1
|
Li Y, Kong W, Li T, Zhang L, Zhuang Z, Liu N, Liu X. Functional Analysis of Lactase Phlorizin Hydrolase in Insect-Plant Coevolution Based on Deglycosylation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:5140-5149. [PMID: 39992628 DOI: 10.1021/acs.jafc.4c12035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/26/2025]
Abstract
During coevolution, plants produce numerous toxic secondary metabolites to protect themselves. However, most plants still serve as food for insects to meet their nutritional needs. The evolutionary processes that enable herbivorous insects to resist plant defenses remain largely complex and difficult to predict. In this study, lactase phlorizin hydrolase (LPH) was identified for the first time in Aphis gossypii. Bioinformatics analysis showed that the LPH protein belongs to the glycoside hydrolase 1 (GH1) family. The qPCR showed that the transcript level of LPH in cotton aphids treated with the expression dsAgCYP6CY3 cotton lines was significantly reduced by 39.9% at 48 h compared to the nontransgenic cotton, and the hydrolytic activities of LPH on lactose and phlorizin were significantly reduced by 28.7% and 20.1%, respectively. In vitro enzyme activity experiments demonstrated that LPH could hydrolyze lactose and four phenolic glycosides. In addition, RNA interference (RNAi) and insect performance assays showed that silencing LPH affected the growth of the larvae, resulting in the death of the larvae exposed to phenolic glycosides. These results reveal an evolutionary scenario whereby herbivores use deglycosylation to develop resistance to plant defenses and this can be exploited for plant protection.
Collapse
Affiliation(s)
- Yuan Li
- College of Life Science and Technology, Xinjiang University, Urumqi 830017, China
| | - Wenting Kong
- College of Life Science and Technology, Xinjiang University, Urumqi 830017, China
| | - Tingting Li
- College of Life Science and Technology, Xinjiang University, Urumqi 830017, China
| | - Lianjun Zhang
- College of Life Science and Technology, Xinjiang University, Urumqi 830017, China
| | - Ziyan Zhuang
- College of Life Science and Technology, Xinjiang University, Urumqi 830017, China
| | - Ning Liu
- Institute of Crop Variety Resources, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China
| | - Xiaoning Liu
- College of Life Science and Technology, Xinjiang University, Urumqi 830017, China
| |
Collapse
|
2
|
Werren EA, Garcia O, Bigham AW. Identifying adaptive alleles in the human genome: from selection mapping to functional validation. Hum Genet 2020; 140:241-276. [PMID: 32728809 DOI: 10.1007/s00439-020-02206-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 07/07/2020] [Indexed: 12/19/2022]
Abstract
The suite of phenotypic diversity across geographically distributed human populations is the outcome of genetic drift, gene flow, and natural selection throughout human evolution. Human genetic variation underlying local biological adaptations to selective pressures is incompletely characterized. With the emergence of population genetics modeling of large-scale genomic data derived from diverse populations, scientists are able to map signatures of natural selection in the genome in a process known as selection mapping. Inferred selection signals further can be used to identify candidate functional alleles that underlie putative adaptive phenotypes. Phenotypic association, fine mapping, and functional experiments facilitate the identification of candidate adaptive alleles. Functional investigation of candidate adaptive variation using novel techniques in molecular biology is slowly beginning to unravel how selection signals translate to changes in biology that underlie the phenotypic spectrum of our species. In addition to informing evolutionary hypotheses of adaptation, the discovery and functional annotation of adaptive alleles also may be of clinical significance. While selection mapping efforts in non-European populations are growing, there remains a stark under-representation of diverse human populations in current public genomic databases, of both clinical and non-clinical cohorts. This lack of inclusion limits the study of human biological variation. Identifying and functionally validating candidate adaptive alleles in more global populations is necessary for understanding basic human biology and human disease.
Collapse
Affiliation(s)
- Elizabeth A Werren
- Department of Human Genetics, The University of Michigan, Ann Arbor, MI, USA
- Department of Anthropology, The University of Michigan, Ann Arbor, MI, USA
| | - Obed Garcia
- Department of Anthropology, The University of Michigan, Ann Arbor, MI, USA
| | - Abigail W Bigham
- Department of Anthropology, University of California Los Angeles, 341 Haines Hall, Los Angeles, CA, 90095, USA.
| |
Collapse
|
3
|
Kuchay RAH. New insights into the molecular basis of lactase non-persistence/persistence: a brief review. Drug Discov Ther 2020; 14:1-7. [PMID: 32101819 DOI: 10.5582/ddt.2019.01079] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Lactose, a disaccharide and main carbohydrate in milk, requires hydrolysis in the intestinal tract to release its monosaccharides galactose and glucose for use as energy source by enterocytes. This hydrolysis is catalyzed by the enzyme lactase, a β-galactosidase located in the brush border membrane of small intestinal enterocytes. In most mammals, lactase activity declines after the weaning, a condition known as lactase non-persistence (LNP). Lactase persistence (LP) is an autosomal dominant trait enabling the continued production of the enzyme lactase throughout adult life. Non-persistence or persistence of lactase expression into adult life being a polymorphic trait has been attributed to various single nucleotide polymorphisms in the enhancer region surrounding lactase gene (LCT). However, latest research has pointed to 'genetic-epigenetic interactions' as key to regulation of lactase expression. LNP and LP DNA haplotypes have demonstrated markedly different epigenetic aging as genetic factors contribute to gradual accumulation of epigenetic changes with age to affect lactase expression. This review will attempt to present an overview of latest insights into molecular basis of LNP/LP including the crucial role of 'genetic-epigenetic interactions' in regulating lactase expression.
Collapse
|
4
|
Denavit V, Lainé D, Bouzriba C, Shanina E, Gillon É, Fortin S, Rademacher C, Imberty A, Giguère D. Stereoselective Synthesis of Fluorinated Galactopyranosides as Potential Molecular Probes for Galactophilic Proteins: Assessment of Monofluorogalactoside-LecA Interactions. Chemistry 2019; 25:4478-4490. [PMID: 30690814 DOI: 10.1002/chem.201806197] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Indexed: 11/07/2022]
Abstract
The replacement of hydroxyl groups by fluorine atoms on hexopyranoside scaffolds may allow access to invaluable tools for studying various biochemical processes. As part of ongoing activities toward the preparation of fluorinated carbohydrates, a systematic investigation involving the synthesis and biological evaluation of a series of mono- and polyfluorinated galactopyranosides is described. Various monofluorogalactopyranosides, a trifluorinated, and a tetrafluorinated galactopyranoside have been prepared using a Chiron approach. Given the scarcity of these compounds in the literature, in addition to their synthesis, their biological profiles were evaluated. Firstly, the fluorinated compounds were investigated as antiproliferative agents using normal human and mouse cells in comparison with cancerous cells. Most of the fluorinated compounds showed no antiproliferative activity. Secondly, these carbohydrate probes were used as potential inhibitors of galactophilic lectins. The first transverse relaxation-optimized spectroscopy (TROSY) NMR experiments were performed on these interactions, examining chemical shift perturbations of the backbone resonances of LecA, a virulence factor from Pseudomonas aeruginosa. Moreover, taking advantage of the fluorine atom, the 19 F NMR resonances of the monofluorogalactopyranosides were directly monitored in the presence and absence of LecA to assess ligand binding. Lastly, these results were corroborated with the binding potencies of the monofluorinated galactopyranoside derivatives by isothermal titration calorimetry experiments. Analogues with fluorine atoms at C-3 and C-4 showed weaker affinities with LecA as compared to those with the fluorine atom at C-2 or C-6. This research has focused on the chemical synthesis of "drug-like" low-molecular-weight inhibitors that circumvent drawbacks typically associated with natural oligosaccharides.
Collapse
Affiliation(s)
- Vincent Denavit
- Département de Chimie, PROTEO, RQRM, Université Laval, 1045 Avenue de la Médecine, Quebec City, QC, G1V 0A6, Canada
| | - Danny Lainé
- Département de Chimie, PROTEO, RQRM, Université Laval, 1045 Avenue de la Médecine, Quebec City, QC, G1V 0A6, Canada
| | - Chahrazed Bouzriba
- Oncology Division, Hôpital Saint-François d'Assise, CHU de Québec-Université Laval Research Center, 10 rue de l'Espinay, Quebec City, QC, G1L 3L5, Canada
- Faculté de Pharmacie, Université Laval, Quebec City, QC, G1V 0A6, Canada
| | - Elena Shanina
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14424, Potsdam, Germany
| | - Émilie Gillon
- Univ. Grenoble Alpes, CNRS, CERMAV, 38000, Grenoble, France
| | - Sébastien Fortin
- Oncology Division, Hôpital Saint-François d'Assise, CHU de Québec-Université Laval Research Center, 10 rue de l'Espinay, Quebec City, QC, G1L 3L5, Canada
- Faculté de Pharmacie, Université Laval, Quebec City, QC, G1V 0A6, Canada
| | - Christoph Rademacher
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14424, Potsdam, Germany
| | - Anne Imberty
- Univ. Grenoble Alpes, CNRS, CERMAV, 38000, Grenoble, France
| | - Denis Giguère
- Département de Chimie, PROTEO, RQRM, Université Laval, 1045 Avenue de la Médecine, Quebec City, QC, G1V 0A6, Canada
| |
Collapse
|
5
|
Ben Bdira F, Artola M, Overkleeft HS, Ubbink M, Aerts JMFG. Distinguishing the differences in β-glycosylceramidase folds, dynamics, and actions informs therapeutic uses. J Lipid Res 2018; 59:2262-2276. [PMID: 30279220 PMCID: PMC6277158 DOI: 10.1194/jlr.r086629] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 09/04/2018] [Indexed: 12/12/2022] Open
Abstract
Glycosyl hydrolases (GHs) are carbohydrate-active enzymes that hydrolyze a specific β-glycosidic bond in glycoconjugate substrates; β-glucosidases degrade glucosylceramide, a ubiquitous glycosphingolipid. GHs are grouped into structurally similar families that themselves can be grouped into clans. GH1, GH5, and GH30 glycosidases belong to clan A hydrolases with a catalytic (β/α)8 TIM barrel domain, whereas GH116 belongs to clan O with a catalytic (α/α)6 domain. In humans, GH abnormalities underlie metabolic diseases. The lysosomal enzyme glucocerebrosidase (family GH30), deficient in Gaucher disease and implicated in Parkinson disease etiology, and the cytosol-facing membrane-bound glucosylceramidase (family GH116) remove the terminal glucose from the ceramide lipid moiety. Here, we compare enzyme differences in fold, action, dynamics, and catalytic domain stabilization by binding site occupancy. We also explore other glycosidases with reported glycosylceramidase activity, including human cytosolic β-glucosidase, intestinal lactase-phlorizin hydrolase, and lysosomal galactosylceramidase. Last, we describe the successful translation of research to practice: recombinant glycosidases and glucosylceramide metabolism modulators are approved drug products (enzyme replacement therapies). Activity-based probes now facilitate the diagnosis of enzyme deficiency and screening for compounds that interact with the catalytic pocket of glycosidases. Future research may deepen the understanding of the functional variety of these enzymes and their therapeutic potential.
Collapse
Affiliation(s)
- Fredj Ben Bdira
- Departments of Macromolecular Biochemistry,Leiden Institute of Chemistry, Leiden, The Netherlands
| | - Marta Artola
- Bio-organic Synthesis, Leiden Institute of Chemistry, Leiden, The Netherlands
| | - Herman S Overkleeft
- Bio-organic Synthesis, Leiden Institute of Chemistry, Leiden, The Netherlands
| | - Marcellus Ubbink
- Departments of Macromolecular Biochemistry,Leiden Institute of Chemistry, Leiden, The Netherlands
| | | |
Collapse
|
6
|
Rother C, Gutmann A, Gudiminchi R, Weber H, Lepak A, Nidetzky B. Biochemical Characterization and Mechanistic Analysis of the Levoglucosan Kinase from Lipomyces starkeyi. Chembiochem 2018; 19:596-603. [DOI: 10.1002/cbic.201700587] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Indexed: 12/14/2022]
Affiliation(s)
- Christina Rother
- Institute of Biotechnology and Biochemical Engineering; Graz University of Technology, NAWI Graz; Petersgasse 12 8010 Graz Austria
| | - Alexander Gutmann
- Institute of Biotechnology and Biochemical Engineering; Graz University of Technology, NAWI Graz; Petersgasse 12 8010 Graz Austria
| | - Ramakrishna Gudiminchi
- Institute of Biotechnology and Biochemical Engineering; Graz University of Technology, NAWI Graz; Petersgasse 12 8010 Graz Austria
- Austrian Centre of Industrial Biotechnology; Petersgasse 14 8010 Graz Austria
| | - Hansjörg Weber
- Graz University of Technology, NAWI Graz; Stremayrgasse 9 8010 Graz Austria
| | - Alexander Lepak
- Institute of Biotechnology and Biochemical Engineering; Graz University of Technology, NAWI Graz; Petersgasse 12 8010 Graz Austria
| | - Bernd Nidetzky
- Institute of Biotechnology and Biochemical Engineering; Graz University of Technology, NAWI Graz; Petersgasse 12 8010 Graz Austria
- Austrian Centre of Industrial Biotechnology; Petersgasse 14 8010 Graz Austria
| |
Collapse
|
7
|
Petricevic M, Sobala LF, Fernandes PZ, Raich L, Thompson AJ, Bernardo-Seisdedos G, Millet O, Zhu S, Sollogoub M, Jiménez-Barbero J, Rovira C, Davies GJ, Williams SJ. Contribution of Shape and Charge to the Inhibition of a Family GH99 endo-α-1,2-Mannanase. J Am Chem Soc 2017; 139:1089-1097. [PMID: 27992199 PMCID: PMC5269645 DOI: 10.1021/jacs.6b10075] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
![]()
Inhibitor
design incorporating features of the reaction coordinate
and transition-state structure has emerged as a powerful approach
for the development of enzyme inhibitors. Such inhibitors find use
as mechanistic probes, chemical biology tools, and therapeutics. Endo-α-1,2-mannosidases and endo-α-1,2-mannanases,
members of glycoside hydrolase family 99 (GH99), are interesting targets
for inhibitor development as they play key roles in N-glycan maturation
and microbiotal yeast mannan degradation, respectively. These enzymes
are proposed to act via a 1,2-anhydrosugar “epoxide”
mechanism that proceeds through an unusual conformational itinerary.
Here, we explore how shape and charge contribute to binding of diverse
inhibitors of these enzymes. We report the synthesis of neutral dideoxy,
glucal and cyclohexenyl disaccharide inhibitors, their binding to
GH99 endo-α-1,2-mannanases, and their structural
analysis by X-ray crystallography. Quantum mechanical calculations
of the free energy landscapes reveal how the neutral inhibitors provide
shape but not charge mimicry of the proposed intermediate and transition
state structures. Building upon the knowledge of shape and charge
contributions to inhibition of family GH99 enzymes, we design and
synthesize α-Man-1,3-noeuromycin, which is revealed to be the
most potent inhibitor (KD 13 nM for Bacteroides xylanisolvens GH99 enzyme) of these enzymes
yet reported. This work reveals how shape and charge mimicry of transition
state features can enable the rational design of potent inhibitors.
Collapse
Affiliation(s)
- Marija Petricevic
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne , Parkville 3010, Australia
| | - Lukasz F Sobala
- York Structural Biology Laboratory, Department of Chemistry, University of York , York YO10 5DD, United Kingdom
| | - Pearl Z Fernandes
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne , Parkville 3010, Australia
| | - Lluís Raich
- Departament de Química Inorgànica i Orgànica (Secció de Química Orgànica) & Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona , Martí i Franquès 1, 08028 Barcelona, Spain
| | - Andrew J Thompson
- York Structural Biology Laboratory, Department of Chemistry, University of York , York YO10 5DD, United Kingdom
| | - Ganeko Bernardo-Seisdedos
- Molecular Recognition and Host-Pathogen Interactions, CIC bioGUNE, Bizkaia Technology Park, Building 800, 48160 Derio, Spain
| | - Oscar Millet
- Molecular Recognition and Host-Pathogen Interactions, CIC bioGUNE, Bizkaia Technology Park, Building 800, 48160 Derio, Spain
| | - Sha Zhu
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, Institut Parisien de Chimie Moléculaire (IPCM), UMR 8232, 4, place Jussieu, 75005 Paris, France
| | - Matthieu Sollogoub
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, Institut Parisien de Chimie Moléculaire (IPCM), UMR 8232, 4, place Jussieu, 75005 Paris, France
| | - Jesús Jiménez-Barbero
- Molecular Recognition and Host-Pathogen Interactions, CIC bioGUNE, Bizkaia Technology Park, Building 800, 48160 Derio, Spain.,Ikerbasque, Basque Foundation for Science, Marı́a Dı́az de Haro 3, 48013 Bilbao, Spain
| | - Carme Rovira
- Departament de Química Inorgànica i Orgànica (Secció de Química Orgànica) & Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona , Martí i Franquès 1, 08028 Barcelona, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA) , Pg. Lluís Companys 23, 08010 Barcelona, Spain
| | - Gideon J Davies
- York Structural Biology Laboratory, Department of Chemistry, University of York , York YO10 5DD, United Kingdom
| | - Spencer J Williams
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne , Parkville 3010, Australia
| |
Collapse
|
8
|
Singh G, Verma AK, Kumar V. Catalytic properties, functional attributes and industrial applications of β-glucosidases. 3 Biotech 2016; 6:3. [PMID: 28330074 PMCID: PMC4697909 DOI: 10.1007/s13205-015-0328-z] [Citation(s) in RCA: 138] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Accepted: 06/19/2015] [Indexed: 12/18/2022] Open
Abstract
β-Glucosidases are diverse group of enzymes with great functional importance to biological systems. These are grouped in multiple glycoside hydrolase families based on their catalytic and sequence characteristics. Most studies carried out on β-glucosidases are focused on their industrial applications rather than their endogenous function in the target organisms. β-Glucosidases performed many functions in bacteria as they are components of large complexes called cellulosomes and are responsible for the hydrolysis of short chain oligosaccharides and cellobiose. In plants, β-glucosidases are involved in processes like formation of required intermediates for cell wall lignification, degradation of endosperm’s cell wall during germination and in plant defense against biotic stresses. Mammalian β-glucosidases are thought to play roles in metabolism of glycolipids and dietary glucosides, and signaling functions. These enzymes have diverse biotechnological applications in food, surfactant, biofuel, and agricultural industries. The search for novel and improved β-glucosidase is still continued to fulfills demand of an industrially suitable enzyme. In this review, a comprehensive overview on detailed functional roles of β-glucosidases in different organisms, their industrial applications, and recent cloning and expression studies with biochemical characterization of such enzymes is presented for the better understanding and efficient use of diverse β-glucosidases.
Collapse
Affiliation(s)
- Gopal Singh
- Institute of Himalayan Bioresource Technology, Palampur, 176062, India
| | - A K Verma
- Department of Biochemistry, College of Basic Sciences and Humanities, G. B. Pant University of Agriculture and Technology, Pantnagar, 263145, India
| | - Vinod Kumar
- Department of Biotechnology, Akal College of Agriculture, Eternal University, Baru Sahib, Sirmour, 173101, India.
| |
Collapse
|
9
|
Kallemeijn WW, Witte MD, Voorn-Brouwer TM, Walvoort MTC, Li KY, Codée JDC, van der Marel GA, Boot RG, Overkleeft HS, Aerts JMFG. A sensitive gel-based method combining distinct cyclophellitol-based probes for the identification of acid/base residues in human retaining β-glucosidases. J Biol Chem 2014; 289:35351-62. [PMID: 25344605 DOI: 10.1074/jbc.m114.593376] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Retaining β-exoglucosidases operate by a mechanism in which the key amino acids driving the glycosidic bond hydrolysis act as catalytic acid/base and nucleophile. Recently we designed two distinct classes of fluorescent cyclophellitol-type activity-based probes (ABPs) that exploit this mechanism to covalently modify the nucleophile of retaining β-glucosidases. Whereas β-epoxide ABPs require a protonated acid/base for irreversible inhibition of retaining β-glucosidases, β-aziridine ABPs do not. Here we describe a novel sensitive method to identify both catalytic residues of retaining β-glucosidases by the combined use of cyclophellitol β-epoxide- and β-aziridine ABPs. In this approach putative catalytic residues are first substituted to noncarboxylic amino acids such as glycine or glutamine through site-directed mutagenesis. Next, the acid/base and nucleophile can be identified via classical sodium azide-mediated rescue of mutants thereof. Selective labeling with fluorescent β-aziridine but not β-epoxide ABPs identifies the acid/base residue in mutagenized enzyme, as only the β-aziridine ABP can bind in its absence. The Absence of the nucleophile abolishes any ABP labeling. We validated the method by using the retaining β-glucosidase GBA (CAZy glycosylhydrolase family GH30) and then applied it to non-homologous (putative) retaining β-glucosidases categorized in GH1 and GH116: GBA2, GBA3, and LPH. The described method is highly sensitive, requiring only femtomoles (nanograms) of ABP-labeled enzymes.
Collapse
Affiliation(s)
- Wouter W Kallemeijn
- From the Department of Medical Biochemistry, Academic Medical Center, University of Amsterdam, Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands and
| | - Martin D Witte
- Bioorganic Synthesis, Leiden Institute of Chemistry, P. O. box 9502, 2300 RA Leiden, The Netherlands
| | - Tineke M Voorn-Brouwer
- From the Department of Medical Biochemistry, Academic Medical Center, University of Amsterdam, Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands and
| | - Marthe T C Walvoort
- Bioorganic Synthesis, Leiden Institute of Chemistry, P. O. box 9502, 2300 RA Leiden, The Netherlands
| | - Kah-Yee Li
- Bioorganic Synthesis, Leiden Institute of Chemistry, P. O. box 9502, 2300 RA Leiden, The Netherlands
| | - Jeroen D C Codée
- Bioorganic Synthesis, Leiden Institute of Chemistry, P. O. box 9502, 2300 RA Leiden, The Netherlands
| | - Gijsbert A van der Marel
- Bioorganic Synthesis, Leiden Institute of Chemistry, P. O. box 9502, 2300 RA Leiden, The Netherlands
| | - Rolf G Boot
- From the Department of Medical Biochemistry, Academic Medical Center, University of Amsterdam, Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands and
| | - Herman S Overkleeft
- Bioorganic Synthesis, Leiden Institute of Chemistry, P. O. box 9502, 2300 RA Leiden, The Netherlands
| | - Johannes M F G Aerts
- From the Department of Medical Biochemistry, Academic Medical Center, University of Amsterdam, Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands and
| |
Collapse
|
10
|
Gerbault P, Roffet-Salque M, Evershed RP, Thomas MG. How long have adult humans been consuming milk? IUBMB Life 2013; 65:983-90. [DOI: 10.1002/iub.1227] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Revised: 11/01/2013] [Accepted: 11/04/2013] [Indexed: 01/07/2023]
Affiliation(s)
- Pascale Gerbault
- Research Department of Genetics, Evolution and Environment; University College London; London WC1E 6BT UK
| | - Mélanie Roffet-Salque
- Organic Geochemistry Unit, School of Chemistry; University of Bristol, Cantock's Close; Bristol BS8 1TS UK
| | - Richard P. Evershed
- Organic Geochemistry Unit, School of Chemistry; University of Bristol, Cantock's Close; Bristol BS8 1TS UK
| | - Mark G. Thomas
- Research Department of Genetics, Evolution and Environment; University College London; London WC1E 6BT UK
| |
Collapse
|
11
|
Kallemeijn WW, Li KY, Witte MD, Marques ARA, Aten J, Scheij S, Jiang J, Willems LI, Voorn-Brouwer TM, van Roomen CPAA, Ottenhoff R, Boot RG, van den Elst H, Walvoort MTC, Florea BI, Codée JDC, van der Marel GA, Aerts JMFG, Overkleeft HS. Novel activity-based probes for broad-spectrum profiling of retaining β-exoglucosidases in situ and in vivo. Angew Chem Int Ed Engl 2012; 51:12529-33. [PMID: 23139194 DOI: 10.1002/anie.201207771] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Indexed: 01/20/2023]
Abstract
A high-end label: Cyclophellitol aziridine-type activity-based probes allow for ultra-sensitive visualization of mammalian β-glucosidases (GBA1, GBA2, GBA3, and LPH) as well as several non-mammalian β-glucosidases (see picture). These probes offer new ways to study β-exoglucosidases, and configurational isomers of the cyclophellitol aziridine core may give activity-based probes targeting other retaining glycosidase families.
Collapse
Affiliation(s)
- Wouter W Kallemeijn
- Department of Medicinal Biochemistry, Academic Medical Center, Meibergdreef 15, 1105 AZ, Amsterdam, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Novel Activity-Based Probes for Broad-Spectrum Profiling of Retaining β-Exoglucosidases In Situ and In Vivo. Angew Chem Int Ed Engl 2012. [DOI: 10.1002/ange.201207771] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
13
|
Ultrasensitive in situ visualization of active glucocerebrosidase molecules. Nat Chem Biol 2010; 6:907-13. [PMID: 21079602 DOI: 10.1038/nchembio.466] [Citation(s) in RCA: 194] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2010] [Accepted: 10/05/2010] [Indexed: 01/11/2023]
Abstract
Deficiency of glucocerebrosidase (GBA) underlies Gaucher disease, a common lysosomal storage disorder. Carriership for Gaucher disease has recently been identified as major risk for parkinsonism. Presently, no method exists to visualize active GBA molecules in situ. We here report the design, synthesis and application of two fluorescent activity-based probes allowing highly specific labeling of active GBA molecules in vitro and in cultured cells and mice in vivo. Detection of in vitro labeled recombinant GBA on slab gels after electrophoresis is in the low attomolar range. Using cell or tissue lysates, we obtained exclusive labeling of GBA molecules. We present evidence from fluorescence-activated cell sorting analysis, fluorescence microscopy and pulse-chase experiments of highly efficient labeling of GBA molecules in intact cells as well as tissues of mice. In addition, we illustrate the use of the fluorescent probes to study inhibitors and tentative chaperones in living cells.
Collapse
|
14
|
Ketudat Cairns JR, Esen A. β-Glucosidases. Cell Mol Life Sci 2010; 67:3389-405. [PMID: 20490603 PMCID: PMC11115901 DOI: 10.1007/s00018-010-0399-2] [Citation(s) in RCA: 402] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2010] [Revised: 04/13/2010] [Accepted: 04/30/2010] [Indexed: 10/19/2022]
Abstract
β-Glucosidases (3.2.1.21) are found in all domains of living organisms, where they play essential roles in the removal of nonreducing terminal glucosyl residues from saccharides and glycosides. β-Glucosidases function in glycolipid and exogenous glycoside metabolism in animals, defense, cell wall lignification, cell wall β-glucan turnover, phytohormone activation, and release of aromatic compounds in plants, and biomass conversion in microorganisms. These functions lead to many agricultural and industrial applications. β-Glucosidases have been classified into glycoside hydrolase (GH) families GH1, GH3, GH5, GH9, and GH30, based on their amino acid sequences, while other β-glucosidases remain to be classified. The GH1, GH5, and GH30 β-glucosidases fall in GH Clan A, which consists of proteins with (β/α)(8)-barrel structures. In contrast, the active site of GH3 enzymes comprises two domains, while GH9 enzymes have (α/α)(6) barrel structures. The mechanism by which GH1 enzymes recognize and hydrolyze substrates with different specificities remains an area of intense study.
Collapse
Affiliation(s)
- James R Ketudat Cairns
- Schools of Biochemistry and Chemistry, Institute of Science, Suranaree University of Technology, 111 University Avenue, Muang District, Nakhon Ratchasima, Thailand.
| | | |
Collapse
|
15
|
|
16
|
Behrendt M, Polaina J, Naim HY. Structural hierarchy of regulatory elements in the folding and transport of an intestinal multidomain protein. J Biol Chem 2009; 285:4143-4152. [PMID: 19955176 DOI: 10.1074/jbc.m109.060780] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Human intestinal lactase-phlorizin hydrolase, LPH, encompasses four homologous domains, which presumably have evolved from two subsequent duplications of one ancestral gene. The profragment, LPHalpha, comprises homologous domains I and II and functions as an intramolecular chaperone in the context of the brush-border LPHbeta region of LPH. Here, we analyze the inter-relationship between homologous domains III and IV of LPHbeta and their implication in the overall structure, function, and trafficking of LPH. In silico analyses revealed potential domain boundaries for these domains as a basis for loop-out mutagenesis and construction of deletion or individual domain forms of LPH. Removal of domain IV, which contains lactase, results in a diminished phlorizin hydrolase activity, lack of dimerization in the endoplasmic reticulum (ER), but accelerated transport kinetics from the ER to the Golgi apparatus. By contrast, deletion of domain III, which harbors phlorizin hydrolase, generates a malfolded protein that is blocked in the ER. Interestingly, homologous domain III is transport-competent per se and sorted to the apical membrane in polarized Madin-Darby canine kidney cells. Nevertheless, it neither dimerizes nor acquires complete phlorizin hydrolase activity. Our data present a hierarchical model of LPH in which the homologous domain III constitutes (i) a fully autonomous core domain within LPH and (ii) another intramolecular chaperone besides the profragment LPHalpha. Nevertheless, the regulation of the trafficking kinetics and activity of domain III and entire LPH including elevation of the enzymatic activities require the correct dimerization of LPH in the ER, an event that is accomplished by the non-autonomous domain IV.
Collapse
Affiliation(s)
- Marc Behrendt
- From the Department of Physiological Chemistry, University of Veterinary Medicine Hannover, D-30559 Hannover, Germany and
| | - Julio Polaina
- the Instituto de Agroquímica y Tecnología de Alimentos, Consejo Superior de Investigaciones Científicas, Apartado de Correos 73, Burjassot, E46100 Valencia, Spain
| | - Hassan Y Naim
- From the Department of Physiological Chemistry, University of Veterinary Medicine Hannover, D-30559 Hannover, Germany and.
| |
Collapse
|
17
|
Sakamoto K, Uji S, Kurokawa T, Toyohara H. Molecular cloning of endogenous β-glucosidase from common Japanese brackish water clam Corbicula japonica. Gene 2009; 435:72-9. [DOI: 10.1016/j.gene.2009.01.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2008] [Revised: 01/21/2009] [Accepted: 01/22/2009] [Indexed: 11/25/2022]
|
18
|
Torniainen S, Freddara R, Routi T, Gijsbers C, Catassi C, Höglund P, Savilahti E, Järvelä I. Four novel mutations in the lactase gene (LCT) underlying congenital lactase deficiency (CLD). BMC Gastroenterol 2009; 9:8. [PMID: 19161632 PMCID: PMC2635369 DOI: 10.1186/1471-230x-9-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2008] [Accepted: 01/22/2009] [Indexed: 12/27/2022] Open
Abstract
Background Congenital lactase deficiency (CLD) is a severe gastrointestinal disorder of newborns. The diagnosis is challenging and based on clinical symptoms and low lactase activity in intestinal biopsy specimens. The disease is enriched in Finland but is also present in other parts of the world. Mutations encoding the lactase (LCT) gene have recently been shown to underlie CLD. The purpose of this study was to identify new mutations underlying CLD in patients with different ethnic origins, and to increase awareness of this disease so that the patients could be sought out and treated correctly. Methods Disaccharidase activities in intestinal biopsy specimens were assayed and the coding region of LCT was sequenced from five patients from Europe with clinical features compatible with CLD. In the analysis and prediction of mutations the following programs: ClustalW, Blosum62, PolyPhen, SIFT and Panther PSEC were used. Results Four novel mutations in the LCT gene were identified. A single nucleotide substitution leading to an amino acid change S688P in exon 7 and E1612X in exon 12 were present in a patient of Italian origin. Five base deletion V565fsX567 leading to a stop codon in exon 6 was found in one and a substitution R1587H in exon 12 from another Finnish patient. Both Finnish patients were heterozygous for the Finnish founder mutation Y1390X. The previously reported mutation G1363S was found in a homozygous state in two siblings of Turkish origin. Conclusion This is the first report of CLD mutations in patients living outside Finland. It seems that disease is more common than previously thought. All mutations in the LCT gene lead to a similar phenotype despite the location and/or type of mutation.
Collapse
Affiliation(s)
- Suvi Torniainen
- Department of Medical Genetics, University of Helsinki, Haartman Institute, Helsinki, Finland.
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Abstract
Lactase non-persistence (adult-type hypolactasia) is present in more than half of the human population and is caused by the down-regulation of lactase enzyme activity during childhood. Congenital lactase deficiency (CLD) is a rare severe gastrointestinal disorder of new-borns enriched in the Finnish population. Both lactase deficiencies are autosomal recessive traits and characterized by diminished expression of lactase activity in the intestine. Genetic variants underlying both forms have been identified. Here we review the current understanding of the molecular defects of human lactase deficiencies and their phenotype-genotype correlation, the implications on clinical practice, and the understanding of their function and role in human evolution.
Collapse
Affiliation(s)
- Irma Järvelä
- Department of Medical Genetics, Haartman Institute, University of Helsinki, Helsinki, Finland.
| | | | | |
Collapse
|
20
|
Abstract
A staggering 4000 million people cannot digest lactose, the sugar in milk, properly. All mammals, apart from white Northern Europeans and few tribes in Africa and Asia, lose most of their lactase, the enzyme that cleaves lactose into galactose and glucose, after weaning. Lactose intolerance causes gut and a range of systemic symptoms, though the threshold to lactose varies considerably between ethnic groups and individuals within a group. The molecular basis of inherited hypolactasia has yet to be identified, though two polymorphisms in the introns of a helicase upstream from the lactase gene correlate closely with hypolactasia, and thus lactose intolerance. The symptoms of lactose intolerance are caused by gases and toxins produced by anaerobic bacteria in the large intestine. Bacterial toxins may play a key role in several other diseases, such as diabetes, rheumatoid arthritis, multiple sclerosis and some cancers. The problem of lactose intolerance has been exacerbated because of the addition of products containing lactose to various foods and drinks without being on the label. Lactose intolerance fits exactly the illness that Charles Darwin suffered from for over 40 years, and yet was never diagnosed. Darwin missed something else--the key to our own evolution--the Rubicon some 300 million years ago that produced lactose and lactase in sufficient amounts to be susceptible to natural selection.
Collapse
Affiliation(s)
- Anthony K Campbell
- Department of Medical Biochemistry and Immunology, Wales College of Medicine, Cardiff University, Cardiff, CF14 XN, UK.
| | | | | |
Collapse
|
21
|
Watermeyer JM, Kröger WL, O'Neill HG, Sewell BT, Sturrock ED. Probing the basis of domain-dependent inhibition using novel ketone inhibitors of Angiotensin-converting enzyme. Biochemistry 2008; 47:5942-50. [PMID: 18457420 DOI: 10.1021/bi8002605] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Human angiotensin-converting enzyme (ACE) has two homologous domains, the N and C domains, with differing substrate preferences. X-ray crystal structures of the C and N domains complexed with various inhibitors have allowed identification of active site residues that might be important for the molecular basis of this selectivity. However, it is unclear to what extent the different residues contribute to substrate domain selectivity. Here, cocrystal structures of human testis ACE, equivalent to the C domain, have been determined with two novel C domain-selective ketomethylene inhibitors, (5 S)-5-[( N-benzoyl)amino]-4-oxo-6-phenylhexanoyl- l-tryptophan (kAW) and (5 S)-5-[( N-benzoyl)amino]-4-oxo-6-phenylhexanoyl- l-phenylalanine (kAF). The ketone groups of both inhibitors bind to the zinc ion as a hydrated geminal diolate, demonstrating the ability of the active site to catalyze the formation of the transition state. Moreover, active site residues involved in inhibitor binding have been mutated to their N domain counterparts, and the effect of the mutations on inhibitor binding has been determined. The C domain selectivity of these inhibitors was found to result from interactions between bulky hydrophobic side chain moieties and C domain-specific residues F391, V518, E376, and V380 (numbering of testis ACE). Mutation of these residues decreased the affinity for the inhibitors 4-20-fold. T282, V379, E403, D453, and S516 did not contribute individually to C domain-selective inhibitor binding. Further domain-selective inhibitor design should focus on increasing both the affinity and selectivity of the side chain moieties.
Collapse
Affiliation(s)
- Jean M Watermeyer
- Division of Medical Biochemistry, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory 7925, South Africa
| | | | | | | | | |
Collapse
|
22
|
Rempel BP, Withers SG. Covalent inhibitors of glycosidases and their applications in biochemistry and biology. Glycobiology 2008; 18:570-86. [PMID: 18499865 DOI: 10.1093/glycob/cwn041] [Citation(s) in RCA: 152] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Glycoside hydrolases are important enzymes in a number of essential biological processes. Irreversible inhibitors of this class of enzyme have attracted interest as probes of both structure and function. In this review we discuss some of the compounds used to covalently modify glycosidases, their use in residue identification, structural and mechanistic investigations, and finally their applications, both in vitro and in vivo, to complex biological systems.
Collapse
Affiliation(s)
- Brian P Rempel
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | | |
Collapse
|
23
|
Beau I, Cotte-Laffitte J, Géniteau-Legendre M, Estes MK, Servin AL. An NSP4-dependant mechanism by which rotavirus impairs lactase enzymatic activity in brush border of human enterocyte-like Caco-2 cells. Cell Microbiol 2007; 9:2254-66. [PMID: 17506819 DOI: 10.1111/j.1462-5822.2007.00956.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Lactase-phlorizin hydrolase (LPH, EC 3.2.1.23-62) is a brush border membrane (BBM)-associated enzyme in intestinal cells that hydrolyse lactose, the most important sugar in milk. Impairing in lactase activity during rotavirus infection has been described in diseased infants but the mechanism by which the functional lesion occurs remains unknown. We undertook a study to elucidate whether rotavirus impairs the lactase enzymatic activity in BBM of human enterocyte cells. In this study we use cultured human intestinal fully differentiated enterocyte-like Caco-2 cells to demonstrate how the lactase enzymatic activity at BBM is significantly decreased in rhesus monkey rotavirus (RRV)-infected cells. We found that the decrease in enzyme activity is not dependent of the Ca(2+)- and cAMP-dependent signalling events triggered by the virus. The LPH biosynthesis, stability, and expression of the protein at the BBM of infected cells were not modified. We provide evidence that in RRV-infected cells the kinetic of lactase enzymatic activity present at the BBM was modified. Both BBM(control) and BBM(RRV) have identical K(m) values, but hydrolyse the substrate at different rates. Thus, the BBM(RRV) exhibits almost a 1.5-fold decreased V(max) than that of BBM(control) and is therefore enzymatically less active than the latter. Our study demonstrate conclusively that the impairment of lactase enzymatic activity at the BBM of the enterocyte-like Caco-2 cells observed during rotavirus infection results from an inhibitory action of the secreted non-structural rotavirus protein NSP4.
Collapse
Affiliation(s)
- Isabelle Beau
- INSERM, UMR 756, Signalisation et Physiopathologie des Cellules Epithéliales, Châtenay-Malabry, France
| | | | | | | | | |
Collapse
|
24
|
Kuokkanen M, Kokkonen J, Enattah NS, Ylisaukko-oja T, Komu H, Varilo T, Peltonen L, Savilahti E, Järvelä I. Mutations in the translated region of the lactase gene (LCT) underlie congenital lactase deficiency. Am J Hum Genet 2006; 78:339-44. [PMID: 16400612 PMCID: PMC1380240 DOI: 10.1086/500053] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2005] [Accepted: 11/22/2005] [Indexed: 12/14/2022] Open
Abstract
Congenital lactase deficiency (CLD) is a severe gastrointestinal disorder characterized by watery diarrhea in infants fed with breast milk or other lactose-containing formulas. We initially assigned the CLD locus by linkage and linkage disequilibrium on 2q21 in 19 Finnish families. Here we report the molecular background of CLD via characterization of five distinct mutations in the coding region of the lactase (LCT) gene. Twenty-seven patients out of 32 (84%) were homozygous for a nonsense mutation, c.4170T-->A (Y1390X), designated "Fin(major)." Four rare mutations--two that result in a predicted frameshift and early truncation at S1666fsX1722 and S218fsX224 and two point mutations that result in substitutions Q268H and G1363S of the 1,927-aa polypeptide--confirmed the lactase mutations as causative for CLD. These findings facilitate genetic testing in clinical practice and enable genetic counseling for this severe disease. Further, our data demonstrate that, in contrast to common adult-type hypolactasia (lactose intolerance) caused by a variant of the regulatory element, the severe infancy form represents the outcome of mutations affecting the structure of the protein inactivating the enzyme.
Collapse
Affiliation(s)
- Mikko Kuokkanen
- Department of Molecular Medicine, National Public Health Institute, Department of Medical Genetics and Hospital for Children and Adolescents, University of Helsinki, and Helsinki University Central Hospital, Laboratory Services HUSLAB, Laboratory of Molecular Genetics, Helsinki; Department of Paediatrics, Oulu University Hospital, Oulu, Finland; and Broad Institute of MIT and Harvard, Boston
| | - Jorma Kokkonen
- Department of Molecular Medicine, National Public Health Institute, Department of Medical Genetics and Hospital for Children and Adolescents, University of Helsinki, and Helsinki University Central Hospital, Laboratory Services HUSLAB, Laboratory of Molecular Genetics, Helsinki; Department of Paediatrics, Oulu University Hospital, Oulu, Finland; and Broad Institute of MIT and Harvard, Boston
| | - Nabil Sabri Enattah
- Department of Molecular Medicine, National Public Health Institute, Department of Medical Genetics and Hospital for Children and Adolescents, University of Helsinki, and Helsinki University Central Hospital, Laboratory Services HUSLAB, Laboratory of Molecular Genetics, Helsinki; Department of Paediatrics, Oulu University Hospital, Oulu, Finland; and Broad Institute of MIT and Harvard, Boston
| | - Tero Ylisaukko-oja
- Department of Molecular Medicine, National Public Health Institute, Department of Medical Genetics and Hospital for Children and Adolescents, University of Helsinki, and Helsinki University Central Hospital, Laboratory Services HUSLAB, Laboratory of Molecular Genetics, Helsinki; Department of Paediatrics, Oulu University Hospital, Oulu, Finland; and Broad Institute of MIT and Harvard, Boston
| | - Hanna Komu
- Department of Molecular Medicine, National Public Health Institute, Department of Medical Genetics and Hospital for Children and Adolescents, University of Helsinki, and Helsinki University Central Hospital, Laboratory Services HUSLAB, Laboratory of Molecular Genetics, Helsinki; Department of Paediatrics, Oulu University Hospital, Oulu, Finland; and Broad Institute of MIT and Harvard, Boston
| | - Teppo Varilo
- Department of Molecular Medicine, National Public Health Institute, Department of Medical Genetics and Hospital for Children and Adolescents, University of Helsinki, and Helsinki University Central Hospital, Laboratory Services HUSLAB, Laboratory of Molecular Genetics, Helsinki; Department of Paediatrics, Oulu University Hospital, Oulu, Finland; and Broad Institute of MIT and Harvard, Boston
| | - Leena Peltonen
- Department of Molecular Medicine, National Public Health Institute, Department of Medical Genetics and Hospital for Children and Adolescents, University of Helsinki, and Helsinki University Central Hospital, Laboratory Services HUSLAB, Laboratory of Molecular Genetics, Helsinki; Department of Paediatrics, Oulu University Hospital, Oulu, Finland; and Broad Institute of MIT and Harvard, Boston
| | - Erkki Savilahti
- Department of Molecular Medicine, National Public Health Institute, Department of Medical Genetics and Hospital for Children and Adolescents, University of Helsinki, and Helsinki University Central Hospital, Laboratory Services HUSLAB, Laboratory of Molecular Genetics, Helsinki; Department of Paediatrics, Oulu University Hospital, Oulu, Finland; and Broad Institute of MIT and Harvard, Boston
| | - Irma Järvelä
- Department of Molecular Medicine, National Public Health Institute, Department of Medical Genetics and Hospital for Children and Adolescents, University of Helsinki, and Helsinki University Central Hospital, Laboratory Services HUSLAB, Laboratory of Molecular Genetics, Helsinki; Department of Paediatrics, Oulu University Hospital, Oulu, Finland; and Broad Institute of MIT and Harvard, Boston
| |
Collapse
|
25
|
Hermida C, Corrales G, Martínez-Costa OH, Fernández-Mayoralas A, Aragón JJ. Noninvasive evaluation of intestinal lactase with 4-galactosylxylose: comparison with 3- and 2-galactosylxylose and optimization of the method in rats. Clin Chem 2005; 52:270-7. [PMID: 16384892 DOI: 10.1373/clinchem.2005.058446] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
BACKGROUND Urinary excretion of D-xylose by suckling rats after ingestion of a mixture of 4-, 3-, and 2-galactosylxyloses reflects lactase activity in vivo. We aimed to select the most convenient of these disaccharides for detecting changes of the enzyme activity in vivo and to optimize the method. METHODS 4-, 3-, and 2-galactosylxyloses were synthesized and purified, then orally administered to suckling rats of different ages. D-Xylose was measured colorimetrically by the phloroglucinol reaction in urine and plasma. Lactase activity was determined in extracts of small intestine mucosa with lactose, galactosylxyloses, and phlorizin as substrates. RESULTS D-Xylose appeared in the urine in a dose-dependent manner after ingestion of any of the 3 galactosylxylose disaccharides. Correlation between D-xylose elimination and intestinal lactase activity was highest with 4-galactosylxylose (r = 0.97; n = 24), lower with 2-galactosylxylose (r = 0.89; n = 24), and lowest with 3-galactosylxylose (r = 0.34; n = 23). The kinetic properties of intestinal lactase accounted for these differences. D-Xylose concentration in plasma after administration of 4-galactosylxylose also correlated with lactase activity (r = 0.93; n = 33). CONCLUSIONS 4-Galactosylxylose is the most suitable compound for the evaluation of lactase activity in vivo. Measurement of the derived D-xylose in either urine or blood gives an estimate of the total lactose digestive capacity of the small intestine. The optimized method holds promise for development of a simple, low-cost, and reliable new test for the noninvasive diagnosis of hypolactasia.
Collapse
Affiliation(s)
- Carmen Hermida
- Departamento de Bioquímica and Instituto de Investigaciones Biomédicas Alberto Sols Universidad Autónoma de Madrid-Consejo Superior de Investigaciones Científicas, Facultad de Medicina de la Universidad Autónoma de Madrid, Madrid, Spain
| | | | | | | | | |
Collapse
|
26
|
Troelsen JT. Adult-type hypolactasia and regulation of lactase expression. Biochim Biophys Acta Gen Subj 2005; 1723:19-32. [PMID: 15777735 DOI: 10.1016/j.bbagen.2005.02.003] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2004] [Revised: 02/08/2005] [Accepted: 02/09/2005] [Indexed: 11/25/2022]
Abstract
A common genetically determined polymorphism in the human population leads to two distinct phenotypes in adults, lactase persistence and adult-type hypolactasia (lactase non-persistence). All healthy newborn children express high levels of lactase and are able to digest large quantities of lactose, the main carbohydrate in milk. Individuals with adult-type hypolactasia lose their lactase expression before adulthood and consequently often become lactose intolerant with associated digestive problems (e.g. diarrhoea). In contrast, lactase persistent individuals have a lifelong lactase expression and are able to digest lactose as adults. Lactase persistence can be regarded as the mutant phenotype since other mammals down-regulate their lactase expression after weaning (the postweaning decline). This phenomenon does not occur in lactase persistent individuals. The regulation of lactase expression is mainly transcriptional and it is well established that adult-type hypolactasia is inherited in an autosomal recessive manner, whereas persistence is dominant. The recent findings of single nucleotide polymorphisms associated with lactase persistence have made it possible to study the potential mechanisms underlying adult-type hypolactasia. This work has led to the identification of gene-regulatory sequences located far from the lactase gene (LCT). The present review describes the recent advances in the understanding of the regulation of lactase expression and the possible mechanisms behind adult-type hypolactasia.
Collapse
Affiliation(s)
- Jesper T Troelsen
- Department of Medical Biochemistry and Genetics, The Panum Institute, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark.
| |
Collapse
|
27
|
Adam AC, Rubio-Texeira M, Polaina J. Lactose: The Milk Sugar from a Biotechnological Perspective. Crit Rev Food Sci Nutr 2005; 44:553-7. [PMID: 15969327 DOI: 10.1080/10408690490931411] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Lactose is a very important sugar because of its abundance in the milk of humans and domestic animals. Lactose is a valuable asset as a basic nutrient and the main substrate in fermentative processes that led to the production of fermented milk products, such as yogurt and kefir. In some instances, lactose also can be a problem as the causative agent of some diseases, such as lactose intolerance and galactosemia, or for being a by-product generated in huge amounts by the cheese industry. The study of the biochemical reactions leading to the synthesis and assimilation of lactose has provided valuable models for the understanding of biosynthetic and catabolic processes. Lactose-hydrolyzing enzymes are structurally and phylogenetically related to different types of beta-galactosidases and bacterial cellobiases involved in the enzymatic degradation of cellulose. Biotransformation of lactose, by either enzymatic or fermentative procedures, is important for different types of industrial applications in dairy and pharmaceutical industries.
Collapse
Affiliation(s)
- Ana C Adam
- Instituto de Agroquímica y Tecnología de Alimentos, Valencia, Spain
| | | | | |
Collapse
|
28
|
Abstract
A staggering 4000 million people cannot digest lactose, the sugar in milk, properly. All mammals, apart from white Northern Europeans and few tribes in Africa and Asia, lose most of their lactase, the enzyme that cleaves lactose into galactose and glucose, after weaning. Lactose intolerance causes gut and a range of systemic symptoms, though the threshold to lactose varies considerably between ethnic groups and individuals within a group. The molecular basis of inherited hypolactasia has yet to be identified, though two polymorphisms in the introns of a helicase upstream from the lactase gene correlate closely with hypolactasia, and thus lactose intolerance. The symptoms of lactose intolerance are caused by gases and toxins produced by anaerobic bacteria in the large intestine. Bacterial toxins may play a key role in several other diseases, such as diabetes, rheumatoid arthritis, multiple sclerosis and some cancers. The problem of lactose intolerance has been exacerbated because of the addition of products containing lactose to various foods and drinks without being on the label. Lactose intolerance fits exactly the illness that Charles Darwin suffered from for over 40 years, and yet was never diagnosed. Darwin missed something else--the key to our own evolution--the Rubicon some 300 million years ago that produced lactose and lactase in sufficient amounts to be susceptible to natural selection.
Collapse
Affiliation(s)
- Anthony K Campbell
- Department of Medical Biochemistry and Immunology, Wales College of Medicine, Cardiff University, Cardiff CF14 XN, UK.
| | | | | |
Collapse
|
29
|
Tseung CW, McMahon LG, Vázquez J, Pohl J, Gregory JF. Partial amino acid sequence and mRNA analysis of cytosolic pyridoxine-beta-D-glucoside hydrolase from porcine intestinal mucosa: proposed derivation from the lactase-phlorizin hydrolase gene. Biochem J 2004; 380:211-8. [PMID: 14972028 PMCID: PMC1224160 DOI: 10.1042/bj20031416] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2003] [Revised: 02/18/2004] [Accepted: 02/19/2004] [Indexed: 11/17/2022]
Abstract
We have previously identified and purified a novel beta-glucosidase, designated PNGH (pyridoxine-5'-beta-D-glucoside hydrolase), from the cytosolic fraction of pig intestinal mucosal. PNGH catalyses the hydrolysis of PNG (pyridoxine-5'-beta-D-glucoside), a plant derivative of vitamin B6 that exhibits partial nutritional bioavailability in humans and animals. Preliminary amino acid sequence analysis indicated regions of close similarity of PNGH to the precursor form of LPH (lactase-phlorizin hydrolase), the beta-glucosidase localized to the brush-border membrane. We report in the present study amino acid sequence data for PNGH and results of Northern blot analyses, upon which we propose a common genomic origin of PNGH and LPH. Internal Edman sequencing of the PNGH band isolated by SDS/PAGE yielded data for 16 peptides, averaging 10.8 amino acids in length. These peptides from PNGH (approx. 140 kDa) were highly similar to sequences existing over most of the length of the >200 kDa precursor of rabbit LPH; however, we found no PNGH sequences that corresponded to approx. 350 amino acids between positions 463 and 812 of the LPH precursor, a region encoded by exon 7 of the LPH precursor gene (amino acids 568-784), and no sequences that corresponded to regions near the N-terminus. MS analysis of tryptic peptides yielded 25 peptides, averaging 15 amino acids, with masses that matched segments of the rabbit LPH precursor. Northern blot analysis of pig and human small intestinal polyadenylated mRNA using a non-specific LPH cDNA probe showed an expected approx. 6 kb transcript of the LPH precursor, but also an approx. 4 kb transcript that was consistent with the size predicted from the PNGH protein mass. Using a probe specific to the region encoded by exon 7, hybridization occurred only with the 6 kb transcript. Based on these observations, we propose that both PNGH and LPH enzymes have the same genomic origin, but differ in transcriptional and, possibly, post-translational processing.
Collapse
Affiliation(s)
- Chi-Wah Tseung
- Food Science and Human Nutrition Department, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL 32611-0370, USA
| | | | | | | | | |
Collapse
|
30
|
Abstract
The enzyme lactase that is located in the villus enterocytes of the small intestine is responsible for digestion of lactose in milk. Lactase activity is high and vital during infancy, but in most mammals, including most humans, lactase activity declines after the weaning phase. In other healthy humans, lactase activity persists at a high level throughout adult life, enabling them to digest lactose as adults. This dominantly inherited genetic trait is known as lactase persistence. The distribution of these different lactase phenotypes in human populations is highly variable and is controlled by a polymorphic element cis-acting to the lactase gene. A putative causal nucleotide change has been identified and occurs on the background of a very extended haplotype that is frequent in Northern Europeans, where lactase persistence is frequent. This single nucleotide polymorphism is located 14 kb upstream from the start of transcription of lactase in an intron of the adjacent gene MCM6. This change does not, however, explain all the variation in lactase expression.
Collapse
Affiliation(s)
- Dallas M Swallow
- Galton Laboratory, Department of Biology, University College London, Wolfson House, 4 Stephenson Way, London NW1 2HE, England.
| |
Collapse
|
31
|
Berrin JG, Czjzek M, Kroon PA, McLauchlan WR, Puigserver A, Williamson G, Juge N. Substrate (aglycone) specificity of human cytosolic beta-glucosidase. Biochem J 2003; 373:41-8. [PMID: 12667141 PMCID: PMC1223474 DOI: 10.1042/bj20021876] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2002] [Revised: 03/17/2003] [Accepted: 04/01/2003] [Indexed: 11/17/2022]
Abstract
Human cytosolic beta-glucosidase (hCBG) is a xenobiotic-metabolizing enzyme that hydrolyses certain flavonoid glucosides, with specificity depending on the aglycone moiety, the type of sugar and the linkage between them. Based upon the X-ray structure of Zea mays beta-glucosidase, we generated a three-dimensional model of hCBG by homology modelling. The enzyme exhibited the (beta/alpha)(8)-barrel fold characteristic of family 1 beta-glucosidases, with structural differences being confined mainly to loop regions. Based on the substrate specificity of the human enzymes, sequence alignment of family 1 enzymes and analysis of the hCBG structural model, we selected and mutated putative substrate (aglycone) binding site residues. Four single mutants (Val(168)-->Tyr, Phe(225)-->Ser, Tyr(308)-->Ala and Tyr(308)-->Phe) were expressed in Pichia pastoris, purified and characterized. All mutant proteins showed a decrease in activity towards a broad range of substrates. The Val(168)-->Tyr mutation did not affect K (m) on p -nitrophenyl ( p NP)-glycosides, but increased K (m) 5-fold on flavonoid glucosides, providing the first biochemical evidence supporting a role for this residue in aglycone-binding of the substrate, a finding consistent with our three-dimensional model. The Phe(225)-->Ser and Tyr(308)-->Ala mutations, and, to a lesser degree, the Tyr(308)-->Phe mutation, resulted in a drastic decrease in specific activities towards all substrates tested, indicating an important role of those residues in catalysis. Taken together with the three-dimensional model, these mutation studies identified the amino-acid residues in the aglycone-binding subsite of hCBG that are essential for flavonoid glucoside binding and catalysis.
Collapse
Affiliation(s)
- Jean-Guy Berrin
- Institute of Food Research, Colney Lane, Norwich NR4 7UA, UK
| | | | | | | | | | | | | |
Collapse
|
32
|
Cornette R, Farine JP, Abed-Viellard D, Quennedey B, Brossut R. Molecular characterization of a male-specific glycosyl hydrolase, Lma-p72, secreted on to the abdominal surface of the Madeira cockroach Leucophaea maderae (Blaberidae, Oxyhaloinae). Biochem J 2003; 372:535-41. [PMID: 12593672 PMCID: PMC1223393 DOI: 10.1042/bj20030025] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2003] [Revised: 02/19/2003] [Accepted: 02/20/2003] [Indexed: 11/17/2022]
Abstract
The epicuticular surface protein Lma-p72 is specific to the abdominal secretions of Leucophaea maderae (Madeira cockroach) adult males. Natural Lma-p72 was purified and the complete cDNA sequence determined by reverse-transcription PCR using primers based on Edman degradation fragments. Northern blot and in situ hybridization analyses showed that Lma-p72 was expressed in the tergal and sternal glands. Sequence alignment indicates that Lma-p72 is closely related to the family 1 glycosyl hydrolases (EC 3.2.1). Native Lma-p72 was proved to be active in the abdominal secretions and exhibit a beta-galactosidase-like activity. However, weak specificity with respect to the C-4 configuration of the substrate was observed. Two main hypotheses were proposed concerning the function of this enzyme: Lma-p72 could hydrolyse oligosaccharides from the male abdominal secretions, making them more phagostimulatory for the female during the precopulatory behaviour. The protein could also cleave a pheromone-sugar conjugate to release the pheromonal compounds on to the cuticular surface. Such a sugar conjugate could be a transport form. Data from the first in vivo inhibition tests indicate that a glycosidase could be directly involved in the production process of some pheromonal compounds in L. maderae males.
Collapse
Affiliation(s)
- Richard Cornette
- C.N.R.S., U.M.R. 5548, 'Développement - Communication Chimique', Université de Bourgogne, 6 boulevard Gabriel, 21000 Dijon, France
| | | | | | | | | |
Collapse
|
33
|
Mackey AD, Henderson GN, Gregory JF. Enzymatic hydrolysis of pyridoxine-5'-beta-D-glucoside is catalyzed by intestinal lactase-phlorizin hydrolase. J Biol Chem 2002; 277:26858-64. [PMID: 12023280 DOI: 10.1074/jbc.m201774200] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
An obligatory step in the mammalian nutritional utilization of pyridoxine-5'-beta-D-glucoside (PNG) is the intestinal hydrolysis of its beta-glucosidic bond that releases pyridoxine (PN). This laboratory previously reported the purification and partial characterization of a novel cytosolic enzyme, designated PNG hydrolase, which hydrolyzed PNG. An investigation of the subcellular distribution of intestinal PNG hydrolysis found substantial hydrolytic activity in the total membrane fraction, of which 40-50% was localized to brush border membrane. To investigate the possible role of a brush border beta-glucosidase in the hydrolysis of PNG, lactase phlorizin hydrolase (LPH) was purified from rat small intestinal mucosa. LPH hydrolyzed PNG with a K(m) of 1.0 +/- 0.1 mm, a V(max) of 0.11 +/- 0.01 micromol/min.mg protein, and a k(cat) of 1.0 s(-1). LPH-catalyzed PNG hydrolysis was inhibited by glucose, lactose, and cellobiose but not by PN. Specific blockage of the phlorizin hydrolase site of LPH using 2',4'-dintrophenyl-2-fluoro-2-deoxy-beta-D-glucopyranoside did not reduce PNG hydrolysis. Evidence of transferase activity was also obtained. Reaction mixtures containing LPH, PNG, and lactose yielded the formation of another PN derivative that was identified as a pyridoxine disaccharide. These results indicate that LPH may play an important role in the bioavailability of PNG, but further characterization is needed to assess its physiological function.
Collapse
Affiliation(s)
- Amy D Mackey
- Food Science and Human Nutrition Department, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL 32611, USA
| | | | | |
Collapse
|