1
|
Ji M, Li L, Yu J, Wu Z, Sheng Y, Wang F. New insights into the function and therapeutic potential of RNA-binding protein TRBP in viral infection, chronic metabolic diseases, brain disorders and cancer. Life Sci 2024; 358:123159. [PMID: 39447729 DOI: 10.1016/j.lfs.2024.123159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/12/2024] [Accepted: 10/16/2024] [Indexed: 10/26/2024]
Abstract
RNA-binding proteins (RBPs) and non-coding RNAs are crucial trans-acting factors that bind to specific cis-acting elements in mRNAs, thereby regulating their stability and translation. The trans-activation response (TAR) RNA-binding protein (TRBP) recognizes precursor microRNAs (pre-miRNAs), modulates miRNA maturation, and influences miRNA interference (mi-RNAi) mediated by the RNA-induced silencing complex (RISC). TRBP also directly binds and mediates the degradation of certain mRNAs. Thus, TRBP acts as a hub for regulating gene expression and influences a variety of biological processes, including immune evasion, metabolic abnormalities, stress response, angiogenesis, hypoxia, and metastasis. Aberrant TRBP expression has been proven to be closely related to the initiation and progression of diseases, such as viral infection, chronic metabolic diseases, brain disorders, and cancer. This review summarizes the roles of TRBP in cancer and other diseases, the therapeutic potential of TRBP inhibition, and the current status of drug discovery on TRBP.
Collapse
Affiliation(s)
- Minghui Ji
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lingyu Li
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jialing Yu
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhao Wu
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuwen Sheng
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Fei Wang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China.
| |
Collapse
|
2
|
Theotoki EI, Kakoulidis P, Velentzas AD, Nikolakopoulos KS, Angelis NV, Tsitsilonis OE, Anastasiadou E, Stravopodis DJ. TRBP2, a Major Component of the RNAi Machinery, Is Subjected to Cell Cycle-Dependent Regulation in Human Cancer Cells of Diverse Tissue Origin. Cancers (Basel) 2024; 16:3701. [PMID: 39518139 PMCID: PMC11545598 DOI: 10.3390/cancers16213701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 10/29/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Transactivation Response Element RNA-binding Protein (TRBP2) is a double-stranded RNA-binding protein widely known for its critical contribution to RNA interference (RNAi), a conserved mechanism of gene-expression regulation mediated through small non-coding RNA moieties (ncRNAs). Nevertheless, TRBP2 has also proved to be involved in other molecular pathways and biological processes, such as cell growth, organism development, spermatogenesis, and stress response. Mutations or aberrant expression of TRBP2 have been previously associated with diverse human pathologies, including Alzheimer's disease, cardiomyopathy, and cancer, with TRBP2 playing an essential role(s) in proliferation, invasion, and metastasis of tumor cells. METHODS Hence, the present study aims to investigate, via employment of advanced flow cytometry, immunofluorescence, cell transgenesis and bioinformatics technologies, new, still elusive, functions and properties of TRBP2, particularly regarding its cell cycle-specific control during cancer cell division. RESULTS We have identified a novel, mitosis-dependent regulation of TRBP2 protein expression, as clearly evidenced by the lack of its immunofluorescence-facilitated detection during mitotic phases, in several human cancer cell lines of different tissue origin. Notably, the obtained TRBP2-downregulation patterns seem to derive from molecular mechanisms that act independently of oncogenic activities (e.g., malignancy grade), metastatic capacities (e.g., low versus high), and mutational signatures (e.g., p53-/- or p53ΔΥ126) of cancer cells. CONCLUSIONS Taken together, we herein propose that TRBP2 serves as a novel cell cycle-dependent regulator, likely exerting mitosis-suppression functions, and, thus, its mitosis-specific downregulation can hold strong promise to be exploited for the efficient and successful prognosis, diagnosis, and (radio-/chemo-)therapy of diverse human malignancies, in the clinic.
Collapse
Affiliation(s)
- Eleni I. Theotoki
- Section of Cell Biology and Biophysics, Department of Biology, School of Science, National and Kapodistrian University of Athens (NKUA), 157 01 Athens, Greece; (E.I.T.); (K.-S.N.)
- Center of Basic Research, Biomedical Research Foundation of the Academy of Athens (BRFAA), 115 27 Athens, Greece;
| | - Panos Kakoulidis
- Center of Basic Research, Biomedical Research Foundation of the Academy of Athens (BRFAA), 115 27 Athens, Greece;
- Department of Informatics and Telecommunications, School of Science, National and Kapodistrian University of Athens (NKUA), 157 01 Athens, Greece
| | - Athanassios D. Velentzas
- Section of Cell Biology and Biophysics, Department of Biology, School of Science, National and Kapodistrian University of Athens (NKUA), 157 01 Athens, Greece; (E.I.T.); (K.-S.N.)
| | - Konstantinos-Stylianos Nikolakopoulos
- Section of Cell Biology and Biophysics, Department of Biology, School of Science, National and Kapodistrian University of Athens (NKUA), 157 01 Athens, Greece; (E.I.T.); (K.-S.N.)
| | - Nikolaos V. Angelis
- Section of Animal and Human Physiology, Department of Biology, School of Science, National and Kapodistrian University of Athens (NKUA), 157 01 Athens, Greece; (N.V.A.); (O.E.T.)
| | - Ourania E. Tsitsilonis
- Section of Animal and Human Physiology, Department of Biology, School of Science, National and Kapodistrian University of Athens (NKUA), 157 01 Athens, Greece; (N.V.A.); (O.E.T.)
| | - Ema Anastasiadou
- Center of Basic Research, Biomedical Research Foundation of the Academy of Athens (BRFAA), 115 27 Athens, Greece;
- Department of Health Science, Higher Colleges of Technology (HCT), Academic City Campus, Dubai 17155, United Arab Emirates
| | - Dimitrios J. Stravopodis
- Section of Cell Biology and Biophysics, Department of Biology, School of Science, National and Kapodistrian University of Athens (NKUA), 157 01 Athens, Greece; (E.I.T.); (K.-S.N.)
| |
Collapse
|
3
|
Li MM, Tao CB, Li MF, Wu CX, Yu TT, Feng ZQ, Qing-Zhang, Jiang ZY, Mao HL, Wang SH, Xu XW, Hu CY. A molecular mechanism underlies grass carp (Ctenopharyngodon idella) TARBP2 regulating PKR-mediated cell apoptosis. FISH & SHELLFISH IMMUNOLOGY 2024; 154:109906. [PMID: 39278379 DOI: 10.1016/j.fsi.2024.109906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/15/2024] [Accepted: 09/12/2024] [Indexed: 09/18/2024]
Abstract
Interferon-inducible double-stranded RNA-dependent protein kinase (PKR) is one of the key antiviral arms in the innate immune system. The activated PKR performs its antiviral function by inhibiting protein translation and inducing apoptosis. In our previous study, we identified grass carp TARBP2 as an inhibitor of PKR activity, thereby suppressing cell apoptosis. This study aimed to explore the effects of grass carp TARBP2 on PKR activity and cell apoptosis. Grass carp TARBP2 comprises two N-terminal dsRBDs and a C-terminal C4 domain. Subcellular localization analysis conducted in CIK cells revealed that TARBP2-FL (full-length TARBP2), TARBP2-Δ1 (lack of the first dsRBD), and TARBP2-Δ2 (lack of the second dsRBD) are predominantly located in the cytoplasm, while TARBP2-Δ3 (lack of the two dsRBDs) is distributed both in the nucleus and cytoplasm. Colocalization and immunoprecipitation assays confirmed the interaction of TARBP2-FL, TARBP2-Δ1, and TARBP2-Δ2 with PKR, while TARBP2-Δ3 showed no binding. Furthermore, our findings suggested that the inhibitory effect of TARBP2-Δ1 or TARBP2-Δ2 on the PKR-eIF2α pathway is depressed compared to TARBP2-FL. In cell apoptosis assays, it was observed that TARBP2-FL inhibits PKR-mediated cell apoptosis. TARBP2-Δ1 or TARBP2-Δ2 exhibits decreased inhibition to PKR-mediated cell apoptosis, whereas TARBP2-Δ3 nearly completely loses this inhibitory effect. These findings highlight the critical importance of two dsRBDs of TARBP2 in interaction with PKR, as well as in the inhibition of PKR activity, resulting in the suppression of cell apoptosis triggered by prolonged PKR activation.
Collapse
Affiliation(s)
- Miao-Miao Li
- School of Life Sciences, Nanchang University, Nanchang, 330031, China
| | - Chang-Bai Tao
- School of Life Sciences, Nanchang University, Nanchang, 330031, China
| | - Mei-Feng Li
- Institute of Pathogenic Microorganism and College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Chu-Xin Wu
- Yuzhang Normal University, Nanchang, 330103, China
| | - Ting-Ting Yu
- School of Life Sciences, Nanchang University, Nanchang, 330031, China
| | - Zhi-Qing Feng
- School of Life Sciences, Nanchang University, Nanchang, 330031, China
| | - Qing-Zhang
- School of Life Sciences, Nanchang University, Nanchang, 330031, China
| | - Ze-Yin Jiang
- School of Life Sciences, Nanchang University, Nanchang, 330031, China; State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, 330047, Jiangxi, China
| | - Hui-Ling Mao
- School of Life Sciences, Nanchang University, Nanchang, 330031, China
| | - Shang-Hong Wang
- School of Life Sciences, Nanchang University, Nanchang, 330031, China
| | - Xiao-Wen Xu
- School of Life Sciences, Nanchang University, Nanchang, 330031, China.
| | - Cheng-Yu Hu
- School of Life Sciences, Nanchang University, Nanchang, 330031, China.
| |
Collapse
|
4
|
Parvez F, Sangpal D, Paithankar H, Amin Z, Chugh J. Differential conformational dynamics in two type-A RNA-binding domains drive the double-stranded RNA recognition and binding. eLife 2024; 13:RP94842. [PMID: 39116184 PMCID: PMC11309768 DOI: 10.7554/elife.94842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024] Open
Abstract
Trans-activation response (TAR) RNA-binding protein (TRBP) has emerged as a key player in the RNA interference pathway, wherein it binds to different pre-microRNAs (miRNAs) and small interfering RNAs (siRNAs), each varying in sequence and/or structure. We hypothesize that TRBP displays dynamic adaptability to accommodate heterogeneity in target RNA structures. Thus, it is crucial to ascertain the role of intrinsic and RNA-induced protein dynamics in RNA recognition and binding. We have previously elucidated the role of intrinsic and RNA-induced conformational exchange in the double-stranded RNA-binding domain 1 (dsRBD1) of TRBP in shape-dependent RNA recognition. The current study delves into the intrinsic and RNA-induced conformational dynamics of the TRBP-dsRBD2 and then compares it with the dsRBD1 study carried out previously. Remarkably, the two domains exhibit differential binding affinity to a 12-bp dsRNA owing to the presence of critical residues and structural plasticity. Furthermore, we report that dsRBD2 depicts constrained conformational plasticity when compared to dsRBD1. Although, in the presence of RNA, dsRBD2 undergoes induced conformational exchange within the designated RNA-binding regions and other residues, the amplitude of the motions remains modest when compared to those observed in dsRBD1. We propose a dynamics-driven model of the two tandem domains of TRBP, substantiating their contributions to the versatility of dsRNA recognition and binding.
Collapse
Affiliation(s)
- Firdousi Parvez
- Department of Biology, Indian Institute of Science Education and Research (IISER)PuneIndia
| | - Devika Sangpal
- Department of Biotechnology (with jointly merged Institute of Bioinformatics and Biotechnology), Savitribai Phule Pune UniversityPuneIndia
| | - Harshad Paithankar
- Department of Chemistry, Indian Institute of Science Education and Research (IISER)PuneIndia
| | - Zainab Amin
- Department of Chemistry, Indian Institute of Science Education and Research (IISER)PuneIndia
| | - Jeetender Chugh
- Department of Chemistry, Indian Institute of Science Education and Research (IISER)PuneIndia
| |
Collapse
|
5
|
Ling T, Li SN, Weng GX, Wang W, Li C, Cao L, Rao H, Shu HB, Xu LG. TARBP2 negatively regulates IFN-β production and innate antiviral response by targeting MAVS. Mol Immunol 2018; 104:1-10. [DOI: 10.1016/j.molimm.2018.10.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 10/06/2018] [Accepted: 10/17/2018] [Indexed: 11/28/2022]
|
6
|
Takahashi T, Nakano Y, Onomoto K, Murakami F, Komori C, Suzuki Y, Yoneyama M, Ui-Tei K. LGP2 virus sensor regulates gene expression network mediated by TRBP-bound microRNAs. Nucleic Acids Res 2018; 46:9134-9147. [PMID: 29939295 PMCID: PMC6158488 DOI: 10.1093/nar/gky575] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 06/07/2018] [Accepted: 06/14/2018] [Indexed: 12/24/2022] Open
Abstract
Here we show that laboratory of genetics and physiology 2 (LGP2) virus sensor protein regulates gene expression network of endogenous genes mediated by TAR-RNA binding protein (TRBP)-bound microRNAs (miRNAs). TRBP is an enhancer of RNA silencing, and functions to recruit precursor-miRNAs (pre-miRNAs) to Dicer that processes pre-miRNA into mature miRNA. Viral infection activates the antiviral innate immune response in mammalian cells. Retinoic acid-inducible gene I (RIG-I)-like receptors (RLRs), including RIG-I, melanoma-differentiation-associated gene 5 (MDA5), and LGP2, function as cytoplasmic virus sensor proteins during viral infection. RIG-I and MDA5 can distinguish between different types of RNA viruses to produce antiviral cytokines, including type I interferon. However, the role of LGP2 is controversial. We found that LGP2 bound to the double-stranded RNA binding sites of TRBP, resulting in inhibition of pre-miRNA binding and recruitment by TRBP. Furthermore, although it is unclear whether TRBP binds to specific pre-miRNA, we found that TRBP bound to particular pre-miRNAs with common structural characteristics. Thus, LGP2 represses specific miRNA activities by interacting with TRBP, resulting in selective regulation of target genes. Our findings show that a novel function of LGP2 is to modulate RNA silencing, indicating the crosstalk between RNA silencing and RLR signaling in mammalian cells.
Collapse
Affiliation(s)
- Tomoko Takahashi
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan
| | - Yuko Nakano
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan
| | - Koji Onomoto
- Division of Molecular Immunology, Medical Mycology Research Center, Chiba University, Chiba 260-8673, Japan
| | - Fuminori Murakami
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba 277-8561, Japan
| | - Chiaki Komori
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan
| | - Yutaka Suzuki
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba 277-8561, Japan
| | - Mitsutoshi Yoneyama
- Division of Molecular Immunology, Medical Mycology Research Center, Chiba University, Chiba 260-8673, Japan
| | - Kumiko Ui-Tei
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba 277-8561, Japan
| |
Collapse
|
7
|
Radetskyy R, Daher A, Gatignol A. ADAR1 and PKR, interferon stimulated genes with clashing effects on HIV-1 replication. Cytokine Growth Factor Rev 2018; 40:48-58. [PMID: 29625900 DOI: 10.1016/j.cytogfr.2018.03.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 03/19/2018] [Accepted: 03/19/2018] [Indexed: 12/15/2022]
Abstract
The induction of hundreds of Interferon Stimulated Genes (ISGs) subsequent to virus infection generates an antiviral state that functions to restrict virus growth at multiple steps of their replication cycles. In the context of Human Immunodeficiency Virus-1 (HIV-1), ISGs also possess antiviral functions, but some ISGs show proapoptotic or proviral activity. One of the most studied ISGs, the RNA activated Protein Kinase (PKR), shuts down the viral protein synthesis upon activation. HIV-1 has evolved to evade its inhibition by PKR through viral and cellular mechanisms. One of the cellular mechanisms is the induction of another ISG, the Adenosine Deaminase acting on RNA 1 (ADAR1). ADAR1 promotes viral replication by acting as an RNA sensing inhibitor, by editing viral RNA and by inhibiting PKR. This review challenges the orthodox dogma of ISGs as antiviral proteins, by demonstrating that two ISGs have opposing and clashing effects on viral replication.
Collapse
Affiliation(s)
- Roman Radetskyy
- Laboratory of Virus-Cell Interactions, Lady Davis Institute for Medical Research, Canada; Department of Medicine, Division of Experimental Medicine, Canada
| | - Aïcha Daher
- Laboratory of Virus-Cell Interactions, Lady Davis Institute for Medical Research, Canada
| | - Anne Gatignol
- Laboratory of Virus-Cell Interactions, Lady Davis Institute for Medical Research, Canada; Department of Medicine, Division of Experimental Medicine, Canada; Department of Medicine, Division of Infectious Diseases, Canada; Department of Microbiology-Immunology, McGill University, Montréal, Québec, Canada.
| |
Collapse
|
8
|
Zhu L, Chang Y, Xing J, Tang X, Sheng X, Zhan W. Comparative proteomic analysis between two haemocyte subpopulations in shrimp Fenneropenaeus chinensis. FISH & SHELLFISH IMMUNOLOGY 2018; 72:325-333. [PMID: 28966142 DOI: 10.1016/j.fsi.2017.09.074] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 09/13/2017] [Accepted: 09/27/2017] [Indexed: 06/07/2023]
Abstract
In our previous work, granulocytes and hyalinocytes were successfully separated by immunomagnetic bead (IMB) method using monoclonal antibodies (mAbs) against granulocytes of shrimp (Fenneropenaeus chinensis). In order to elucidate the proteomic differentiation between granulocytes and hyalinocytes, in this paper, the differentially expressed proteins were analyzed between non-fixed/un-permeabilized (NFP) haemocytes and fixed/permeabilized (FP) haemocytes using two-dimensional gel electrophoresis (2-DE) combined with mass spectrometry (MS). Then the FP haemocytes were separated into two haemocyte subpopulations using IMB method, and the comparative proteome between granulocytes and hyalinocytes was investigated. The results showed that 10 differentially expressed protein spots were detected and identified as 4 proteins in the NFP haemocytes. Twenty one differentially expressed proteins were successfully identified between granulocytes and hyalinocytes, which include 4 unique expressed proteins in granulocytes, 4 significantly highly expressed proteins in granulocytes, and 13 significantly high expressed proteins in hyalinocytes. According to Gene Ontology annotation, the identified proteins between granulocytes and hyalinocytes were classified into six categories, including binding proteins, proteins involved in catalytic activity, enzyme regulator activity, structural molecule activity, translation regulator activity, and ungrouped proteins. Furthermore, quantitative PCR confirmed that the trend of transcription levels of three selected genes were consistent with the proteomic data from 2-DE. The results may lead to better understanding of the functions of haemocyte subpopulations.
Collapse
Affiliation(s)
- Lei Zhu
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao 266003, PR China
| | - Yanhong Chang
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao 266003, PR China
| | - Jing Xing
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao 266003, PR China.
| | - Xiaoqian Tang
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao 266003, PR China
| | - Xiuzhen Sheng
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao 266003, PR China
| | - Wenbin Zhan
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao 266003, PR China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, No. 1 Wenhai Road, Aoshanwei Town, Qingdao, China
| |
Collapse
|
9
|
Daniels SM, Sinck L, Ward NJ, Melendez-Peña CE, Scarborough RJ, Azar I, Rance E, Daher A, Pang KM, Rossi JJ, Gatignol A. HIV-1 RRE RNA acts as an RNA silencing suppressor by competing with TRBP-bound siRNAs. RNA Biol 2015; 12:123-35. [PMID: 25668122 DOI: 10.1080/15476286.2015.1014759] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
Several proteins and RNAs expressed by mammalian viruses have been reported to interfere with RNA interference (RNAi) activity. We investigated the ability of the HIV-1-encoded RNA elements Trans-Activation Response (TAR) and Rev-Response Element (RRE) to alter RNAi. MicroRNA let7-based assays showed that RRE is a potent suppressor of RNAi activity, while TAR displayed moderate RNAi suppression. We demonstrate that RRE binds to TAR-RNA Binding Protein (TRBP), an essential component of the RNA Induced Silencing Complex (RISC). The binding of TAR and RRE to TRBP displaces small interfering (si)RNAs from binding to TRBP. Several stem-deleted RRE mutants lost their ability to suppress RNAi activity, which correlated with a reduced ability to compete with siRNA-TRBP binding. A lentiviral vector expressing TAR and RRE restricted RNAi, but RNAi was restored when Rev or GagPol were coexpressed. Adenoviruses are restricted by RNAi and encode their own suppressors of RNAi, the Virus-Associated (VA) RNA elements. RRE enhanced the replication of wild-type and VA-deficient adenovirus. Our work describes RRE as a novel suppressor of RNAi that acts by competing with siRNAs rather than by disrupting the RISC. This function is masked in lentiviral vectors co-expressed with viral proteins and thus will not affect their use in gene therapy. The potent RNAi suppressive effects of RRE identified in this study could be used to enhance the expression of RNAi restricted viruses used in oncolysis such as adenoviruses.
Collapse
Key Words
- Ago2, Argonaute-2
- EGFP, enhanced green fluorescent protein
- EMSA, electrophoresis mobility shift assay
- FL, firefly luciferase
- GAPDH, glyceraldehyde-3-phosphate dehydrogenase
- HIV, human immunodeficiency virus
- HIV-1
- IP, immunoprecipitation
- NC, nucleocapsid
- PAGE, polyacrylamide gel electrophoresis
- RISC, RNA-Induced Silencing Complex
- RL, Renilla luciferase
- RNA interference
- RNA silencing suppressor
- RNAi, RNA interference
- RRE, Rev Response Element
- RSS, RNA silencing suppressor
- RT, reverse transcription
- Rev-Response Element RNA
- TAR RNA Binding Protein (TRBP)
- TAR, trans-activation responsive element
- TRBP, TAR RNA Binding Protein
- Trans-Activation Response Element
- UTR, untranslated region
- VA, virus-associated
- WT, wild-type
- adenovirus
- ds, double-stranded
- lentiviral vectors
- miRNA, micro RNA
- pre-miRNA, precursor miRNA
- siRNA, small interfering RNA
Collapse
Affiliation(s)
- Sylvanne M Daniels
- a Virus-Cell Interactions Laboratory ; Lady Davis Institute for Medical Research ; Montréal , Québec , Canada
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Chen C, Zhu C, Huang J, Zhao X, Deng R, Zhang H, Dou J, Chen Q, Xu M, Yuan H, Wang Y, Yu J. SUMOylation of TARBP2 regulates miRNA/siRNA efficiency. Nat Commun 2015; 6:8899. [PMID: 26582366 PMCID: PMC4673853 DOI: 10.1038/ncomms9899] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Accepted: 10/12/2015] [Indexed: 02/07/2023] Open
Abstract
Small RNA-induced gene silencing is essential for post-transcriptional regulation of gene expression; however, it remains unclear how miRNA/siRNA efficiency is regulated. Here we show that TARBP2 is SUMOylated at K52, which can be enhanced by its phosphorylation. This modification can stabilize TARBP2 via repressing its K48-linked ubiquitination. We find that TARBP2 SUMOylation does not influence the overall production of mature miRNAs, but it regulates miRNA/siRNA efficiency. SUMOylated TARBP2 recruits Ago2 to constitute the RNA-induced silencing complex (RISC)-loading complex (RLC), and simultaneously promotes more pre-miRNAs to load into the RLC. Consequently, Ago2 is stabilized and miRNAs/siRNAs bound by TARBP2/Dicer is effectively transferred to Ago2. Thus, these processes lead to the formation of the effective RISC for RNA interference (RNAi). Collectively, our data suggest that SUMOylation of TARBP2 is required for regulating miRNA/siRNA efficiency, which is a general mechanism of miRNA/siRNA regulation. As part of the miRNA-generating machinery, TARBP2 stabilizes the RNA-induced silencing complex (RISC) loading complex (RLC). Here, Chen et al. show that sumoylation of TARBP2 regulates RNAi efficiency by increasing precursor miRNAs loaded on RLC.
Collapse
Affiliation(s)
- Cheng Chen
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Changhong Zhu
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jian Huang
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Xian Zhao
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Rong Deng
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Hailong Zhang
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jinzhuo Dou
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Qin Chen
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Ming Xu
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Haihua Yuan
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yanli Wang
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jianxiu Yu
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.,State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.,Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai JiaoTong University School of Medicine, Shanghai 200025, China.,Department of Oncology, Institute of Oncology, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| |
Collapse
|
11
|
Acevedo R, Orench-Rivera N, Quarles KA, Showalter SA. Helical defects in microRNA influence protein binding by TAR RNA binding protein. PLoS One 2015; 10:e0116749. [PMID: 25608000 PMCID: PMC4301919 DOI: 10.1371/journal.pone.0116749] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Accepted: 12/12/2014] [Indexed: 01/19/2023] Open
Abstract
Background MicroRNAs (miRNAs) are critical post-transcriptional regulators of gene expression. Their precursors have a globally A-form helical geometry, which prevents most proteins from identifying their nucleotide sequence. This suggests the hypothesis that local structural features (e.g., bulges, internal loops) play a central role in specific double-stranded RNA (dsRNA) selection from cellular RNA pools by dsRNA binding domain (dsRBD) containing proteins. Furthermore, the processing enzymes in the miRNA maturation pathway require tandem-dsRBD cofactor proteins for optimal function, suggesting that dsRBDs play a key role in the molecular mechanism for precise positioning of the RNA within these multi-protein complexes. Here, we focus on the tandem-dsRBDs of TRBP, which have been shown to bind dsRNA tightly. Methodology/Principal Findings We present a combination of dsRNA binding assays demonstrating that TRBP binds dsRNA in an RNA-length dependent manner. Moreover, circular dichroism data shows that the number of dsRBD moieties bound to RNA at saturation is different for a tandem-dsRBD construct than for constructs with only one dsRBD per polypeptide, revealing another reason for the selective pressure to maintain multiple domains within a polypeptide chain. Finally, we show that helical defects in precursor miRNA alter the apparent dsRNA size, demonstrating that imperfections in RNA structure influence the strength of TRBP binding. Conclusion/Significance We conclude that TRBP is responsible for recognizing structural imperfections in miRNA precursors, in the sense that TRBP is unable to bind imperfections efficiently and thus is positioned around them. We propose that once positioned around structural defects, TRBP assists Dicer and the rest of the RNA-induced silencing complex (RISC) in providing efficient and homogenous conversion of substrate precursor miRNA into mature miRNA downstream.
Collapse
Affiliation(s)
- Roderico Acevedo
- Department of Chemistry and Center for RNA Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Nichole Orench-Rivera
- Department of Chemistry and Center for RNA Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Kaycee A. Quarles
- Department of Chemistry and Center for RNA Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Scott A. Showalter
- Department of Chemistry and Center for RNA Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
12
|
Kim Y, Yeo J, Lee JH, Cho J, Seo D, Kim JS, Kim VN. Deletion of human tarbp2 reveals cellular microRNA targets and cell-cycle function of TRBP. Cell Rep 2014; 9:1061-74. [PMID: 25437560 DOI: 10.1016/j.celrep.2014.09.039] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Revised: 09/12/2014] [Accepted: 09/22/2014] [Indexed: 12/16/2022] Open
Abstract
TRBP functions as both a Dicer cofactor and a PKR inhibitor. However, the role of TRBP in microRNA (miRNA) biogenesis is controversial and its regulation of PKR in mitosis remains unexplored. Here, we generate TRBP knockout cells and find altered Dicer-processing sites in a subset of miRNAs but no effect on Dicer stability, miRNA abundance, or Argonaute loading. By generating PACT, another Dicer interactor, and TRBP/PACT double knockout (KO) cells, we further show that TRBP and PACT do not functionally compensate for one another and that only TRBP contributes to Dicer processing. We also report that TRBP is hyperphosphorylated by JNK in M phase when PKR is activated by cellular double-stranded RNAs (dsRNAs). Hyperphosphorylation potentiates the inhibitory activity of TRBP on PKR, suppressing PKR in M-G1 transition. By generating human TRBP KO cells, our study clarifies the role of TRBP and unveils negative feedback regulation of PKR through TRBP phosphorylation.
Collapse
Affiliation(s)
- Yoosik Kim
- Center for RNA Research, Institute for Basic Science, Seoul 151-742, South Korea; School of Biological Sciences, Seoul National University, Seoul 151-742, South Korea
| | - Jinah Yeo
- Center for RNA Research, Institute for Basic Science, Seoul 151-742, South Korea; School of Biological Sciences, Seoul National University, Seoul 151-742, South Korea
| | - Jung Hyun Lee
- Center for RNA Research, Institute for Basic Science, Seoul 151-742, South Korea; School of Biological Sciences, Seoul National University, Seoul 151-742, South Korea
| | - Jun Cho
- Center for RNA Research, Institute for Basic Science, Seoul 151-742, South Korea; School of Biological Sciences, Seoul National University, Seoul 151-742, South Korea
| | - Daekwan Seo
- Center for RNA Research, Institute for Basic Science, Seoul 151-742, South Korea; School of Biological Sciences, Seoul National University, Seoul 151-742, South Korea
| | - Jong-Seo Kim
- Center for RNA Research, Institute for Basic Science, Seoul 151-742, South Korea; School of Biological Sciences, Seoul National University, Seoul 151-742, South Korea
| | - V Narry Kim
- Center for RNA Research, Institute for Basic Science, Seoul 151-742, South Korea; School of Biological Sciences, Seoul National University, Seoul 151-742, South Korea.
| |
Collapse
|
13
|
Burugu S, Daher A, Meurs EF, Gatignol A. HIV-1 translation and its regulation by cellular factors PKR and PACT. Virus Res 2014; 193:65-77. [PMID: 25064266 DOI: 10.1016/j.virusres.2014.07.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Revised: 07/13/2014] [Accepted: 07/14/2014] [Indexed: 12/24/2022]
Abstract
The synthesis of proteins from viral mRNA is the first step towards viral assembly. Viruses are dependent upon the cellular translation machinery to synthesize their own proteins. The synthesis of proteins from the human immunodeficiency virus (HIV) type 1 and 2 RNAs utilize several alternative mechanisms. The regulation of viral protein production requires a constant interplay between viral requirements and the cell response to viral infection. Among the antiviral cell responses, the interferon-induced RNA activated protein kinase, PKR, regulates the cellular and viral translation. During HIV-1 infection, PKR activation is highly regulated by viral and cellular factors. The cellular TAR RNA Binding Protein, TRBP, the Adenosine Deaminase acting on RNA, ADAR1, and the PKR Activator, PACT, play important roles. Recent data show that PACT changes its function from activator to inhibitor in HIV-1 infected cells. Therefore, HIV-1 has evolved to replicate in cells in which TRBP, ADAR1 and PACT prevent PKR activation to allow efficient viral protein synthesis. This proper translation will initiate the assembly of viral particles.
Collapse
Affiliation(s)
- Samantha Burugu
- Virus-cell Interactions Laboratory, Lady Davis Institute for Medical Research, Montréal, QC, Canada; Department of Microbiology and Immunology, McGill University, Montréal, QC, Canada
| | - Aïcha Daher
- Virus-cell Interactions Laboratory, Lady Davis Institute for Medical Research, Montréal, QC, Canada
| | - Eliane F Meurs
- Institut Pasteur, Department of Virology, Hepacivirus and Innate Immunity Unit, Paris, France
| | - Anne Gatignol
- Virus-cell Interactions Laboratory, Lady Davis Institute for Medical Research, Montréal, QC, Canada; Department of Microbiology and Immunology, McGill University, Montréal, QC, Canada; Department of Medicine, Division of Experimental Medicine, McGill University, Montréal, QC, Canada.
| |
Collapse
|
14
|
Distinguishable in vitro binding mode of monomeric TRBP and dimeric PACT with siRNA. PLoS One 2013; 8:e63434. [PMID: 23658827 PMCID: PMC3642127 DOI: 10.1371/journal.pone.0063434] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Accepted: 04/01/2013] [Indexed: 01/14/2023] Open
Abstract
RNA interference (RNAi) is an evolutionally conserved posttranscriptional gene-silencing mechanism whereby small interfering RNA (siRNA) triggers sequence-specific cleavage of its cognate mRNA. Dicer, Argonaute (Ago), and either TAR-RNA binding protein (TRBP) or a protein activator of PKR (PACT) are the primary components of the RNAi pathway, and they comprise the core of a complex termed the RNA-induced silencing complex (RISC)-loading complex (RLC). TRBP and PACT share similar structural features including three dsRNA binding domains (dsRBDs), and a complex containing Dicer and either TRBP or PACT is considered to sense thermodynamic asymmetry of siRNA ends for guide strand selection. Thus, both TRBP and PACT are thought to participate in the RNAi pathway in an indistinguishable manner, but the differences in siRNA binding mode and the functional involvement of TRBP and PACT are poorly understood. Here, we show in vitro binding patterns of human TRBP and PACT to siRNA using electrophoresis mobility shift analysis and gel filtration chromatography. Our results clearly showed that TRBP and PACT have distinct in vitro siRNA binding patterns from each other. The results suggest that monomeric TRBP binds to siRNA at the higher affinity compared to the affinity for own homodimerization. In contrast, the affinity between PACT and siRNA is lower than that of homodimerization or that between TRBP and siRNA. Thus, siRNA may be more readily incorporated into RLC, interacting with TRBP (instead of PACT) in vivo.
Collapse
|
15
|
The multiple functions of TRBP, at the hub of cell responses to viruses, stress, and cancer. Microbiol Mol Biol Rev 2013; 76:652-66. [PMID: 22933564 DOI: 10.1128/mmbr.00012-12] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The TAR RNA binding protein (TRBP) has emerged as a key player in many cellular processes. First identified as a cellular protein that facilitates the replication of human immunodeficiency virus, TRBP has since been shown to inhibit the activation of protein kinase R (PKR), a protein involved in innate immune responses and the cellular response to stress. It also binds to the PKR activator PACT and regulates its function. TRBP also contributes to RNA interference as an integral part of the minimal RNA-induced silencing complex with Dicer and Argonaute proteins. Due to its multiple functions in the cell, TRBP is involved in oncogenesis when its sequence is mutated or its expression is deregulated. The depletion or overexpression of TRBP results in malignancy, suggesting that the balance of TRBP expression is key to normal cellular function. These studies show that TRBP is multifunctional and mediates cross talk between different pathways. Its activities at the molecular level impact the cellular function from normal development to cancer and the response to infections.
Collapse
|
16
|
Abstract
The proteins harboring double-stranded RNA binding domains (dsRBDs) play diverse functional roles such as RNA localization, splicing, editing, export, and translation, yet mechanistic basis and functional significance of dsRBDs remain unclear. To unravel this enigma, we investigated transactivation response RNA binding protein (TRBP) consisting of three dsRBDs, which functions in HIV replication, protein kinase R(PKR)-mediated immune response, and RNA silencing. Here we report an ATP-independent diffusion activity of TRBP exclusively on dsRNA in a length-dependent manner. The first two dsRBDs of TRBP are essential for diffusion, whereas the third dsRBD is dispensable. Two homologs of TRBP, PKR activator and R3D1-L, displayed the same diffusion, implying a universality of the diffusion activity among this protein family. Furthermore, a Dicer-TRBP complex on dsRNA exhibited dynamic diffusion, which was correlated with Dicer's catalytic activity. These results implicate the dsRNA-specific diffusion activity of TRBP that contributes to enhancing siRNA and miRNA processing by Dicer.
Collapse
|
17
|
Wang S, Chen AJ, Shi LJ, Zhao XF, Wang JX. TRBP and eIF6 homologue in Marsupenaeus japonicus play crucial roles in antiviral response. PLoS One 2012; 7:e30057. [PMID: 22279564 PMCID: PMC3261181 DOI: 10.1371/journal.pone.0030057] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2011] [Accepted: 12/09/2011] [Indexed: 11/30/2022] Open
Abstract
Plants and invertebrates can suppress viral infection through RNA silencing, mediated by RNA-induced silencing complex (RISC). Trans-activation response RNA-binding protein (TRBP), consisting of three double-stranded RNA-binding domains, is a component of the RISC. In our previous paper, a TRBP homologue in Fenneropenaeus chinensis (Fc-TRBP) was reported to directly bind to eukaryotic initiation factor 6 (Fc-eIF6). In this study, we further characterized the function of TRBP and the involvement of TRBP and eIF6 in antiviral RNA interference (RNAi) pathway of shrimp. The double-stranded RNA binding domains (dsRBDs) B and C of the TRBP from Marsupenaeus japonicus (Mj-TRBP) were found to mediate the interaction of TRBP and eIF6. Gel-shift assays revealed that the N-terminal of Mj-TRBP dsRBD strongly binds to double-stranded RNA (dsRNA) and that the homodimer of the TRBP mediated by the C-terminal dsRBD increases the affinity to dsRNA. RNAi against either Mj-TRBP or Mj-eIF6 impairs the dsRNA-induced sequence-specific RNAi pathway and facilitates the proliferation of white spot syndrome virus (WSSV). These results further proved the important roles of TRBP and eIF6 in the antiviral response of shrimp.
Collapse
Affiliation(s)
- Shuai Wang
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation of Ministry of Education, School of Life Sciences, Shandong University, Jinan, Shandong, People's Republic of China
- Wuhan Institute of Virology, Chinese Academy of Science, Wuchang, Hubei, People's Republic of China
| | - An-Jing Chen
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation of Ministry of Education, School of Life Sciences, Shandong University, Jinan, Shandong, People's Republic of China
| | - Li-Jie Shi
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation of Ministry of Education, School of Life Sciences, Shandong University, Jinan, Shandong, People's Republic of China
| | - Xiao-Fan Zhao
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation of Ministry of Education, School of Life Sciences, Shandong University, Jinan, Shandong, People's Republic of China
| | - Jin-Xing Wang
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation of Ministry of Education, School of Life Sciences, Shandong University, Jinan, Shandong, People's Republic of China
- * E-mail:
| |
Collapse
|
18
|
Little NS, Quon T, Upton C. Prediction of a novel RNA binding domain in crocodilepox Zimbabwe Gene 157. MICROBIAL INFORMATICS AND EXPERIMENTATION 2011; 1:12. [PMID: 22587704 PMCID: PMC3372294 DOI: 10.1186/2042-5783-1-12] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2011] [Accepted: 11/21/2011] [Indexed: 11/30/2022]
Abstract
Background Although the crocodilepox virus (CRV) is currently unclassified, phylogenetic analyses suggest that its closest known relatives are molluscum contagiosum virus (MCV) and the avipox viruses. The CRV genome is approximately 190 kb and contains a large number of unique genes in addition to the set of conserved Chordopoxvirus genes found in all such viruses. Upon sequencing the viral genome, others noted that this virus was also unusual because of the lack of a series of common immuno-suppressive genes. However, the genome contains multiple genes of unknown function that are likely to function in reducing the anti-viral response of the host. Results By using sensitive database searches for similarity, we observed that gene 157 of CRV-strain Zimbabwe (CRV-ZWE) encodes a protein with a domain that is predicted to bind dsRNA. Domain characterization supported this prediction, therefore, we tested the ability of the Robetta protein structure prediction server to model the amino acid sequence of this protein on a well-characterized RNA binding domain. The model generated by Robetta suggests that CRV-ZWE-157 does indeed contain an RNA binding domain; the model could be overlaid on the template protein structure with high confidence. Conclusion We hypothesize that CRV-ZWE-157 encodes a novel poxvirus RNA binding protein and suggest that as a non-core gene it may play a role in host-range determination or function to dampen host anti-viral responses. Potential targets for this CRV protein include the host interferon response and miRNA pathways.
Collapse
Affiliation(s)
- Nicole S Little
- Biochemistry and Microbiology, University of Victoria, 213 Petch Building, Ring Road, Victoria, B.C., V8W 3P6, Canada
| | - Taylor Quon
- Biochemistry and Microbiology, University of Victoria, 213 Petch Building, Ring Road, Victoria, B.C., V8W 3P6, Canada
| | - Chris Upton
- Biochemistry and Microbiology, University of Victoria, 213 Petch Building, Ring Road, Victoria, B.C., V8W 3P6, Canada
| |
Collapse
|
19
|
Singh M, Castillo D, Patel CV, Patel RC. Stress-induced phosphorylation of PACT reduces its interaction with TRBP and leads to PKR activation. Biochemistry 2011; 50:4550-60. [PMID: 21526770 DOI: 10.1021/bi200104h] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
PACT is a stress-modulated activator of interferon (IFN)-induced double-stranded (ds) RNA-activated protein kinase (PKR) and is an important regulator of PKR-dependent signaling pathways. Stress-induced phosphorylation of PACT is essential for PACT's association with PKR leading to PKR activation. PKR activation by PACT leads to phosphorylation of translation initiation factor eIF2α, inhibition of protein synthesis, and apoptosis. In addition to positive regulation by PACT, PKR activity in cells is also negatively regulated by TRBP. In this study, we demonstrate for the first time that stress-induced phosphorylation at serine 287 significantly increases PACT's ability to activate PKR by weakening PACT's interaction with TRBP. A non-phosphorylatable alanine substitution mutant at this position causes enhanced interaction of PACT with TRBP and leads to a loss of PKR activation. Furthermore, TRBP overexpression in cells is unable to block apoptosis induced by a phospho-mimetic, constitutively active PACT mutant. These results demonstrate for the first time that stress-induced PACT phosphorylation functions to free PACT from the inhibitory interaction with TRBP and also to enhance its interaction with PKR.
Collapse
Affiliation(s)
- Madhurima Singh
- Department of Biological Sciences, Developmental Biology and Anatomy, School of Medicine, University of South Carolina, Columbia, SC 29208, USA
| | | | | | | |
Collapse
|
20
|
Yamashita S, Nagata T, Kawazoe M, Takemoto C, Kigawa T, Güntert P, Kobayashi N, Terada T, Shirouzu M, Wakiyama M, Muto Y, Yokoyama S. Structures of the first and second double-stranded RNA-binding domains of human TAR RNA-binding protein. Protein Sci 2011; 20:118-30. [PMID: 21080422 DOI: 10.1002/pro.543] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The TAR RNA-binding Protein (TRBP) is a double-stranded RNA (dsRNA)-binding protein, which binds to Dicer and is required for the RNA interference pathway. TRBP consists of three dsRNA-binding domains (dsRBDs). The first and second dsRBDs (dsRBD1 and dsRBD2, respectively) have affinities for dsRNA, whereas the third dsRBD (dsRBD3) binds to Dicer. In this study, we prepared the single domain fragments of human TRBP corresponding to dsRBD1 and dsRBD2 and solved the crystal structure of dsRBD1 and the solution structure of dsRBD2. The two structures contain an α-β-β-β-α fold, which is common to the dsRBDs. The overall structures of dsRBD1 and dsRBD2 are similar to each other, except for a slight shift of the first α helix. The residues involved in dsRNA binding are conserved. We examined the small interfering RNA (siRNA)-binding properties of these dsRBDs by isothermal titration colorimetry measurements. The dsRBD1 and dsRBD2 fragments both bound to siRNA, with dissociation constants of 220 and 113 nM, respectively. In contrast, the full-length TRBP and its fragment with dsRBD1 and dsRBD2 exhibited much smaller dissociation constants (0.24 and 0.25 nM, respectively), indicating that the tandem dsRBDs bind simultaneously to one siRNA molecule. On the other hand, the loop between the first α helix and the first β strand of dsRBD2, but not dsRBD1, has a Trp residue, which forms hydrophobic and cation-π interactions with the surrounding residues. A circular dichroism analysis revealed that the thermal stability of dsRBD2 is higher than that of dsRBD1 and depends on the Trp residue.
Collapse
Affiliation(s)
- Seisuke Yamashita
- RIKEN Systems and Structural Biology Center, 1-7-22 Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Clerzius G, Gélinas JF, Gatignol A. Multiple levels of PKR inhibition during HIV-1 replication. Rev Med Virol 2010; 21:42-53. [PMID: 21294215 DOI: 10.1002/rmv.674] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2010] [Revised: 09/13/2010] [Accepted: 09/20/2010] [Indexed: 12/15/2022]
Abstract
Recent therapeutic approaches against HIV-1 include IFN in combination therapy for patients with coinfections or as an alternative strategy against the virus. These treatment options require a better understanding of the weak efficacy of the IFN-stimulated genes, such as the protein kinase RNA-activated (PKR), which results in viral progression. Activated PKR has a strong antiviral activity on HIV-1 expression and production in cell culture. However, PKR is not activated upon HIV-1 infection when the virus reaches high levels of replication, due to viral and cellular controls. PKR is activated by low levels of the HIV-1 trans-activation response (TAR) RNA element, but is inhibited by high levels of this double-stranded RNA. The viral Tat protein also counteracts PKR activation by several mechanisms. In addition, HIV-1 replicates only in cells that have a high level of the TAR RNA binding protein (TRBP), a strong inhibitor of PKR activation. Furthermore, increased levels of adenosine deaminase acting on RNA (ADAR1) are observed when HIV-1 replicates at high levels and the protein binds to PKR and inhibits its activation. Finally, the PKR activator (PACT) also binds to PKR during HIV-1 replication with no subsequent kinase activation. The combination of all the inhibiting pathways that prevent PKR phosphorylation contributes to a high HIV-1 production in permissive cells. Enhancing PKR activation by counteracting its inhibitory partners could establish an increased innate immune antiviral pathway against HIV-1 and could enhance the efficacy of the IFN treatment.
Collapse
|
22
|
Sakurai K, Amarzguioui M, Kim DH, Alluin J, Heale B, Song MS, Gatignol A, Behlke MA, Rossi JJ. A role for human Dicer in pre-RISC loading of siRNAs. Nucleic Acids Res 2010; 39:1510-25. [PMID: 20972213 PMCID: PMC3045585 DOI: 10.1093/nar/gkq846] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
RNA interference is a powerful mechanism for sequence-specific inhibition of gene expression. It is widely known that small interfering RNAs (siRNAs) targeting the same region of a target-messenger RNA can have widely different efficacies. In efforts to better understand the siRNA features that influence knockdown efficiency, we analyzed siRNA interactions with a high-molecular weight complex in whole cell extracts prepared from two different cell lines. Using biochemical tools to study the nature of the complex, our results demonstrate that the primary siRNA-binding protein in the whole cell extracts is Dicer. We find that Dicer is capable of discriminating highly functional versus poorly functional siRNAs by recognizing the presence of 2-nt 3′ overhangs and the thermodynamic properties of 2–4 bp on both ends of effective siRNAs. Our results suggest a role for Dicer in pre-selection of effective siRNAs for handoff to Ago2. This initial selection is reflective of the overall silencing potential of an siRNA.
Collapse
Affiliation(s)
- Kumi Sakurai
- Department of Molecular and Cellular Biology, Beckman Research Institute, City of Hope, 1450 East Duarte Road, Duarte, CA 91010, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Chakravarthy S, Sternberg SH, Kellenberger CA, Doudna JA. Substrate-specific kinetics of Dicer-catalyzed RNA processing. J Mol Biol 2010; 404:392-402. [PMID: 20932845 DOI: 10.1016/j.jmb.2010.09.030] [Citation(s) in RCA: 118] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2010] [Revised: 09/07/2010] [Accepted: 09/14/2010] [Indexed: 12/21/2022]
Abstract
The specialized ribonuclease Dicer plays a central role in eukaryotic gene expression by producing small regulatory RNAs-microRNAs (miRNAs) and short interfering RNAs (siRNAs)-from larger double-stranded RNA (dsRNA) substrates. Although Dicer will cleave both imperfectly base-paired hairpin structures (pre-miRNAs) and perfect duplexes (pre-siRNAs) in vitro, it has not been clear whether these are mechanistically equivalent substrates and how dsRNA binding proteins such as trans-activation response (TAR) RNA binding protein (TRBP) influence substrate selection and RNA processing efficiency. We show here that human Dicer is much faster at processing a pre-miRNA substrate compared to a pre-siRNA substrate under both single and multiple turnover conditions. Maximal cleavage rates (V(max)) calculated by Michaelis-Menten analysis differed by more than 100-fold under multiple turnover conditions. TRBP was found to enhance dicing of both substrates to similar extents, and this stimulation required the two N-terminal dsRNA binding domains of TRBP. These results demonstrate that multiple factors influence dicing kinetics. While TRBP stimulates dicing by enhancing the stability of Dicer-substrate complexes, Dicer itself generates product RNAs at rates determined at least in part by the structural properties of the substrate.
Collapse
|
24
|
Yang SW, Chen HY, Yang J, Machida S, Chua NH, Yuan YA. Structure of Arabidopsis HYPONASTIC LEAVES1 and its molecular implications for miRNA processing. Structure 2010; 18:594-605. [PMID: 20462493 DOI: 10.1016/j.str.2010.02.006] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2009] [Revised: 01/23/2010] [Accepted: 02/09/2010] [Indexed: 12/20/2022]
Abstract
The Arabidopsis HYPONASTIC LEAVES1 (HYL1) is a double-stranded RNA-binding protein that forms a complex with DICER-LIKE1 (DCL1) and SERRATE to facilitate processing of primary miRNAs into microRNAs (miRNAs). However, the structural mechanisms of miRNA maturation by this complex are poorly understood. Here, we present the crystal structures of double-stranded RNA binding domains (dsRBD1 and dsRBD2) of HYL1 and HYL1 dsRBD1 (HR1)/dsRNA complex as well as human TRBP2 dsRBD2 (TR2)/dsRNA complex for comparison analysis. Structural and functional study demonstrates that both HR1 and TR2 are canonical dsRBDs for dsRNA binding, whereas HR2 of HYL1 is a non-canonical dsRBD harboring a putative dimerization interface. Domain swapping within the context of HYL1 demonstrates that TR2 can supplant the function of HR1 in vitro and in vivo. Further biochemical analyses suggest that HYL1 probably binds to the miRNA/miRNA( *) region of precursors as a dimer mediated by HR2.
Collapse
Affiliation(s)
- Seong Wook Yang
- Host-Pathogen Interaction Group, Temasek Life Sciences Laboratory, National University of Singapore, 1 Research Link, Singapore 117604, Singapore
| | | | | | | | | | | |
Collapse
|
25
|
Gredell JA, Dittmer MJ, Wu M, Chan C, Walton SP. Recognition of siRNA asymmetry by TAR RNA binding protein. Biochemistry 2010; 49:3148-55. [PMID: 20184375 DOI: 10.1021/bi902189s] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The recognition of small interfering RNAs (siRNAs) by the RNA-induced silencing complex (RISC) and its precursor, the RISC loading complex (RLC), is a key step in the RNA interference pathway that controls the subsequent sequence-specific mRNA degradation. In Drosophila, selection of the guide strand has been shown to be mediated by RLC protein R2D2, which senses the relative hybridization stability between the two ends of the siRNA. A protein with similar function has yet to be conclusively identified in humans. We show here that human TAR RNA binding protein (TRBP) alone can bind siRNAs in vitro and sense their asymmetry. We also show that TRBP can bind 21-nucleotide single-stranded RNAs, though with far lower affinity than for double-stranded siRNA, and that TRBP cross-links preferentially to the 3'-ends of the guide strands of siRNAs. This suggests that TRBP binding depends both on the sequences of the siRNA strands and on the relative hybridization stability of the ends of the duplex. Together, these results demonstrate the importance of the siRNA-TRBP interaction in the selection of the siRNA guide strand in RNAi.
Collapse
Affiliation(s)
- Joseph A Gredell
- Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, Michigan 48824-1226, USA
| | | | | | | | | |
Collapse
|
26
|
Daniels SM, Melendez-Peña CE, Scarborough RJ, Daher A, Christensen HS, El Far M, Purcell DFJ, Lainé S, Gatignol A. Characterization of the TRBP domain required for dicer interaction and function in RNA interference. BMC Mol Biol 2009; 10:38. [PMID: 19422693 PMCID: PMC2685382 DOI: 10.1186/1471-2199-10-38] [Citation(s) in RCA: 105] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2008] [Accepted: 05/07/2009] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND Dicer, Ago2 and TRBP are the minimum components of the human RNA-induced silencing complex (RISC). While Dicer and Ago2 are RNases, TRBP is the double-stranded RNA binding protein (dsRBP) that loads small interfering RNA into the RISC. TRBP binds directly to Dicer through its C-terminal domain. RESULTS We show that the TRBP binding site in Dicer is a 165 amino acid (aa) region located between the ATPase and the helicase domains. The binding site in TRBP is a 69 aa domain, called C4, located at the C-terminal end of TRBP. The TRBP1 and TRBP2 isoforms, but not TRBPs lacking the C4 site (TRBPsDeltaC4), co-immunoprecipitated with Dicer. The C4 domain is therefore necessary to bind Dicer, irrespective of the presence of RNA. Immunofluorescence shows that while full-length TRBPs colocalize with Dicer, TRBPsDeltaC4 do not. tarbp2-/- cells, which do not express TRBP, do not support RNA interference (RNAi) mediated by short hairpin or micro RNAs against EGFP. Both TRBPs, but not TRBPsDeltaC4, were able to rescue RNAi function. In human cells with low RNAi activity, addition of TRBP1 or 2, but not TRBPsDeltaC4, rescued RNAi function. CONCLUSION The mapping of the interaction sites between TRBP and Dicer show unique domains that are required for their binding. Since TRBPsDeltaC4 do not interact or colocalize with Dicer, we suggest that TRBP and Dicer, both dsRBPs, do not interact through bound dsRNA. TRBPs, but not TRBPsDeltaC4, rescue RNAi activity in RNAi-compromised cells, indicating that the binding of Dicer to TRBP is critical for RNAi function.
Collapse
Affiliation(s)
- Sylvanne M Daniels
- Virus-Cell Interactions Laboratory, Lady Davis Institute for Medical Research, Montréal, Québec, Canada.
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Wang S, Liu N, Chen AJ, Zhao XF, Wang JX. TRBP Homolog Interacts with Eukaryotic Initiation Factor 6 (eIF6) inFenneropenaeus chinensis. THE JOURNAL OF IMMUNOLOGY 2009; 182:5250-8. [DOI: 10.4049/jimmunol.0802970] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
28
|
TRBP control of PACT-induced phosphorylation of protein kinase R is reversed by stress. Mol Cell Biol 2008; 29:254-65. [PMID: 18936160 DOI: 10.1128/mcb.01030-08] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The TAR RNA binding Protein, TRBP, inhibits the activity of the interferon-induced protein kinase R (PKR), whereas the PKR activator, PACT, activates its function. TRBP and PACT also bind to each other through their double-stranded RNA binding domains (dsRBDs) and their Medipal domains, which may influence their activity on PKR. In a human immunodeficiency virus (HIV) long terminal repeat-luciferase assay, PACT unexpectedly reversed PKR-mediated inhibition of gene expression. In a translation inhibition assay in HeLa cells, PACT lacking the 13 C-terminal amino acids (PACTDelta13), but not full-length PACT, activated PKR and enhanced interferon-mediated repression. In contrast, in the astrocytic U251MG cells that express low TRBP levels, both proteins activate PKR, but PACTDelta13 is stronger. Immunoprecipitation assays and yeast two-hybrid assays show that TRBP and PACTDelta13 interact very weakly due to a loss of binding in the Medipal domain. PACT-induced PKR phosphorylation was restored in Tarbp2(-/-) murine tail fibroblasts and in HEK293T or HeLa cells when TRBP expression was reduced by RNA interference. In HEK293T and HeLa cells, arsenite, peroxide, and serum starvation-mediated stresses dissociated the TRBP-PACT interaction and increased PACT-induced PKR activation, demonstrating the relevance of this control in a physiological context. Our results demonstrate that in cells, TRBP controls PACT activation of PKR, an activity that is reversed by stress.
Collapse
|
29
|
Parker GS, Maity TS, Bass BL. dsRNA binding properties of RDE-4 and TRBP reflect their distinct roles in RNAi. J Mol Biol 2008; 384:967-79. [PMID: 18948111 DOI: 10.1016/j.jmb.2008.10.002] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2008] [Revised: 08/29/2008] [Accepted: 10/01/2008] [Indexed: 11/18/2022]
Abstract
Double-stranded RNA (dsRNA)-binding proteins facilitate Dicer functions in RNA interference. Caenorhabditis elegans RDE-4 facilitates cleavage of long dsRNA to small interfering RNA (siRNA), while human trans-activation response RNA-binding protein (TRBP) functions downstream to pass siRNA to the RNA-induced silencing complex. We show that these distinct in vivo roles are reflected in in vitro binding properties. RDE-4 preferentially binds long dsRNA, while TRBP binds siRNA with an affinity that is independent of dsRNA length. These properties are mechanistically based on the fact that RDE-4 binds cooperatively, via contributions from multiple domains, while TRBP binds noncooperatively. Our studies offer a paradigm for how dsRNA-binding proteins, which are not sequence specific, discern dsRNA length. Additionally, analyses of the ability of RDE-4 deletion constructs and RDE-4/TRBP chimeras to reconstitute Dicer activity suggest RDE-4 promotes activity using its dsRNA-binding motif 2 to bind dsRNA, its linker region to interact with Dicer, and its C-terminus for Dicer activation.
Collapse
Affiliation(s)
- Greg S Parker
- University of Utah, Department of Biochemistry/HHMI, Salt Lake City, UT 84112-5650, USA
| | | | | |
Collapse
|
30
|
HIV-1 TAR element is processed by Dicer to yield a viral micro-RNA involved in chromatin remodeling of the viral LTR. BMC Mol Biol 2007; 8:63. [PMID: 17663774 PMCID: PMC1955452 DOI: 10.1186/1471-2199-8-63] [Citation(s) in RCA: 198] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2007] [Accepted: 07/30/2007] [Indexed: 12/27/2022] Open
Abstract
Background RNA interference (RNAi) is a regulatory mechanism conserved in higher eukaryotes. The RNAi pathway generates small interfering RNA (siRNA) or micro RNA (miRNA) from either long double stranded stretches of RNA or RNA hairpins, respectively. The siRNA or miRNA then guides an effector complex to a homologous sequence of mRNA and regulates suppression of gene expression through one of several mechanisms. The suppression of gene expression through these mechanisms serves to regulate endogenous gene expression and protect the cell from foreign nucleic acids. There is growing evidence that many viruses have developed in the context of RNAi and express either a suppressor of RNAi or their own viral miRNA. Results In this study we investigated the possibility that the HIV-1 TAR element, a hairpin structure of ~50 nucleotides found at the 5' end of the HIV viral mRNA, is recognized by the RNAi machinery and processed to yield a viral miRNA. We show that the protein Dicer, the enzyme responsible for cleaving miRNA and siRNA from longer RNA sequences, is expressed in CD4+ T-cells. Interestingly, the level of expression of Dicer in monocytes is sub-optimal, suggesting a possible role for RNAi in maintaining latency in T-cells. Using a biotin labeled TAR element we demonstrate that Dicer binds to this structure. We show that recombinant Dicer is capable of cleaving the TAR element in vitro and that TAR derived miRNA is present in HIV-1 infected cell lines and primary T-cell blasts. Finally, we show that a TAR derived miRNA is capable of regulating viral gene expression and may be involved in repressing gene expression through transcriptional silencing. Conclusion HIV-1 TAR element is processed by the Dicer enzyme to create a viral miRNA. This viral miRNA is detectable in infected cells and appears to contribute to viral latency.
Collapse
|
31
|
Castanotto D, Sakurai K, Lingeman R, Li H, Shively L, Aagaard L, Soifer H, Gatignol A, Riggs A, Rossi JJ. Combinatorial delivery of small interfering RNAs reduces RNAi efficacy by selective incorporation into RISC. Nucleic Acids Res 2007; 35:5154-64. [PMID: 17660190 PMCID: PMC1976469 DOI: 10.1093/nar/gkm543] [Citation(s) in RCA: 212] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Despite the great potential of RNAi, ectopic expression of shRNA or siRNAs holds the inherent risk of competition for critical RNAi components, thus altering the regulatory functions of some cellular microRNAs. In addition, specific siRNA sequences can potentially hinder incorporation of other siRNAs when used in a combinatorial approach. We show that both synthetic siRNAs and expressed shRNAs compete against each other and with the endogenous microRNAs for transport and for incorporation into the RNA induced silencing complex (RISC). The same siRNA sequences do not display competition when expressed from a microRNA backbone. We also show that TAR RNA binding protein (TRBP) is one of the sensors for selection and incorporation of the guide sequence of interfering RNAs. These findings reveal that combinatorial siRNA approaches can be problematic and have important implications for the methodology of expression and use of therapeutic interfering RNAs.
Collapse
Affiliation(s)
- Daniela Castanotto
- Division of Molecular Biology, Beckman Research Institute of the City of Hope, Graduate School of Biological Sciences, Division of Biology, Beckman Research Institute of the City of Hope and Virus-cell interactions laboratory, Lady Davis Institute for Medical Research, McGill University, Montréal, Canada
| | - Kumi Sakurai
- Division of Molecular Biology, Beckman Research Institute of the City of Hope, Graduate School of Biological Sciences, Division of Biology, Beckman Research Institute of the City of Hope and Virus-cell interactions laboratory, Lady Davis Institute for Medical Research, McGill University, Montréal, Canada
| | - Robert Lingeman
- Division of Molecular Biology, Beckman Research Institute of the City of Hope, Graduate School of Biological Sciences, Division of Biology, Beckman Research Institute of the City of Hope and Virus-cell interactions laboratory, Lady Davis Institute for Medical Research, McGill University, Montréal, Canada
| | - Haitang Li
- Division of Molecular Biology, Beckman Research Institute of the City of Hope, Graduate School of Biological Sciences, Division of Biology, Beckman Research Institute of the City of Hope and Virus-cell interactions laboratory, Lady Davis Institute for Medical Research, McGill University, Montréal, Canada
| | - Louise Shively
- Division of Molecular Biology, Beckman Research Institute of the City of Hope, Graduate School of Biological Sciences, Division of Biology, Beckman Research Institute of the City of Hope and Virus-cell interactions laboratory, Lady Davis Institute for Medical Research, McGill University, Montréal, Canada
| | - Lars Aagaard
- Division of Molecular Biology, Beckman Research Institute of the City of Hope, Graduate School of Biological Sciences, Division of Biology, Beckman Research Institute of the City of Hope and Virus-cell interactions laboratory, Lady Davis Institute for Medical Research, McGill University, Montréal, Canada
| | - Harris Soifer
- Division of Molecular Biology, Beckman Research Institute of the City of Hope, Graduate School of Biological Sciences, Division of Biology, Beckman Research Institute of the City of Hope and Virus-cell interactions laboratory, Lady Davis Institute for Medical Research, McGill University, Montréal, Canada
| | - Anne Gatignol
- Division of Molecular Biology, Beckman Research Institute of the City of Hope, Graduate School of Biological Sciences, Division of Biology, Beckman Research Institute of the City of Hope and Virus-cell interactions laboratory, Lady Davis Institute for Medical Research, McGill University, Montréal, Canada
| | - Arthur Riggs
- Division of Molecular Biology, Beckman Research Institute of the City of Hope, Graduate School of Biological Sciences, Division of Biology, Beckman Research Institute of the City of Hope and Virus-cell interactions laboratory, Lady Davis Institute for Medical Research, McGill University, Montréal, Canada
| | - John J. Rossi
- Division of Molecular Biology, Beckman Research Institute of the City of Hope, Graduate School of Biological Sciences, Division of Biology, Beckman Research Institute of the City of Hope and Virus-cell interactions laboratory, Lady Davis Institute for Medical Research, McGill University, Montréal, Canada
- *To whom correspondence should be addressed.+626 301 8360+626 301 8271
| |
Collapse
|
32
|
Fenner BJ, Goh W, Kwang J. Dissection of double-stranded RNA binding protein B2 from betanodavirus. J Virol 2007; 81:5449-59. [PMID: 17376906 PMCID: PMC1900263 DOI: 10.1128/jvi.00009-07] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Betanodaviruses are small RNA viruses that infect teleost fish and pose a considerable threat to marine aquaculture production. These viruses possess a small protein, termed B2, which binds to and protects double-stranded RNA. This prevents cleavage of virus-derived double-stranded RNAs (dsRNAs) by Dicer and subsequent production of small interfering RNA (siRNA), which would otherwise induce an RNA-silencing response against the virus. In this work, we have performed charged-to-alanine scanning mutagenesis of the B2 protein in order to identify residues required for dsRNA binding and protection. While the majority of the 19 mutated B2 residues were required for maximal dsRNA binding and protection in vitro, residues R53 and R60 were essential for both activities. Subsequent experiments in fish cells confirmed these findings by showing that mutations in these residues abolished accumulation of both the RNA1 and RNA2 components of the viral genome, in addition to preventing any significant induction of the host interferon gene, Mx. Moreover, an obvious positive correlation was found between dsRNA binding and protection in vitro and RNA1, RNA2, and Mx accumulation in fish cells, further validating the importance of the selected amino acid residues. The same trend was also demonstrated using an RNA silencing system in HeLa cells, with residues R53 and R60 being essential for suppression of RNA silencing. Importantly, we found that siRNA-mediated knockdown of Dicer dramatically enhanced the accumulation of a B2 mutant. In addition, we found that B2 is able to induce apoptosis in fish cells but that this was not the result of dsRNA binding.
Collapse
Affiliation(s)
- Beau J Fenner
- Animal Health Biotechnology, Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore 117604, Singapore
| | | | | |
Collapse
|
33
|
Christensen HS, Daher A, Soye KJ, Frankel LB, Alexander MR, Lainé S, Bannwarth S, Ong CL, Chung SWL, Campbell SM, Purcell DFJ, Gatignol A. Small interfering RNAs against the TAR RNA binding protein, TRBP, a Dicer cofactor, inhibit human immunodeficiency virus type 1 long terminal repeat expression and viral production. J Virol 2007; 81:5121-31. [PMID: 17360756 PMCID: PMC1900231 DOI: 10.1128/jvi.01511-06] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
RNA interference (RNAi) is now widely used for gene silencing in mammalian cells. The mechanism uses the RNA-induced silencing complex, in which Dicer, Ago2, and the human immunodeficiency virus type 1 (HIV-1) TAR RNA binding protein (TRBP) are the main components. TRBP is a protein that increases HIV-1 expression and replication by inhibition of the interferon-induced protein kinase PKR and by increasing translation of viral mRNA. After HIV infection, TRBP could restrict the viral RNA through its activity in RNAi or could contribute more to the enhancement of viral replication. To determine which function will be predominant in the virological context, we analyzed whether the inhibition of its expression could enhance or decrease HIV replication. We have generated small interfering RNAs (siRNAs) against TRBP and found that they decrease HIV-1 long terminal repeat (LTR) basal expression 2-fold, and the LTR Tat transactivated level up to 10-fold. In the context of HIV replication, siRNAs against TRBP decrease the expression of viral genes and inhibit viral production up to fivefold. The moderate increase in PKR expression and activation indicates that it contributes partially to viral gene inhibition. The moderate decrease in micro-RNA (miRNA) biogenesis by TRBP siRNAs suggests that in the context of HIV replication, TRBP functions other than RNAi are predominant. In addition, siRNAs against Dicer decrease viral production twofold and impede miRNA biogenesis. These results suggest that, in the context of HIV replication, TRBP contributes mainly to the enhancement of virus production and that Dicer does not mediate HIV restriction by RNAi.
Collapse
Affiliation(s)
- Helen S Christensen
- Department of Microbiology and Immunology, University of Melbourne, Parkville, Australia
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Kim DH, Villeneuve LM, Morris KV, Rossi JJ. Argonaute-1 directs siRNA-mediated transcriptional gene silencing in human cells. Nat Struct Mol Biol 2006; 13:793-7. [PMID: 16936726 DOI: 10.1038/nsmb1142] [Citation(s) in RCA: 337] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2006] [Accepted: 08/08/2006] [Indexed: 11/09/2022]
Abstract
Argonaute proteins are the core components of effector complexes that facilitate RNA interference (RNAi). Small interfering RNAs (siRNAs) targeted to promoter regions mediate transcriptional gene silencing (TGS) in human cells through heterochromatin formation. RNAi effector complexes have yet to be implicated in the mechanism of mammalian TGS. Here we describe the role of the human Argonaute-1 homolog (AGO1) in directing TGS at the promoters for human immunodeficiency virus-1 coreceptor CCR5 and tumor suppressor RASSF1A. AGO1 associates with RNA polymerase II (RNAPII) and is required for histone H3 Lys9 dimethylation and TGS. AGO1, TAR RNA-binding protein-2 (7TRBP2) and Polycomb protein EZH2 colocalize to the siRNA-targeted RASSF1A promoter, implicating Polycomb silencing in the mechanism of mammalian TGS. These results establish a connection between RNAi components AGO1 and TRBP2, RNAPII transcription and Polycomb-regulated control of gene expression.
Collapse
Affiliation(s)
- Daniel H Kim
- Graduate School of Biological Sciences, Beckman Research Institute of the City of Hope, 1450 E. Duarte Road, Duarte, California 91010, USA
| | | | | | | |
Collapse
|
35
|
Bannwarth S, Lainé S, Daher A, Grandvaux N, Clerzius G, Leblanc AC, Hiscott J, Gatignol A. Cell-specific regulation of TRBP1 promoter by NF-Y transcription factor in lymphocytes and astrocytes. J Mol Biol 2005; 355:898-910. [PMID: 16343534 DOI: 10.1016/j.jmb.2005.11.026] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2005] [Revised: 10/28/2005] [Accepted: 11/09/2005] [Indexed: 10/25/2022]
Abstract
HIV-1 viral production is restricted intracellularly in astrocytes compared with lymphocytes due to the limited expression of viral structural proteins. The poor translation of HIV-1 mRNA and consequent limited virion production can be restored by overexpression of TRBP proteins in the astrocytoma U251MG cells. TRBP1 and TRBP2 are double-stranded RNA binding proteins that increase HIV-1 gene expression. Both proteins are produced from a single gene that possesses two independent promoters and an alternative first exon. Endogenous expression is restricted in astrocytes due to limited TRBP promoter expression compared to lymphocytes. We examined the transcriptional regulation of TRBP1 and TRBP2 by in vivo genomic footprinting in the lymphocytic Jurkat and in the astrocytic U251MG cells. We identified one AP4 and one AP2-binding site that regulate the TRBP2 promoter in both cell types, and one Sp1 and two CCAAT-binding sites that control TRBP1 expression. Mutations in the TRBP1 promoter modulate its expression specifically in Jurkat and in U251MG. The analysis of the CCAAT-390 site by EMSA and by ChIP demonstrates that NF-Y/CBF transcription factor binds specifically to the promoter in vitro and in vivo. Furthermore, each NF-Y subunit was more highly expressed in the lymphocytic cells, compared to astrocytic cells. An NF-YA trans-dominant mutant decreased TRBP1 promoter expression fourfold in Jurkat cells, thus demonstrating the functional importance of NF-Y factors in lymphocytes. These studies suggest that the cell specifity of HIV-1 expression and replication may be regulated, in part, through the control of TRBP1 expression.
Collapse
Affiliation(s)
- Sylvie Bannwarth
- Molecular Oncology Group Lady Davis Institute for Medical Research, Montréal, QC, Canada, H3T 1E2
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Ong CL, Thorpe JC, Gorry PR, Bannwarth S, Jaworowski A, Howard JL, Chung S, Campbell S, Christensen HS, Clerzius G, Mouland AJ, Gatignol A, Purcell DFJ. Low TRBP levels support an innate human immunodeficiency virus type 1 resistance in astrocytes by enhancing the PKR antiviral response. J Virol 2005; 79:12763-72. [PMID: 16188979 PMCID: PMC1235869 DOI: 10.1128/jvi.79.20.12763-12772.2005] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Acute human immunodeficiency virus type 1 (HIV-1) replication in astrocytes produces minimal new virus particles due, in part, to inefficient translation of viral structural proteins despite high levels of cytoplasmic viral mRNA. We found that a highly reactive double-stranded (ds) RNA-binding protein kinase (PKR) response in astrocytes underlies this inefficient translation of HIV-1 mRNA. The dsRNA elements made during acute replication of HIV-1 in astrocytes triggers PKR activation and the specific inhibition of HIV-1 protein translation. The heightened PKR response results from relatively low levels of the cellular antagonist of PKR, the TAR RNA binding protein (TRBP). Efficient HIV-1 production was restored in astrocytes by inhibiting the innate PKR response to HIV-1 dsRNA with dominant negative PKR mutants, or PKR knockdown by siRNA gene silencing. Increasing the expression of TRBP in astrocytes restored acute virus production to levels comparable to those observed in permissive cells. Therefore, the robust innate PKR antiviral response in astrocytes results from relatively low levels of TRBP expression and contributes to their restricted infection. Our findings highlight TRBP as a novel cellular target for therapeutic interventions to block productive HIV-1 replication in cells that are fully permissive for HIV-1 infection.
Collapse
Affiliation(s)
- Chi L Ong
- Department of Microbiology and Immunology, University of Melbourne, Parkville, Victoria, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Gatignol A, Lainé S, Clerzius G. Dual role of TRBP in HIV replication and RNA interference: viral diversion of a cellular pathway or evasion from antiviral immunity? Retrovirology 2005; 2:65. [PMID: 16253139 PMCID: PMC1282568 DOI: 10.1186/1742-4690-2-65] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2005] [Accepted: 10/27/2005] [Indexed: 11/10/2022] Open
Abstract
Increasing evidence indicates that RNA interference (RNAi) may be used to provide antiviral immunity in mammalian cells. Human micro (mi)RNAs can inhibit the replication of a primate virus, whereas a virally-encoded miRNA from HIV inhibits its own replication. Indirect proof comes from RNAi suppressors encoded by mammalian viruses. Influenza NS1 and Vaccinia E3L proteins can inhibit RNAi in plants, insects and worms. HIV-1 Tat protein and Adenovirus VA RNAs act as RNAi suppressors in mammalian cells. Surprisingly, many RNAi suppressors are also inhibitors of the interferon (IFN)-induced protein kinase R (PKR) but the potential overlap between the RNAi and the IFN pathways remains to be determined. The link between RNAi as an immune response and the IFN pathway may be formed by a cellular protein, TRBP, which has a dual role in HIV replication and RNAi. TRBP has been isolated as an HIV-1 TAR RNA binding protein that increases HIV expression and replication by inhibiting PKR and by increasing translation of structured RNAs. A recent report published in the Journal of Virology shows that the poor replication of HIV in astrocytes is mainly due to a heightened PKR response that can be overcome by supplying TRBP exogenously. In two recent papers published in Nature and EMBO Reports, TRBP is now shown to interact with Dicer and to be required for RNAi mediated by small interfering (si) and micro (mi)RNAs. The apparent discrepancy between TRBP requirement in RNAi and in HIV replication opens the hypotheses that RNAi may be beneficial for HIV-1 replication or that HIV-1 may evade the RNAi restriction by diverting TRBP from Dicer and use it for its own benefit.
Collapse
Affiliation(s)
- Anne Gatignol
- Virus-Cell Interactions Laboratory, Lady Davis Institute for Medical Research, and Department of Medicine and Microbiology & Immunology, McGill University, Montréal, Québec, Canada
| | - Sébastien Lainé
- Virus-Cell Interactions Laboratory, Lady Davis Institute for Medical Research, and Department of Medicine and Microbiology & Immunology, McGill University, Montréal, Québec, Canada
| | - Guerline Clerzius
- Virus-Cell Interactions Laboratory, Lady Davis Institute for Medical Research, and Department of Medicine and Microbiology & Immunology, McGill University, Montréal, Québec, Canada
| |
Collapse
|
38
|
Battisti PL, Daher A, Bannwarth S, Voortman J, Peden KWC, Hiscott J, Mouland AJ, Benarous R, Gatignol A. Additive activity between the trans-activation response RNA-binding protein, TRBP2, and cyclin T1 on HIV type 1 expression and viral production in murine cells. AIDS Res Hum Retroviruses 2003; 19:767-78. [PMID: 14585207 DOI: 10.1089/088922203769232566] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Tat-mediated trans-activation of the HIV-1 long terminal repeat (LTR) occurs through the phosphorylation of the carboxy-terminal domain of the RNA polymerase II. The kinase complex, pTEFb, composed of cyclin T1 (CycT1) and CDK9, mediates this process. The trans-activation response (TAR) RNA-binding protein 2 (TRBP2) increases HIV-1 LTR expression through TAR and protein kinase R (PKR) binding, but not through interactions with the Tat-CycT1-CDK9 complex. TRBP2 and the Tat-CycT1-CDK9 complex have overlapping binding sites on TAR RNA. TRBP2 and CycT1 increased Tat trans-activation in NIH 3T3 cells with additive effects. Upon transfection of HIV-1 pLAI, pNL4-3, pMAL, and pAD molecular clones, reverse transcriptase (RT) activity and p24 concentration were decreased 200- to 900-fold in NIH 3T3 cells compared with HeLa cells in both cells and supernatants. In murine cells, cotransfection of the HIV clones with CycT1 or TRBP2 increased modestly the expression of RT activity in cell extracts. The analysis of Gag expression in murine cells transfected with CycT1 compared with human cells showed a 20-fold decrease in expression and a strong processing defect. The expression of both CycT1 and TRBP2 had a more than additive activity on RT function in cell extracts and on viral particle production in supernatant of murine cells. These results suggest an activity of CycT1 and TRBP2 at different steps in HIV-1 expression and indicate the requirement for another posttranscriptional factor in murine cells for full HIV replication.
Collapse
Affiliation(s)
- Pier-Luigi Battisti
- Molecular Oncology Group, Lady Davis Institute for Medical Research, Montréal, Québec H3T 1E2, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Dorin D, Bonnet MC, Bannwarth S, Gatignol A, Meurs EF, Vaquero C. The TAR RNA-binding protein, TRBP, stimulates the expression of TAR-containing RNAs in vitro and in vivo independently of its ability to inhibit the dsRNA-dependent kinase PKR. J Biol Chem 2003; 278:4440-8. [PMID: 12475984 DOI: 10.1074/jbc.m208954200] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
TRBP (HIV-1 transactivating response (TAR) RNA-binding protein) and PKR, the interferon-induced dsRNA-regulated protein kinase, contain two dsRNA binding domains. They both bind to HIV-1 TAR RNAs through different sites. Binding to dsRNA activates PKR that phosphorylates the eukaryotic initiation factor eIF-2alpha leading to protein synthesis inhibition. TRBP and PKR can heterodimerize, which inhibits the kinase function of PKR and has a positive effect on HIV-1 expression. In this study, an in vitro reticulocyte assay revealed the poor expression of TAR containing CAT RNAs compared with CAT RNAs. Addition of TRBP restored translation efficiency of TAR-CAT RNA and decreased the phosphorylation status of eIF-2alpha, confirming its role as a PKR inhibitor. Unexpectedly, eIF-2alpha was phosphorylated in the presence of TAR-CAT as well as CAT RNA devoid of the TAR structure. TRBP inhibited eIF-2alpha phosphorylation in both cases, suggesting that it restores the translation of TAR-CAT RNA independently and in addition to its ability to inhibit PKR. TRBP activity on gene expression was then analyzed in a PKR-free environment using PKR-deficient murine embryo fibroblasts. In a transient reporter gene assay, TRBP stimulated the expression of a TAR-containing luciferase 3.8-fold whereas the reporter gene with mutated TAR structures or devoid of TAR was stimulated 1.5- to 2.4-fold. Overall, the activity of TRBP2 was higher when the 5'-end of the mRNA was structured and was mediated independently by each dsRBD in TRBP. Increasing concentrations of TRBP showed no significant modification of the luciferase RNA levels, suggesting that TRBP stimulates translation of TAR-containing RNAs. Therefore, TRBP is an important cellular factor for efficient translation of dsRNA containing transcripts, both by inhibiting PKR and in a PKR-independent pathway.
Collapse
Affiliation(s)
- Dominique Dorin
- INSERM U511, Hôpital La Pitié-Salpêtrière, 75643 Paris Cedex 13, France
| | | | | | | | | | | |
Collapse
|
40
|
Bannwarth S, Talakoub L, Letourneur F, Duarte M, Purcell DF, Hiscott J, Gatignol A. Organization of the human tarbp2 gene reveals two promoters that are repressed in an astrocytic cell line. J Biol Chem 2001; 276:48803-13. [PMID: 11641396 DOI: 10.1074/jbc.m104645200] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
TRBP1 and TRBP2 are isoforms of a double-stranded RNA-binding protein that differ in their N-terminal end and were each identified by binding to human immunodeficiency virus type 1 (HIV-1) trans-activation-responsive RNA. TRBP1 and TRBP2 also bind and modulate the function of the double-stranded RNA-activated protein kinase, protein kinase R. Both proteins increase long terminal repeat expression in human and murine cells, and their gene has been mapped to human chromosome 12. We have isolated and characterized the complete tarbp2 gene (5493 bp) coding for the two TRBP proteins. Two adjacent promoters initiate transcription of alternative first exons for TRBP1 and TRBP2 mRNAs that are spliced onto common downstream exons. TRBP2 transcription and translation start sites are localized within the first intron of TRBP1. TRBP promoters are TATA-less but have CCAAT boxes, a CpG island, and several potential binding sites for transcriptional factors. Promoter deletion analysis identified two regions from position -1397 to -330 for TRBP1 and from position -330 to +38 for TRBP2 that are important for promoter function. TRBP2 promoter activity was expressed at a higher level compared with TRBP1 promoter. In addition, a specific down-regulation of TRBP1 and TRBP2 promoter activity was identified in human astrocytic cell line U251MG compared with HeLa cells. This minimal TRBP promoter activity may account for minimal HIV-1 replication in astrocytes.
Collapse
Affiliation(s)
- S Bannwarth
- Molecular Oncology Group, McGill AIDS Centre, Lady Davis Institute for Medical Research, McGill University, Montreal, Quebec H3T 1E2, Canada
| | | | | | | | | | | | | |
Collapse
|
41
|
Daher A, Longuet M, Dorin D, Bois F, Segeral E, Bannwarth S, Battisti PL, Purcell DF, Benarous R, Vaquero C, Meurs EF, Gatignol A. Two dimerization domains in the trans-activation response RNA-binding protein (TRBP) individually reverse the protein kinase R inhibition of HIV-1 long terminal repeat expression. J Biol Chem 2001; 276:33899-905. [PMID: 11438532 DOI: 10.1074/jbc.m103584200] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Trans-activation response (TAR) RNA-binding protein (TRBP) is a cellular protein that binds to the human immunodeficiency virus-1 (HIV-1) TAR element RNA. It has two double-stranded RNA binding domains (dsRBDs), but only one is functional for TAR binding. TRBP interacts with the interferon-induced protein kinase R (PKR) and inhibits its activity. We used the yeast two-hybrid assay to map the interaction sites between the two proteins. We show that TRBP and PKR-N (178 first amino acids of PKR) interact with PKR wild type and inhibit the PKR-induced yeast growth defect in this assay. We characterized two independent PKR-binding sites in TRBP. These sites are located in each dsRBD in TRBP, indicating that PKR-TRBP interaction does not require the RNA binding activity present only in dsRBD2. TRBP and its fragments that interact with PKR reverse the PKR-induced suppression of HIV-1 long terminal repeat expression. In addition, TRBP activates the HIV-1 long terminal repeat expression to a larger extent than the addition of each domain. These data suggest that TRBP activates gene expression in PKR-dependent and PKR-independent manners.
Collapse
Affiliation(s)
- A Daher
- Molecular Oncology Group/McGill AIDS Centre, Lady Davis Institute for Medical Research, 3755 Côte Ste Catherine, Montréal H3T 1E2, Québec, Canada
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Gatignol A, Jeang KT. Tat as a transcriptional activator and a potential therapeutic target for HIV-1. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2001; 48:209-27. [PMID: 10987092 DOI: 10.1016/s1054-3589(00)48007-5] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- A Gatignol
- U529 INSERM, Institut Cochin de Génétique Moléculaire, Paris, France
| | | |
Collapse
|
43
|
Fujii R, Okamoto M, Aratani S, Oishi T, Ohshima T, Taira K, Baba M, Fukamizu A, Nakajima T. A Role of RNA Helicase A in cis-Acting Transactivation Response Element-mediated Transcriptional Regulation of Human Immunodeficiency Virus Type 1. J Biol Chem 2001; 276:5445-51. [PMID: 11096080 DOI: 10.1074/jbc.m006892200] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
RNA helicase A (RHA) has two double-stranded (ds) RNA-binding domains (dsRBD1 and dsRBD2). These domains are conserved with the cis-acting transactivation response element (TAR)-binding protein (TRBP) and dsRNA-activated protein kinase (PKR). TRBP and PKR are involved in the regulation of HIV-1 gene expression through their binding to TAR RNA. This study shows that RHA also plays an important role in TAR-mediated HIV-1 gene expression. Wild-type RHA preferably bound to TAR RNA in vitro and in vivo. Overexpression of wild type RHA strongly enhanced viral mRNA synthesis and virion production as well as HIV-1 long terminal repeat-directed reporter (luciferase) gene expression. Substitution of lysine for glutamate at residue 236 in dsRBD2 (RHA(K236E)) reduced its affinity for TAR RNA and impaired HIV-1 transcriptional activity. These results indicate that TAR RNA is a preferred target of RHA dsRBDs and that RHA enhances HIV-1 transcription in vivo in part through the TAR-binding of RHA.
Collapse
Affiliation(s)
- R Fujii
- Institute of Applied Biochemistry, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki 305-8577, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Duarte M, Graham K, Daher A, Battisti PL, Bannwarth S, Segeral E, Jeang KT, Gatignol A. Characterization of TRBP1 and TRBP2. J Biomed Sci 2000. [DOI: 10.1007/bf02253365] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|