1
|
Ernsberger U, Deller T, Rohrer H. The sympathies of the body: functional organization and neuronal differentiation in the peripheral sympathetic nervous system. Cell Tissue Res 2021; 386:455-475. [PMID: 34757495 PMCID: PMC8595186 DOI: 10.1007/s00441-021-03548-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 10/20/2021] [Indexed: 02/06/2023]
Abstract
During the last 30 years, our understanding of the development and diversification of postganglionic sympathetic neurons has dramatically increased. In parallel, the list of target structures has been critically extended from the cardiovascular system and selected glandular structures to metabolically relevant tissues such as white and brown adipose tissue, lymphoid tissues, bone, and bone marrow. A critical question now emerges for the integration of the diverse sympathetic neuron classes into neural circuits specific for these different target tissues to achieve the homeostatic regulation of the physiological ends affected.
Collapse
Affiliation(s)
- Uwe Ernsberger
- Institute for Clinical Neuroanatomy, Goethe University, Frankfurt/Main, Germany.
| | - Thomas Deller
- Institute for Clinical Neuroanatomy, Goethe University, Frankfurt/Main, Germany
| | - Hermann Rohrer
- Institute for Clinical Neuroanatomy, Goethe University, Frankfurt/Main, Germany.
| |
Collapse
|
2
|
The diversity of neuronal phenotypes in rodent and human autonomic ganglia. Cell Tissue Res 2020; 382:201-231. [PMID: 32930881 PMCID: PMC7584561 DOI: 10.1007/s00441-020-03279-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 08/10/2020] [Indexed: 12/29/2022]
Abstract
Selective sympathetic and parasympathetic pathways that act on target organs represent the terminal actors in the neurobiology of homeostasis and often become compromised during a range of neurodegenerative and traumatic disorders. Here, we delineate several neurotransmitter and neuromodulator phenotypes found in diverse parasympathetic and sympathetic ganglia in humans and rodent species. The comparative approach reveals evolutionarily conserved and non-conserved phenotypic marker constellations. A developmental analysis examining the acquisition of selected neurotransmitter properties has provided a detailed, but still incomplete, understanding of the origins of a set of noradrenergic and cholinergic sympathetic neuron populations, found in the cervical and trunk region. A corresponding analysis examining cholinergic and nitrergic parasympathetic neurons in the head, and a range of pelvic neuron populations, with noradrenergic, cholinergic, nitrergic, and mixed transmitter phenotypes, remains open. Of particular interest are the molecular mechanisms and nuclear processes that are responsible for the correlated expression of the various genes required to achieve the noradrenergic phenotype, the segregation of cholinergic locus gene expression, and the regulation of genes that are necessary to generate a nitrergic phenotype. Unraveling the neuron population-specific expression of adhesion molecules, which are involved in axonal outgrowth, pathway selection, and synaptic organization, will advance the study of target-selective autonomic pathway generation.
Collapse
|
3
|
Lozano D, Morona R, González A, López JM. Comparative Analysis of the Organization of the Catecholaminergic Systems in the Brain of Holostean Fishes (Actinopterygii/Neopterygii). BRAIN, BEHAVIOR AND EVOLUTION 2019; 93:206-235. [PMID: 31711060 DOI: 10.1159/000503769] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 09/29/2019] [Indexed: 11/19/2022]
Abstract
Living holosteans, comprising 8 species of bowfins and gars, form a small monophyletic group of actinopterygian fishes, which are currently considered as the sister group to the enormously numerous teleosts and have largely been neglected in neuroanatomical studies. We have studied the catecholaminergic (CAergic) systems by means of antibodies against tyrosine hydroxylase (TH) and dopamine (DA) in the brain of representative species of the 3 genera included in the 2 orders of holostean fishes: Amia calva (Amiiformes) and Lepisosteus platyrhincus, Lepisosteus oculatus, and Atractosteus spatula (Lepisosteiformes). Different groups of TH/DA-immunoreactive (ir) cells were observed in the olfactory bulb, subpallium, and preoptic area of the telencephalon. Hypothalamic groups were labeled in the suprachiasmatic nucleus, tuberal (only in A. calva), retrotuberal, and retromamillary areas; specifically, the paraventricular organ showed only DA immunoreactivity. In the diencephalon, TH/DA-ir groups were detected in the prethalamus, posterior tubercle, and pretectum. In the caudal hindbrain, the solitary tract nucleus and area postrema presented TH/DA-ir cell groups, and also the spinal cord and the retina. Only in A. calva, particular CAergic cell groups were observed in the habenula, the mesencephalic tegmentum, and in the locus coeruleus. Following a neuromeric analysis, the comparison of these results with those obtained in other classes of fishes and tetrapods shows many common traits of CAergic systems shared by most vertebrates and in addition highlights unique features of actinopterygian fishes.
Collapse
Affiliation(s)
- Daniel Lozano
- Department of Cell Biology, Faculty of Biology, University Complutense, Madrid, Spain
| | - Ruth Morona
- Department of Cell Biology, Faculty of Biology, University Complutense, Madrid, Spain
| | - Agustín González
- Department of Cell Biology, Faculty of Biology, University Complutense, Madrid, Spain
| | - Jesús M López
- Department of Cell Biology, Faculty of Biology, University Complutense, Madrid, Spain,
| |
Collapse
|
4
|
Stubbusch J, Narasimhan P, Huber K, Unsicker K, Rohrer H, Ernsberger U. Synaptic protein and pan-neuronal gene expression and their regulation by Dicer-dependent mechanisms differ between neurons and neuroendocrine cells. Neural Dev 2013; 8:16. [PMID: 23961995 PMCID: PMC3766641 DOI: 10.1186/1749-8104-8-16] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Accepted: 07/19/2013] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Neurons in sympathetic ganglia and neuroendocrine cells in the adrenal medulla share not only their embryonic origin from sympathoadrenal precursors in the neural crest but also a range of functional features. These include the capacity for noradrenaline biosynthesis, vesicular storage and regulated release. Yet the regulation of neuronal properties in early neuroendocrine differentiation is a matter of debate and the developmental expression of the vesicle fusion machinery, which includes components found in both neurons and neuroendocrine cells, is not resolved. RESULTS Analysis of synaptic protein and pan-neuronal marker mRNA expression during mouse development uncovers profound differences between sympathetic neurons and adrenal chromaffin cells, which result in qualitatively similar but quantitatively divergent transcript profiles. In sympathetic neurons embryonic upregulation of synaptic protein mRNA follows early and persistent induction of pan-neuronal marker transcripts. In adrenal chromaffin cells pan-neuronal marker expression occurs only transiently and synaptic protein messages remain at distinctly low levels throughout embryogenesis. Embryonic induction of synaptotagmin I (Syt1) in sympathetic ganglia and postnatal upregulation of synaptotagmin VII (Syt7) in adrenal medulla results in a cell type-specific difference in isoform prevalence. Dicer 1 inactivation in catecholaminergic cells reduces high neuronal synaptic protein mRNA levels but not their neuroendocrine low level expression. Pan-neuronal marker mRNAs are induced in chromaffin cells to yield a more neuron-like transcript pattern, while ultrastructure is not altered. CONCLUSIONS Our study demonstrates that remarkably different gene regulatory programs govern the expression of synaptic proteins in the neuronal and neuroendocrine branch of the sympathoadrenal system. They result in overlapping but quantitatively divergent transcript profiles. Dicer 1-dependent regulation is required to establish high neuronal mRNA levels for synaptic proteins and to maintain repression of neurofilament messages in neuroendocrine cells.
Collapse
Affiliation(s)
- Jutta Stubbusch
- Max Planck Institute for Brain Research, Deutschordenstrasse 46 D-60528, Frankfurt, Germany.
| | | | | | | | | | | |
Collapse
|
5
|
Korecka JA, van Kesteren RE, Blaas E, Spitzer SO, Kamstra JH, Smit AB, Swaab DF, Verhaagen J, Bossers K. Phenotypic characterization of retinoic acid differentiated SH-SY5Y cells by transcriptional profiling. PLoS One 2013; 8:e63862. [PMID: 23724009 PMCID: PMC3665836 DOI: 10.1371/journal.pone.0063862] [Citation(s) in RCA: 190] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Accepted: 04/04/2013] [Indexed: 11/18/2022] Open
Abstract
Multiple genetic and environmental factors play a role in the development and progression of Parkinson's disease (PD). The main neuropathological hallmark of PD is the degeneration of dopaminergic (DAergic) neurons in the substantia nigra pars compacta. To study genetic and molecular contributors to the disease process, there is a great need for readily accessible cells with prominent DAergic features that can be used for reproducible in vitro cellular screening. Here, we investigated the molecular phenotype of retinoic acid (RA) differentiated SH-SY5Y cells using genome wide transcriptional profiling combined with gene ontology, transcription factor and molecular pathway analysis. We demonstrated that RA induces a general neuronal differentiation program in SH-SY5Y cells and that these cells develop a predominantly mature DAergic-like neurotransmitter phenotype. This phenotype is characterized by increased dopamine levels together with a substantial suppression of other neurotransmitter phenotypes, such as those for noradrenaline, acetylcholine, glutamate, serotonin and histamine. In addition, we show that RA differentiated SH-SY5Y cells express the dopamine and noradrenalin neurotransmitter transporters that are responsible for uptake of MPP(+), a well known DAergic cell toxicant. MPP(+) treatment alters mitochondrial activity according to its proposed cytotoxic effect in DAergic neurons. Taken together, RA differentiated SH-SY5Y cells have a DAergic-like phenotype, and provide a good cellular screening tool to find novel genes or compounds that affect cytotoxic processes that are associated with PD.
Collapse
Affiliation(s)
- Joanna A Korecka
- Department of Neuroregeneration, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands.
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Ramialison M, Reinhardt R, Henrich T, Wittbrodt B, Kellner T, Lowy CM, Wittbrodt J. Cis-regulatory properties of medaka synexpression groups. Development 2012; 139:917-28. [PMID: 22318626 DOI: 10.1242/dev.071803] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
During embryogenesis, tissue specification is triggered by the expression of a unique combination of developmental genes and their expression in time and space is crucial for successful development. Synexpression groups are batteries of spatiotemporally co-expressed genes that act in shared biological processes through their coordinated expression. Although several synexpression groups have been described in numerous vertebrate species, the regulatory mechanisms that orchestrate their common complex expression pattern remain to be elucidated. Here we performed a pilot screen on 560 genes of the vertebrate model system medaka (Oryzias latipes) to systematically identify synexpression groups and investigate their regulatory properties by searching for common regulatory cues. We find that synexpression groups share DNA motifs that are arranged in various combinations into cis-regulatory modules that drive co-expression. In contrast to previous assumptions that these genes are located randomly in the genome, we discovered that genes belonging to the same synexpression group frequently occur in synexpression clusters in the genome. This work presents a first repertoire of synexpression group common signatures, a resource that will contribute to deciphering developmental gene regulatory networks.
Collapse
Affiliation(s)
- Mirana Ramialison
- University of Heidelberg, Centre for Organismal Studies, Heidelberg, Germany.
| | | | | | | | | | | | | |
Collapse
|
7
|
Young HM, Cane KN, Anderson CR. Development of the autonomic nervous system: a comparative view. Auton Neurosci 2010; 165:10-27. [PMID: 20346736 DOI: 10.1016/j.autneu.2010.03.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2009] [Revised: 02/27/2010] [Accepted: 03/01/2010] [Indexed: 12/15/2022]
Abstract
In this review we summarize current understanding of the development of autonomic neurons in vertebrates. The mechanisms controlling the development of sympathetic and enteric neurons have been studied in considerable detail in laboratory mammals, chick and zebrafish, and there are also limited data about the development of sympathetic and enteric neurons in amphibians. Little is known about the development of parasympathetic neurons apart from the ciliary ganglion in chicks. Although there are considerable gaps in our knowledge, some of the mechanisms controlling sympathetic and enteric neuron development appear to be conserved between mammals, avians and zebrafish. For example, some of the transcriptional regulators involved in the development of sympathetic neurons are conserved between mammals, avians and zebrafish, and the requirement for Ret signalling in the development of enteric neurons is conserved between mammals (including humans), avians and zebrafish. However, there are also differences between species in the migratory pathways followed by sympathetic and enteric neuron precursors and in the requirements for some signalling pathways.
Collapse
Affiliation(s)
- Heather M Young
- Department of Anatomy & Cell Biology, University of Melbourne, VIC Australia.
| | | | | |
Collapse
|
8
|
Ernsberger U, Rohrer H. Development of the autonomic nervous system: New perspectives and open questions. Auton Neurosci 2009; 151:1-2. [PMID: 19783224 DOI: 10.1016/j.autneu.2009.09.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Uwe Ernsberger
- Max-Planck-Institute for Brain Research, Frankfurt, Germany.
| | | |
Collapse
|
9
|
Luther JA, Birren SJ. Neurotrophins and target interactions in the development and regulation of sympathetic neuron electrical and synaptic properties. Auton Neurosci 2009; 151:46-60. [PMID: 19748836 DOI: 10.1016/j.autneu.2009.08.009] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The electrical and synaptic properties of neurons are essential for determining the function of the nervous system. Thus, understanding the mechanisms that control the appropriate developmental acquisition and maintenance of these properties is a critical problem in neuroscience. A great deal of our understanding of these developmental mechanisms comes from studies of soluble growth factor signaling between cells in the peripheral nervous system. The sympathetic nervous system has provided a model for studying the role of these factors both in early development and in the establishment of mature properties. In particular, neurotrophins produced by the targets of sympathetic innervation regulate the synaptic and electrophysiological properties of postnatal sympathetic neurons. In this review we examine the role of neurotrophin signaling in the regulation of synaptic strength, neurotransmitter phenotype, voltage-gated currents and repetitive firing properties of sympathetic neurons. Together, these properties determine the level of sympathetic drive to target organs such as the heart. Changes in this sympathetic drive, which may be linked to dysfunctions in neurotrophin signaling, are associated with devastating diseases such as high blood pressure, arrhythmias and heart attack. Neurotrophins appear to play similar roles in modulating the synaptic and electrical properties of other peripheral and central neuronal systems, suggesting that information provided from studies in the sympathetic nervous system will be widely applicable for understanding the neurotrophic regulation of neuronal function in other systems.
Collapse
Affiliation(s)
- Jason A Luther
- Department of Biology, National Center for Behavioral Genomics, Brandeis University, Waltham, MA 02454, USA.
| | | |
Collapse
|
10
|
Huber K, Franke A, Brühl B, Krispin S, Ernsberger U, Schober A, von Bohlen und Halbach O, Rohrer H, Kalcheim C, Unsicker K. Persistent expression of BMP-4 in embryonic chick adrenal cortical cells and its role in chromaffin cell development. Neural Dev 2008; 3:28. [PMID: 18945349 PMCID: PMC2582231 DOI: 10.1186/1749-8104-3-28] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2008] [Accepted: 10/22/2008] [Indexed: 11/29/2022] Open
Abstract
Background Adrenal chromaffin cells and sympathetic neurons both originate from the neural crest, yet signals that trigger chromaffin development remain elusive. Bone morphogenetic proteins (BMPs) emanating from the dorsal aorta are important signals for the induction of a sympathoadrenal catecholaminergic cell fate. Results We report here that BMP-4 is also expressed by adrenal cortical cells throughout chick embryonic development, suggesting a putative role in chromaffin cell development. Moreover, bone morphogenetic protein receptor IA is expressed by both cortical and chromaffin cells. Inhibiting BMP-4 with noggin prevents the increase in the number of tyrosine hydroxylase positive cells in adrenal explants without affecting cell proliferation. Hence, adrenal BMP-4 is likely to induce tyrosine hydroxylase in sympathoadrenal progenitors. To investigate whether persistent BMP-4 exposure is able to induce chromaffin traits in sympathetic ganglia, we locally grafted BMP-4 overexpressing cells next to sympathetic ganglia. Embryonic day 8 chick sympathetic ganglia, in addition to principal neurons, contain about 25% chromaffin-like cells. Ectopic BMP-4 did not increase this proportion, yet numbers and sizes of 'chromaffin' granules were significantly increased. Conclusion BMP-4 may serve to promote specific chromaffin traits, but is not sufficient to convert sympathetic neurons into a chromaffin phenotype.
Collapse
Affiliation(s)
- Katrin Huber
- Neuroanatomy, Interdisciplinary Center for Neurosciences (IZN), University of Heidelberg, Heidelberg, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Ernsberger U. The role of GDNF family ligand signalling in the differentiation of sympathetic and dorsal root ganglion neurons. Cell Tissue Res 2008; 333:353-71. [PMID: 18629541 PMCID: PMC2516536 DOI: 10.1007/s00441-008-0634-4] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2008] [Accepted: 05/05/2008] [Indexed: 03/24/2023]
Abstract
The diversity of neurons in sympathetic ganglia and dorsal root ganglia (DRG) provides intriguing systems for the analysis of neuronal differentiation. Cell surface receptors for the GDNF family ligands (GFLs) glial cell-line-derived neurotrophic factor (GDNF), neurturin and artemin, are expressed in subpopulations of these neurons prompting the question regarding their involvement in neuronal subtype specification. Mutational analysis in mice has demonstrated the requirement for GFL signalling during embryonic development of cholinergic sympathetic neurons as shown by the loss of expression from the cholinergic gene locus in ganglia from mice deficient for ret, the signal transducing subunit of the GFL receptor complex. Analysis in mutant animals and transgenic mice overexpressing GFLs demonstrates an effect on sensitivity to thermal and mechanical stimuli in DRG neurons correlating at least partially with the altered expression of transient receptor potential ion channels and acid-sensitive cation channels. Persistence of targeted cells in mutant ganglia suggests that the alterations are caused by differentiation effects and not by cell loss. Because of the massive effect of GFLs on neurite outgrowth, it remains to be determined whether GFL signalling acts directly on neuronal specification or indirectly via altered target innervation and access to other growth factors. The data show that GFL signalling is required for the specification of subpopulations of sensory and autonomic neurons. In order to comprehend this process fully, the role of individual GFLs, the transduction of the GFL signals, and the interplay of GFL signalling with other regulatory pathways need to be deciphered.
Collapse
Affiliation(s)
- Uwe Ernsberger
- Interdisciplinary Center for Neurosciences (IZN), University of Heidelberg, Heidelberg, Germany.
| |
Collapse
|
12
|
Apostolova G, Dorn R, Ka S, Hallböök F, Lundeberg J, Liser K, Hakim V, Brodski C, Michaelidis TM, Dechant G. Neurotransmitter phenotype-specific expression changes in developing sympathetic neurons. Mol Cell Neurosci 2007; 35:397-408. [PMID: 17513123 DOI: 10.1016/j.mcn.2007.03.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2007] [Revised: 03/27/2007] [Accepted: 03/28/2007] [Indexed: 01/08/2023] Open
Abstract
During late developmental phases individual sympathetic neurons undergo a switch from noradrenergic to cholinergic neurotransmission. This phenomenon of plasticity depends on target-derived signals in vivo and is triggered by neurotrophic factors in neuronal cultures. To analyze genome-wide expression differences between the two transmitter phenotypes we employed DNA microarrays. RNA expression profiles were obtained from chick paravertebral sympathetic ganglia, treated with neurotrophin 3, glial cell line-derived neurotrophic factor or ciliary neurotrophic factor, all of which stimulate cholinergic differentiation. Results were compared with the effect of nerve growth factor, which functions as a pro-noradrenergic stimulus. The gene set common to all three comparisons defined the noradrenergic and cholinergic synexpression groups. Several functional categories, such as signal transduction, G-protein-coupled signaling, cation transport, neurogenesis and synaptic transmission, were enriched in these groups. Experiments based on the prediction that some of the identified genes play a role in the neurotransmitter switch identified bone morphogenetic protein signaling as an inhibitor of cholinergic differentiation.
Collapse
Affiliation(s)
- Galina Apostolova
- Institute for Neuroscience, Innsbruck Medical University, MZA, Anichstrasse 35, 6020 Innsbruck, Austria
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Olmsted-Davis E, Gannon FH, Ozen M, Ittmann MM, Gugala Z, Hipp JA, Moran KM, Fouletier-Dilling CM, Schumara-Martin S, Lindsey RW, Heggeness MH, Brenner MK, Davis AR. Hypoxic adipocytes pattern early heterotopic bone formation. THE AMERICAN JOURNAL OF PATHOLOGY 2007; 170:620-32. [PMID: 17255330 PMCID: PMC1851874 DOI: 10.2353/ajpath.2007.060692] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The factors contributing to heterotopic ossification, the formation of bone in abnormal soft-tissue locations, are beginning to emerge, but little is known about microenvironmental conditions promoting this often devastating disease. Using a murine model in which endochondral bone formation is triggered in muscle by bone morphogenetic protein 2 (BMP2), we studied changes near the site of injection of BMP2-expressing cells. As early as 24 hours later, brown adipocytes began accumulating in the lesional area. These cells stained positively for pimonidazole and therefore generated hypoxic stress within the target tissue, a prerequisite for the differentiation of stem cells to chondrocytes and subsequent heterotopic bone formation. We propose that aberrant expression of BMPs in soft tissue stimulates production of brown adipocytes, which drive the early steps of heterotopic endochondral ossification by lowering oxygen tension in adjacent tissue, creating the correct environment for chondrogenesis. Results in misty gray lean mutant mice not producing brown fat suggest that white adipocytes convert into fat-oxidizing cells when brown adipocytes are unavailable, providing a compensatory mechanism for generation of a hypoxic microenvironment. Manipulation of the transcriptional control of adipocyte fate in local soft-tissue environments may offer a means to prevent or treat development of bone in extraskeletal sites.
Collapse
MESH Headings
- Adipocytes, Brown/metabolism
- Adipocytes, Brown/pathology
- Adipocytes, Brown/transplantation
- Animals
- Bone Morphogenetic Protein 2
- Bone Morphogenetic Proteins/biosynthesis
- Cell Differentiation
- Cell Hypoxia/genetics
- Chondrocytes/metabolism
- Chondrocytes/pathology
- Chondrogenesis
- Disease Models, Animal
- Gene Expression Regulation
- Humans
- Mice
- Mice, Inbred NOD
- Mice, SCID
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/pathology
- Ossification, Heterotopic/genetics
- Ossification, Heterotopic/metabolism
- Ossification, Heterotopic/pathology
- Ossification, Heterotopic/therapy
- Stem Cells/metabolism
- Stem Cells/pathology
- Transforming Growth Factor beta/biosynthesis
Collapse
Affiliation(s)
- Elizabeth Olmsted-Davis
- Center for Cell and Gene Therapy, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Huber K, Ernsberger U. Cholinergic differentiation occurs early in mouse sympathetic neurons and requires Phox2b. Gene Expr 2006; 13:133-9. [PMID: 17017126 PMCID: PMC6032475 DOI: 10.3727/000000006783991854] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The generation of neurotransmitter identity in the autonomic nervous system is a classical model system to study the development of neuronal diversity. Analysis of the expression of genes coding for enzymes of noradrenaline biosynthesis in the sympathoadrenal system allowed the characterization of factors involved in the differentiation of the noradrenergic transmitter phenotype. The development of cholinergic properties in the autonomic system is less well understood. Here we show that expression of mRNAs for choline acetyltransferase (ChAT) and the vesicular acetylcholine transporter (VAChT), both encoded by the cholinergic gene locus, is induced in mouse sympathetic ganglia at embryonic day 11 (E11). Positive cells amount to more than 50% of Phox2b-positive sympathetic cells at cervical levels. The proportion declines caudally, decreasing to approximately 20% of Phox2b-positive cells at lower thoracic levels. In the adrenal anlage, ChAT and VAChT mRNA are largely undetectable at E11 and E13. In mice homozygous for a mutational inactivation of the transcription factor Phox2b, ChAT and VAChT mRNA expression is absent from sympathetic ganglia. The data show that expression from the cholinergic gene locus is regulated differently in sympathetic neurons and adrenal chromaffin cells. Phox2b is required for development of cholinergic neurons but does not suffice to support cholinergic properties in chromaffin cells.
Collapse
Affiliation(s)
- K Huber
- Institut für Anatomie und Zellbiologie III, Interdisziplindäres Zentrum für Neurowissenschaften, Ruprecht-Karls-Universität Heidelberg, Imn Neuenheimer Feld 307, 69120 Heidelberg, Germany
| | | |
Collapse
|
15
|
Burau K, Stenull I, Huber K, Misawa H, Berse B, Unsicker K, Ernsberger U. c-ret regulates cholinergic properties in mouse sympathetic neurons: evidence from mutant mice. Eur J Neurosci 2004; 20:353-62. [PMID: 15233745 DOI: 10.1111/j.1460-9568.2004.03500.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The search for signalling systems regulating development of noradrenergic and cholinergic sympathetic neurons is a classical problem of developmental neuroscience. While an essential role of bone morphogenetic proteins for induction of noradrenergic properties is firmly established, factors involved in the development of cholinergic traits in vivo are still enigmatic. Previous studies have shown that the c-ret receptor and cholinergic properties are coexpressed in chick sympathetic neurons. Using in situ hybridization we show now that a loss-of-function mutation of the c-ret receptor in mice dramatically reduces numbers of cells positive for choline acetyltransferase (ChAT) and the vesicular acetylcholine transporter (VAChT) in stellate ganglia of homozygous newborn animals. The number of neurons positive for tyrosine hydroxylase (TH) mRNA, the rate-limiting enzyme of noradrenaline synthesis, is reduced to a smaller degree and expression levels are not detectably altered. Already at embryonic day 16 (E16), ChAT and VAChT-positive cells are affected by the c-ret mutation. At E14, however, ChAT and VAChT mRNAs are detectable at low levels and no difference is observed between wildtype and mutant mice. Our data suggest that c-ret signalling is necessary for the maturation of cholinergic sympathetic neurons but dispensable for de novo induction of ChAT and VAChT expression.
Collapse
Affiliation(s)
- K Burau
- Interdisciplinary Center for Neurosciences, Department of Neuroanatomy, University of Heidelberg, INF 307, D-69120 Heidelberg, Germany
| | | | | | | | | | | | | |
Collapse
|
16
|
López-Coviella I, Berse B, Thies RS, Blusztajn JK. Upregulation of acetylcholine synthesis by bone morphogenetic protein 9 in a murine septal cell line. JOURNAL OF PHYSIOLOGY, PARIS 2002; 96:53-9. [PMID: 11755783 DOI: 10.1016/s0928-4257(01)00080-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Previous studies showed that bone morphogenetic protein 9 (BMP-9) induces the expression of choline acetyltransferase and the vesicular acetylcholine (ACh) transporter, and upregulates ACh synthesis in cultured primary neurons from embryonic mouse septum [I. López-Coviella, B. Berse, R. Krauss, R.S. Thies, J.K. Blusztajn, Induction and maintenance of the neuronal cholinergic phenotype in the central nervous system by BMP-9. Science 289 (2000) 313-316]. In the present studies we investigated the effects of BMP-9 on ACh synthesis in the cholinergic mouse SN56T17 septal cell line. BMP-9 increased ACh synthesis in these cells up to 2.5-fold in a time- and dose-dependent, saturable manner. The maximal effect of BMP-9 was observed after a 3-day treatment and the median effective concentration of BMP-9 was 0.5 ng/ml. These data show that SN56T17 cells are a useful model for studies of the effects of BMPs on the cholinergic phenotype.
Collapse
Affiliation(s)
- Ignacio López-Coviella
- Department of Psychiatry, Boston University School of Medicine, 85 East Newton Street, Room M1009, Boston, MA02118, USA
| | | | | | | |
Collapse
|
17
|
Ernsberger U. The development of postganglionic sympathetic neurons: coordinating neuronal differentiation and diversification. Auton Neurosci 2001; 94:1-13. [PMID: 11775697 DOI: 10.1016/s1566-0702(01)00336-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The fine-tuned operation of the nervous system is accomplished by a diverse set of neurons which differ in their morphology, biochemistry and, consequently, their functional properties. The accurate interconnection between different neuron populations and their target tissues is the prerequisite for physiologically appropriate information processing. This is exemplified by the regulatory action of the autonomic nervous system in vertebrates to sustain homeostasis under changing physiological demands. For this purpose, the coordination of divergent regulatory responses is required in a multitude of tissues spread over the entire body. To meet this task, diverse neuronal populations interact at different levels. In the sympathetic system. chemical relations between preganglionic and postganglionic neurons appear to differ along the rostrocaudal axis. In addition, postganglionic neurons innervating different target tissues at a segmental level have distinct properties. Differences in their preganglionic innervation and their integrative membrane properties result in diverse activation patterns upon reflex stimulation. Moreover, postganglionic neurons differ in the transmitter molecules they employ to convey information to the target tissues. The segregation of noradrenaline and acetylcholine to different populations of postganglionic sympathetic neurons is well established. A combination of cellular and molecular approaches has begun to uncover how such a complex system may be generated during development. Growth and transcription factors involved in noradrenergic and cholinergic differentiation are characterised. Interestingly, they can also promote the expression of proteins involved in transmitter secretion. As the proteins participating in the vesicle cycle are expressed in many neuron populations, whereas the enzymes of transmitter biosynthesis are restricted to subpopulations of neurons, the findings suggest that early in neuronal development subpopulation-specific and more widely expressed neuronal properties can be commonly induced. Still, many details concerning the signals involved in the induction of the neurotransmitter synthesis and release machinery remain to be worked out. Likewise, the regulatory processes resulting in differences of electrophysiological membrane properties and the specific recognition between pre- and postganglionic neurons have to be determined. Ultimately, this will lead to an understanding at the molecular level of the development of a nervous system with diverse neuronal populations that are specifically interconnected to distinct input neurons and target tissues as required for the performance of a complex regulatory function.
Collapse
Affiliation(s)
- U Ernsberger
- Interdisziplinäres Zentrum für Neurowissenschaften, Institut für Anatomie und Zellbiologie III, Heidelberg, Germany.
| |
Collapse
|
18
|
Patzke H, Reissmann E, Stanke M, Bixby JL, Ernsberger U. BMP growth factors and Phox2 transcription factors can induce synaptotagmin I and neurexin I during sympathetic neuron development. Mech Dev 2001; 108:149-59. [PMID: 11578868 DOI: 10.1016/s0925-4773(01)00503-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Synaptotagmin I and neurexin I mRNAs, coding for proteins involved in neurotransmitter secretion, become detectable in primary sympathetic ganglia shortly after initial induction of the noradrenergic transmitter phenotype. To test whether the induction of these more general neuronal genes is mediated by signals known to initiate noradrenergic differentiation in a neuronal subpopulation, we examined their expression in noradrenergic neurons induced by ectopic overexpression of growth and transcription factors. Overexpression of BMP4 or Phox2a in vivo results in synaptotagmin I and neurexin I expression in ectopically located noradrenergic cells. In vitro, BMP4 initiates synaptotagmin I and neurexin I expression in addition to tyrosine hydroxylase induction. Thus, the induction of synaptotagmin I and neurexin I, which are expressed in a large number of different neuron populations, can be accomplished by growth and transcription factors available only to a subset of neurons. These findings suggest that the initial expression of proteins involved in neurotransmitter secretion is regulated by different signals in different neuron populations.
Collapse
Affiliation(s)
- H Patzke
- Max-Planck-Institut für Hirnforschung, D-60528 Frankfurt, Germany
| | | | | | | | | |
Collapse
|
19
|
Conserved function of Caenorhabditis elegans UNC-30 and mouse Pitx2 in controlling GABAergic neuron differentiation. J Neurosci 2001. [PMID: 11517269 DOI: 10.1523/jneurosci.21-17-06810.2001] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
We are taking a cross-species approach to identify genes that are required for mammalian GABAergic neuron differentiation. On the basis of homeodomain similarity, the vertebrate Pitx genes appear to be orthologs of unc-30, a Caenorhabditis elegans gene necessary for differentiation of the GABAergic phenotype of type D neurons. One of the Pitx genes, Pitx2, is expressed in regions of GABAergic neurogenesis in the mammalian brain. These observations led us to test the functional conservation of the mouse Pitx2 and worm unc-30 genes using a rescue assay. Pitx2 rescues the GABAergic differentiation defect and partially rescues the axon guidance and behavioral phenotypes of unc-30 mutants, indicating a high degree of functional conservation between these evolutionarily related genes. Previous studies show that UNC-30 directly regulates the unc-25/glutamate decarboxylase gene that encodes the enzyme for GABA synthesis. We find that the promoter regions of the mouse and human genes coding for the 67 kDa glutamate decarboxylase (Gad1) also contain binding sites matching the UNC-30/Pitx2 consensus binding site sequence. We show that these sites specifically bind to Pitx2 protein in vitro and that in transfected neuroblastoma cells, the Pitx2 binding sites contribute to the basal activity of the Gad1 promoter. Furthermore, in cotransfection experiments, we find that Pitx2 strongly activates the Gad1 promoter. These results indicate that Pitx2 may regulate Gad1 expression in mammals, suggesting a new role for this key developmental transcription factor as a regulator of GABAergic differentiation during mammalian neural development. Our results suggest that some of the mechanisms regulating GABAergic differentiation are evolutionarily conserved.
Collapse
|