1
|
Wang W, Wang W, Peng S, Gao S, Quan M, Gou L, Wang C, Sun Z, Li Z, Lian D, Song H. Tocilizumab reduces the unmanageable inflammatory reaction of a patient with Aicardi-Goutières syndrome type 7 during treatment with ruxolitinib. Pediatr Rheumatol Online J 2023; 21:117. [PMID: 37828538 PMCID: PMC10571391 DOI: 10.1186/s12969-023-00899-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 09/25/2023] [Indexed: 10/14/2023] Open
Abstract
BACKGROUND Aicardi-Goutières syndrome (AGS) is a rare hereditary early-onset encephalopathy characterized by upregulation of the type I interferon pathway, poorly responsive to conventional immunosuppression. CASE PRESENTATION We describe a 7-year-old Chinese boy who developed symptoms at the age of 6 months. He presented with a chilblain-like rash, leukopenia, neutropenia, elevated liver enzymesgrowth retardation, microcephaly, elevated acute phase reactants, intracranial calcification and leukodystrophy. At the age of 3 years old, whole-exome sequencing confirmed a de novo heterozygous gain-of-function mutation, c.1016 C > A (p.Ala339Asp), in the IFIH1 gene, and he was diagnosed with AGS7. He was treated with ruxolitinib accompanied by steroids and thalidomide for about four years. The rash, hematological manifestations, and the liver function were all improved, but the erythrocyte sedimentation rate remained consistently elevated until the addition of tocilizumab, a monoclonal antibody against interleukin 6. CONCLUSIONS Ruxolitinib was not successful in suppressing the inflammatory process, and tocilizumab produced highly encouraging results in reducing the inflammatory reaction of AGS. The study makes a significant contribution to the literature because we may found a potential alternative therapeutic option for AGS.
Collapse
Affiliation(s)
- Wei Wang
- Department of Pediatrics, Peking Union Medical College, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, No.1 Shuaifuyuan Wangfujing Dongcheng District, Beijing, 100730, China
| | - Wei Wang
- Department of Pediatrics, Peking Union Medical College, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, No.1 Shuaifuyuan Wangfujing Dongcheng District, Beijing, 100730, China
| | - Siming Peng
- Department of Pediatrics, Peking Union Medical College, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, No.1 Shuaifuyuan Wangfujing Dongcheng District, Beijing, 100730, China
| | - Sihao Gao
- Department of Pediatrics, Peking Union Medical College, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, No.1 Shuaifuyuan Wangfujing Dongcheng District, Beijing, 100730, China
| | - Meiying Quan
- Department of Pediatrics, Peking Union Medical College, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, No.1 Shuaifuyuan Wangfujing Dongcheng District, Beijing, 100730, China
| | - Lijuan Gou
- Department of Pediatrics, Peking Union Medical College, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, No.1 Shuaifuyuan Wangfujing Dongcheng District, Beijing, 100730, China
| | - Changyan Wang
- Department of Pediatrics, Peking Union Medical College, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, No.1 Shuaifuyuan Wangfujing Dongcheng District, Beijing, 100730, China
| | - Zhixing Sun
- Department of Pediatrics, Peking Union Medical College, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, No.1 Shuaifuyuan Wangfujing Dongcheng District, Beijing, 100730, China
| | - Zhuo Li
- Department of Pediatrics, Peking Union Medical College, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, No.1 Shuaifuyuan Wangfujing Dongcheng District, Beijing, 100730, China
| | - Dongmei Lian
- Department of Pediatrics, Peking Union Medical College, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, No.1 Shuaifuyuan Wangfujing Dongcheng District, Beijing, 100730, China
| | - Hongmei Song
- Department of Pediatrics, Peking Union Medical College, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, No.1 Shuaifuyuan Wangfujing Dongcheng District, Beijing, 100730, China.
| |
Collapse
|
2
|
Dell'Isola GB, Dini G, Culpepper KL, Portwood KE, Ferrara P, Di Cara G, Verrotti A, Lodolo M. Clinical spectrum and currently available treatment of type I interferonopathy Aicardi-Goutières syndrome. World J Pediatr 2023; 19:635-643. [PMID: 36650407 PMCID: PMC10258176 DOI: 10.1007/s12519-022-00679-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 12/22/2022] [Indexed: 01/18/2023]
Abstract
BACKGROUND Aicardi-Goutières syndrome (AGS) is a genetically determined disorder with a variable phenotype. Since the original description of AGS, advances in gene sequencing techniques have resulted in a significant broadening of the phenotypic spectrum associated with AGS genes, and new clinical pictures have emerged beyond the classic presentation. The aim of this review is to provide a comprehensive analysis of the clinical spectrum of AGS and report currently available treatments and new immunosuppressive strategies. DATA SOURCES Literature reviews and original research articles were collected from databases, including PubMed and ClinicalTrials.gov. Relevant articles about AGS were included. RESULTS The involvement of the nervous system certainly represents the major cause of mortality and morbidity in AGS patients. However, other clinical manifestations, such as chilblains, hepatosplenomegaly, and hematological disturbances, may lead to the diagnosis and considerably impact the prognosis and overall quality of life of these patients. Therapeutic approaches of AGS are limited to interventions aimed at specific symptoms and the management of multiple comorbidities. However, advances in understanding the pathogenesis of AGS could open new and more effective therapies. CONCLUSIONS The over-activation of innate immunity due to upregulated interferon production plays a critical role in AGS, leading to multi-organ damage with the main involvement of the central nervous system. To date, there is no specific and effective treatment for AGS. New drugs specifically targeting the interferon pathway may bring new hope to AGS patients.
Collapse
Affiliation(s)
| | - Gianluca Dini
- Department of Pediatrics, University of Perugia, Giorgio Menghini Square, 06129, Perugia, Italy
| | | | - Katherin Elizabeth Portwood
- Department of Pediatrics, Division of Child Neurology, University of Florida, UF Health Shands Children's Hospital, Gainesville, FL, USA
| | - Pietro Ferrara
- Unit of Pediatrics, Campus Bio-Medico University, Rome, Italy
| | - Giuseppe Di Cara
- Department of Pediatrics, University of Perugia, Giorgio Menghini Square, 06129, Perugia, Italy
| | - Alberto Verrotti
- Department of Pediatrics, University of Perugia, Giorgio Menghini Square, 06129, Perugia, Italy
| | - Mauro Lodolo
- Department of Pediatrics, Division of Child Neurology, University of Florida, UF Health Shands Children's Hospital, Gainesville, FL, USA
| |
Collapse
|
3
|
Yang JH, Zhao Z, Niu W, Choi HP, Azadzoi KM. Formation of Double Stranded RNA Provokes Smooth Muscle Contractions and Structural Modifications in Bladder Ischemia. Res Rep Urol 2022; 14:399-414. [PMID: 36415310 PMCID: PMC9676006 DOI: 10.2147/rru.s388464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 11/11/2022] [Indexed: 08/30/2023] Open
Abstract
Purpose Growing evidence suggests that ischemia provokes detrusor overactivity and degenerative responses in the bladder. Underlying mechanisms appear to involve modification of smooth muscle contractile rudiments by hypoxia, redox, cellular stress and cell survival signaling. Downstream pathways of cellular stress and stress response molecules eliciting bladder dysfunction in ischemia remain largely elusive. Our goal was to define the role of double stranded RNA (dsRNA), a stress response molecule provoked by redox, in ischemia mediated bladder dysfunction. Methods A rat model of pelvic ischemia along with a cell culture hypoxia model were used to investigate the expression levels, functional consequences, structural aspects, and regulatory mechanisms of dsRNA in the bladder. Gene and protein expression were examined by reverse transcription polymerase chain reaction (RT-PCR), dot blot, and Western blotting, respectively. Tissue structure and function were assessed using histological staining and organ bath. Regulatory mechanisms were analyzed in cultured bladder smooth muscle cells. Results The data presented here provide the first evidence of the formation of dsRNA in the overactive bladder. dsRNA is a cellular stress response molecule that sensitizes smooth muscle and regulates inflammatory and degenerative rejoinders. Our data suggest that the production of dsRNA in the bladder is provoked by ischemia. Formation of dsRNA appears to augment bladder smooth muscle contractions and provoke fibrotic and apoptotic responses. Downstream actions of dsRNA in the bladder may involve upregulation of dsRNA-activated protein kinase R (PKR) and caspase-3, the executioner of apoptosis. Conclusion Activation of dsRNA/PKR pathway may play a role in sensitization of bladder smooth muscle cells to contractile stimuli, whereas dsRNA and caspase-3 crosstalk appear to modulate cellular stress and instigate degenerative responses in bladder ischemia. These observations suggest the role of dsRNA in bladder dysfunction and may open new perspectives to overcome overactive smooth muscle contractions and structural damage in the bladder.
Collapse
Affiliation(s)
- Jing-Hua Yang
- Department of Surgery, Boston University School of Medicine and Proteomics Laboratory, VA Boston Healthcare System, Boston, MA, USA
| | - Zuohui Zhao
- Department of Urology, Boston University School of Medicine, Boston, MA, USA
| | - Wanting Niu
- Research Department, VA Boston Healthcare System, Boston, MA, USA
| | - Han-Pil Choi
- Research Department, VA Boston Healthcare System, Boston, MA, USA
| | - Kazem M Azadzoi
- Departments of Urology and Pathology, VA Boston Healthcare System and Boston University School of Medicine, Boston, MA, USA
| |
Collapse
|
4
|
Decitabine, a DNA-demethylating agent, promotes differentiation via NOTCH1 signaling and alters immune-related pathways in muscle-invasive bladder cancer. Cell Death Dis 2017; 8:3217. [PMID: 29242529 PMCID: PMC5870579 DOI: 10.1038/s41419-017-0024-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 09/20/2017] [Accepted: 10/02/2017] [Indexed: 12/18/2022]
Abstract
Aberrant DNA methylation observed in cancer can provide survival benefits to cells by silencing genes essential for anti-tumor activity. DNA-demethylating agents such as Decitabine (DAC)/Azacitidine (AZA) activate otherwise silenced tumor suppressor genes, alter immune response and epigenetically reprogram tumor cells. In this study, we show that non-cytotoxic nanomolar DAC concentrations modify the bladder cancer transcriptome to activate NOTCH1 at the mRNA and protein level, increase double-stranded RNA sensors and CK5-dependent differentiation. Importantly, DAC treatment increases ICN1 expression (the active intracellular domain of NOTCH1) significantly inhibiting cell proliferation and causing changes in cell size inducing morphological alterations reminiscent of senescence. These changes were not associated with β-galactosidase activity or increased p16 levels, but instead were associated with substantial IL-6 release. Increased IL-6 release was observed in both DAC-treated and ICN1 overexpressing cells as compared to control cells. Exogenous IL-6 expression was associated with a similar enlarged cell morphology that was rescued by the addition of a monoclonal antibody against IL-6. Treatment with DAC, overexpression with ICN1 or addition of exogenous IL-6 showed CK5 reduction, a surrogate marker of differentiation. Overall this study suggests that in MIBC cells, DNA hypomethylation increases NOTCH1 expression and IL-6 release to induce CK5-related differentiation.
Collapse
|
5
|
Henrickson M, Wang H. Tocilizumab reverses cerebral vasculopathy in a patient with homozygous SAMHD1 mutation. Clin Rheumatol 2017; 36:1445-1451. [PMID: 28289923 PMCID: PMC5486483 DOI: 10.1007/s10067-017-3600-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 02/28/2017] [Accepted: 03/05/2017] [Indexed: 12/19/2022]
Abstract
An auto-inflammatory syndrome consequent to SAMHD1 mutations involves cerebral vasculopathy characterized by multifocal stenosis and aneurysms within large arteries, moyamoya, chronic ischemia, and early-onset strokes (SAMS). While this condition involves the innate immune system, additional clinical features mimic systemic lupus erythematosus. Mutations in this gene can also cause a subset of the rare genetic condition Aicardi-Goutières syndrome. To date, no established therapy successfully prevents disease progression. We report a corticosteroid-dependent SAMS patient, a 19-year-old male of Old Order Amish ancestry, with diffuse cerebral arteriopathy identified through contrast brain magnetic resonance arteriography (MRA) and MRI. He received subcutaneous adalimumab every 2 weeks for 9 months with minimal response. Then, he started intravenous tocilizumab (6 mg/kg/dose) every 4 weeks. He sustained steadily normalizing cerebral vasculopathy and lab abnormalities resolved, allowing prednisone reduction. We conclude that the cerebral vasculopathy of the homozygous SAMHD1 mutation-mediated auto-inflammatory disease SAMS responded favorably to tocilizumab infusion therapy.
Collapse
Affiliation(s)
- Michael Henrickson
- Division of Rheumatology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave., Cincinnati, OH, 45229-3029, USA.
| | - Heng Wang
- DDC Clinic for Special Needs Children, Middlefield, OH, USA
| |
Collapse
|
6
|
Zimmermann M, Arruda-Silva F, Bianchetto-Aguilera F, Finotti G, Calzetti F, Scapini P, Lunardi C, Cassatella MA, Tamassia N. IFNα enhances the production of IL-6 by human neutrophils activated via TLR8. Sci Rep 2016; 6:19674. [PMID: 26790609 PMCID: PMC4726390 DOI: 10.1038/srep19674] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 12/04/2015] [Indexed: 12/26/2022] Open
Abstract
Recently, we reported that human neutrophils produce biologically active amounts of IL-6 when incubated with agonists activating TLR8, a receptor recognizing viral single strand RNA. In this study, we demonstrate that IFNα, a cytokine that modulates the early innate immune responses toward viral and bacterial infections, potently enhances the production of IL-6 in neutrophils stimulated with R848, a TLR8 agonist. We also show that such an effect is not caused by an IFNα-dependent induction of TLR7 and its consequent co-activation with TLR8 in response to R848, but, rather, it is substantially mediated by an increased production and release of endogenous TNFα. The latter cytokine, in an autocrine manner, leads to an augmented synthesis of the IkBζ co-activator and an enhanced recruitment of the C/EBPβ transcription factor to the IL-6 promoter. Moreover, we show that neutrophils from SLE patients with active disease state, hence displaying an IFN-induced gene expression signature, produce increased amounts of both IL-6 and TNFα in response to R848 as compared to healthy donors. Altogether, data uncover novel effects that type I IFN exerts in TLR8-activated neutrophils, which therefore enlarge our knowledge on the various biological actions which type I IFN orchestrates during infectious and autoimmune diseases.
Collapse
Affiliation(s)
- Maili Zimmermann
- Department of Medicine, Division of General Pathology, University of Verona, Verona, Italy
| | - Fabio Arruda-Silva
- Department of Medicine, Division of General Pathology, University of Verona, Verona, Italy
| | | | - Giulia Finotti
- Department of Medicine, Division of General Pathology, University of Verona, Verona, Italy
| | - Federica Calzetti
- Department of Medicine, Division of General Pathology, University of Verona, Verona, Italy
| | - Patrizia Scapini
- Department of Medicine, Division of General Pathology, University of Verona, Verona, Italy
| | | | - Marco A Cassatella
- Department of Medicine, Division of General Pathology, University of Verona, Verona, Italy
| | - Nicola Tamassia
- Department of Medicine, Division of General Pathology, University of Verona, Verona, Italy
| |
Collapse
|
7
|
Chiang ET, Persaud-Sawin DA, Kulkarni S, Garcia JGN, Imani F. Bluetongue virus and double-stranded RNA increase human vascular permeability: role of p38 MAPK. J Clin Immunol 2006; 26:406-16. [PMID: 16786433 DOI: 10.1007/s10875-006-9024-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Endothelial cell (EC) involvement in viral hemorrhagic fevers has been clearly established. However, virally activated mechanisms leading to endothelial activation and dysfunction are not well understood. Several different potential mechanisms such as direct viral infection, alterations in procoagulant/anticoagulant balance, and increased cytokine production have been suggested. We utilized a model of EC barrier dysfunction and vascular endothelial leakage to explore the effect of bluetongue virus (BTV), a hemorrhagic fever virus of ruminants, on human lung endothelial cell barrier properties. Infection of human lung EC with BTV induced a significant and dose-dependent decrease in trans-endothelial electrical resistance (TER). Furthermore, decreases in TER occurred in conjunction with cytoskeletal rearrangement, suggesting a direct mechanism for viral infection-mediated endothelial barrier disruption. Interestingly, double-stranded RNA (dsRNA) mimicked the effects of BTV on endothelial barrier properties. Both BTV- and dsRNA-induced endothelial barrier dysfunction was blocked by treatment with a pharmacological inhibitor of p38 MAPK. The induction of vascular permeability by dsRNA treatment or BTV infection was concomitent with induction of inflammatory cytokines. Taken together, our data suggest that the presence of dsRNA during viral infections and subsequent activation of p38 MAPK is a potential molecular pathway for viral induction of hemorrhagic fevers. Collectively, our data suggest that inhibition of p38 MAPK may be a possible therapeutic approach to alter viral-induced acute hemorrhagic diseases.
Collapse
Affiliation(s)
- Eddie T Chiang
- University of Chicago, Pritzker School of Medicine, Chicago, Illinois 60637, USA
| | | | | | | | | |
Collapse
|
8
|
Punturieri A, Copper P, Polak T, Christensen PJ, Curtis JL. Conserved nontypeable Haemophilus influenzae-derived TLR2-binding lipopeptides synergize with IFN-beta to increase cytokine production by resident murine and human alveolar macrophages. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2006; 177:673-80. [PMID: 16785566 PMCID: PMC2373263 DOI: 10.4049/jimmunol.177.1.673] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Nontypeable Haemophilus influenzae (NTHi) is strongly associated with exacerbations of chronic obstructive pulmonary disease, which often coincide with viral respiratory infections. TLR2 contributes importantly to innate immunity to NTHi, but whether this pathway is affected by simultaneous antiviral responses is unknown. To analyze potential interactions, resident murine and human alveolar macrophages (AMphi) were exposed, in the presence or absence of the appropriate rIFN-beta, to synthetic lipopeptides corresponding to the triacylated N-terminal fragments of three outer membrane proteins (OMP) (PCP, P4, and P6) that are highly conserved among different NTHi strains. Synthetic OMP elicited strong release of IL-6, the principal inducer of airway mucin genes, and induced CCL5 and CXCL10 from murine AMphi only when IFN-beta was also present. Surprisingly, combined stimulation by OMPs and IFN-beta also markedly enhanced TNF-alpha release by murine AMphi. Stimulation with PCP plus IFN-beta induced IFN-regulatory factor 1 expression and sustained STAT1 activation, but did not alter the activation of MAPKs or NF-kappaB. AMphi derived from STAT1-deficient mice did not demonstrate increased production of TNF-alpha in response to PCP plus IFN-beta. Analysis of wild-type and STAT1-deficient AMphi using real-time PCR showed that increased TNF-alpha production depended on transcriptional up-regulation, but not on mRNA stabilization. The synergistic effect of synthetic OMP and IFN-beta was conserved between murine AMphi and human AMphi for IL-6, but not for TNF-alpha. Thus, IFN-beta, which is produced by virally infected respiratory epithelial cells, converts normally innocuous NTHi OMP into potent inflammatory stimulants, but does so via different mechanisms in mice and humans.
Collapse
Affiliation(s)
- Antonello Punturieri
- Pulmonary and Critical Care Medicine Section, and Research Service, Department of Veterans Affairs Health System, Ann Arbor, MI 48105
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, MI 48109
- Graduate Program in Immunology, University of Michigan Health System, Ann Arbor, MI 48109
| | - Phil Copper
- Pulmonary and Critical Care Medicine Section, and Research Service, Department of Veterans Affairs Health System, Ann Arbor, MI 48105
| | - Timothy Polak
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, MI 48109
| | - Paul J. Christensen
- Pulmonary and Critical Care Medicine Section, and Research Service, Department of Veterans Affairs Health System, Ann Arbor, MI 48105
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, MI 48109
| | - Jeffrey L. Curtis
- Pulmonary and Critical Care Medicine Section, and Research Service, Department of Veterans Affairs Health System, Ann Arbor, MI 48105
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, MI 48109
- Graduate Program in Immunology, University of Michigan Health System, Ann Arbor, MI 48109
| |
Collapse
|
9
|
Traynor TR, Majde JA, Bohnet SG, Krueger JM. Sleep and body temperature responses in an acute viral infection model are altered in interferon type I receptor-deficient mice. Brain Behav Immun 2006; 20:290-9. [PMID: 16243480 DOI: 10.1016/j.bbi.2005.08.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2005] [Revised: 08/25/2005] [Accepted: 08/31/2005] [Indexed: 12/28/2022] Open
Abstract
Type I interferons (IFNs) include IFNalpha and IFNbeta, both of which are elevated in acute viral infections and both of which have been shown to induce symptoms such as fever and somnolence when administered in pharmacological doses. To investigate the role of type I IFNs in mediation of acute respiratory viral symptoms we examined sleep and body temperature responses in mice with a targeted mutation of the IFN receptor type I (IFN-RI knockouts). IFN-RI knockouts (KOs) or wild-type 129 SvEv controls were challenged intratracheally (IT) with combined poly[rI.rC] (synthetic double-stranded RNA) and IFNgamma, a model that simulates an acute viral infection with respect to body temperature and locomotor activity responses. Control mice of both strains were treated with IT IFNgamma alone. Hypothermic responses to IT poly[rI.rC]/IFNgamma were more exaggerated in the IFN-RI KO mice than in wild-type. The non-rapid eye movement sleep (NREMS) response to IT poly[rI.rC]/IFNgamma was increased earlier in the IFN-RI KO mice than in wild-type, though the total time spent in NREMS was reduced in the KOs compared to wild-type and the return to baseline NREMS was faster in the KOs. The quality of NREMS also was altered more extensively in the wild-type than in the KO mice. Spontaneous rapid eye movement sleep (REMS) was suppressed in IFN-RI KOs as previously reported, but was not substantially altered in either mouse strain by IT poly[rI.rC]/IFNgamma challenge. Our results implicate type I IFNs as inhibitors of the hypothermic response and enhancers of the NREMS response to IT poly[rI.rC]/IFNgamma, a model of acute viral infection.
Collapse
Affiliation(s)
- Tim R Traynor
- Department of VCAPP, Washington State University, USA
| | | | | | | |
Collapse
|
10
|
Rogez-Kreuz C, Manéglier B, Martin M, Dereuddre-Bosquet N, Martal J, Dormont D, Clayette P. Involvement of IL-6 in the anti-human immunodeficiency virus activity of IFN-tau in human macrophages. Int Immunol 2005; 17:1047-57. [PMID: 15976033 DOI: 10.1093/intimm/dxh285] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
IFN-tau is a non-cytotoxic type I IFN responsible for maternal recognition of the foetus in ruminants. IFN-tau has been found to inhibit HIV replication more strongly than human IFN-alpha, particularly in human monocyte-derived macrophages, without associated toxicity. Ovine IFN-tau uses the same anti-viral cellular pathways as human IFN-alpha in human macrophages, principally inhibiting the early steps of the biological cycle of HIV, preventing the integration of HIV DNA into the host-cell genome. In this study, we investigated the immunomodulatory properties of IFN-tau in human macrophages. We found that IFN-tau increased the production of IL-10 and IL-6, but not of IL-1beta or tumour necrosis factor alpha, in unstimulated, LPS-stimulated and HIV-1/Ba-L-infected macrophages. We also found that treatment with IL-6 inhibited HIV replication. Moreover, the neutralization of IL-6 activity in the cell culture supernatants of IFN-tau-treated macrophages led to a decrease in the anti-retroviral effects of IFN-tau, suggesting that IL-6 was involved in the anti-viral activity induced by IFN-tau. By focusing on the very early steps of the biological cycle of HIV, we showed that IL-6 co-operated with IFN-tau to decrease intracellular HIV RNA levels 2 h after infection.
Collapse
Affiliation(s)
- Christine Rogez-Kreuz
- Service de Neurovirologie, Commissariat à l'Energie Atomique, Université Paris-Sud, CRSSA, EPHE, IPSC, Fontenay-aux-Roses, France
| | | | | | | | | | | | | |
Collapse
|
11
|
Klass CM, Krug LT, Pozharskaya VP, Offermann MK. The targeting of primary effusion lymphoma cells for apoptosis by inducing lytic replication of human herpesvirus 8 while blocking virus production. Blood 2005; 105:4028-34. [PMID: 15687238 PMCID: PMC1895088 DOI: 10.1182/blood-2004-09-3569] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Primary effusion lymphoma (PEL) is a B-cell lymphoma in which human herpesvirus-8 (HHV-8) is found within all tumor cells and represents a target for selectively destroying tumor cells. HHV-8 is latent in most PEL cells and, hence, resistant to antiviral agents that inhibit lytic replication. We demonstrate that PEL cell lines containing HHV-8 without and with coinfection with Epstein-Barr virus responded to the antiseizure medication valproate with entry into the lytic cascade and production of infectious virus. Minimal cell death occurred when noninfected BL-41 cells were incubated with valproate, whereas apoptosis occurred in response to valproate in PELs that supported lytic replication of HHV-8. The anti-viral agents ganciclovir and phosphonoformic acid (PFA) blocked valproate-induced production of infectious virus without blocking entry into the lytic cascade, and apoptosis occurred at levels that were as high as when virus production was not blocked. Ganciclovir and PFA also prevented most valproate-induced expression of the late lytic viral transcript open reading frame 26 (ORF-26), but they did not block the induction of either viral interleukin-6 (vIL-6) or viral G protein-coupled receptor (vGPCR). These studies provide evidence that incubation of PELs with valproate in the presence of ganciclovir or PFA can selectively target tumor cells for apoptosis without increasing viral load.
Collapse
Affiliation(s)
- Carmen M Klass
- Winship Cancer Institute, Emory University, 1365-B Clifton Rd NE, Atlanta, GA 30322, USA
| | | | | | | |
Collapse
|
12
|
Pozharskaya VP, Weakland LL, Zimring JC, Krug LT, Unger ER, Neisch A, Joshi H, Inoue N, Offermann MK. Short duration of elevated vIRF-1 expression during lytic replication of human herpesvirus 8 limits its ability to block antiviral responses induced by alpha interferon in BCBL-1 cells. J Virol 2004; 78:6621-35. [PMID: 15163753 PMCID: PMC416518 DOI: 10.1128/jvi.78.12.6621-6635.2004] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Human herpesvirus 8 (HHV-8) encodes multiple proteins that disrupt the host antiviral response, including viral interferon (IFN) regulatory factor 1 (vIRF-1). The product of the vIRF-1 gene blocks responses to IFN when overexpressed by transfection, but the functional consequence of vIRF-1 that is expressed during infection with HHV-8 is not known. These studies demonstrate that BCBL-1 cells that were latently infected with HHV-8 expressed low levels of vIRF-1 that were associated with PML bodies, whereas much higher levels of vIRF-1 were transiently expressed during the lytic phase of HHV-8 replication. The low levels of vIRF-1 that were associated with PML bodies were insufficient to block alpha IFN (IFN-alpha)-induced alterations in gene expression, whereas cells that expressed high levels of vIRF-1 were resistant to some changes induced by IFN-alpha, including the expression of the double-stranded-RNA-activated protein kinase. High levels of vIRF-1 were expressed for only a short period during the lytic cascade, so many cells with HHV-8 in the lytic phase responded to IFN-alpha with increased expression of antiviral genes and enhanced apoptosis. Furthermore, the production of infectious virus was severely compromised when IFN-alpha was present early during the lytic cascade. These studies indicate that the transient expression of high levels of vIRF-1 is inadequate to subvert many of the antiviral effects of IFN-alpha so that IFN-alpha can effectively induce apoptosis and block production of infectious virus when present early in the lytic cascade of HHV-8.
Collapse
Affiliation(s)
- Veronika P Pozharskaya
- Winship Cancer Institute, Emory University, 1365-B Clifton Road N.E., Atlanta, GA 30322, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Van Reeth K, Van Gucht S, Pensaert M. Correlations between lung proinflammatory cytokine levels, virus replication, and disease after swine influenza virus challenge of vaccination-immune pigs. Viral Immunol 2003; 15:583-94. [PMID: 12513929 DOI: 10.1089/088282402320914520] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
During experimental infection of pigs with swine influenza virus (SIV), there is a strong temporal correlation between peak virus titers in the lungs, levels of different proinflammatory cytokines in bronchoalveolar lavage (BAL) fluids, and disease. Vaccination against SIV can greatly reduce or prevent virus replication after challenge and the resulting disease. Here, we took advantage of pigs from vaccination-challenge experiments, with different degrees of virological and clinical protection, to further correlate SIV replication with cytokines and disease. Forty-nine pigs were vaccinated twice with a commercial inactivated SIV vaccine or with experimental vaccines, and 35 control pigs were not vaccinated. Between 2 and 4 weeks after the last vaccination, all pigs were challenged intratracheally with SIV. Twenty-four hours after the challenge, we determined body temperatures, respiratory scores, lung virus titers, and neutrophils and cytokines in BAL fluids. Interferon-alpha (IFN-alpha), tumor necrosis factor (TNF-alpha), interleukin-1 (IL-1), and -6 (IL-6) were determined by bioassay, and IL-8 by a commercial ELISA. The results were analyzed for three comparison groups. The unvaccinated control pigs (group 1, n = 35) were positive for all or most parameters examined. Vaccinated pigs with challenge virus replication in the lungs (group 2, n = 28) had slightly lower virus titers than the challenge control pigs, and clear reductions in disease severity and mean titers of all five cytokines, but neutrophil numbers were not affected. Vaccinated pigs without detectable virus replication (group 3, n = 21) were largely protected against clinical signs and neutrophil infiltration. Mean levels of IFN-alpha, TNF-alpha, and IL-6, but not IL-1 or IL-8, were lower than in both other groups. Virus titers in the lungs of individual pigs showed highly significant correlations with IFN-alpha and IL-6, and lower correlations with TNF-alpha and IL-8. Clinical signs were most closely associated with IFN-alpha, IL-6, and TNF-alpha. The relationship between disease and IL-8 or IL-1 was much weaker. Our data provide further evidence for a role of IFN-alpha, TNF-alpha, and IL-6 in the pathogenesis of SIV. The similarities with cytokine profiles during human influenza virus infection are discussed.
Collapse
Affiliation(s)
- K Van Reeth
- Laboratory of Virology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium.
| | | | | |
Collapse
|
14
|
Roan F, Inoue N, Offermann MK. Activation of cellular and heterologous promoters by the human herpesvirus 8 replication and transcription activator. Virology 2002; 301:293-304. [PMID: 12359431 DOI: 10.1006/viro.2002.1582] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The key regulator of the switch from latent to lytic replication of the human herpesvirus 8 (HHV-8; KSHV) is the replication and transcription activator (Rta). The ability of Rta to regulate cellular gene expression was examined by transient transfection into cells that were not infected with HHV-8. Rta induced some, but not all, NF-kappa B-responsive reporters through mechanisms that did not involve activation of classic forms of NF-kappa B. Furthermore, transfection of the NF-kappa B subunit Rel A inhibited the ability of Rta to transactivate some but not all reporters. For example, Rel A inhibited the ability of Rta to transactivate the IL-6 promoter, but only when sequences upstream of the NF-kappa B site were present. The ability of Rel A to inhibit Rta-mediated transactivation was not dependent on a functional NF-kappa B site within the promoter, suggesting an indirect mechanism for inhibition. These studies suggest that Rta expression during lytic reactivation of HHV-8 would lead to expression of some cellular genes, including IL-6, whereas activation of NF-kappa B could inhibit some responses to Rta.
Collapse
Affiliation(s)
- Florence Roan
- Winship Cancer Institute, Emory University, Atlanta, Georgia 30322, USA
| | | | | |
Collapse
|
15
|
Sitaraman SV, Merlin D, Wang L, Wong M, Gewirtz AT, Si-Tahar M, Madara JL. Neutrophil-epithelial crosstalk at the intestinal lumenal surface mediated by reciprocal secretion of adenosine and IL-6. J Clin Invest 2001; 107:861-9. [PMID: 11285305 PMCID: PMC199578 DOI: 10.1172/jci11783] [Citation(s) in RCA: 142] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Adenosine is formed in the intestinal lumen during active inflammation from neutrophil-derived 5' AMP. Using intestinal epithelial cell line T84, we studied the effect of adenosine on the secretion of IL-6, a proinflammatory cytokine involved in neutrophil degranulation and lymphocyte differentiation. Stimulation of T84 monolayers with either apical or basolateral adenosine induces A2b receptor-mediated increase in IL-6 secretion, which is polarized to the apical (luminal) compartment. In addition, Salmonella typhimurium, TNF-alpha, and forskolin, known inducers of IL-6 secretion in intestinal epithelial cells, also stimulate IL-6 secretion into the apical compartment. We show that IL6 promoter induction by adenosine occurs through cAMP-mediated activation of nuclear cAMP-responsive element-binding protein (CREB). We also show that IL-6 released in the luminal (apical) compartment achieves a sufficient concentration to activate neutrophils (from which the adenosine signal originates), since such IL-6 is found to induce an intracellular [Ca(++)] flux in neutrophils. We conclude that adenosine released in the intestinal lumen during active inflammation may induce IL-6 secretion, which is mediated by cAMP/CREB activation and occurs in an apically polarized fashion. This would allow sequential activation of neutrophil degranulation in the lumen -- a flow of events that would, in an epithelium-dependent fashion, enhance microbicidal activity of neutrophils as they arrive in the intestinal lumen.
Collapse
Affiliation(s)
- S V Sitaraman
- Epithelial Pathobiology Unit, Department of Pathology, Emory University, Atlanta, Georgia, USA.
| | | | | | | | | | | | | |
Collapse
|
16
|
Harcourt JL, Offermann MK. Multiple signaling cascades are differentially involved in gene induction by double stranded RNA in interferon-alpha-primed cells. EUROPEAN JOURNAL OF BIOCHEMISTRY 2001; 268:1373-81. [PMID: 11231289 DOI: 10.1046/j.1432-1327.2001.02003.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Priming with interfon (IFN)alpha enhanced the ability of the synthetic double-stranded RNA polyriboinosinic acid: polyribocytidilic acid (pI:C), but not interleukin-1 beta, to activate both p38 mitogen-activated kinase (MAPK) and extracellular signal-regulated kinase (ERK) signaling cascades. Activation by pI:C in IFN alpha-primed cells was delayed compared to activation with interleukin-1 beta, and this delay was followed by high, sustained activation of p38 MAPK and a modest elevation of ERK activation. Pharmacologic inhibition of either the ERK or the p38 MAPK pathway, using U0126 and SB203580, respectively, reduced interleukin-6 protein induction by at least 70%, and combined inhibition of both pathways fully blocked interleukin-6 protein expression and reduced interleukin-6 mRNA induction by more than 80%. In contrast, induction of double-stranded RNA-activated protein kinase (PKR) mRNA and protein by IFN alpha and/or pI:C was minimally affected by either inhibitor. Induction of interferon-regulatory factor-1 (IRF-1) by pI:C in IFN alpha primed cells was profoundly inhibited by U0126 but not by SB203580. Thus, IFN alpha priming enhances activation of p38 MAPK and ERK pathways by pI:C but not by interleukin-1 beta, thereby enhancing the expression of some, but not all, genes that are induced by pI:C.
Collapse
Affiliation(s)
- J L Harcourt
- Program in Biochemistry, Cellular and Developmental Biology, Emory University, Atlanta, Georgia, USA
| | | |
Collapse
|
17
|
Harcourt JL, Hagan MK, Offermann MK. Modulation of double-stranded RNA-mediated gene induction by interferon in human umbilical vein endothelial cells. J Interferon Cytokine Res 2000; 20:1007-13. [PMID: 11096458 DOI: 10.1089/10799900050198453] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Endothelial cells respond to double-stranded RNA (dsRNA) with expression of a number of important immunomodulatory and inflammatory response genes, including adhesion molecules, cytokines, and antiviral genes. Considerable differences are seen when genes are induced by dsRNA compared with cytokines. Much higher levels of mRNA for interleukin-6 (IL-6), 2',5'-oligoadenylate synthetase (2',5'-OAS), protein kinase (PKR), and interferon (IFN) regulatory factor-1 (IRF-1) result from incubation with dsRNA than with IL-1beta, tumor necrosis factor-alpha (TNF-alpha), or IFN-alpha, whereas the differences in vascular cell adhesion molecule-1 (VCAM-1), intercellular adhesion molecule-1 (ICAM-1), and E-selectin mRNA expression in response to dsRNA, IL-1beta, and TNF-alpha are relatively minor. IFN-alpha priming enhances responsiveness of some, but not all, genes to dsRNA but not to IL-1beta, but the optimal time for pretreatment varies considerably among different dsRNA-responsive genes. Protein translation is reduced in human umbilical vein endothelial cells (HUVEC) in response to incubation with dsRNA, and this decrease is accentuated if cells are primed with IFN-alpha. Despite this decrease, IFN-alpha priming causes very high levels of IL-6 protein expression in response to dsRNA but not in response to IL-1beta or TNF-alpha. These studies demonstrate that priming with class I IFN can enhance the response to dsRNA through the heightened expression of genes that contribute to both the cellular response to viral infection and the host immunologic response.
Collapse
Affiliation(s)
- J L Harcourt
- Program in Biochemistry, Cellular and Developmental Biology, Emory University, Atlanta, GA 30322, USA
| | | | | |
Collapse
|