accepted: 05/05/2006] [Indexed: 11/26/2022]
Abstract
Rsp5 is an essential E3 ubiquitin ligase in Saccharomyces cerevisiae and is known to ubiquitinate plasma membrane permeases followed by endocytosis and vacuolar degradation. We previously isolated the rsp5 mutant that is hypersensitive to various stresses, suggesting that Rsp5 is involved in degradation of stress-induced abnormal proteins. Here, we analyzed the ability to refold the proteins by stress proteins in the rsp5 mutant. The transcription of stress protein genes in the rsp5 mutant was significantly lower than that in the wild-type strain when exposed to temperature up-shift, ethanol or sorbitol. Interestingly, the amounts of transcription factors Hsf1 and Msn4 were remarkably defective in the rsp5 mutant. These results suggest that expression of stress proteins are mediated by Rsp5 and that Rsp5 primarily regulates post-translational modification of Hsf1 and Msn4.
Collapse
Affiliation(s)
- Yutaka Haitani
- Department of Bioscience, Fukui Prefectural University, Eiheiji-cho, Fukui, Japan
| | | | | |
Collapse
|
35
|
Dode MAN, Dufort I, Massicotte L, Sirard MA. Quantitative expression of candidate genes for developmental competence in bovine two-cell embryos. Mol Reprod Dev 2006; 73:288-97. [PMID: 16362969 DOI: 10.1002/mrd.20427] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Only competent oocytes are able to undergo complete maturation and normal embryonic development. Therefore, the identification of genes that are differentially expressed in competent oocytes would contribute to our understanding of the factors controlling competency. It is well known that time of cleavage after insemination in vitro is highly correlated with embryonic developmental potential and this can be used to distinguish between oocytes of different quality. The main objective of this study was to identify genes associated with competency and rapid cleavage. We examined the expression of 16 candidate genes (IDH, YEAF Cathepsin B, RAD50, TCP1 NCOR1, HUEL, STK6, ZNF403, AOP2, EEF1A1, Hsp90, Hsp40, AKR1B1, PGRMC1, and DMRT2) in early and late cleaving embryos, by real time PCR. These transcripts were derived from previous study in our laboratory using cDNA coming from a suppressive subtraction hybridization (SSH) between early cleaving versus late cleaving embryos spotted on a microarray slide. Of the 16 genes evaluated, 3 (IDH, YEAF, and H2A) showed statistical difference (P < 0.05) between early and late cleaving embryos. However, some genes such as Cathepsin B (P = 0.0677), RAD50 (P = 0.0899), and TCP1 (P = 0.0824) tended to show higher expression in the early cleaving than in the late cleaving embryo. In conclusion, we have identified three genes (YEAF, IDH, H2A) that were differentially expressed in the early cleaving embryos, and their expression can be associated with greater developmental competence.
Collapse
|
36
|
Regnström K, Ragnarsson EGE, Fryknäs M, Köping-Höggård M, Artursson P. Gene Expression Profiles in Mouse Lung Tissue after Administration of Two Cationic Polymers Used for Nonviral Gene Delivery. Pharm Res 2006; 23:475-82. [PMID: 16463010 DOI: 10.1007/s11095-006-9563-7] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2005] [Accepted: 11/18/2005] [Indexed: 01/22/2023]
Abstract
PURPOSE This study compared gene expression profiles in mouse lungs after administration of the cationic polymers polyethyleneimine (PEI) or chitosan alone or formulated with a luciferase reporter plasmid (PEI-pLuc, chitosan-pLuc). METHODS The polymers and formulations were administered intratracheally to Balb/c mice at doses judged to be nontoxic according to intracellular dehydrogenase activity and tissue morphology. RNA was isolated from the lungs 24 or 72 h after administration, and a dedicated stress and toxicology cDNA array was used to monitor the in vivo response to the gene delivery system in the lung tissue. RESULTS The gene expression profiles differed between the PEI and chitosan groups with regard to both the total number and the type of expressed genes. Chitosan-pLuc upregulated genes that protect the cell from oxidative stress and inflammation, such as heme oxygenase-1 and catalase, whereas PEI-pLuc upregulated genes involved in inflammatory processes, such as the cyclooxygenases 1 and 2, indicating possible involvement in the development of adverse reactions. However, both polymers activated genes involved in reaction to stress, such as DNA damage repair. Furthermore, in the PEI group, chaperone genes and members of the p38 mitogen-activated protein kinase pathway were also upregulated, suggesting a possible explanation for the better performance of PEI in gene delivery systems. CONCLUSIONS The results indicate that gene expression profiling is a useful and sensitive tool for the evaluation of tissue responses after administration of polymers or gene delivery systems. The results also suggest a possible explanation for the differences in gene delivery performance between the two polymers in gene delivery systems.
Collapse
|
37
|
Li H, Xiao YB, Gao YQ, Yang TD. COMPARATIVE PROTEOMICS ANALYSIS OF DIFFERENTIALLY EXPRESSED PHOSPHOPROTEINS IN ADULT RAT VENTRICULAR MYOCYTES SUBJECTED TO DIAZOXIDE PRECONDITIONING. ACTA ACUST UNITED AC 2006; 21:245-58. [PMID: 16841516 DOI: 10.1515/dmdi.2006.21.3-4.245] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Mitochondrial ATP sensitive potassium channels (mitoK(ATP) channels) are involved in the cardioprotection afforded by ischemic preconditioning (IPC) and diazoxide, a selective mitoK(ATP) channel opener. The activation of some kinases, including phoshoprotein kinase (PKC)-epsilon and mitogen-activating protein kinases (MAPK), is involved in signal conduction of preconditioning downstream from mitoK(ATP) channel opening. Diazoxide can open mitoK(ATP) channels and activate PKC-epsilon, which will phosphorylate some substrate proteins. These proteins that exhibit altered post-translational modification via phosphorylation due to diazoxide pretreatment may be the target molecules and play an important role in cellular protection after mitoK(ATP) channel opening. To analyze and identify the phosphoproteins associated with diazoxide preconditioning, phosphoprotein enrichment and comparative two-dimensional gel electrophoresis (2D-GE) were used. Cultured adult rat ventricular myocytes were pretreated in the presence and absence of 100 micronol/1l diazoxide for 10 min and enriched phosphoproteins from control myocytes and those pretreated with 100 micromol/l diazoxide were separated by 2D-GE and stained with a silver staining kit. Phosphoproteins of interest were further identified by matrix-assisted laser desorption ionization tandem mass spectrometry (MALDI-TOF MS). Eight protein spots with different abundance were found, of which six differentially expressed proteins were identified by MALDI-TOF MS. They included 94 kDa glucose-regulated protein, calpactin I heavy chain, chaperonin containing TCP-1 zeta subunit, hypothetical protein XP_346548, ferritin light chain and ferritin light chain 2. These findings provide new clues to understanding the mechanism of ischemic preconditioning in cardiomyocytes downstream from mitoK(ATP) channel opening.
Collapse
Affiliation(s)
- Hong Li
- Department of Anesthesiology Xinqiao Hospital Third Military Medical University Chongqing, China.
| | | | | | | |
Collapse
|
38
|
Stauber AJ, Brown-Borg H, Liu J, Waalkes MP, Laughter A, Staben RA, Coley JC, Swanson C, Voss KA, Kopchick JJ, Corton JC. Constitutive expression of peroxisome proliferator-activated receptor alpha-regulated genes in dwarf mice. Mol Pharmacol 2005; 67:681-94. [PMID: 15576629 DOI: 10.1124/mol.104.007278] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Defects in growth hormone secretion or signaling in mice are associated with decreased body weights (dwarfism), increased longevity, increased resistance to stress, and decreases in factors that contribute to cardiovascular disease and cancer. Peroxisome proliferators (PP) alter a subset of these changes in wild-type mice through activation of the nuclear receptor family member PP-activated receptor alpha (PPARalpha). We tested the hypothesis that an overlap in the transcriptional programs between untreated dwarf mice and PP-treated wild-type mice underlies these similarities. Using transcript profiling, we observed a statistically significant overlap in the expression of genes differentially regulated in control Snell dwarf mice (Pit-1dw) compared with phenotypically normal heterozygote (+/dw) control mice and those altered by the PP 4-chloro-6-(2,3-xylidino)-2-pyrimidinyl)thioacetic acid (WY-14,643) in +/dw mice. The genes included those involved in beta- and omega-oxidation of fatty acids (Acox1, Cyp4a10, Cyp4a14) and those involved in stress responses (the chaperonin, T-complex protein1epsilon) and cardiovascular disease (fibrinogen). The levels of some of these gene products were also altered in other dwarf mouse models, including Ames, Little, and growth hormone receptor-null mice. The constitutive increases in PPARalpha-regulated genes may be partly caused by increased expression of PPARalpha mRNA and protein as observed in the livers of control Snell dwarf mice. These results indicate that some of the beneficial effects associated with the dwarf phenotype may be caused by constitutive activation of PPARalpha and regulated genes.
Collapse
Affiliation(s)
- Anja J Stauber
- CIIT Centers for Health Research, Research Triangle Park, North Carolina, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Tanić N, Vujosević M, Dedović-Tanić N, Dimitrijević B. Differential gene expression in yellow-necked mice Apodemus flavicollis (Rodentia, Mammalia) with and without B chromosomes. Chromosoma 2005; 113:418-27. [PMID: 15657744 DOI: 10.1007/s00412-004-0327-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2004] [Revised: 11/18/2004] [Accepted: 11/26/2004] [Indexed: 10/25/2022]
Abstract
Most B chromosomes are heavily heterochromatic, promoting the general idea that they are genetically inert. The B chromosomes of Apodemus flavicollis are euchromatic and show a high degree of homology with the A chromosomes. The euchromatic nature of B chromosomes in A. flavicollis suggests that they may carry active genes and have transcriptional activity. We applied the differential display reverse transcription-polymerase chain reaction (DD RT-PCR) in order to analyze and compare gene expression in animals possessing B chromosomes and animals without B chromosomes. After a second and third round of amplification, three cDNA fragments were differentially expressed in +B mice compared with 0B animals. These cDNAs were Chaperonin containing TCP-1, subunit 6b (zeta) (CCT6B), Fragile histidine triad gene (FHIT) and hypothetical gene XP transcript. The differential expression pattern was confirmed by Real Time RT-PCR. We suggest that altered expression of these important genes is due to the presence of B chromosomes. In elevating the expression of these genes, B chromosomes of A. flavicollis affect some of the crucial processes in the cell. The significance of these effects and the nature of B chromosomes of A. flavicollis are discussed in the context of the data presented.
Collapse
Affiliation(s)
- Nikola Tanić
- Institute for Biological Research Sinisa Stanković, 29. Novembra 142, 11060, Belgrade, Serbia and Montenegro.
| | | | | | | |
Collapse
|
40
|
Nomura M, Takagi H. Role of the yeast acetyltransferase Mpr1 in oxidative stress: regulation of oxygen reactive species caused by a toxic proline catabolism intermediate. Proc Natl Acad Sci U S A 2004; 101:12616-21. [PMID: 15308773 PMCID: PMC515106 DOI: 10.1073/pnas.0403349101] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2004] [Indexed: 12/20/2022] Open
Abstract
The MPR1 gene, which is found in the Sigma1278b strain but is not present in the sequenced laboratory strain S288C, of the budding yeast Saccharomyces cerevisiae encodes a previously uncharacterized N-acetyltransferase that detoxifies the proline analogue azetidine-2-carboxylate (AZC). However, it is unlikely that AZC is a natural substrate of Mpr1 because AZC is found only in some plant species. In our search for the physiological function of Mpr1, we found that mpr1-disrupted cells were hypersensitive to oxidative stresses and contained increased levels of reactive oxygen species (ROS). In contrast, overexpression of MPR1 leads to an increase in cell viability and a decrease in ROS level after oxidative treatments. These results indicate that Mpr1 can reduce intracellular oxidation levels. Because put2-disrupted yeast cells lacking Delta(1)-pyrroline-5-carboxylate (P5C) dehydrogenase have increased ROS, we examined the role of Mpr1 in put2-disrupted strains. When grown on media containing urea and proline as the nitrogen source, put2-disrupted cells did not grow as well as WT cells and accumulated intracellular levels of P5C that were first detected in yeast cells and ROS. On the other hand, put2-disrupted cells that overexpressed MPR1 had considerably lower ROS levels. In vitro studies with bacterially expressed Mpr1 demonstrated that Mpr1 can acetylate P5C, or, more likely, its equilibrium compound glutamate-gamma-semialdehyde, at neutral pH. These results suggest that the proline catabolism intermediate P5C is toxic to yeast cells because of the formation of ROS, and Mpr1 regulates the ROS level under P5C-induced oxidative stress.
Collapse
Affiliation(s)
- Michiyo Nomura
- Department of Bioscience, Fukui Prefectural University, Fukui 910-1195, Japan
| | | |
Collapse
|
41
|
Yokota SI, Okabayashi T, Yokosawa N, Fujii N. Growth arrest of epithelial cells during measles virus infection is caused by upregulation of interferon regulatory factor 1. J Virol 2004; 78:4591-8. [PMID: 15078941 PMCID: PMC387717 DOI: 10.1128/jvi.78.9.4591-4598.2004] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Natural infection with measles virus (MeV) is initiated when the virus reaches epithelial cells in the respiratory tract, oropharynx, or conjunctivae. Human epithelial cells infected with MeV frequently show growth suppression. In this study, we investigated the possible mechanisms for this suppression. The bronchiolar epithelial cell A549 showed growth arrest in G(0)/G(1) following MeV infection or treatment with gamma interferon (IFN-gamma). IFN regulatory factor-1 (IRF-1) was upregulated during MeV infection, although A549 did not produce IFN-gamma. Cells of the cervical squamous cell line SiHa persistently infected with various strains of MeV displayed slower growth than uninfected SiHa cells, although the growth rates varied depending on the MeV strain. Transfection of antisense-oriented IRF-1 cDNA released the MeV-infected SiHa cells from growth suppression. Although these infected cells did not produce IFN-gamma and suppressed IFN-alpha/beta-induced Jak1 phosphorylation, Jak1 was constitutively phosphorylated. The growth rates negatively correlated with levels of both IRF-1 expression and constitutively phosphorylated Jak1. These results indicate that MeV upregulates IRF-1 in a manner that is independent of IFN but dependent on the JAK/STAT pathway. This induction of IRF-1 appears to suppress cell growth, although the extent seems to vary among MeV strains.
Collapse
Affiliation(s)
- Shin-ichi Yokota
- Department of Microbiology, Sapporo Medical University School of Medicine, Chuo-ku, Sapporo 060-8556, Japan
| | | | | | | |
Collapse
|
42
|
Kadota M, Nishigaki R, Wang CC, Toda T, Shirayoshi Y, Inoue T, Gojobori T, Ikeo K, Rogers MS, Oshimura M. Proteomic signatures and aberrations of mouse embryonic stem cells containing a single human chromosome 21 in neuronal differentiation: An in vitro model of down syndrome. Neuroscience 2004; 129:325-35. [PMID: 15501590 DOI: 10.1016/j.neuroscience.2004.06.081] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/23/2004] [Indexed: 11/16/2022]
Abstract
Neurodegeneration in fetal development of Down syndrome (DS) patients is proposed to result in apparent neuropathological abnormalities and to contribute to the phenotypic characteristics of mental retardation and premature development of Alzheimer disease. In order to identify the aberrant and specific genes involved in the early differentiation of DS neurons, we have utilized an in vitro neuronal differentiation system of mouse ES cells containing a single human chromosome 21 (TT2F/hChr21) with TT2F parental ES cells as a control. The paired protein extracts from TT2F and TT2F/hChr21 cells at several stages of neuronal differentiation were subjected to two-dimensional polyacrylamide gel electrophoresis protein separation followed by matrix-assisted laser desorption/ionization-time of flight mass spectrometry to identify the proteins differentially expressed between TT2F and TT2F/hChr21 cells. We provide here a novel set of specific gene products altered in early differentiating DS neuronal cells, which differs from that identified in adult or fetal brain with DS. The aberrant protein expression in early differentiating neurons, due to the hChr21 gene dosage effects or chromosomal imbalance, may affect neuronal outgrowth, proliferation and differentiation, producing developmental abnormalities in neural patterning, which eventually leads to formation of a suboptimal functioning neuronal network in DS.
Collapse
Affiliation(s)
- M Kadota
- Department of Human Genome Science (Kirin Brewery), Graduate School of Medical Science, Tottori University, 86 Nishimachi, Yonago, Tottori 683-8503, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Sparre T, Reusens B, Cherif H, Larsen MR, Roepstorff P, Fey SJ, Mose Larsen P, Remacle C, Nerup J. Intrauterine programming of fetal islet gene expression in rats--effects of maternal protein restriction during gestation revealed by proteome analysis. Diabetologia 2003; 46:1497-511. [PMID: 13680128 DOI: 10.1007/s00125-003-1208-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2003] [Revised: 07/03/2003] [Indexed: 01/06/2023]
Abstract
AIMS/HYPOTHESIS Fetal undernutrition can result in intrauterine growth restriction and increased incidence of Type 2 diabetes mellitus. Intrauterine malnutrition in form of an isocaloric low-protein diet given to female rats throughout gestation decreases islet-cell proliferation, islet size and pancreatic insulin content, while increasing the apoptotic rate and sensitivity to nitrogen oxide and interleukin-1beta. Hence, the influence of a low-protein diet on the development of beta-cells and islets could also be of interest for the pathogenesis of Type 1 and Type 2 diabetes mellitus. We hypothesise that the effects of a low-protein diet in utero are caused by intrauterine programming of beta-cell gene expression. METHODS Pregnant Wistar rats were fed a low-protein diet (8% protein) or a control diet (20% protein) throughout gestation. At day 21.5 of gestation fetal pancreata were removed, digested and cultured for 7 days. Neoformed islets were collected and analysed by proteome analysis comprising 2-dimensional gel electrophoresis and mass spectrometry. RESULTS A total of 2810 different protein spots were identified, 70 of which were changed due to the low-protein diet. From 45 of the changed protein spots, identification was obtained by mass spectrometry (64% success rate). Proteins induced by the low-protein diet were grouped according to their biological functions, e.g. cell cycle and differentiation, protein synthesis and chaperoning. CONCLUSIONS/INTERPRETATION Our study offers a possible explanation of the alterations induced by a low-protein diet in islets. It shows that in Wistar rats the intrauterine milieu could program islet gene expression in ways unfavourable for the future of the progeny. This could be important for our understanding of the development of Type 1 and Type 2 diabetes mellitus.
Collapse
Affiliation(s)
- T Sparre
- Steno Diabetes Center, Gentofte, Denmark
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Yokota SI, Yokosawa N, Kubota T, Okabayashi T, Arata S, Fujii N. Suppression of thermotolerance in mumps virus-infected cells is caused by lack of HSP27 induction contributed by STAT-1. J Biol Chem 2003; 278:41654-60. [PMID: 12917439 DOI: 10.1074/jbc.m305701200] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Viral infection modulates the regulation of apoptosis in host cells. Here, we report a novel mechanism by which human cells infected with mumps virus become susceptible to apoptosis caused by extracellular stresses. Mumps virus stimulates proteasome-dependent degradation of STAT-1 by action of viral accessory protein V, resulting in a severe decrease in STAT-1 protein in infected cells. We exposed mumps virus-infected and uninfected cells to heat and chemical stress. The infected cells failed to acquire resistance to apoptotic stimuli (thermotolerance) after exposure to these mild stresses. The induction of HSP27 by stress exposure was dramatically suppressed in the infected cells, but HSP70 induction was not affected. STAT-1 was required for transcriptional activation of the HSP27 gene, but not for the HSP70 gene, and cDNA transfection of STAT-1 in mumps virus-infected cells restored thermotolerance. Phosphorylated heat shock factor-1 (HSF-1) and STAT-1 phosphorylated on neither tyrosine nor serine residues were co-transported to the nucleus in response to stress. Furthermore, overexpression of unphosphorylatable mutants of STAT-1 also restored thermotolerance in mumps virus-infected cells. These lines of evidence indicate that the induction of HSP27 by stress requires STAT-1 in addition to the activated HSF-1. Furthermore, STAT-1 required for the induction of HSP27 worked independent to its phosphorylation. Thus, HSP27-dependent thermotolerance is suppressed by mumps virus infection through the destruction of STAT-1. The lack of thermotolerance should allow the infected cells to be eliminated by apoptosis and might be a host defense against viral infection.
Collapse
Affiliation(s)
- Shin-ichi Yokota
- Department of Microbiology, Sapporo Medical University School of Medicine, Chuo-ku, Sapporo 060-8556, Japan
| | | | | | | | | | | |
Collapse
|
45
|
Hoshikawa C, Shichiri M, Nakamori S, Takagi H. A nonconserved Ala401 in the yeast Rsp5 ubiquitin ligase is involved in degradation of Gap1 permease and stress-induced abnormal proteins. Proc Natl Acad Sci U S A 2003; 100:11505-10. [PMID: 14500784 PMCID: PMC208788 DOI: 10.1073/pnas.1933153100] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2003] [Indexed: 11/18/2022] Open
Abstract
A toxic l-proline analogue, l-azetidine-2-carboxylic acid (AZC), causes misfolding of the proteins into which it is incorporated competitively with l-proline, thereby inhibiting the growth of the cells. AZC enters budding yeast Saccharomyces cerevisiae cells primarily through the general amino acid permease Gap1, not through the proline-specific permease Put4. We isolated an AZC-hypersensitive mutant that cannot grow even at low concentrations of AZC because of the accumulation of intracellular AZC. By screening through a yeast genomic library, the mutant was found to carry an allele of RSP5 encoding an E3 ubiquitin ligase. A single amino acid change replacing Ala (GCA) at position 401 with Glu (GAA) showed that Ala-401 in the third WW domain (a protein interaction module) is not conserved in the domain. The addition of NH4+ to yeast cells growing on l-proline induced rapid ubiquitination, endocytosis, and vacuolar degradation of the plasma membrane protein Gap1. However, immunoblot and permease assays indicated that Gap1 in the rsp5 mutant remained stable and active on the plasma membrane probably with no ubiquitination, leading to AZC accumulation and hypersensitivity. The rsp5 mutants also showed hypersensitivity to various stresses (toxic amino acid analogues, high temperature in a rich medium, and oxidative treatments) and defects in spore growth. These results suggest that Rsp5 is involved in selective degradation of abnormal proteins and specific proteins for spore growth, in addition to nitrogen-regulated degradation of Gap1. Furthermore, Ala-401 of Rsp5 was considered to have an important role in the ubiquitination of targeted proteins.
Collapse
Affiliation(s)
- Chikara Hoshikawa
- Department of Bioscience, Fukui Prefectural University, Fukui 910-1195, Japan
| | | | | | | |
Collapse
|
46
|
Yamazaki Y, Kubota H, Nozaki M, Nagata K. Transcriptional regulation of the cytosolic chaperonin theta subunit gene, Cctq, by Ets domain transcription factors Elk-1, Sap-1a, and Net in the absence of serum response factor. J Biol Chem 2003; 278:30642-51. [PMID: 12788937 DOI: 10.1074/jbc.m212242200] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The chaperonin-containing t-complex polypeptide 1 (CCT) is a molecular chaperone that facilitates protein folding in eukaryotic cytosol, and the expression of CCT is highly dependent on cell growth. We show here that transcription of the gene encoding the theta subunit of mouse CCT, Cctq, is regulated by the ternary complex factors (TCFs), Elk-1, Sap-1a, and Net (Sap-2). Reporter gene assay using HeLa cells indicated that the Cctq gene promoter contains a cis-acting element of the CCGGAAGT sequence (CQE1) at -36 bp. The major CQE1-binding proteins in HeLa cell nuclear extract was recognized by anti-Elk-1 or anti-Sap-1a antibodies in electrophoretic mobility shift assay, and recombinant Elk-1, Sap-1a, or Net specifically recognized CQE1. The CQE1-dependent transcriptional activity in HeLa cells was virtually abolished by overexpression of the DNA binding domains of TCFs. Overexpression of full-length TCFs with Ras indicated that exogenous TCFs can regulate the CQE1-dependent transcription in a Ras-dependent manner. PD98059, an inhibitor of MAPK, significantly repressed the CQE1-dependent transcription. However, no serum response factor was detected by electrophoretic mobility shift assay using the CQE1 element. These results indicate that transcription of the Cctq gene is regulated by TCFs under the control of the Ras/MAPK pathway, probably independently of serum response factor.
Collapse
Affiliation(s)
- Yuji Yamazaki
- Department of Molecular and Cellular Biology, Institute for Frontier Medical Sciences, Kyoto University, 53 Shogoin Kawaharacho, Sakyo-ku, Kyoto 606-8397, Japan
| | | | | | | |
Collapse
|
47
|
Yonekura N, Yokota S, Yonekura K, Dehari H, Arata S, Kohama G, Fujii N. Interferon-gamma downregulates Hsp27 expression and suppresses the negative regulation of cell death in oral squamous cell carcinoma lines. Cell Death Differ 2003; 10:313-22. [PMID: 12700631 DOI: 10.1038/sj.cdd.4401169] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Interferon-gamma (IFN-gamma) induced cell death in five oral squamous cell carcinoma (SCC) lines. Cell death was specific to IFN-gamma treatment and did not occur with either IFN-alpha or TNF-alpha. IFN-gamma did not induce typical apoptotic phenotype in cells, such as morphological changes and DNA ladder formation. Caspase-3 was partially activated by IFN-gamma. Protein levels of molecular chaperones were examined in cells treated with IFN-gamma. Among these, levels of heat shock protein 27 (Hsp27) were specifically reduced upon IFN-gamma treatment of oral SCC cells. Recombinant clones overexpressing Hsp27 were more resistant to IFN-gamma-induced cell death than parent cells. Conversely, cells expressing a dominant-negative mutant of Hsp27, in which three serine residues (15, 78 and 82) were replaced by glycine, were hypersensitive to the effects of IFN-gamma and exhibited a typical apoptotic phenotype. Pretreatment of cells with IFN-gamma enhanced apoptotic cell death induced by cisplatin. Our data suggest that IFN-gamma suppresses Hsp27 expression in oral SCC cells and blocks the inhibitory effects of this molecular chaperone on apoptotic cell death. Moreover, IFN-gamma initiates the transition of oral SCC cells to the proapoptotic and/or aborted apoptotic state. Hsp27 plays a crucial role in the inhibition of apoptosis of oral SCC cells. Our findings highlight the importance of employing IFN-gamma in combination with certain anticancer drugs as treatments for oral cancer. We suggest that Hsp27 plays a significant role in the IFN-gamma-induced sensitization of oral SCC cells to anticancer drugs.
Collapse
Affiliation(s)
- N Yonekura
- Department of Oral Surgery, Sapporo Medical University School of Medicine, Japan
| | | | | | | | | | | | | |
Collapse
|
48
|
Abstract
Molecular chaperones are a group of proteins that assists in the folding of newly synthesized proteins or in the refolding of denatured proteins. The cytosolic chaperonin-containing t-complex polypeptide 1 (CCT) is a molecular chaperone that plays an important role in the folding of proteins in the eukaryotic cytosol. Actin, tubulin, and several other proteins are known to be folded by CCT, and an estimated 15% of newly translated proteins in mammalian cells are folded with the assistance of CCT. CCT differs from other chaperonin family proteins in its subunit composition, which consists of eight subunit species comprising the CCT 16-mer double-ring-like complex. CCT preferentially recognizes quasinative (or partially folded) intermediates, whereas its Escherichia coli homologue GroEL recognizes more unfolded intermediates, especially those displaying hydrophobic surfaces. Molecular evolutionary analyses have suggested that each subunit species has a specific function in addition to contributing to a common ATPase activity. Consistent with this view, it has been suggested that each subunit recognizes specific substrate proteins (or their parts) and that they collectively modulate the ATPase activity of the complex. The overall expression of CCT in mammalian cells is primarily dependent on cell growth, but each subunit exhibits an individual patterns of expression. Recent progress in CCT research is reviewed, focusing particularly on CCT function and expression. From these observations, the possible roles of the distinct subunits in CCT-assisted folding in the eukaryotic cytosol are discussed.
Collapse
Affiliation(s)
- Hiroshi Kubota
- Department of Molecular and Cellular Biology, CREST/JST, Institute for Frontier Medical Sciences, Kyoto University, Kyoto 606-8397, Japan
| |
Collapse
|
49
|
Kimura Y, Nakamori S, Takagi H. Polymorphism of the MPR1 gene required for toxic proline analogue resistance in the Saccharomyces cerevisiae complex species. Yeast 2002; 19:1437-45. [PMID: 12478591 DOI: 10.1002/yea.927] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
We recently discovered, on the chromosome of Saccharomyces cerevisiae sigma 1278b, novel MPR1 and MPR2 genes required for resistance to a toxic analogue of L-proline, L-azetidine-2-carboxylic acid. The MPR genes, which were absent in the S. cerevisiae genome project strain S288C, encoded a novel acetyltransferase of 229 amino acids that detoxifies the analogue by acetylating it. The MPR1 gene homologue found in Schizosaccharomyces pombe was also shown to encode a similar acetyltransferase. To further analyse the origin and the physiological role of the yeast novel gene, we report here the comparative analysis of the MPR1 gene in the S. cerevisiae complex spp. which belong to the Saccharomyces sensu stricto group. Only the type strain of S. paradoxus exhibited resistance and acetyltransferase activity to L-azetidine-2-carboxylic acid. PCR was then used to isolate the new MPR1 homologue (Spa MPR1) from S. paradoxus with the primers based on the sequence of the MPR1 gene. Gene expression and enzymatic analysis showed that the cloned Spa MPR1 gene encodes an L-azetidine-2-carboxylic acid acetyltransferase of 231 amino acids, which has 87% identity to the MPR1 protein. We also found in the protein databases that S. bayanus contains a DNA fragment that is partly homologous to the MPR1 gene. However, the gene product was considered to lose the enzymatic activity, possibly due to the gene truncation or the base substitution(s) at the important region for catalysis. Further, genomic PCR analysis showed that most of the S. cerevisiae complex spp. have the sequence highly homologous to the MPR1 gene.
Collapse
Affiliation(s)
- Yasuko Kimura
- Department of Bioscience, Fukui Prefectural University, Fukui 910-1195, Japan
| | | | | |
Collapse
|
50
|
Cowan NJ, Lewis SA. Type II chaperonins, prefoldin, and the tubulin-specific chaperones. ADVANCES IN PROTEIN CHEMISTRY 2002; 59:73-104. [PMID: 11868281 DOI: 10.1016/s0065-3233(01)59003-8] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- N J Cowan
- Department of Biochemistry, NYU Medical Center, New York, New York 10016, USA
| | | |
Collapse
|