1
|
A two-enzyme cascade system for the bio-production of spermidine from putrescine. MOLECULAR CATALYSIS 2021. [DOI: 10.1016/j.mcat.2021.111439] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
2
|
Copp RR, Peebles DD, Soref CM, Fahl WE. Radioprotective efficacy and toxicity of a new family of aminothiol analogs. Int J Radiat Biol 2013; 89:485-92. [PMID: 23369131 DOI: 10.3109/09553002.2013.770579] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
PURPOSE A family of 17 new nucleophilic-polyamine and aminothiol structures was designed and synthesized to identify new topical or systemic radioprotectors with acceptable mammalian toxicity profiles. design elements included: (i) Length and charge of the DNA-interacting, alkylamine backbone, (ii) nucleophilicity of the reactive oxygen species (ROS)-scavenging group, and (iii) non-toxic drug concentration achievable in animal tissues. MATERIALS AND METHODS Mouse maximum tolerated doses (MTD) were determined by increasing intraperitoneal (IP) doses. To assess radioprotective efficacy, mice received IP 0.5 MTD doses prior to an LD95 radiation dose (8.63 Gy), and survival was monitored. Topically applied aminothiol was also scored for prevention of radiation-induced dermatitis (17.3 Gy to skin). RESULTS The most radioprotective aminothiols had 4-6 carbons and 1-2 amines, and unlike amifostine and its analogs, displayed a terminal thiol from an alkyl side chain that projected the thiol away from the DNA major groove into the environment surrounding the DNA. The five carbon, single thiol, alkylamine, PrC-210, conferred 100% survival to an otherwise 100% lethal dose of whole-body radiation and achieved 100% prevention of Grade 2-3 radiation dermatitis. By mass spectrometry analysis, the one aminothiol that was tested formed mixed disulfides with cysteine and glutathione. CONCLUSIONS Multiple, highly radioprotective, aminothiol structures, with acceptable systemic toxicities, were identified.
Collapse
|
3
|
Ligabue A, Marverti G, Liebl U, Myllykallio H. Transcriptional activation and cell cycle block are the keys for 5-fluorouracil induced up-regulation of human thymidylate synthase expression. PLoS One 2012; 7:e47318. [PMID: 23056627 PMCID: PMC3467224 DOI: 10.1371/journal.pone.0047318] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2012] [Accepted: 09/14/2012] [Indexed: 12/27/2022] Open
Abstract
Background 5-fluorouracil, a commonly used chemotherapeutic agent, up-regulates expression of human thymidylate synthase (hTS). Several different regulatory mechanisms have been proposed to mediate this up-regulation in distinct cell lines, but their specific contributions in a single cell line have not been investigated to date. We have established the relative contributions of these previously proposed regulatory mechanisms in the ovarian cancer cell line 2008 and the corresponding cisplatin-resistant and 5-FU cross-resistant-subline C13*. Methodology/Principal Findings Using RNA polymerase II inhibitor DRB treated cell cultures, we showed that 70–80% of up-regulation of hTS results from transcriptional activation of TYMS mRNA. Moreover, we report that 5-FU compromises the cell cycle by blocking the 2008 and C13* cell lines in the S phase. As previous work has established that TYMS mRNA is synthesized in the S and G1 phase and hTS is localized in the nuclei during S and G2-M phase, the observed cell cycle changes are also expected to affect the intracellular regulation of hTS. Our data also suggest that the inhibition of the catalytic activity of hTS and the up-regulation of the hTS protein level are not causally linked, as the inactivated ternary complex, formed by hTS, deoxyuridine monophosphate and methylenetetrahydrofolate, was detected already 3 hours after 5-FU exposure, whereas substantial increase in global TS levels was detected only after 24 hours. Conclusions/Significance Altogether, our data indicate that constitutive TYMS mRNA transcription, cell cycle-induced hTS regulation and hTS enzyme stability are the three key mechanisms responsible for 5-fluorouracil induced up-regulation of human thymidylate synthase expression in the two ovarian cancer cell lines studied. As these three independent regulatory phenomena occur in a precise order, our work provides a feasible rationale for earlier observed synergistic combinations of 5-FU with other drugs and may suggest novel therapeutic strategies.
Collapse
Affiliation(s)
- Alessio Ligabue
- INSERM U696, Palaiseau, France
- Laboratoire d'Optique et Biosciences, CNRS, Ecole Polytechnique, Palaiseau, France
| | - Gaetano Marverti
- Dipartimento di Scienze Biomediche, Sezione di Chimica Biologica, University of Modena and Reggio Emilia, Modena, Italy
| | - Ursula Liebl
- INSERM U696, Palaiseau, France
- Laboratoire d'Optique et Biosciences, CNRS, Ecole Polytechnique, Palaiseau, France
| | - Hannu Myllykallio
- INSERM U696, Palaiseau, France
- Laboratoire d'Optique et Biosciences, CNRS, Ecole Polytechnique, Palaiseau, France
- * E-mail:
| |
Collapse
|
4
|
Kjellström J, Oredsson SM, Wennerberg J. Increased toxicity of a trinuclear Pt-compound in a human squamous carcinoma cell line by polyamine depletion. Cancer Cell Int 2012; 12:20. [PMID: 22640800 PMCID: PMC3487936 DOI: 10.1186/1475-2867-12-20] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Accepted: 05/28/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Mononuclear platinum anticancer agents hold a pivotal place in the treatment of many forms of cancers, however, there is a potential to improve response to evade resistance development and toxic side effects. BBR3464 is a promising trinuclear platinum anticancer agent, which is a polyamine mimic. The aim was to investigate the influence of polyamine pool reduction on the cytotoxic effects of the trinuclear platinum complex BBR3464 and cisplatin. Polyamine pool reduction was achieved by treating cells with either the polyamine biosynthesis inhibitor α-difluoromethylornithine (DFMO) or the polyamine analogue N1,N11-diethylnorspermine (DENSPM). METHODS A human squamous cell carcinoma cell line, LU-HNSCC-4, established from a primary head and neck tumour was used to evaluate cellular effects of each drug alone or combinations thereof. High-performance liquid-chromatography was used to quantify intracellular polyamine contents. Inductively coupled mass spectroscopy was used to quantify intracellular platinum uptake. Cells were exposed to DFMO or DENSPM during 48 h at concentrations ranging from 0 to 5 mM or 0 to 10 μM, respectively. Thereafter, non-treated and treated cells were exposed to cisplatin or BBR3464 during 1 h at concentrations ranging from 0 to 100 μM. A 96-well assay was used to determine cytotoxicity after five days after treatment. RESULTS The cytotoxic effect of BBR3464 on LU-HNSCC-4 cells was increased after cells were pre-treated with DENSPM or DFMO, and the interaction was found to be synergistic. In contrast, the interaction between cisplatin and DFMO or DENSPM was near-additive to antagonistic. The intracellular levels of the polyamines putrescine and spermidine were decreased after treatment with DFMO, and treatment with DENSPM resulted in an increase in putrescine level and concomitant decrease in spermidine and spermine levels. The uptake of BBR3464 was significantly increased after pre-treatment of the cells with DFMO, and varied dependent on the concentration of DENSPM. The uptake of cisplatin was unchanged. CONCLUSIONS Taken together, these results demonstrate that combinations of polyamine synthesis inhibitors with BBR3464 appear to be a promising approach to enhance the anticancer activity against HSCC.
Collapse
Affiliation(s)
- Johan Kjellström
- Department of Otorhinolaryngology/Head and Neck Surgery, University Hospital, S-221 85, Lund, Sweden.
| | | | | |
Collapse
|
5
|
Novel anti-apoptotic effect of the retinoblastoma protein: implications for polyamine analogue toxicity. Amino Acids 2011; 42:929-37. [PMID: 21809081 DOI: 10.1007/s00726-011-1007-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2011] [Accepted: 06/28/2011] [Indexed: 01/04/2023]
Abstract
The retinoblastoma protein (pRb) pathway is frequently altered in breast cancer cells. pRb is involved in the regulation of cell proliferation and cell death. The breast cancer cell line L56Br-C1 does not express pRb and is extremely sensitive to treatment with the polyamine analogue N(1),N(11)-diethylnorspermine (DENSPM) which causes apoptosis. Polyamines are essential for the regulation of cell proliferation, cell differentiation and cell death. DENSPM depletes cells of polyamines, e.g., by inducing the activity of the polyamine catabolic enzyme spermidine/spermine N(1)-acetyltransferase (SSAT). In this study, L56Br-C1 cells were transfected with human pRb-cDNA. Overexpression of pRb inhibited DENSPM-induced cell death and DENSPM-induced SSAT activity. This suggests that the pRb protein level is a promising marker for polyamine depletion sensitivity and that there is a connection between pRb and the regulation of SSAT activity. We also show that SSAT protein levels and SSAT activity do not always correlate, suggesting that there is an unknown regulation of SSAT.
Collapse
|
6
|
Xie S, Wang J, Zhang Y, Wang C. Antitumor conjugates with polyamine vectors and their molecular mechanisms. Expert Opin Drug Deliv 2010; 7:1049-61. [DOI: 10.1517/17425247.2010.504205] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
7
|
Abstract
Cell-cycle progression is a one-way journey where the cell grows in size to be able to divide into two equally sized daughter cells. The cell cycle is divided into distinct consecutive phases defined as G(1) (first gap), S (synthesis), G(2) (second gap) and M (mitosis). A non-proliferating cell, which has retained the ability to enter the cell cycle when it receives appropriate signals, is in G(0) phase, and cycling cells that do not receive proper signals leave the cell cycle from G(1) into G(0). One of the major events of the cell cycle is the duplication of DNA during S-phase. A group of molecules that are important for proper cell-cycle progression is the polyamines. Polyamine biosynthesis occurs cyclically during the cell cycle with peaks in activity in conjunction with the G(1)/S transition and at the end of S-phase and during G(2)-phase. The negative regulator of polyamine biosynthesis, antizyme, shows an inverse activity compared with the polyamine biosynthetic activity. The levels of the polyamines, putrescine, spermidine and spermine, double during the cell cycle and show a certain degree of cyclic variation in accordance with the biosynthetic activity. When cells in G(0)/G(1) -phase are seeded in the presence of compounds that prevent the cell-cycle-related increases in the polyamine pools, the S-phase of the first cell cycle is prolonged, whereas the other phases are initially unaffected. The results point to an important role for polyamines with regard to the ability of the cell to attain optimal rates of DNA replication.
Collapse
|
8
|
Normal-like breast cells, but not breast cancer cells, recovered from treatment with N′,N′′-diethylnorspermine. Anticancer Drugs 2009; 20:230-7. [DOI: 10.1097/cad.0b013e328323fc98] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
9
|
Johansson VM, Oredsson SM, Alm K. Polyamine depletion with two different polyamine analogues causes DNA damage in human breast cancer cell lines. DNA Cell Biol 2008; 27:511-6. [PMID: 18554080 DOI: 10.1089/dna.2008.0750] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
It is well known that the positively charged polyamines have a DNA-stabilizing function and that polyamine depletion alters chromatin function. We have previously shown that polyamine depletion causes an S phase prolongation, and others have shown that there is an accumulation of Okazaki-like fragments in polyamine-depleted cells. In the present study, we have used the comet assay to investigate polyamine depletion-induced DNA strand breaks. Three breast cancer cell lines and one normal-like breast cell line were treated with the polyamine analogue N(1),N(11)-diethylnorspermine or with the polyamine biosynthesis inhibitor 4-amidinoindan-1-one 2'-amidinohydrazone (CGP 48664). The comet assay showed that polyamine depletion resulted in DNA strand breaks. We also show that these DNA strand breaks occurred in cells where there was no expression of gamma-H2AX, which is a marker of DNA double-strand breaks. Thus, our conclusion is that polyamine depletion causes DNA single-strand breaks, which may be the cause for the observed delay in S phase progression.
Collapse
Affiliation(s)
- Veronica M Johansson
- Department of Cell and Organism Biology, Animal Physiology, Lund University, Lund, Sweden.
| | | | | |
Collapse
|
10
|
Li W, Liu X, Wang W, Sun H, Hu Y, Lei H, Liu G, Gao Y. Effects of antisense RNA targeting of ODC and AdoMetDC on the synthesis of polyamine synthesis and cell growth in prostate cancer cells using a prostatic androgen-dependent promoter in adenovirus. Prostate 2008; 68:1354-61. [PMID: 18548481 DOI: 10.1002/pros.20800] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
PURPOSE This study was designed to investigate the use of a prostatic androgen-dependent promoter to mediate antisense targeting of ornithine decarboxylase (ODC) and S-adenosylmethionine decarboxylase (AdoMetDC) and its effects on the synthesis of polyamine. We also examined the potential of this construct for prostate cancer therapy. METHODS pADxsi-PSES-AdoMetDC-ODC-PolyA AV was constructed and used to infect various cancer cell lines, including LNCaP, HT-29, H1299, HepG2. The effects of pADxsi-PSES-AdoMetDC-ODC-PolyA AV on the expression of ODC and AdoMetDC, in addition to the cell cycle, apoptosis and p21 levels, were analyzed through Western blotting and cytometry. A Matrigel invasion assay was used to analyze the effects of the recombinant virus on tumor cell invasion. The effect on polyamine content was also determined, and the relationship between inhibition of cellular ODC and AdoMetDC and decreases in polyamine were also investigated using a polyamine recovery assay. RESULTS Treatment with pADxsi-PSES-AdoMetDC-ODC-PolyA at an MOI of 90 significantly inhibited the proliferation of LNCaP cells, which could not be recovered through the addition of exogenous putrescine. The expression of ODC and AdoMetDC was also reduced, as was the polyamine content. The G1 phase of LNCaP cells was delayed, but no increase in apoptosis was detected. The down-regulation of ODC and AdoMetDC led to increased p21 expression. CONCLUSIONS The pADxsi-PSES-AdoMetDC-ODC-PolyA AV specifically inhibited the expression of ODC and AdoMetDC and the synthesis of polyamine, while it induced p21 expression, resulting in cell growth arrest in the G1 phase in prostate cancer cells but not in other cells.
Collapse
Affiliation(s)
- Wei Li
- Institute of Biochemistry and Molecular Biology, School of Medicine, Shandong University, Jinan, Shandong, China
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Johansson VM, Miniotis MF, Hegardt C, Jönsson G, Staaf J, Berntsson PSH, Oredsson SM, Alm K. Effect of polyamine deficiency on proteins involved in Okazaki fragment maturation. Cell Biol Int 2008; 32:1467-77. [PMID: 18786645 DOI: 10.1016/j.cellbi.2008.08.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Polyamine depletion causes S phase prolongation, and earlier studies indicate that the elongation step of DNA replication is affected. This led us to investigate the effects of polyamine depletion on enzymes crucial for Okazaki fragment maturation in the two breast cancer cell lines MCF-7 and L56Br-C1. In MCF-7 cells, treatment with N(1),N(11)-diethylnorspermine (DENSPM) causes S phase prolongation. In L56Br-C1 cells the prolongation is followed by massive apoptosis. In the present study we show that L56Br-C1 cells have substantially lower basal expressions of two Okazaki fragment maturation key proteins, DNA ligase I and FEN1, than MCF-7 cells. Thus, these two proteins might be promising markers for prediction of polyamine depletion sensitivity, something that can be useful for cancer treatment with polyamine analogues. DENSPM treatment affects the cellular distribution of FEN1 in L56Br-C1 cells, but not in MCF-7 cells, implying that FEN1 is affected by or involved in DENSPM-induced apoptosis.
Collapse
Affiliation(s)
- Veronica M Johansson
- Department of Cell and Organism Biology, Lund University, Helgonavägen 3B, SE-223 62 Lund, Sweden.
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Different cell cycle kinetic effects of N 1,N 11-diethylnorspermine-induced polyamine depletion in four human breast cancer cell lines. Anticancer Drugs 2008; 19:359-68. [DOI: 10.1097/cad.0b013e3282f7f518] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
13
|
Deng W, Jiang X, Mei Y, Sun J, Ma R, Liu X, Sun H, Tian H, Sun X. Role of ornithine decarboxylase in breast cancer. Acta Biochim Biophys Sin (Shanghai) 2008; 40:235-243. [PMID: 18330478 DOI: 10.1111/j.1745-7270.2008.00397.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Ornithine decarboxylase (ODC), the rate-limiting enzyme in polyamine biosynthesis that decarboxylates ornithine to putrescine, has become a promising target for cancer research. The aim of this study is to investigate the role of ODC in breast cancer. We detected expression of ODC in breast cancer tissues and four breast cancer cell lines, and transfected breast cancer cells with an adenoviral vector carrying antisense ODC (rAd-ODC/Ex3as) and examined their growth and migration. ODC was overexpressed in breast cancer tissues and cell lines compared with non-tumor tissues and normal breast epithelial cells, and there was a positive correlation between the level of ODC mRNA and the staging of tumors. The expression of ODC correlated with cyclin D1, a cell cycle protein, in synchronized breast cancer MDA-MB-231 cells. Gene transfection of rAd-ODC/Ex3as markedly down-regulated expression of ODC and cyclin D1, resulting in suppression of proliferation and cell cycle arrest at G0-G1 phase, and the inhibition of colony formation, an anchorage-independent growth pattern, and the migratory ability of MDA-MB-231 cells. rAd-ODC/Ex3as also markedly reduced the concentration of putrescine, but not spermidine or spermine, in MDA-MB-231 cells. The results suggested that the ODC gene might act as a prognostic factor for breast cancer and it could be a promising therapeutic target.
Collapse
Affiliation(s)
- Wensheng Deng
- Department of Breast Surgery, Qilu Hospital of Shandong University, Jinan 250012, China
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Zahedi K, Bissler JJ, Wang Z, Josyula A, Lu L, Diegelman P, Kisiel N, Porter CW, Soleimani M. Spermidine/spermine N1-acetyltransferase overexpression in kidney epithelial cells disrupts polyamine homeostasis, leads to DNA damage, and causes G2 arrest. Am J Physiol Cell Physiol 2007; 292:C1204-15. [PMID: 17065202 DOI: 10.1152/ajpcell.00451.2006] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Expression of spermidine/spermine N1-acetyltransferase (SSAT) increases in kidneys subjected to ischemia-reperfusion injury (IRI). Increased expression of SSAT in vitro leads to alterations in cellular polyamine content, depletion of cofactors and precursors of polyamine synthesis, and reduced cell proliferation. In our model system, a >28-fold increase in SSAT levels in HEK-293 cells leads to depletion of polyamines and elevation in the enzymatic activities of ornithine decarboxylase and S-adenosylmethionine decarboxylase, suggestive of a compensatory reaction to increased polyamine catabolism. Increased expression of SSAT also led to DNA damage and G2 arrest. The increased DNA damage was primarily due to the depletion of polyamines. Other factors such as increased production of H2O2 due to polyamine oxidase activity may play a secondary role in the induction of DNA lesions. In response to DNA damage the ATM/ATR → Chk1/2 DNA repair and cell cycle checkpoint pathways were activated, mediating the G2 arrest in SSAT-expressing cells. In addition, the activation of ERK1 and ERK2, which play integral roles in the G2/M transition, is impaired in cells expressing SSAT. These results indicate that the disruption of polyamine homeostasis due to enhanced SSAT activity leads to DNA damage and reduced cell proliferation via activation of DNA repair and cell cycle checkpoint and disruption of Raf → MEK → ERK pathways. We propose that in kidneys subjected to IRI, one mechanism through which increased expression of SSAT may cause cellular injury and organ damage is through induction of DNA damage and the disruption of cell cycle.
Collapse
Affiliation(s)
- Kamyar Zahedi
- Division of Nephrology and Hypertension, Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
|
16
|
Tian H, Huang Q, Li L, Liu XX, Zhang Y. Gene expression of ornithine decarboxylase in lung cancers and its clinical significance. Acta Biochim Biophys Sin (Shanghai) 2006; 38:639-45. [PMID: 16953303 DOI: 10.1111/j.1745-7270.2006.00204.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Lung cancer is one of the most lethal cancers in China because of its high incidence and high mortality. Ornithine decarboxylase (ODC), an important enzyme in polyamine biosynthesis, is increased in cancer cells. Some chemotherapeutic agents aimed at reducing ODC expression show inhibitory effects on cancer cell growth, so ODC can be useful in gene diagnosis and gene therapy of cancers. In this study, we examined the effect of antisense ODC on lung cancer cells. A-549 cells were infected with rAd-ODC/Ex3as, a recombinant adenovirus containing the cytomegalovirus promoter, green fluorescent protein gene and 120 bp antisense ODC. The cell cycle was evaluated by flow cytometry. A nude mouse xenograft model was used in the tumorigenicity test. Reverse transcription-polymerase chain reaction, Western blot and immunohistochemistry were used to study the expressions of ODC on lung cancers. It was found that the growth of cells infected with rAd-ODC/Ex3as was substantially inhibited and cells were arrested at G1 phase. Cells infected with rAd-ODC/Ex3as can suppress tumor formation in a nude mouse xenograft model. The expression of ODC mRNA and ODC protein levels in lung cancer tissues was significantly higher than that in normal tissues (P<0.05), which correlated significantly with the stage of lung cancer (P<0.05). This study suggested that rAd-ODC/Ex3as has antitumor activity in human lung cancer cells. The ODC gene might play an important role in lung cancer and the overexpression of ODC might be related to the occurrence and development of lung cancer.
Collapse
Affiliation(s)
- Hui Tian
- Department of Thoracic Surgery, Shandong University Qi Lu Hospital, Jinan 250012, China.
| | | | | | | | | |
Collapse
|
17
|
Tian H, Li L, Liu XX, Zhang Y. Antitumor effect of antisense ornithine decarboxylase adenovirus on human lung cancer cells. Acta Biochim Biophys Sin (Shanghai) 2006; 38:410-6. [PMID: 16761099 DOI: 10.1111/j.1745-7270.2006.00176.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Ornithine decarboxylase (ODC), the first enzyme of polyamine biosynthesis, was found to increase in cancer cells, especially lung cancer cells. Some chemotherapeutic agents aimed at decreasing ODC gene expression showed inhibitory effects on cancer cells. In this study, we examined the effects of adenoviral transduced antisense ODC on lung cancer cells. An adenovirus carrying antisense ODC (rAd-ODC/Ex3as) was used to infect lung cancer cell line A-549. The 3-(4,5-methylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide assay was used to analyze the effect on cell growth. Expression of ODC and concentration of polyamines in cells were determined by Western blot analysis and high performance liquid chromatography. Terminal deoxynucleotidyl transferase-mediated biotin-dUTP nick-end labeling was used to analyze cell apoptosis. The expression of ODC in A-549 cells was reduced to 54%, and that of three polyamines was also decreased through the rAd-ODC/Ex3as treatment. Consequently, cell growth was substantially inhibited and terminal deoxynucleotidyl transferase-mediated biotin-dUTP nick-end labeling showed that rAd-ODC/Ex3as could lead to cell apoptosis, with apoptosis index of 46%. This study suggests that rAd-ODC/Ex3as has an antitumor effect on the human lung cancer cells.
Collapse
Affiliation(s)
- Hui Tian
- Department of Thoracic Surgery, Shandong University Qi Lu Hospital, Jinan 250012, China. tianhuiy@ sohu.com
| | | | | | | |
Collapse
|
18
|
Zhang Y, Liu XX, Zhang B, Hu HY, Gong L. Antitumor effect of antisense ODC adenovirus on human prostate cancer cells. Prostate Cancer Prostatic Dis 2005; 8:280-6. [PMID: 16103892 DOI: 10.1038/sj.pcan.4500808] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Ornithine decarboxylase (ODC), the first enzyme of polyamine biosynthesis, was found to increase in cancer cells, especially prostate cancers. Some chemotherapeutic agents aimed to decrease ODC expression showed inhibitory effects on cancer cells. In this study, we examined the effect of adenoviral-transduced antisense ODC on prostate cancer cells. An adenovirus carrying antisense ODC (rAd-ODC/Ex3as) was infected to prostate cancer cells PC-3 and LNCap. Expression of ODC and concentration of polyamines in cells were determined by Western blotting and HPLC. MTT (3-(4,5-methylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide) assay was used to analyze the effect on cell growth. Cell cycle was evaluated by FCM and cellular invasion by Matrigel invasion assay. A nude mouse xenograft model was used to examine tumorigenicity. Expression of ODC in PC-3 and LNCap cells were reduced to 45 and 59%, and three polyamines were also decreased by the rAd-ODC/Ex3as treatment. Consequently, cell growth was substantially inhibited and cell cycle arrested at G1 phase. Matrigel invasion assay showed relatively low invasion. Marked suppression of tumor formation was observed in the xenograft model. This study suggests that rAd-ODC/Ex3as has the antitumor effect on the human prostate cancer cells.
Collapse
Affiliation(s)
- Y Zhang
- Department of Medicine, Medical Molecular Biology Experimental Center, Shandong University, Jinan, China
| | | | | | | | | |
Collapse
|
19
|
Nasizadeh S, Myhre L, Thiman L, Alm K, Oredsson S, Persson L. Importance of polyamines in cell cycle kinetics as studied in a transgenic system. Exp Cell Res 2005; 308:254-64. [PMID: 15923003 DOI: 10.1016/j.yexcr.2005.04.027] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2005] [Revised: 04/22/2005] [Accepted: 04/26/2005] [Indexed: 11/19/2022]
Abstract
Polyamines are organic cations, which are considered essential for normal cell cycle progression. This view is based on results from numerous studies using a variety of enzyme inhibitors or polyamine analogues interfering with either the metabolism or the physiological functions of the polyamines. However, the presence of non-specific effects may be hard to rule out in such studies. In the present study, we have for the first time used a transgenic cell system to analyze the importance of polyamines in cell growth. We have earlier shown that expression of trypanosomal ODC in an ODC-deficient variant of CHO cells (C55.7) supported growth of these otherwise polyamine auxotrophic cells. However, one of the transgenic cell lines grew much slower than the others. As shown in the present study, the level of ODC activity was much lower in these cells, and that was reflected in a reduction of cellular polyamine levels. Analysis of cell cycle kinetics revealed that reduction of growth was correlated to prolongation of the G1, S, and G2+M phases in the cells. Providing exogenous putrescine to the cells resulted in a normalization of polyamine levels as well as cell cycle kinetics indicating a causal relationship.
Collapse
Affiliation(s)
- Sima Nasizadeh
- Department of Physiological Sciences, Lund University, BMC F-13, S-221 84 Lund, Sweden
| | | | | | | | | | | |
Collapse
|
20
|
Mayeur C, Veuillet G, Michaud M, Raul F, Blottière HM, Blachier F. Effects of agmatine accumulation in human colon carcinoma cells on polyamine metabolism, DNA synthesis and the cell cycle. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2005; 1745:111-23. [PMID: 16085059 DOI: 10.1016/j.bbamcr.2004.12.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2004] [Revised: 12/17/2004] [Accepted: 12/20/2004] [Indexed: 10/26/2022]
Abstract
Putrescine, spermidine and spermine are low molecular polycations that play important roles in cell growth and cell cycle progression of normal and malignant cells. Agmatine (1-amino-4-guanidobutane), another polyamine formed through arginine decarboxylation, has been reported to act as an antiproliferative agent in several non-intestinal mammalian cell models. Using the human colon adenocarcinoma HT-29 Glc(-/+) cell line, we demonstrate that agmatine, which markedly accumulated inside the cells without being metabolised, exerted a strong cytostatic effect with an IC50 close to 2 mM. Agmatine decreased the rate of L-ornithine decarboxylation and induced a 70% down-regulation of ornithine decarboxylase (ODC) expression. Agmatine caused a marked decrease in putrescine and spermidine cell contents, an increase in the N1-acetylspermidine level without altering the spermine pool. We show that agmatine induced the accumulation of cells in the S and G2/M phases, reduced the rate of DNA synthesis and decreased cyclin A and B1 expression. We conclude that the anti-metabolic action of agmatine on HT-29 cells is mediated by a reduction in polyamine biosynthesis and induction in polyamine degradation. The decrease in intracellular polyamine contents, the reduced rate of DNA synthesis and the cell accumulation in the S phase are discussed from a causal perspective.
Collapse
Affiliation(s)
- Camille Mayeur
- Unité de Nutrition et Sécurité alimentaire, Institut National de la Recherche Agronomique, 78350 Jouy-en-Josas, France.
| | | | | | | | | | | |
Collapse
|
21
|
Abstract
The natural polyamines are aliphatic cations with multiple functions and are essential for cell growth. Soon after the critical requirement of polyamines for cell proliferation was recognized, the metabolism of polyamines was pursued as a target for antineoplastic therapy. Initially, much attention was focused on the development of inhibitors of polyamine biosynthesis as a means to inhibit tumor growth. The best-characterized inhibitor is alpha-difluoromethylornithine (DFMO), an irreversible inhibitor of ornithine decarboxylase. While compensatory mechanisms in polyamine metabolism reduce the effectiveness of DFMO as a single chemotherapeutic agent, it is currently undergoing extensive testing and clinical trials for chemoprevention and other diseases. There has been increasing interest over the last two decades in the cytotoxic response to agents that target the regulation of polyamine metabolism rather than directly inhibiting the metabolic enzymes in tumor cells. This interest resulted in the development of a number of polyamine analogs that exhibit effective cytotoxicity against tumor growth in preclinical models. The analogs enter cells through a selective polyamine transport system and can be either polyamine antimetabolites that deplete the intracellular polyamines or polyamine mimetics that displace the natural polyamines from binding sites, but do not substitute in terms of growth-promoting function. Synthesis of the first generation of symmetrically substituted bis(alkyl)polyamine analogs in the mid-1980s was based on the theory that polyamines may utilize feedback mechanisms to auto-regulate their synthesis. In the 1990s, unsymmetrically substituted bis(alkyl) polyamine analogs were developed. These compounds display structure-dependent and cell type-specific cellular effects and regulation on polyamine metabolism. More recently, a novel class of analogs has been synthesized, which include conformationally restricted, cyclic and long-chain oligoamine analogs. The development and use of these analogs have provided valuable information for understanding the molecular mechanisms of targeting the polyamine pathway as a means of cancer therapy.
Collapse
Affiliation(s)
- Yi Huang
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | | | | | | |
Collapse
|
22
|
Wallace HM, Fraser AV, Hughes A. A perspective of polyamine metabolism. Biochem J 2003; 376:1-14. [PMID: 13678416 PMCID: PMC1223767 DOI: 10.1042/bj20031327] [Citation(s) in RCA: 705] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2003] [Revised: 09/16/2003] [Accepted: 09/18/2003] [Indexed: 01/30/2023]
Abstract
Polyamines are essential for the growth and function of normal cells. They interact with various macromolecules, both electrostatically and covalently and, as a consequence, have a variety of cellular effects. The complexity of polyamine metabolism and the multitude of compensatory mechanisms that are invoked to maintain polyamine homoeostasis argue that these amines are critical to cell survival. The regulation of polyamine content within cells occurs at several levels, including transcription and translation. In addition, novel features such as the +1 frameshift required for antizyme production and the rapid turnover of several of the enzymes involved in the pathway make the regulation of polyamine metabolism a fascinating subject. The link between polyamine content and human disease is unequivocal, and significant success has been obtained in the treatment of a number of parasitic infections. Targeting the polyamine pathway as a means of treating cancer has met with limited success, although the development of drugs such as DFMO (alpha-difluoromethylornithine), a rationally designed anticancer agent, has revolutionized our understanding of polyamine function in cell growth and provided 'proof of concept' that influencing polyamine metabolism and content within tumour cells will prevent tumour growth. The more recent development of the polyamine analogues has been pivotal in advancing our understanding of the necessity to deplete all three polyamines to induce apoptosis in tumour cells. The current thinking is that the polyamine inhibitors/analogues may also be useful agents in the chemoprevention of cancer and, in this area, we may yet see a revival of DFMO. The future will be in adopting a functional genomics approach to identifying polyamine-regulated genes linked to either carcinogenesis or apoptosis.
Collapse
Affiliation(s)
- Heather M Wallace
- Department of Medicine and Therapeutics, University of Aberdeen, Polwarth Building, Foresterhill, Aberdeen AB25 2ZD, Scotland, UK.
| | | | | |
Collapse
|
23
|
Yoda H, Yamaguchi Y, Sano H. Induction of hypersensitive cell death by hydrogen peroxide produced through polyamine degradation in tobacco plants. PLANT PHYSIOLOGY 2003; 132:1973-81. [PMID: 12913153 PMCID: PMC181282 DOI: 10.1104/pp.103.024737] [Citation(s) in RCA: 104] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2003] [Revised: 04/24/2003] [Accepted: 05/09/2003] [Indexed: 05/18/2023]
Abstract
Screening immediate-early responding genes during the hypersensitive response (HR) against tobacco mosaic virus infection in tobacco (Nicotiana tabacum) plants, we identified a gene encoding ornithine decarboxylase. Subsequent analyses showed that other genes involved in polyamine biosynthesis were also up-regulated, resulting in the accumulation of polyamines in apoplasts of tobacco mosaic virus-infected leaves. Inhibitors of polyamine biosynthesis, alpha-difluoromethyl-ornithine, however, suppressed accumulation of polyamines, and the rate of HR was reduced. In contrast, polyamine infiltration into a healthy leaf induced the generation of hydrogen peroxide and simultaneously caused HR-like cell death. Polyamine oxidase activity in the apoplast increased up to 3-fold that of the basal level during the HR, and its suppression with a specific inhibitor, guazatine, resulted in reduced HR. Because it is established that hydrogen peroxide is one of the degradation products of polyamines, these results indicate that one of the biochemical events in the HR is production of polyamines, whose degradation induces hydrogen peroxide, eventually resulting in hypersensitive cell death.
Collapse
Affiliation(s)
- Hiroshi Yoda
- Research and Education Center for Genetic Information, Nara Institute of Science and Technology, Nara 630-0192, Japan
| | | | | |
Collapse
|
24
|
Auvinen M, Järvinen K, Hotti A, Okkeri J, Laitinen J, Jänne OA, Coffino P, Bergman M, Andersson LC, Alitalo K, Hölttä E. Transcriptional regulation of the ornithine decarboxylase gene by c-Myc/Max/Mad network and retinoblastoma protein interacting with c-Myc. Int J Biochem Cell Biol 2003; 35:496-521. [PMID: 12565711 DOI: 10.1016/s1357-2725(02)00305-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
c-Myc is an oncogenic transcription factor involved in the regulation of cell proliferation, differentiation and apoptosis. The direct targets of c-Myc mediating these various processes are slowly being unravelled. This study indicates that the ornithine decarboxylase (ODC) gene is a physiological transcriptional target of c-Myc in association with induction of cell proliferation and transformation, but not with induction of apoptosis. In addition to the two conserved CACGTG c-Myc-binding sites in the first intron, the CATGTG motif in the 5'-flanking region of the murine odc is also shown to be a functional c-Myc response element. odc is thus a c-Myc target with three binding sites a distance apart. Transient transfection studies with different c-Myc, Max and Mad constructs in COS-7 cells showed that the balance between c-Myc/Max, Max/Max and Max/Mad complexes is crucial for the regulation, resulting in either transactivation or transrepression of an ODC-CAT reporter gene. Transcription of both ODC-CAT and endogenous odc was strongly induced in HeLa cells expressing tetracycline-regulated c-Myc, concomitant with c-Myc promoting the S-phase entry of the cells. Transformation of NIH3T3 cells by c-Ha-ras-(Val12) oncogene was reversed by expression of transcriptionally inactive c-Myc, which was associated with repression of ODC-CAT expression. Further, the c-Myc-induced transactivation of ODC-CAT in COS-7 cells was suppressed by co-expression of the retinoblastoma tumor suppresser pRb, evidently as a result of pRb directly or indirectly interacting with c-Myc. Importantly, the endogenous c-Myc and pRb proteins were also found to associate in Colo 320HSR cells under physiological conditions. These results suggest that c-Myc and pRb can interact in vivo, and may in part control some aspects of cell proliferation and transformation through modulation of odc expression.
Collapse
Affiliation(s)
- Merja Auvinen
- Department of Pathology, Haartman Institute and Helsinki University Central Hospital, University of Helsinki, P.O. Box 21, 00014, Helsinki, Finland
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Teti D, Visalli M, McNair H. Analysis of polyamines as markers of (patho)physiological conditions. J Chromatogr B Analyt Technol Biomed Life Sci 2002; 781:107-49. [PMID: 12450656 DOI: 10.1016/s1570-0232(02)00669-4] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The aliphatic polyamines, putrescine, spermidine and spermine, are normal cell constituents that play important roles in cell proliferation and differentiation. The equilibrium between cellular uptake and release and the balanced activities of biosynthetic and catabolic enzymes of polyamines are essential for normal homeostasis in the proliferation and functions of cells and tissues. However, the intracellular polyamine content increases in hyperplastic or neoplastic growth. Although the involvement of polyamines in physiological and pathological cell proliferation and differentiation has been well established, the role they play is quite different in relation to cell systems and animal models and is dependent on inducer agents and stimuli. Also, the experimental procedures used to deplete polyamines have been shown to influence the cell responses. In this paper, the assay methods currently in use for polyamines are reviewed and compared with respect to sensitivity, reproducibility and applicability to routine analysis. The relevance of polyamine metabolism and the uptake/release process in many physiological and pathological processes is highlighted, and the cellular polyamine pathways are discussed in relation to the possible diagnostic and therapeutic significance of these mediators.
Collapse
Affiliation(s)
- Diana Teti
- Department of Experimental Pathology and Microbiology, Section of Experimental Pathology, Azienda Policlinico Universitario, Torre Biologica, IV piano, Via Consolare Valeria, 98125 Messina, Italy.
| | | | | |
Collapse
|
26
|
Istfan NW, Chen ZY, Rex S. Fish oil slows S phase progression and may cause upstream shift of DHFR replication origin ori-beta in CHO cells. Am J Physiol Cell Physiol 2002; 283:C1009-24. [PMID: 12225965 DOI: 10.1152/ajpcell.00614.2001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Fish oils (FOs) have been noted to reduce growth and proliferation of certain tumor cells, effects usually attributed to the content of polyunsaturated fatty acids of the n-3 family, which are thought to modulate cellular signaling pathways. We investigated the influence of FO on cell cycle kinetics of cultured Chinese hamster ovary cells. Exponentially growing cells were labeled with 5-bromo-2'-deoxyuridine (BrdU) and analyzed by flow cytometry after 5-day treatment with exogenous fat. Bivariate BrdU-DNA analysis indicated slower progression through S phase and thus longer S phase duration time in FO- but not corn oil-treated or control cells. We hypothesize that FO treatment might interfere with spatial/temporal organization of replication origins. Therefore, we mapped the well-characterized replication origin ori-beta downstream of the dihydrofolate reductase gene with the nascent strand length assay. Three DNA marker segments with known positions relative to this origin were amplified by PCR. By quantitatively assessing DNA length of the fragments in all fractions containing these markers, the location of ori-beta was established. In control or corn oil-treated cells, the location of ori-beta was consistent with previous studies. However, in FO-treated cells, DNA replication appears to start from a new site located farther upstream from ori-beta, suggesting a different replication initiation pattern. This study suggests novel mechanism(s) by which fats affect cell proliferation and DNA replication in mammalian cells.
Collapse
Affiliation(s)
- Nawfal W Istfan
- Section of Endocrinology, Diabetes, and Nutrition, Department of Medicine, Boston University School of Medicine, 88 E Newton Street, Evans 201, Boston, MA 02118, USA.
| | | | | |
Collapse
|
27
|
Chattopadhyay MK, Tabor CW, Tabor H. Absolute requirement of spermidine for growth and cell cycle progression of fission yeast (Schizosaccharomyces pombe). Proc Natl Acad Sci U S A 2002; 99:10330-4. [PMID: 12149471 PMCID: PMC124914 DOI: 10.1073/pnas.162362899] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/18/2002] [Indexed: 11/18/2022] Open
Abstract
Schizosaccharomyces pombe cells that cannot synthesize spermidine or spermine because of a deletion-insertion in the gene coding for S-adenosylmethionine decarboxylase (Deltaspe2) have an absolute requirement for spermidine for growth. Flow cytometry studies show that in the absence of spermidine an overall delay of the cell cycle progression occurs with some accumulation of cells in the G(1) phase; as little as 10(-6) M spermidine is sufficient to maintain normal cell cycle distribution and normal growth. Morphologically some of the spermidine-deprived cells become spherical at an early stage with little evidence of cell division. On further incubation in the spermidine-deprived medium, growth occurs in most of the cells, not by cell division but rather by cell elongation, with an abnormal distribution of the actin cytoskeleton, DNA (4', 6-diamidino-2-phenylindole staining), and calcofluor-staining moieties. More prolonged incubation in the spermidine-deficient medium leads to profound morphological changes including nuclear degeneration.
Collapse
Affiliation(s)
- Manas K Chattopadhyay
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Building 8, Room 223, Bethesda, MD 20892, USA
| | | | | |
Collapse
|
28
|
Hegardt C, Johannsson OT, Oredsson SM. Rapid caspase-dependent cell death in cultured human breast cancer cells induced by the polyamine analogue N(1),N(11)-diethylnorspermine. EUROPEAN JOURNAL OF BIOCHEMISTRY 2002; 269:1033-9. [PMID: 11846806 DOI: 10.1046/j.0014-2956.2001.02744.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The spermine analogue N(1),N(11)-diethylnorspermine (DENSPM) efficiently depletes the cellular pools of putrescine, spermidine and spermine by down-regulating the activity of the polyamine biosynthetic enzymes and up-regulating the activity of the catabolic enzyme spermidine/ spermine N(1)-acetyltransferase (SSAT). In the breast cancer cell line L56Br-C1, treatment with 10 microm DENSPM induced SSAT activity 60 and 240-fold at 24 and 48 h after seeding, respectively, which resulted in polyamine depletion. Cell proliferation appeared to be totally inhibited and within 48 h of treatment, there was an extensive apoptotic response. Fifty percent of the cells were found in the sub-G(1) region, as determined by flow cytometry, and the presence of apoptotic nuclei was morphologically assessed by fluorescence microscopy. Caspase-3 and caspase-9 activities were significantly elevated 24 h after seeding. At 48 h after seeding, caspase-3 and caspase-9 activities were further elevated and at this time point a significant activation of caspase-8 was also found. The DENSPM-induced cell death was dependent on the activation of the caspases as it was inhibited by the general caspase inhibitor Z-Val-Ala-Asp fluoromethyl ketone. The results are discussed in the light of the L56Br-C1 cells containing mutated BRCA1 and p53, two genes involved in DNA repair.
Collapse
|