1
|
Molfetta R, Carnevale A, Marangio C, Putro E, Paolini R. Beyond the "Master" Role in Allergy: Insights into Intestinal Mast Cell Plasticity and Gastrointestinal Diseases. Biomedicines 2025; 13:320. [PMID: 40002733 PMCID: PMC11853218 DOI: 10.3390/biomedicines13020320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/10/2025] [Accepted: 01/27/2025] [Indexed: 02/27/2025] Open
Abstract
Mast cells (MCs) are essential components of the immune system that enter the circulation as immature bone marrow progenitors and differentiate in peripheral organs under the influence of microenvironment factors. As tissue-resident secretory immune cells, MCs rapidly detect the presence of bacteria and parasites because they harbor many surface receptors, which enable their activation via a multitude of stimuli. MC activation has been traditionally linked to IgE-mediated allergic reactions, but MCs play a pivotal role in different physiological and pathological processes. In gut, MCs are essential for the maintenance of gastrointestinal (GI) barrier function, and their interactions with neurons, immune cells, and epithelial cells have been related to various GI disorders. This review recapitulates intestinal MC roles in diseases with a main focus on inflammatory bowel disease (IBD) and irritable bowel syndrome (IBS). Emerging therapies targeting MCs and their mediators in clinical practices will also be discussed.
Collapse
Affiliation(s)
| | | | | | | | - Rossella Paolini
- Department of Molecular Medicine, Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University of Rome, 00161 Rome, Italy; (R.M.); (A.C.); (C.M.); (E.P.)
| |
Collapse
|
2
|
Phuong-Nguyen K, McGee SL, Aston-Mourney K, Mcneill BA, Mahmood MQ, Rivera LR. Yoyo Dieting, Post-Obesity Weight Loss, and Their Relationship with Gut Health. Nutrients 2024; 16:3170. [PMID: 39339770 PMCID: PMC11435324 DOI: 10.3390/nu16183170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/13/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024] Open
Abstract
Excessive body weight is associated with many chronic metabolic diseases and weight loss, so far, remains the gold standard treatment. However, despite tremendous efforts exploring optimal treatments for obesity, many individuals find losing weight and maintaining a healthy body weight difficult. Weight loss is often not sustainable resulting in weight regain and subsequent efforts to lose weight. This cyclic pattern of weight loss and regain is termed "yoyo dieting" and predisposes individuals to obesity and metabolic comorbidities. How yoyo dieting might worsen obesity complications during the weight recurrence phase remains unclear. In particular, there is limited data on the role of the gut microbiome in yoyo dieting. Gut health distress, especially gut inflammation and microbiome perturbation, is strongly associated with metabolic dysfunction and disturbance of energy homeostasis in obesity. In this review, we summarise current evidence of the crosstalk between the gastrointestinal system and energy balance, and the effects of yoyo dieting on gut inflammation and gut microbiota reshaping. Finally, we focus on the potential effects of post-dieting weight loss in improving gut health and identify current knowledge gaps within the field, including gut-derived peptide hormones and their potential suitability as targets to combat weight regain, and how yoyo dieting and associated changes in the microbiome affect the gut barrier and the enteric nervous system, which largely remain to be determined.
Collapse
Affiliation(s)
- Kate Phuong-Nguyen
- Institute for Mental and Physical Health and Clinical Translation (IMPACT), School of Medicine, Deakin University, Waurn Ponds, VIC 3216, Australia
| | - Sean L McGee
- Institute for Mental and Physical Health and Clinical Translation (IMPACT), School of Medicine, Deakin University, Waurn Ponds, VIC 3216, Australia
| | - Kathryn Aston-Mourney
- Institute for Mental and Physical Health and Clinical Translation (IMPACT), School of Medicine, Deakin University, Waurn Ponds, VIC 3216, Australia
| | - Bryony A Mcneill
- Institute for Mental and Physical Health and Clinical Translation (IMPACT), School of Medicine, Deakin University, Waurn Ponds, VIC 3216, Australia
| | - Malik Q Mahmood
- School of Medicine, Deakin University, Waurn Ponds, VIC 3216, Australia
| | - Leni R Rivera
- Institute for Mental and Physical Health and Clinical Translation (IMPACT), School of Medicine, Deakin University, Waurn Ponds, VIC 3216, Australia
| |
Collapse
|
3
|
Ma B, Gavzy SJ, Saxena V, Song Y, Piao W, Lwin HW, Lakhan R, Iyyathurai J, Li L, France M, Paluskievicz C, Shirkey MW, Hittle L, Munawwar A, Mongodin EF, Bromberg JS. Strain-specific alterations in gut microbiome and host immune responses elicited by tolerogenic Bifidobacterium pseudolongum. Sci Rep 2023; 13:1023. [PMID: 36658194 PMCID: PMC9852428 DOI: 10.1038/s41598-023-27706-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 01/06/2023] [Indexed: 01/20/2023] Open
Abstract
The beneficial effects attributed to Bifidobacterium are largely attributed to their immunomodulatory capabilities, which are likely to be species- and even strain-specific. However, their strain-specificity in direct and indirect immune modulation remain largely uncharacterized. We have shown that B. pseudolongum UMB-MBP-01, a murine isolate strain, is capable of suppressing inflammation and reducing fibrosis in vivo. To ascertain the mechanism driving this activity and to determine if it is specific to UMB-MBP-01, we compared it to a porcine tropic strain B. pseudolongum ATCC25526 using a combination of cell culture and in vivo experimentation and comparative genomics approaches. Despite many shared features, we demonstrate that these two strains possess distinct genetic repertoires in carbohydrate assimilation, differential activation signatures and cytokine responses signatures in innate immune cells, and differential effects on lymph node morphology with unique local and systemic leukocyte distribution. Importantly, the administration of each B. pseudolongum strain resulted in major divergence in the structure, composition, and function of gut microbiota. This was accompanied by markedly different changes in intestinal transcriptional activities, suggesting strain-specific modulation of the endogenous gut microbiota as a key to immune modulatory host responses. Our study demonstrated a single probiotic strain can influence local, regional, and systemic immunity through both innate and adaptive pathways in a strain-specific manner. It highlights the importance to investigate both the endogenous gut microbiome and the intestinal responses in response to probiotic supplementation, which underpins the mechanisms through which the probiotic strains drive the strain-specific effect to impact health outcomes.
Collapse
Affiliation(s)
- Bing Ma
- Institute of Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.
| | - Samuel J Gavzy
- Department of Surgery, University of Maryland Medical Center, Baltimore, MD, 21201, USA
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Vikas Saxena
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Yang Song
- Institute of Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Wenji Piao
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Hnin Wai Lwin
- Institute of Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Ram Lakhan
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Jegan Iyyathurai
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Lushen Li
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Michael France
- Institute of Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Christina Paluskievicz
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Marina W Shirkey
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Lauren Hittle
- Institute of Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Arshi Munawwar
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Emmanuel F Mongodin
- Institute of Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
- Division of Lung Diseases, National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Jonathan S Bromberg
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.
- Department of Surgery, University of Maryland Medical Center, Baltimore, MD, 21201, USA.
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.
| |
Collapse
|
4
|
Santinelli L, Rossi G, Gioacchini G, Verin R, Maddaloni L, Cavallari EN, Lombardi F, Piccirilli A, Fiorucci S, Carino A, Marchianò S, Lofaro CM, Caiazzo S, Ciccozzi M, Scagnolari C, Mastroianni CM, Ceccarelli G, d'Ettorre G. The crosstalk between gut barrier impairment, mitochondrial dysfunction, and microbiota alterations in people living with HIV. J Med Virol 2023; 95:e28402. [PMID: 36515414 DOI: 10.1002/jmv.28402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 11/02/2022] [Accepted: 11/15/2022] [Indexed: 12/15/2022]
Abstract
Functional and structural damage of the intestinal mucosal barrier significantly contribute to translocation of gut microbial products into the bloodstream and are largely involved in HIV-1 associated chronic immune activation. This microbial translocation is largely due to a progressive exhaustion of intestinal macrophage phagocytic function, which leads to extracellular accumulation of microbial derived components and results in HIV-1 disease progression. This study aims to better understand whether the modulation of gut microbiota promotes an intestinal immune restoration in people living with HIV (PLWH). Long-term virologically suppressed PLWH underwent blood, colonic, and fecal sampling before (T0) and after 6 months (T6) of oral bacteriotherapy. Age- and gender-matched uninfected controls (UC) were also included. 16S rRNA gene sequencing was applied to all participants' fecal microbiota. Apoptosis machinery, mitochondria, and apical junctional complex (AJC) morphology and physiological functions were analyzed in gut biopsies. At T0, PLWH showed a different pattern of gut microbial flora composition, lower levels of occludin (p = 0.002) and zonulin (p = 0.01), higher claudin-2 levels (p = 0.002), a reduction of mitochondria number (p = 0.002), and diameter (p = 0.002), as well as increased levels of lipopolysaccharide (LPS) (p = 0.018) and cCK18 (p = 0.011), compared to UC. At T6, an increase in size (p = 0.005) and number (p = 0.008) of mitochondria, as well as amelioration in AJC structures (p < 0.0001) were observed. Restoration of bacterial richness (Simpson index) and biodiversity (Shannon index) was observed in all PLWH receiving oral bacteriotherapy (p < 0.05). Increased mitochondria size (p = 0.005) and number (p = 0.008) and amelioration of AJC structure (p < 0.0001) were found at T6 compared to T0. Moreover, increased occludin and zonulin concentration were observed in PLWH intestinal tracts and decreased levels of claudin-2, LPS, and cCK18 were found after oral bacteriotherapy (T0 vs. T6, p < 0.05 for all these measures). Oral bacteriotherapy supplementation might restore the balance of intestinal flora and support the structural and functional recovery of the gut mucosa in antiretroviral therapy treated PLWH.
Collapse
Affiliation(s)
- Letizia Santinelli
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Giacomo Rossi
- School of Biosciences and Veterinary Medicine, University of Camerino, Matelica, Italy
| | - Giorgia Gioacchini
- Department of Life and Environmental Sciences, DiSVA-Marche Polytechnic University, Ancona, Italy
| | - Ranieri Verin
- Department of Comparative Biomedicine and Food Science, BCA-University of Padua, Padova, Italy
| | - Luca Maddaloni
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Eugenio N Cavallari
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Francesca Lombardi
- Department of Life, Health & Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Alessandra Piccirilli
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Stefano Fiorucci
- Department of Surgical and Biomedical Medicine and Surgery Sciences, University of Perugia, Perugia, Italy
| | - Adriana Carino
- Department of Surgical and Biomedical Medicine and Surgery Sciences, University of Perugia, Perugia, Italy
| | - Silvia Marchianò
- Department of Surgical and Biomedical Medicine and Surgery Sciences, University of Perugia, Perugia, Italy
| | - Chiara M Lofaro
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Sara Caiazzo
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Massimo Ciccozzi
- Unit of Medical Statistics and Molecular Epidemiology, University Campus Bio-Medico of Rome, Rome, Italy
| | - Carolina Scagnolari
- Department of Molecular Medicine, Laboratory of Virology, Istituto Pasteur Italia, Sapienza University of Rome, Rome, Italy
| | - Claudio M Mastroianni
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Giancarlo Ceccarelli
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy.,Azienda Ospedaliero-Universitaria Policlinico Umberto I, Rome, Italy
| | - Gabriella d'Ettorre
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
5
|
Jiang Z, Li M, McClements DJ, Liu X, Liu F. Recent advances in the design and fabrication of probiotic delivery systems to target intestinal inflammation. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107438] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
6
|
Engevik MA, Danhof HA, Hall A, Engevik KA, Horvath TD, Haidacher SJ, Hoch KM, Endres BT, Bajaj M, Garey KW, Britton RA, Spinler JK, Haag AM, Versalovic J. The metabolic profile of Bifidobacterium dentium reflects its status as a human gut commensal. BMC Microbiol 2021; 21:154. [PMID: 34030655 PMCID: PMC8145834 DOI: 10.1186/s12866-021-02166-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 03/30/2021] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Bifidobacteria are commensal microbes of the mammalian gastrointestinal tract. In this study, we aimed to identify the intestinal colonization mechanisms and key metabolic pathways implemented by Bifidobacterium dentium. RESULTS B. dentium displayed acid resistance, with high viability over a pH range from 4 to 7; findings that correlated to the expression of Na+/H+ antiporters within the B. dentium genome. B. dentium was found to adhere to human MUC2+ mucus and harbor mucin-binding proteins. Using microbial phenotyping microarrays and fully-defined media, we demonstrated that in the absence of glucose, B. dentium could metabolize a variety of nutrient sources. Many of these nutrient sources were plant-based, suggesting that B. dentium can consume dietary substances. In contrast to other bifidobacteria, B. dentium was largely unable to grow on compounds found in human mucus; a finding that was supported by its glycosyl hydrolase (GH) profile. Of the proteins identified in B. dentium by proteomic analysis, a large cohort of proteins were associated with diverse metabolic pathways, indicating metabolic plasticity which supports colonization of the dynamic gastrointestinal environment. CONCLUSIONS Taken together, we conclude that B. dentium is well adapted for commensalism in the gastrointestinal tract.
Collapse
Affiliation(s)
- Melinda A Engevik
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, USA.
- Department of Pathology, Texas Children's Hospital, Houston, TX, USA.
- Department of Regernative Medicine & Cell Biology, Medical University of South Carolina, SC, Charleston, USA.
| | - Heather A Danhof
- Department of Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Anne Hall
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, USA
- Department of Pathology, Texas Children's Hospital, Houston, TX, USA
| | - Kristen A Engevik
- Department of Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Thomas D Horvath
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, USA
- Department of Pathology, Texas Children's Hospital, Houston, TX, USA
| | - Sigmund J Haidacher
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, USA
- Department of Pathology, Texas Children's Hospital, Houston, TX, USA
| | - Kathleen M Hoch
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, USA
- Department of Pathology, Texas Children's Hospital, Houston, TX, USA
| | - Bradley T Endres
- Department of Pharmacy Practice and Translational Research, University of Houston College of Pharmacy, Houston, TX, USA
| | - Meghna Bajaj
- Department of Chemistry and Physics, and Department of Biotechnology, Alcorn State University, Lorman, MS, 39096, USA
| | - Kevin W Garey
- Department of Pharmacy Practice and Translational Research, University of Houston College of Pharmacy, Houston, TX, USA
| | - Robert A Britton
- Department of Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Jennifer K Spinler
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, USA
- Department of Pathology, Texas Children's Hospital, Houston, TX, USA
| | - Anthony M Haag
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, USA
- Department of Pathology, Texas Children's Hospital, Houston, TX, USA
| | - James Versalovic
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, USA
- Department of Pathology, Texas Children's Hospital, Houston, TX, USA
| |
Collapse
|
7
|
Ferrer M, Aguilera M, Martinez V. Effects of Rifaximin on Luminal and Wall-Adhered Gut Commensal Microbiota in Mice. Int J Mol Sci 2021; 22:E500. [PMID: 33419066 PMCID: PMC7825446 DOI: 10.3390/ijms22020500] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/30/2020] [Accepted: 01/01/2021] [Indexed: 12/12/2022] Open
Abstract
Rifaximin is a broad-spectrum antibiotic that ameliorates symptomatology in inflammatory/functional gastrointestinal disorders. We assessed changes in gut commensal microbiota (GCM) and Toll-like receptors (TLRs) associated to rifaximin treatment in mice. Adult C57BL/6NCrl mice were treated (7/14 days) with rifaximin (50/150 mg/mouse/day, PO). Luminal and wall-adhered ceco-colonic GCM were characterized by fluorescent in situ hybridization (FISH) and microbial profiles determined by terminal restriction fragment length polymorphism (T-RFLP). Colonic expression of TLR2/3/4/5/7 and immune-related markers was assessed (RT-qPCR). Regardless the period of treatment or the dose, rifaximin did not alter total bacterial counts or bacterial biodiversity. Only a modest increase in Bacteroides spp. (150 mg/1-week treatment) was detected. In control conditions, only Clostridium spp. and Bifidobacterium spp. were found attached to the colonic epithelium. Rifaximin showed a tendency to favour their adherence after a 1-week, but not 2-week, treatment period. Minor up-regulation in TLRs expression was observed. Only the 50 mg dose for 1-week led to a significant increase (by 3-fold) in TLR-4 expression. No changes in the expression of immune-related markers were observed. Rifaximin, although its antibacterial properties, induces minor changes in luminal and wall-adhered GCM in healthy mice. Moreover, no modulation of TLRs or local immune systems was observed. These findings, in normal conditions, do not rule out a modulatory role of rifaximin in inflammatory and or dysbiotic states of the gut.
Collapse
Affiliation(s)
- Marina Ferrer
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain; (M.F.); (M.A.)
- Neuroscience Institute, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | - Mònica Aguilera
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain; (M.F.); (M.A.)
- Neuroscience Institute, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | - Vicente Martinez
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain; (M.F.); (M.A.)
- Neuroscience Institute, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
- Centro de Investigación Biomédicaen Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
8
|
Gayathri D, Ramesha A. Gluten‑hydrolyzing probiotics: An emerging therapy for patients with celiac disease (Review). WORLD ACADEMY OF SCIENCES JOURNAL 2020. [DOI: 10.3892/wasj.2020.55] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Affiliation(s)
- Devaraja Gayathri
- Department of Microbiology, Davangere University, Davangere, Karnataka 577007, India
| | - Alurappa Ramesha
- Department of Microbiology, Davangere University, Davangere, Karnataka 577007, India
| |
Collapse
|
9
|
Alim A, Li T, Nisar T, Ren D, Liu Y, Yang X. Consumption of two whole kiwifruit (Actinide chinensis) per day improves lipid homeostasis, fatty acid metabolism and gut microbiota in healthy rats. Int J Biol Macromol 2020; 156:186-195. [PMID: 32278604 DOI: 10.1016/j.ijbiomac.2020.04.028] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 03/27/2020] [Accepted: 04/05/2020] [Indexed: 02/08/2023]
Abstract
Golden kiwifruit (Actinidia chinensis) peel is a by-product enriched with polyphenols. The effects of fleshes of two Actinidia chinensis fruits (ACF) and fleshes with peels of two Actinidia chinensis fruits (ACFP) on lipid homeostasis, fatty acid metabolism and gut microbiota was investigated in healthy rats. Intervention of ACF and ACFP for 4 weeks significantly reduced total cholesterol, total triglycerides, and increased the high-density lipoprotein levels in rats. ACF and ACFP ameliorated lipid peroxidation in rats, by the lowering hepatic MDA level and enhancing GSH-Px and SOD activities. In addition, ACFP significantly decreased the saturated fatty acids in serum and increased the polyunsaturated fatty acids in hepatic and serum of rats. Analysis of gut microbiota revealed that ACF and ACFP evidently increased the microbial richness and diversity of gut microbiota. The Firmicutes/Bacteroidetes ratio was significantly reduced from 3.04 in ND group to 1.34 and 2.12 in ACF and ACFP groups, respectively. Moreover, ACF and ACFP significantly increased the abundance of beneficial bacteria (Lactobacillus and Barnesiella) and reduced harmful bacteria (Enterococcus, Escherichia, and Staphylococcus). Overall, ACFP exerts more potent health-improving effects than ACF. Our study provides a scientific basis for the development of kiwifruit (including pericarp)-based novel natural products with significant health benefits.
Collapse
Affiliation(s)
- Aamina Alim
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
| | - Ting Li
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China.
| | - Tanzeela Nisar
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
| | - Daoyuan Ren
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
| | - Yueyue Liu
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
| | - Xingbin Yang
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China.
| |
Collapse
|
10
|
An X, Bao Q, Di S, Zhao Y, Zhao S, Zhang H, Lian F, Tong X. The interaction between the gut Microbiota and herbal medicines. Biomed Pharmacother 2019; 118:109252. [DOI: 10.1016/j.biopha.2019.109252] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Revised: 07/18/2019] [Accepted: 07/18/2019] [Indexed: 12/14/2022] Open
|
11
|
Engevik MA, Luk B, Chang-Graham AL, Hall A, Herrmann B, Ruan W, Endres BT, Shi Z, Garey KW, Hyser JM, Versalovic J. Bifidobacterium dentium Fortifies the Intestinal Mucus Layer via Autophagy and Calcium Signaling Pathways. mBio 2019; 10:e01087-19. [PMID: 31213556 PMCID: PMC6581858 DOI: 10.1128/mbio.01087-19] [Citation(s) in RCA: 170] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 05/11/2019] [Indexed: 02/07/2023] Open
Abstract
Much remains unknown about how the intestinal microbiome interfaces with the protective intestinal mucus layer. Bifidobacterium species colonize the intestinal mucus layer and can modulate mucus production by goblet cells. However, select Bifidobacterium strains can also degrade protective glycans on mucin proteins. We hypothesized that the human-derived species Bifidobacterium dentium would increase intestinal mucus synthesis and expulsion, without extensive degradation of mucin glycans. In silico data revealed that B. dentium lacked the enzymes necessary to extensively degrade mucin glycans. This finding was confirmed by demonstrating that B. dentium could not use naive mucin glycans as primary carbon sources in vitro To examine B. dentium mucus modulation in vivo, Swiss Webster germfree mice were monoassociated with live or heat-killed B. dentium Live B. dentium-monoassociated mice exhibited increased colonic expression of goblet cell markers Krüppel-like factor 4 (Klf4), Trefoil factor 3 (Tff3), Relm-β, Muc2, and several glycosyltransferases compared to both heat-killed B. dentium and germfree counterparts. Likewise, live B. dentium-monoassociated colon had increased acidic mucin-filled goblet cells, as denoted by Periodic Acid-Schiff-Alcian Blue (PAS-AB) staining and MUC2 immunostaining. In vitro, B. dentium-secreted products, including acetate, were able to increase MUC2 levels in T84 cells. We also identified that B. dentium-secreted products, such as γ-aminobutyric acid (GABA), stimulated autophagy-mediated calcium signaling and MUC2 release. This work illustrates that B. dentium is capable of enhancing the intestinal mucus layer and goblet cell function via upregulation of gene expression and autophagy signaling pathways, with a net increase in mucin production.IMPORTANCE Microbe-host interactions in the intestine occur along the mucus-covered epithelium. In the gastrointestinal tract, mucus is composed of glycan-covered proteins, or mucins, which are secreted by goblet cells to form a protective gel-like structure above the epithelium. Low levels of mucin or alterations in mucin glycans are associated with inflammation and colitis in mice and humans. Although current literature links microbes to the modulation of goblet cells and mucins, the molecular pathways involved are not yet fully understood. Using a combination of gnotobiotic mice and mucus-secreting cell lines, we have identified a human-derived microbe, Bifidobacterium dentium, which adheres to intestinal mucus and secretes metabolites that upregulate the major mucin MUC2 and modulate goblet cell function. Unlike other Bifidobacterium species, B. dentium does not extensively degrade mucin glycans and cannot grow on mucin alone. This work points to the potential of using B. dentium and similar mucin-friendly microbes as therapeutic agents for intestinal disorders with disruptions in the mucus barrier.
Collapse
Affiliation(s)
- Melinda A Engevik
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas, USA
- Department of Pathology, Texas Children's Hospital, Houston, Texas, USA
| | - Berkley Luk
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas, USA
- Department of Pathology, Texas Children's Hospital, Houston, Texas, USA
| | - Alexandra L Chang-Graham
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Anne Hall
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas, USA
- Department of Pathology, Texas Children's Hospital, Houston, Texas, USA
| | - Beatrice Herrmann
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas, USA
- Department of Pathology, Texas Children's Hospital, Houston, Texas, USA
| | - Wenly Ruan
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas, USA
- Department of Pathology, Texas Children's Hospital, Houston, Texas, USA
| | - Bradley T Endres
- Department of Pharmacy Practice and Translational Research, University of Houston College of Pharmacy, Houston, Texas, USA
| | - Zhongcheng Shi
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas, USA
- Department of Pathology, Texas Children's Hospital, Houston, Texas, USA
| | - Kevin W Garey
- Department of Pharmacy Practice and Translational Research, University of Houston College of Pharmacy, Houston, Texas, USA
| | - Joseph M Hyser
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - James Versalovic
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas, USA
- Department of Pathology, Texas Children's Hospital, Houston, Texas, USA
| |
Collapse
|
12
|
Ji Y, Chung YM, Park S, Jeong D, Kim B, Holzapfel WH. Dose-dependent and strain-dependent anti-obesity effects of Lactobacillus sakei in a diet induced obese murine model. PeerJ 2019; 7:e6651. [PMID: 30923658 PMCID: PMC6431538 DOI: 10.7717/peerj.6651] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 02/20/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Overweight and abdominal obesity, in addition to medical conditions such as high blood pressure, high blood sugar and triglyceride levels, are typical risk factors associated with metabolic syndrome. Yet, considering the complexity of factors and underlying mechanisms leading to these inflammatory conditions, a deeper understanding of this area is still lacking. Some probiotics have a reputation of a relatively-long history of safe use, and an increasing number of studies are confirming benefits including anti-obesity effects when administered in adequate amounts. Recent reports demonstrate that probiotic functions may widely differ with reference to either intra-species or inter-species related data. Such differences do not necessarily reflect or explain strain-specific functions of a probiotic, and thus require further assessment at the intra-species level. Various anti-obesity clinical trials with probiotics have shown discrepant results and require additional consolidated studies in order to clarify the correct dose of application for reliable and constant efficacy over a long period. METHODS Three different strains of Lactobacillus sakei were administered in a high-fat diet induced obese murine model using three different doses, 1 × 1010, 1 × 109 and 1 × 108 CFUs, respectively, per day. Changes in body and organ weight were monitored, and serum chemistry analysis was performed for monitoring obesity associated biomarkers. RESULTS Only one strain of L. sakei (CJLS03) induced a dose-dependent anti-obesity effect, while no correlation with either dose or body or adipose tissue weight loss could be detected for the other two L. sakei strains (L338 and L446). The body weight reduction primarily correlated with adipose tissue and obesity-associated serum biomarkers such as triglycerides and aspartate transaminase. DISCUSSION This study shows intraspecies diversity of L. sakei and suggests that anti-obesity effects of probiotics may vary in a strain- and dose-specific manner.
Collapse
Affiliation(s)
- Yosep Ji
- Department of Advanced Green Energy and Environment, Handong Global University, Pohang, Gyungbuk, South Korea
| | - Young Mee Chung
- Beneficial Microbes Center, CJ Foods R&D, CJ CheilJedang Corporation, Suwon, Gyeonggi, South Korea
| | - Soyoung Park
- Department of Advanced Green Energy and Environment, Handong Global University, Pohang, Gyungbuk, South Korea
| | - Dahye Jeong
- Beneficial Microbes Center, CJ Foods R&D, CJ CheilJedang Corporation, Suwon, Gyeonggi, South Korea
| | - Bongjoon Kim
- Beneficial Microbes Center, CJ Foods R&D, CJ CheilJedang Corporation, Suwon, Gyeonggi, South Korea
| | - Wilhelm Heinrich Holzapfel
- Department of Advanced Green Energy and Environment, Handong Global University, Pohang, Gyungbuk, South Korea
| |
Collapse
|
13
|
The Foodborne Strain Lactobacillus fermentum MBC2 Triggers pept-1-Dependent Pro-Longevity Effects in Caenorhabditis elegans. Microorganisms 2019; 7:microorganisms7020045. [PMID: 30736484 PMCID: PMC6406943 DOI: 10.3390/microorganisms7020045] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 01/21/2019] [Accepted: 02/07/2019] [Indexed: 12/16/2022] Open
Abstract
Lactic acid bacteria (LAB) are involved in several food fermentations and many of them provide strain-specific health benefits. Herein, the probiotic potential of the foodborne strain Lactobacillus fermentum MBC2 was investigated through in vitro and in vivo approaches. Caenorhabditis elegans was used as an in vivo model to analyze pro-longevity and anti-aging effects. L. fermentum MBC2 showed a high gut colonization capability compared to E. coli OP50 (OP50) or L.rhamnosus GG (LGG). Moreover, analysis of pumping rate, lipofuscin accumulation, and body bending showed anti-aging effects in L. fermentum MBC2-fed worms. Studies on PEPT-1 mutants demonstrated that pept-1 gene was involved in the anti-aging processes mediated by this bacterial strain through DAF-16, whereas the oxidative stress protection was PEPT-1 independent. Moreover, analysis of acid tolerance, bile tolerance, and antibiotic susceptibility were evaluated. L. fermentum MBC2 exerted beneficial effects on nematode lifespan, influencing energy metabolism and oxidative stress resistance, resulted in being tolerant to acidic pH and able to adhere to Caco-2 cells. Overall, these findings provide new insight for application of this strain in the food industry as a newly isolated functional starter. Furthermore, these results will also shed light on C. elegans molecular players involved in host-microbe interactions.
Collapse
|
14
|
Barai P, Hossain KM, Rahman SMM, Al Mazid MF, Gazi MS. Antidiarrheal Efficacy of Probiotic Bacteria in Castor Oil Induced Diarrheal Mice. Prev Nutr Food Sci 2018; 23:294-300. [PMID: 30675458 PMCID: PMC6342536 DOI: 10.3746/pnf.2018.23.4.294] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 10/15/2018] [Indexed: 01/20/2023] Open
Abstract
Probiotics may offer a safe intervention for diarrheal diseases. The aim of the present study was the assessment of the antidiarrheal property of probiotic bacteria. For their antidiarrheal efficacy assessment, yogurt was prepared using the isolated bacteria from selective regional yogurt of Bangladesh, and mice model trails were conducted using castor oil induced diarrheal mice. The probiotic treatment was applied on three mice groups, each having 6 mice and their respective doses were 50 mL/kg body weight in treatment group (TG) 1, 100 mL/kg body weight in TG2, and 150 mL/kg body weight in TG3. A four week treatment of probiotic significantly (P<0.001) reduced the percentage (67.37%) of diarrhea in TG3 (150 mL yogurt/kg body weight). All the treatment groups showed a significant (P<0.001) increase in the latent periods, reduced the total fecal output, and frequency and fecal water content compared to the negative control group. Serum electrolytes (Na+ and K+) and total protein levels were higher in the TG3 compared to the negative control group. Further research regarding molecular characterization and identification of specific genes and proteins of interest may help to develop the next generation bacteriocins and antidiarrheal drugs.
Collapse
Affiliation(s)
- Pallob Barai
- Biotechnology and Genetic Engineering Discipline, Life Science School, Khulna University, Khulna 9208, Bangladesh
| | - Khondoker Moazzem Hossain
- Biotechnology and Genetic Engineering Discipline, Life Science School, Khulna University, Khulna 9208, Bangladesh
| | | | - Mohammad Faysal Al Mazid
- Biotechnology and Genetic Engineering Discipline, Life Science School, Khulna University, Khulna 9208, Bangladesh
| | - Mohammad Shamim Gazi
- Biotechnology and Genetic Engineering Discipline, Life Science School, Khulna University, Khulna 9208, Bangladesh
| |
Collapse
|
15
|
Synbiotic combination of prebiotic grape pomace extract and probiotic Lactobacillus sp. reduced important intestinal inflammatory markers and in-depth signalling mediators in lipopolysaccharide-treated Caco-2 cells. Br J Nutr 2018; 121:291-305. [PMID: 30565527 DOI: 10.1017/s0007114518003410] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Inflammatory bowel diseases (IBD) are a major problem for public health, with an increased incidence and impact on life quality. The effect of pre- and probiotic combination has been less studied in IBD. Using genomic and proteomic array technologies, this study examined the efficacy of a new combination of natural alternatives: prebiotics (grape pomace extract, GP) and probiotics (lactobacilli mixture, Lb mix) on inflammation and intracellular signalling routes in a cellular model of inflammation. Caco-2 cells challenged with lipopolysaccharide (LPS) for 4 h were treated with GP extract (50 μg/ml gallic acid equivalent) and Lb combination (3 × 108 colony-forming units/ml total Lb) for 24 h. The profile expressions of forty key inflammatory markers and twenty-six signalling kinases were analysed. Other markers involved in inflammation were also investigated (NF-κB/RELA, Nrf2, aryl hydrocarbon receptor, Cyp1A1, Cyp1B1); 57·5 and 60 % of investigated genes and proteins, respectively, were down-regulated by the synbiotic combination. Relevant cytokines and chemokines involved in response to microbial infection and inflammation were reduced under the level induced by LPS treatment and toward the unchallenged control. As expected, the reduction effect seems to imply mitogen-activated protein kinase and NF-κB pathway. Most of the signalling molecules activated by LPS were decreased by GP extract and Lb mix. Our study indicates that the synbiotic combination of GP extract and Lactobacillus sp. mixture exerted anti-inflammatory properties, which are able to decrease the majority of inflammatory genes, their proteins and associated signalling markers. Due to protective role of GP compounds on lactobacilli probiotic, this synbiotic combination might serve as a promising adjunctive therapy in intestinal inflammations.
Collapse
|
16
|
Zou S, Lu J, Luo Y, Qi X, Delaney B, Xu W, Huang K, He X. The food safety of DP-356Ø43 soybeans on SD rats reflected by physiological variables and fecal microbiota during a 90-day feeding study. Regul Toxicol Pharmacol 2018; 97:144-151. [PMID: 29940211 DOI: 10.1016/j.yrtph.2018.06.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 05/15/2018] [Accepted: 06/21/2018] [Indexed: 11/28/2022]
Abstract
Soybean is an important food resource for the eastern countries and herbicide-tolerant genetically modified soybeans (GMS) were widely developed to deal with weeds problems. Unprocessed soybean flour instead of dehulled and defatted soybean meal was used to reflect the safety of soybean food in whole. Rats were given formulated diets containing DP-356Ø43 or non-GM soybean JACK at an incorporation rate of 7.5%, 15%, or 30% (w/w), respectively for 90 days. Targeted traditional toxicological response variables were measured to reflect the holistic health of animals. No treatment-related adverse or toxic effects were observed based on an examination of the daily clinical signs, body weight, food consumption, hematology, serum biochemistry, and organ weight or based on gross and histopathological examination. The results demonstrate that the soybean DP-356Ø43 is as safe for consumption as conventional soybean JACK. In the current study, the effect of a herbicide-tolerant GMS DP-356043 on identified intestinal microbiota was evaluated in a rodent feeding study compared with its conventional control JACK. Feces samples from rats consuming different diets were collected before the start of the experiment (time 0) and at monthly intervals (at the end of the 1st, 2nd and 3rd months) over the course of 90 days. Six types of bacterias shared by humans and rats were detected with Q-PCR. The results of QPCR indicated that the GMS 356Ø43 had a comparable effect on the abundance of Bifidobacterium group, Clostridium perfringens subgroup, Escherichia coli, and Bacteroides-Prevotella group as the non-GMS JACK.
Collapse
Affiliation(s)
- Shiying Zou
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science &, Nutritional Engineering, China Agricultural University, Beijing, 100083, China; Key Laboratory of Safety Assessment of Genetically modified Organism(Food Safety), Ministry of Agriculture, Beijing, 100083, China
| | - Jiao Lu
- School of Management, Shanxi Medical University, Taiyuan, Shanxi, 030001, China
| | - Yunbo Luo
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science &, Nutritional Engineering, China Agricultural University, Beijing, 100083, China; Key Laboratory of Safety Assessment of Genetically modified Organism(Food Safety), Ministry of Agriculture, Beijing, 100083, China; The Supervision, Inspection and Testing Center of Genetically Modified Organisms, Ministry of Agriculture, Beijing, China
| | - Xiaozhe Qi
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science &, Nutritional Engineering, China Agricultural University, Beijing, 100083, China; Key Laboratory of Safety Assessment of Genetically modified Organism(Food Safety), Ministry of Agriculture, Beijing, 100083, China
| | | | - Wentao Xu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science &, Nutritional Engineering, China Agricultural University, Beijing, 100083, China; Key Laboratory of Safety Assessment of Genetically modified Organism(Food Safety), Ministry of Agriculture, Beijing, 100083, China; School of Management, Shanxi Medical University, Taiyuan, Shanxi, 030001, China
| | - Kunlun Huang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science &, Nutritional Engineering, China Agricultural University, Beijing, 100083, China; Key Laboratory of Safety Assessment of Genetically modified Organism(Food Safety), Ministry of Agriculture, Beijing, 100083, China; The Supervision, Inspection and Testing Center of Genetically Modified Organisms, Ministry of Agriculture, Beijing, China
| | - Xiaoyun He
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science &, Nutritional Engineering, China Agricultural University, Beijing, 100083, China; Key Laboratory of Safety Assessment of Genetically modified Organism(Food Safety), Ministry of Agriculture, Beijing, 100083, China; The Supervision, Inspection and Testing Center of Genetically Modified Organisms, Ministry of Agriculture, Beijing, China.
| |
Collapse
|
17
|
d'Ettorre G, Rossi G, Scagnolari C, Andreotti M, Giustini N, Serafino S, Schietroma I, Scheri GC, Fard SN, Trinchieri V, Mastromarino P, Selvaggi C, Scarpona S, Fanello G, Fiocca F, Ceccarelli G, Antonelli G, Brenchley JM, Vullo V. Probiotic supplementation promotes a reduction in T-cell activation, an increase in Th17 frequencies, and a recovery of intestinal epithelium integrity and mitochondrial morphology in ART-treated HIV-1-positive patients. Immun Inflamm Dis 2017; 5:244-260. [PMID: 28474815 PMCID: PMC5569369 DOI: 10.1002/iid3.160] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Revised: 01/31/2017] [Accepted: 02/16/2017] [Indexed: 12/20/2022] Open
Abstract
INTRODUCTION HIV infection is characterized by a persistent immune activation associated to a compromised gut barrier immunity and alterations in the profile of the fecal flora linked with the progression of inflammatory symptoms. The effects of high concentration multistrain probiotic (Vivomixx®, Viale del Policlinico 155, Rome, Italy in EU; Visbiome®, Dupont, Madison, Wisconsin in USA) on several aspects of intestinal immunity in ART-experienced HIV-1 patients was evaluated. METHODS A sub-study of a longitudinal pilot study was performed in HIV-1 patients who received the probiotic supplement twice a day for 6 months (T6). T-cell activation and CD4+ and CD8+ T-cell subsets expressing IFNγ (Th1, Tc1) or IL-17A (Th17, Tc17) were stained by cytoflorimetric analysis. Histological and immunohistochemical analyses were performed on intestinal biopsies while enterocytes apoptosis index was determined by TUNEL assay. RESULTS A reduction in the frequencies of CD4+ and CD8+ T-cell subsets, expressing CD38+ , HLA-DR+ , or both, and an increase in the percentage of Th17 cell subsets, especially those with central or effector memory phenotype, was recorded in the peripheral blood and in gut-associated lymphoid tissue (GALT) after probiotic intervention. Conversely, Tc1 and Tc17 levels remained substantially unchanged at T6, while Th1 cell subsets increase in the GALT. Probiotic supplementation was also associated to a recovery of the integrity of the gut epithelial barrier, a reduction of both intraepithelial lymphocytes density and enterocyte apoptosis and, an improvement of mitochondrial morphology sustained in part by a modulation of heat shock protein 60. CONCLUSIONS These findings highlight the potential beneficial effects of probiotic supplementation for the reconstitution of physical and immunological integrity of the mucosal intestinal barrier in ART-treated HIV-1-positive patients.
Collapse
Affiliation(s)
- Gabriella d'Ettorre
- Department of Public Health and Infectious DiseasesAzienda Policlinico Umberto I of RomeRomeItaly
| | - Giacomo Rossi
- School of BiosciencesVeterinary Medicine University of CamerinoMatelicaItaly
| | - Carolina Scagnolari
- Laboratory Affiliated to Istituto Pasteur Italia—Fondazione Cenci BolognettiDepartment of Molecular MedicineSapienza University of RomeRomeItaly
| | - Mauro Andreotti
- Department of Therapeutic Research and Medicines EvaluationItalian Institute of HealthRomeItaly
| | - Noemi Giustini
- Department of Public Health and Infectious DiseasesSapienza University of RomeRomeItaly
| | - Sara Serafino
- Department of Public Health and Infectious DiseasesSapienza University of RomeRomeItaly
| | - Ivan Schietroma
- Department of Public Health and Infectious DiseasesSapienza University of RomeRomeItaly
| | | | - Saeid Najafi Fard
- Department of Public Health and Infectious DiseasesSapienza University of RomeRomeItaly
| | - Vito Trinchieri
- Department of Public Health and Infectious DiseasesSapienza University of RomeRomeItaly
| | - Paola Mastromarino
- Section of MicrobiologyDepartment of Public Health and Infectious DiseasesSapienza University of RomeRomeItaly
| | - Carla Selvaggi
- Laboratory Affiliated to Istituto Pasteur Italia—Fondazione Cenci BolognettiDepartment of Molecular MedicineSapienza University of RomeRomeItaly
| | - Silvia Scarpona
- School of BiosciencesVeterinary Medicine University of CamerinoMatelicaItaly
| | - Gianfranco Fanello
- Department of Emergency Surgery—Emergency Endoscopic UnitPoliclinico Umberto ISapienza University of RomeRomeItaly
| | - Fausto Fiocca
- Department of Emergency Surgery—Emergency Endoscopic UnitPoliclinico Umberto ISapienza University of RomeRomeItaly
| | - Giancarlo Ceccarelli
- Department of Public Health and Infectious DiseasesAzienda Policlinico Umberto I of RomeRomeItaly
| | - Guido Antonelli
- Laboratory Affiliated to Istituto Pasteur Italia—Fondazione Cenci BolognettiDepartment of Molecular MedicineSapienza University of RomeRomeItaly
| | - Jason M. Brenchley
- Laboratory of Parasitic DiseasesNational Institute of Allergy and Infectious Diseases, NIHBethesdaMarylandUSA
| | - Vincenzo Vullo
- Department of Public Health and Infectious DiseasesSapienza University of RomeRomeItaly
| |
Collapse
|
18
|
Azat R, Liu Y, Li W, Kayir A, Lin DB, Zhou WW, Zheng XD. Probiotic properties of lactic acid bacteria isolated from traditionally fermented Xinjiang cheese. J Zhejiang Univ Sci B 2017; 17:597-609. [PMID: 27487805 DOI: 10.1631/jzus.b1500250] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Six lactic acid bacterial (LAB) strains were isolated from traditionally fermented Xinjiang cheese and evaluated for functional and probiotic properties and potentials as starter cultures. The isolated six LAB strains comprised Lactobacillus rhamnosus (one strain), Lactobacillus helveticus (one strain), and Enterococcus hirae (four strains). All of the six strains were tolerant to acidic and bile salt conditions. Among which, the L. rhamnosus R4 strain showed more desirable antimicrobial, auto-aggregation, and hydrophobic activity. In addition, the strain L. rhamnosus R4 exhibited the highest level of free radical scavenging activity (53.78% of 1,1-diphenyl-2-picrylhydrazyl (DPPH) free radicals and 45.79% of hydroxyl radicals). L. rhamnosus R4 also demonstrated cholesterol and triglyceride degradation by 50.97% and 28.92%, respectively. To further examine the health-promoting effects of these LAB strains on host lifespan, Caenorhabditis elegans was used as an in vivo model. Worms fed LAB as a food source had significant differences in lifespan compared to those fed Escherichia coli OP50 (as a negative control). Feeding of L. rhamnosus R4 extended the mean lifespan of C. elegans by up to 36.1% compared to that of the control. The results suggest that the strains isolated from Xinjiang fermented dairy products have high potential as starter cultures in the cheese industry.
Collapse
Affiliation(s)
- Ramila Azat
- College of Biosystems Engineering and Food Science, Fuli Institute of Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou 310058, China
| | - Yan Liu
- College of Biosystems Engineering and Food Science, Fuli Institute of Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou 310058, China
| | - Wei Li
- College of Biosystems Engineering and Food Science, Fuli Institute of Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou 310058, China
| | - Abdurihim Kayir
- College of Biosystems Engineering and Food Science, Fuli Institute of Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou 310058, China
| | - Ding-Bo Lin
- Department of Nutritional Sciences, Oklahoma State University, 419 Human Sciences, Stillwater, OK 74078, USA
| | - Wen-Wen Zhou
- College of Biosystems Engineering and Food Science, Fuli Institute of Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou 310058, China
| | - Xiao-Dong Zheng
- College of Biosystems Engineering and Food Science, Fuli Institute of Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
19
|
Immunomodulatory effect of low molecular-weight seleno-aminopolysaccharides in intestinal epithelial cells. Int J Biol Macromol 2017; 99:570-577. [DOI: 10.1016/j.ijbiomac.2017.03.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 02/18/2017] [Accepted: 03/02/2017] [Indexed: 12/16/2022]
|
20
|
Jing W, Gao X, Han B, Wei B, Hu N, Li S, Yan R, Wang Y. Mori Cortex regulates P-glycoprotein in Caco-2 cells and colons from rats with experimental colitis via direct and gut microbiota-mediated mechanisms. RSC Adv 2017. [DOI: 10.1039/c6ra25448a] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Mori cortex enhances intestinal epithelial barrier function by up-regulating P-glycoproteinviadirect and gut microbiota-mediated mechanisms.
Collapse
Affiliation(s)
- Wanghui Jing
- State Key Laboratory of Quality Research in Chinese Medicine
- Institute of Chinese Medical Sciences
- University of Macau
- Taipa
- China
| | - Xuejiao Gao
- State Key Laboratory of Quality Research in Chinese Medicine
- Institute of Chinese Medical Sciences
- University of Macau
- Taipa
- China
| | - Beilei Han
- State Key Laboratory of Quality Research in Chinese Medicine
- Institute of Chinese Medical Sciences
- University of Macau
- Taipa
- China
| | - Bin Wei
- State Key Laboratory of Quality Research in Chinese Medicine
- Institute of Chinese Medical Sciences
- University of Macau
- Taipa
- China
| | - Nan Hu
- State Key Laboratory of Quality Research in Chinese Medicine
- Institute of Chinese Medical Sciences
- University of Macau
- Taipa
- China
| | - Sai Li
- State Key Laboratory of Quality Research in Chinese Medicine
- Institute of Chinese Medical Sciences
- University of Macau
- Taipa
- China
| | - Ru Yan
- State Key Laboratory of Quality Research in Chinese Medicine
- Institute of Chinese Medical Sciences
- University of Macau
- Taipa
- China
| | - Yitao Wang
- State Key Laboratory of Quality Research in Chinese Medicine
- Institute of Chinese Medical Sciences
- University of Macau
- Taipa
- China
| |
Collapse
|
21
|
O'Callaghan A, van Sinderen D. Bifidobacteria and Their Role as Members of the Human Gut Microbiota. Front Microbiol 2016; 7:925. [PMID: 27379055 PMCID: PMC4908950 DOI: 10.3389/fmicb.2016.00925] [Citation(s) in RCA: 579] [Impact Index Per Article: 64.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 05/31/2016] [Indexed: 12/11/2022] Open
Abstract
Members of the genus Bifidobacterium are among the first microbes to colonize the human gastrointestinal tract and are believed to exert positive health benefits on their host. Due to their purported health-promoting properties, bifidobacteria have been incorporated into many functional foods as active ingredients. Bifidobacteria naturally occur in a range of ecological niches that are either directly or indirectly connected to the animal gastrointestinal tract, such as the human oral cavity, the insect gut and sewage. To be able to survive in these particular ecological niches, bifidobacteria must possess specific adaptations to be competitive. Determination of genome sequences has revealed genetic attributes that may explain bifidobacterial ecological fitness, such as metabolic abilities, evasion of the host adaptive immune system and colonization of the host through specific appendages. However, genetic modification is crucial toward fully elucidating the mechanisms by which bifidobacteria exert their adaptive abilities and beneficial properties. In this review we provide an up to date summary of the general features of bifidobacteria, whilst paying particular attention to the metabolic abilities of this species. We also describe methods that have allowed successful genetic manipulation of bifidobacteria.
Collapse
Affiliation(s)
- Amy O'Callaghan
- Alimentary Pharmabiotic Centre and School of Microbiology, University College Cork Cork, Ireland
| | - Douwe van Sinderen
- Alimentary Pharmabiotic Centre and School of Microbiology, University College Cork Cork, Ireland
| |
Collapse
|
22
|
Shafi A, Farooq U, Akram K, Jaskani M, Siddique F, Tanveer A. Antidiarrheal Effect of Food Fermented by Various Strains ofLactobacillus. Compr Rev Food Sci Food Saf 2014; 13:229-239. [DOI: 10.1111/1541-4337.12056] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Accepted: 12/23/2013] [Indexed: 12/17/2022]
Affiliation(s)
- Afshan Shafi
- Inst. of Food Science and Nutrition; Univ. of Sargodha; Sargodha Pakistan
| | - Umar Farooq
- Inst. of Food Science and Nutrition; Univ. of Sargodha; Sargodha Pakistan
| | - Kashif Akram
- Inst. of Food Science and Nutrition; Univ. of Sargodha; Sargodha Pakistan
| | - Mahgul Jaskani
- Inst. of Food Science and Nutrition; Univ. of Sargodha; Sargodha Pakistan
| | - Farzana Siddique
- Dept. of Food Technology; Pir Mehr Ali Shah Arid Agriculture Univ.; Rawalpindi Pakistan
| | - Amna Tanveer
- Inst. of Food Science and Nutrition; Univ. of Sargodha; Sargodha Pakistan
| |
Collapse
|
23
|
Singh UP, Singh NP, Guan H, Busbee B, Price RL, Taub DD, Mishra MK, Fayad R, Nagarkatti M, Nagarkatti PS. The emerging role of leptin antagonist as potential therapeutic option for inflammatory bowel disease. Int Rev Immunol 2014; 33:23-33. [PMID: 23841494 PMCID: PMC4159716 DOI: 10.3109/08830185.2013.809071] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Inflammatory bowel disease (IBD) is a chronic relapsing immune-mediated inflammatory disorder that affects millions of people around the world. Leptin is a satiety hormone produced primarily by adipose tissue and acts both centrally and peripherally. Leptin has been shown to play a major role in regulating metabolism, which increases during IBD progression. Leptin mediates several physiological functions including elevated blood pressure, tumorogenesis, cardiovascular pathologies and enhanced immune response in many autoimmune diseases. Recent development of a leptin mutant antagonist that blocks leptin activity raises great hope and opens up new possibilities for therapy in many autoimmune diseases including IBD. To this end, preliminary data from an ongoing study in our laboratory on pegylated leptin antagonist mutant L39A/D40A/F41A (PEG-MLA) treatment shows an inhibition of chronic colitis in IL-10-/- mice. PEG-MLA effectively attenuates the overall clinical scores, reverses colitis-associated pathogenesis including a decrease in body weight, and decreases systemic leptin level. PEG-MLA induces both central and peripheral leptin deficiency by mediating the cellular immune response. In summary, after blocking leptin activity, the correlative outcome between leptin-mediated cellular immune response, systemic leptin levels, and amount of adipose tissue together may provide new strategies for therapeutic intervention in autoimmune diseases, especially for intestinal inflammation.
Collapse
Affiliation(s)
- Udai P. Singh
- Department of Pathology, Microbiology and Immunology, School of Medicine, University of South Carolina, Columbia, SC, USA
| | - Narendra P. Singh
- Department of Pathology, Microbiology and Immunology, School of Medicine, University of South Carolina, Columbia, SC, USA
| | - Hongbing Guan
- Department of Pathology, Microbiology and Immunology, School of Medicine, University of South Carolina, Columbia, SC, USA
| | - Brandon Busbee
- Department of Pathology, Microbiology and Immunology, School of Medicine, University of South Carolina, Columbia, SC, USA
| | - Robert L. Price
- Department of Cell and Developmental Biology, University of South Carolina, Columbia, SC, USA
| | - Dennis D. Taub
- Laboratory of Molecular Biology and Immunology, NIA-IRP, NIH, Baltimore, MD, USA
| | - Manoj K. Mishra
- Department of Math and Sciences, Alabama State University, Montgomery, AL, USA
| | - Raja Fayad
- Department of Exercise Science, Arnold School of Public Health, University of South Carolina, Columbia, SC, USA
| | - Mitzi Nagarkatti
- Department of Pathology, Microbiology and Immunology, School of Medicine, University of South Carolina, Columbia, SC, USA
| | - Prakash S. Nagarkatti
- Department of Pathology, Microbiology and Immunology, School of Medicine, University of South Carolina, Columbia, SC, USA
| |
Collapse
|
24
|
Chong ESL. A potential role of probiotics in colorectal cancer prevention: review of possible mechanisms of action. World J Microbiol Biotechnol 2013; 30:351-74. [PMID: 24068536 DOI: 10.1007/s11274-013-1499-6] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Accepted: 09/16/2013] [Indexed: 02/07/2023]
Abstract
A number of investigations, mainly using in vitro and animal models, have demonstrated a wide range of possible mechanisms, by which probiotics may play a role in colorectal cancer (CRC) prevention. In this context, the most well studied probiotics are certain strains from the genera of lactobacilli and bifidobacteria. The reported anti-CRC mechanisms of probiotics encompass intraluminal, systemic, and direct effects on intestinal mucosa. Intraluminal effects detailed in this review include competitive exclusion of pathogenic intestinal flora, alteration of intestinal microflora enzyme activity, reduction of carcinogenic secondary bile acids, binding of carcinogens and mutagens, and increasing short chain fatty acids production. Reduction of DNA damage and suppression of aberrant crypt foci formation have been well demonstrated as direct anti-CRC effects of probiotics on intestinal mucosa. Existing evidence clearly support a multifaceted immunomodulatory role of probiotics in CRC, particularly its ability to modulate intestinal inflammation, a well known risk factor for CRC. The effectiveness of probiotics in CRC prevention is dependent on the strain of the microorganism, while viability may not be a prerequisite for certain probiotic anticancer mechanisms, as indicated by several studies. Emerging data suggest synbiotic as a more effective approach than either prebiotics or probiotics alone. More in vivo especially human studies are warranted to further elucidate and confirm the potential role of probiotics (viable and non-viable), prebiotics and synbiotics in CRC chemoprevention.
Collapse
Affiliation(s)
- Esther Swee Lan Chong
- Institute of Food, Nutrition and Human Health, Massey University, PO Box 11222, Palmerston North, 4442, New Zealand,
| |
Collapse
|
25
|
Wittmann A, Autenrieth IB, Frick JS. Plasmacytoid dendritic cells are crucial in Bifidobacterium adolescentis-mediated inhibition of Yersinia enterocolitica infection. PLoS One 2013; 8:e71338. [PMID: 23977019 PMCID: PMC3748105 DOI: 10.1371/journal.pone.0071338] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Accepted: 07/03/2013] [Indexed: 12/23/2022] Open
Abstract
In industrialized countries bacterial intestinal infections are commonly caused by enteropathogenic Enterobacteriaceae. The interaction of the microbiota with the host immune system determines the adequacy of an appropriate response against pathogens. In this study we addressed whether the probiotic Bifidobacterium adolescentis is protective during intestinal Yersinia enterocolitica infection. Female C57BL/6 mice were fed with B. adolescentis, infected with Yersinia enterocolitica, or B. adolescentis fed and subsequently infected with Yersinia enterocolitica. B. adolescentis fed and Yersinia infected mice were protected from Yersinia infection as indicated by a significantly reduced weight loss and splenic Yersinia load when compared to Yersinia infected mice. Moreover, protection from infection was associated with increased intestinal plasmacytoid dendritic cell and regulatory T-cell frequencies. Plasmacytoid dendritic cell function was investigated using depletion experiments by injecting B. adolescentis fed, Yersinia infected C57BL/6 mice with anti-mouse PDCA-1 antibody, to deplete plasmacytoid dendritic cells, or respective isotype control. The B. adolescentis-mediated protection from Yersinia dissemination to the spleen was abrogated after plasmacytoid dendritic cell depletion indicating a crucial function for pDC in control of intestinal Yersinia infection. We suggest that feeding of B. adolescentis modulates the intestinal immune system in terms of increased plasmacytoid dendritic cell and regulatory T-cell frequencies, which might account for the B. adolescentis-mediated protection from Yersinia enterocolitica infection.
Collapse
Affiliation(s)
- Alexandra Wittmann
- Institute for Medical Microbiology and Hygiene, University Hospital Tübingen, Tübingen, Germany
- German Centre for Infection Research, University of Tübingen, Tübingen, Germany
| | - Ingo B. Autenrieth
- Institute for Medical Microbiology and Hygiene, University Hospital Tübingen, Tübingen, Germany
- German Centre for Infection Research, University of Tübingen, Tübingen, Germany
| | - Julia-Stefanie Frick
- Institute for Medical Microbiology and Hygiene, University Hospital Tübingen, Tübingen, Germany
- German Centre for Infection Research, University of Tübingen, Tübingen, Germany
- * E-mail:
| |
Collapse
|
26
|
Vitetta L, Alford H. The Pharmacobiotic Potential of the Gastrointestinal Tract Micro-Biometabolome-Probiotic Connect: A Brief Commentary. Drug Dev Res 2013. [DOI: 10.1002/ddr.21091] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
27
|
Rask C, Adlerberth I, Berggren A, Ahrén IL, Wold AE. Differential effect on cell-mediated immunity in human volunteers after intake of different lactobacilli. Clin Exp Immunol 2013; 172:321-32. [PMID: 23574328 DOI: 10.1111/cei.12055] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/17/2012] [Indexed: 12/21/2022] Open
Abstract
Probiotics are live microorganisms which have beneficial effects on the host when ingested in adequate amounts. Probiotic bacteria may stimulate immune effector functions in a strain-specific manner. In this blind placebo-controlled trial, we investigated the effects on the immune system following daily intake of six different strains of lactobacilli or the Gram-negative bacterium Pseudomonas lundensis for 2 or 5 weeks. Blood lymphocyte subsets were quantified by fluorescence activated cell sorter and the expression of activation and memory markers was determined. The bacterial strains were also examined for their capacity to adhere to human intestinal cells and to be phagocytosed by human peripheral blood mononuclear cells. Intake of Lactobacillus plantarum strain 299v increased the expression of the activation marker CD25 (P = 0·01) on CD8(+) T cells and the memory cell marker CD45RO on CD4(+) T cells (P = 0·03), whereas intake of L. paracasei tended to expand the natural killer T (NK T) cell population (P = 0·06). The phagocytic activity of granulocytes was increased following intake of L. plantarum 299v, L. plantarum HEAL, L. paracasei or L. fermentum. In contrast, ingestion of L. rhamnosus decreased the expression of CD25 and CD45RO significantly within the CD4(+) cell population. The observed immune effects after in-vivo administration of the probiotic bacteria could not be predicted by either their adherence capacity or the in-vitro-induced cytokine production. The stimulation of CD8(+) T cells and NK T cells suggests that intake of probiotic bacteria may enhance the immune defence against, e.g. viral infections or tumours.
Collapse
Affiliation(s)
- C Rask
- Department of Infectious Diseases, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | | | | | | | | |
Collapse
|
28
|
Shiou SR, Yu Y, Guo Y, He SM, Mziray-Andrew CH, Hoenig J, Sun J, Petrof EO, Claud EC. Synergistic protection of combined probiotic conditioned media against neonatal necrotizing enterocolitis-like intestinal injury. PLoS One 2013; 8:e65108. [PMID: 23717690 PMCID: PMC3663790 DOI: 10.1371/journal.pone.0065108] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Accepted: 04/26/2013] [Indexed: 11/26/2022] Open
Abstract
Balance among the complex interactions of the gut microbial community is important for intestinal health. Probiotic bacteria can improve bacterial balance and have been used to treat gastrointestinal diseases. Neonatal necrotizing enterocolitis (NEC) is a life-threatening inflammatory bowel disorder primarily affecting premature infants. NEC is associated with extensive inflammatory NF-κB signaling activation as well as intestinal barrier disruption. Clinical studies have shown that probiotic administration may protect against NEC, however there are safety concerns associated with the ingestion of large bacterial loads in preterm infants. Bacteria-free conditioned media (CM) from certain probiotic organisms have been shown to retain bioactivity including anti-inflammatory and cytoprotective properties without the risks of live organisms. We hypothesized that the CM from Lactobacillus acidophilus (La), Bifidobacterium infantis (Bi), and Lactobacillus plantarum (Lp), used separately or together would protect against NEC. A rodent model with intestinal injury similar to NEC was used to study the effect of CM from Lp, La/Bi, and La/Bi/Lp on the pathophysiology of NEC. All the CM suppressed NF-κB activation via preserved IκBα expression and this protected IκBα was associated with decreased liver activity of the proteasome, which is the degrading machinery for IκBα. These CM effects also caused decreases in intestinal production of the pro-inflammatory cytokine TNF-α, a downstream target of the NF-κB pathway. Combined La/Bi and La/Bi/Lp CM in addition protected intestinal barrier function by maintaining tight junction protein ZO-1 levels and localization at the tight junction. Double combined La/Bi CM significantly reduced intestinal injury incidence from 43% to 28% and triple combined La/Bi/Lp CM further reduced intestinal injury incidence to 20%. Thus, this study demonstrates different protective mechanisms and synergistic bioactivity of the CM from different organisms in ameliorating NEC-like intestinal injury in an animal model.
Collapse
Affiliation(s)
- Sheng-Ru Shiou
- Department of Pediatrics, Section of Neonatology, The University of Chicago, Chicago, Illinois, United States of America
| | - Yueyue Yu
- Department of Pediatrics, Section of Neonatology, The University of Chicago, Chicago, Illinois, United States of America
| | - Yuee Guo
- Department of Pediatrics, Section of Neonatology, The University of Chicago, Chicago, Illinois, United States of America
| | - Shu-Mei He
- Department of Medicine, Section of Infectious Diseases and GIDRU, Queen's University, Kingston, Ontario, Canada
| | - C. Haikaeli Mziray-Andrew
- Department of Pediatrics, Section of Pediatric Gastroenterology and Nutrition, Southern Illinois University School of Medicine, Carbondale, Illinois, United States of America
| | - Jeanette Hoenig
- Edward Hospital, Naperville, Illinois, United States of America
| | - Jun Sun
- Department of Biochemistry, Rush University, Chicago, Illinois, United States of America
| | - Elaine O. Petrof
- Department of Medicine, Section of Infectious Diseases and GIDRU, Queen's University, Kingston, Ontario, Canada
| | - Erika C. Claud
- Department of Pediatrics, Section of Neonatology, The University of Chicago, Chicago, Illinois, United States of America
- Department of Medicine, Section of Gastroenterology, The University of Chicago, Chicago, Illinois, United States of America
- * E-mail:
| |
Collapse
|
29
|
Might patients with immune-related diseases benefit from probiotics? Nutrition 2013; 29:583-6. [DOI: 10.1016/j.nut.2012.10.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Revised: 10/11/2012] [Accepted: 10/11/2012] [Indexed: 12/25/2022]
|
30
|
|
31
|
Corridoni D, Pastorelli L, Mattioli B, Locovei S, Ishikawa D, Arseneau KO, Chieppa M, Cominelli F, Pizarro TT. Probiotic bacteria regulate intestinal epithelial permeability in experimental ileitis by a TNF-dependent mechanism. PLoS One 2012; 7:e42067. [PMID: 22848704 PMCID: PMC3405026 DOI: 10.1371/journal.pone.0042067] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2012] [Accepted: 07/02/2012] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND We previously showed that the probiotic mixture, VSL#3, prevents the onset of ileitis in SAMP/YitFc (SAMP) mice, and this effect was associated with stimulation of epithelial-derived TNF. The aim of this study was to determine the mechanism(s) of VSL#3-mediated protection on epithelial barrier function and to further investigate the "paradoxical" effects of TNF in preventing SAMP ileitis. METHODS Permeability was evaluated in SAMP mice prior to the onset of inflammation and during established disease by measuring transepithelial electrical resistance (TEER) on ex vivo-cultured ilea following exposure to VSL#3 conditioned media (CM), TNF or VSL#3-CM + anti-TNF. Tight junction (TJ) proteins were assessed by qRT-PCR, Western blot, and confocal microscopy, and TNFRI/TNFRII expression measured in freshly isolated intestinal epithelial cells (IEC) from SAMP and control AKR mice. RESULTS Culture with either VSL#3-CM or TNF resulted in decreased ileal paracellular permeability in pre-inflamed SAMP, but not SAMP with established disease, while addition of anti-TNF abrogated these effects. Modulation of the TJ proteins, claudin-2 and occludin, occurred with a significant decrease in claudin-2 and increase in occludin following stimulation with VSL#3-CM or TNF. TNF protein levels increased in supernatants of SAMP ilea incubated with VSL#3-CM compared to vehicle, while IEC-derived TNFR mRNA expression decreased in young, and was elevated in inflamed, SAMP versus AKR mice. CONCLUSIONS Our data demonstrate that the previously established efficacy of VSL#3 in preventing SAMP ileitis is due to direct innate and homeostatic effects of TNF on the gut epithelium, modulation of the TJ proteins, claudin-2 and occludin, and overall improvement of intestinal permeability.
Collapse
Affiliation(s)
- Daniele Corridoni
- Division of Gastroenterology and Liver Disease, Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States of America
| | - Luca Pastorelli
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States of America
| | - Benedetta Mattioli
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States of America
| | - Silviu Locovei
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States of America
- Division of Gastroenterology and Liver Disease, Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States of America
| | - Dai Ishikawa
- Division of Gastroenterology and Liver Disease, Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States of America
| | - Kristen O. Arseneau
- Division of Gastroenterology and Liver Disease, Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States of America
| | - Marcello Chieppa
- Lab of Experimental Immunopathology, Instituto di Ricovero e Cura a Carattere Scientifico (IRCCS) “De Bellis”, Castellana Grotte, Bari, Italy
| | - Fabio Cominelli
- Division of Gastroenterology and Liver Disease, Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States of America
| | - Theresa T. Pizarro
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States of America
| |
Collapse
|
32
|
Vitetta L, Briskey D, Hayes E, Shing C, Peake J. A review of the pharmacobiotic regulation of gastrointestinal inflammation by probiotics, commensal bacteria and prebiotics. Inflammopharmacology 2012; 20:251-66. [PMID: 22427210 DOI: 10.1007/s10787-012-0126-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2012] [Accepted: 02/07/2012] [Indexed: 12/17/2022]
Abstract
The idea that microbes induce disease has steered medical research toward the discovery of antibacterial products for the prevention and treatment of microbial infections. The twentieth century saw increasing dependency on antimicrobials as mainline therapy accentuating the notion that bacterial interactions with humans were to be avoided or desirably controlled. The last two decades, though, have seen a refocusing of thinking and research effort directed towards elucidating the critical inter-relationships between the gut microbiome and its host that control health/wellness or disease. This research has redefined the interactions between gut microbes and vertebrates, now recognizing that the microbial active cohort and its mammalian host have shared co-evolutionary metabolic interactions that span millennia. Microbial interactions in the gastrointestinal tract provide the necessary cues for the development of regulated pro- and anti-inflammatory signals that promotes immunological tolerance, metabolic regulation and other factors which may then control local and extra-intestinal inflammation. Pharmacobiotics, using nutritional and functional food additives to regulate the gut microbiome, will be an exciting growth area of therapeutics, developing alongside an increased scientific understanding of gut-microbiome symbiosis in health and disease.
Collapse
Affiliation(s)
- L Vitetta
- School of Medicine, Centre for Integrative Clinical and Molecular Medicine, Princess Alexandra Hospital, The University of Queensland, Lvl 2, R Wing, 199 Ipswich Road, Woolloongabba, Brisbane, QLD 4102, Australia.
| | | | | | | | | |
Collapse
|
33
|
Effects of Bifidobacterium infantis 35624 on post-inflammatory visceral hypersensitivity in the rat. Dig Dis Sci 2011; 56:3179-86. [PMID: 21562785 DOI: 10.1007/s10620-011-1730-y] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2010] [Accepted: 04/18/2011] [Indexed: 12/17/2022]
Abstract
BACKGROUND Irritable bowel syndrome patients have abnormal visceral perception. Probiotic organisms may produce beneficial effects in these patients by reducing visceral hypersensitivity. AIM To investigate the effects of the probiotic organism, Bifidobacterium infantis 35624, on post-inflammatory visceral hypersensitivity in rats. METHODS Colitis was induced using intracolonic administration of trinitrobenzenesulfonic acid; control rats received saline (day 0). Myeloperoxidase (MPO) levels and colonic damage scores were determined. From days 15-29, rats (n = 10/group) rats were orally dosed with 2 ml of B. infantis ≥ 10(8) colony-forming units/ml or vehicle (MRS broth). A second series of rats (n = 10/group) was dosed in the same manner from days 15-59. The level of colonic stimulation during colorectal distension (CRD) was determined by recording a visceromotor response (VMR) to CRD at 30 mmHg pre- and post-treatment. Post-treatment samples of colonic tissue were weighed, graded for morphologic damage, and assayed for MPO levels. RESULTS All rats were hypersensitive at day 15. On day 30, hypersensitivity to colorectal distension remained in the vehicle group, but was significantly reduced in the B. infantis group (mean VMR/10 min: vehicle = 15.4 ± 1.0 vs. B. infantis = 7.6 ± 1.0, p < 0.001). A similar, significant effect was observed at day 60. On both day 30 and day 60, tissue weight, colonic damage scores, and MPO levels resembled those of control animals. CONCLUSIONS Oral administration of Bifidobacterium infantis 35624 normalized sensitivity to colorectal distension in a rat model of post-inflammatory colonic hypersensitivity.
Collapse
|
34
|
Dai C, Guandalini S, Zhao DH, Jiang M. Antinociceptive effect of VSL#3 on visceral hypersensitivity in a rat model of irritable bowel syndrome: a possible action through nitric oxide pathway and enhance barrier function. Mol Cell Biochem 2011; 362:43-53. [PMID: 22020749 DOI: 10.1007/s11010-011-1126-5] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2011] [Accepted: 10/12/2011] [Indexed: 12/11/2022]
Abstract
Irritable bowel syndrome (IBS) is a functional bowel disorder characterized by visceral hypersensitivity and altered bowel function. There are increasing evidences suggested that VSL#3 probiotics therapy has been recognized as an effective method to relieve IBS-induced symptoms. The aim of this study was to examine the effects of VSL#3 probiotics on visceral hypersensitivity (VH), nitric oxide (NO), fecal character, colonic epithelium permeability, and tight junction protein expression. IBS model was induced by intracolonic instillation of 4% acetic acid and restraint stress in rats. After subsidence of inflammation on the seventh experimental day, the rats were subjected to rectal distension, and then the abdominal withdrawal reflex and the number of fecal output were measured, respectively. Also, colonic permeability to Evans blue was measured in vivo, and tight junction protein expression was studied by immunohistochemistry and immunoblotting method. Rats had been pretreated with VSL#3 or aminoguanidine (NOS inhibitor) or VSL#3+ aminoguanidine before measurements. The rats at placebo group showed hypersensitive response to rectal distension (P < 0.05) and defecated more stools than control rats (P < 0.05), whereas VSL#3 treatment significantly attenuated VH and effectively reduced defecation. Aminoguanidine reduced the protective effects of VSL#3 on VH. A pronounced increase in epithelial permeability and decreased expression of tight junction proteins (occludin, ZO-1) in placebo group were prevented by VSL#3, but not aminoguanidine. VSL#3 treatment reduce the hypersensitivity, defecation, colonic permeability and increase the expression of tight junction proteins (occludin, ZO-1). As the part of this effect was lowered by NOS inhibitor, NO might play a role in the protective effect of VSL#3 to some extent.
Collapse
Affiliation(s)
- Cong Dai
- Department of Gastroenterology, First Affiliated Hospital, China Medical University, Shenyang City, Liaoning Province, China
| | | | | | | |
Collapse
|
35
|
Xu W, Li L, Lu J, Luo Y, Shang Y, Huang K. Analysis of caecal microbiota in rats fed with genetically modified rice by real-time quantitative PCR. J Food Sci 2011; 76:M88-93. [PMID: 21535699 DOI: 10.1111/j.1750-3841.2010.01967.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The effect of genetically modified rice (GMR) on bacterial communities in caecal content was analyzed in a 90-d feeding rat model. A total of 12 groups of rats, which included male and female, were fed with the basal diets containing 30%, 50%, 70% GMR (B(1), B(2), B(3)) or 30%, 50%, 70% non-GMR (D(1), D(2), D(3)). The structure of intestinal microflora was estimated by real-time quantitative PCR (RQ-PCR) based on genus-specific 16s rDNA primers. SYBR Green was used for accurate detection and quantification of 6 kinds of major bacteria shared by humans and rats. According to RQ-PCR, the genome copies of Lactobacillus group from the cecum of male rats fed with 70% non-GMR was higher than those fed with 70% GMR and the relative abundance of Lactobacillus group also higher for group D. This result was in contrast with the E. coli subgroup, which was more numerous in proportion of group B, except D(2) and B(2) for male rats. The Clostridium perfringens subgroup was numerically more abundant in group D than group B of the same level, also except D(2) and B(2) for male rats. These results suggested that GMR had a complex effect on caecal microflora that may be related to the health of the host.
Collapse
Affiliation(s)
- Wentao Xu
- Lab. of Food Safety and Molecular Biology, College of Food Science and Nutritional Engineering, China Agricultural Univ., Beijing 100083, PR China
| | | | | | | | | | | |
Collapse
|
36
|
Yuan Y, Xu W, Luo Y, Liu H, Lu J, Su C, Huang K. Effects of genetically modified T2A-1 rice on faecal microflora of rats during 90 day supplementation. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2011; 91:2066-2072. [PMID: 21520451 DOI: 10.1002/jsfa.4421] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2010] [Revised: 02/27/2011] [Accepted: 03/11/2011] [Indexed: 05/30/2023]
Abstract
BACKGROUND Many animal studies have been performed on products with the Bacillus thuringiensis insecticidal toxin-encoding gene (Bt products), but less have focused on its effects on intestinal microflora owing to difficulties in culturing. This 90 day study was designed to assess unintended effects of genetically modified T2A-1 rice (GMR) on selected intestinal bacteria (Lactobacillus group, Bifidobacterium genus, Escherichia coli subgroup, Enterococcus genus and Clostridium perfringens) of rats by the real-time polymerase chain reaction (PCR) method. RESULTS During the whole experiment, no statistically significant differences in the numbers of specific bacteria and total bacteria were found between the GMR group and its parental group. At all stages of the experiment the two main probiotics (Lactobacillus group and Bifidobacterium genus) in faeces accounted for 11-23% of the total bacteria, whereas the conditional pathogens (E. coli subgroup, Enterococcus genus and C. perfringens) made up less than 1% of the total bacteria. B/E (log(10) copies of Bifidobacterium genome g(-1) faeces/log(10) copies of E. coli genome g(-1) faeces) ratios from 1.19 to 1.34 were obtained. Furthermore, significant correlations (P < 0.01) between the real-time PCR method and the plate count method were found, with r values ranging from 0.60 to 0.75. CONCLUSION No adverse effects on the numbers of specific bacteria in rat faeces were observed as a result of GMR feeding. The real-time PCR method is recommended in further studies on the composition and dynamics of the intestinal bacteria community for better safety assessment of GM materials.
Collapse
Affiliation(s)
- Yanfang Yuan
- Laboratory of Food Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | | | | | | | | | | | | |
Collapse
|
37
|
Teughels W, Loozen G, Quirynen M. Do probiotics offer opportunities to manipulate the periodontal oral microbiota? J Clin Periodontol 2011; 38 Suppl 11:159-77. [PMID: 21323712 DOI: 10.1111/j.1600-051x.2010.01665.x] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
BACKGROUND As in other fields of healthcare, probiotics have been introduced for prevention and treatment of periodontal diseases. OBJECTIVE This review was initiated to explore whether the use of probiotics can influence the periodontal microbiota and periodontal health. MATERIALS AND METHODS Literature on the mode of action of oral probiotics was reviewed and a systematic review was performed on the microbiological and clinical effects of oral probiotics on periodontal health. RESULTS Three animal and 11 in vivo human studies were retrieved. Six studies reported on microbiological effects whereas eight studies report on clinical effects. Seven studies were performed on healthy or gingivitis patients and four studies on periodontitis patients. Many of the retrieved studies are pilot in nature and with low quality. The high degree of heterogeneity between studies hampered analysis. CONCLUSION Taking into consideration all limitations, the currently available data indicate an effect of probiotics on the oral microbiota and a more limited effect on clinical periodontal outcome measures. However, there is an urgent need for properly conducted clinical trials where probiotics are used as adjuncts to standard periodontal care, similar to antibiotics, using probiotic strains with, at least at an in vitro level, proven periodontal probiotic effects.
Collapse
Affiliation(s)
- Wim Teughels
- Department of Periodontology, Research Group for Microbial Adhesion, Catholic University Leuven, Leuven, Belgium.
| | | | | |
Collapse
|
38
|
Faghfoori Z, Navai L, Shakerhosseini R, Somi MH, Nikniaz Z, Norouzi MF. Effects of an oral supplementation of germinated barley foodstuff on serum tumour necrosis factor-alpha, interleukin-6 and -8 in patients with ulcerative colitis. Ann Clin Biochem 2011; 48:233-7. [PMID: 21367884 DOI: 10.1258/acb.2010.010093] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND The efficacy of germinated barley foodstuff (GBF) on tumour necrosis factor-alpha (TNF-α), interleukin-6 (IL-6) and -8 (IL-8) in patients with ulcerative colitis (UC) has not yet been examined. The aim of the present study was to determine the effect of administration of GBF on serum TNF-α, IL-6 and -8 levels in UC patients in remission. METHODS Forty-one patients with UC were divided into two groups, namely control and GBF group. Twenty-one patients in the control group received standard treatment while 20 patients in the GBF group received 30 g of GBF daily by oral administration during two months of the study along with standard drug therapy. RESULTS Levels of TNF-α, IL-6 and -8 all decreased in the GBF group compared with baseline during the two-month study, while in the control group all values rose. For IL-6 and -8 this effect was significant, P = 0.034 and 0.013, respectively. CONCLUSIONS The results of the present study showed that the consumption of GBF may reduce the level of serum TNF-α, IL-6 and -8 in patients with UC. This investigation was designed as a pilot study and the results may provide a basis for more future clinical trials.
Collapse
Affiliation(s)
- Zeinab Faghfoori
- Department of Clinical Nutrition and Dietetics, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Sciences and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran
| | | | | | | | | | | |
Collapse
|
39
|
Molan AL, Liu Z, Tiwari R. The ability of green tea to positively modulate key markers of gastrointestinal function in rats. Phytother Res 2011; 24:1614-9. [PMID: 21031617 DOI: 10.1002/ptr.3145] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The beneficial effects of selenium-containing green tea (Se-GTE, 1.44 mg selenium/kg dry leaves) and China green tea (CH-GTE, 0.13 mg selenium/kg leaves) on the population size of lactobacilli and bifidobacteria and the activity of two microbial enzymes in the caeca of rats have been investigated. Oral gavage of rats with Se-GTE extract for 6 days resulted in a significant increase in caecal counts of lactobacilli and bifidobacteria (p < 0.05) while significantly reducing the caecal counts of bacteroides and clostridial bacteria. In contrast, gavaging the rats with CH-GTE extract for 6 days resulted in a slight but not significant increase in the numbers of caecal lactobacilli and bifidobacteria but decreased significantly the numbers of bacteroides (p < 0.05) and clostridia (p < 0.05). In addition, rats gavaged with CH-GTE and Se-GTE showed a 17.2% and 21.3% reduction in the activity of the bacterial enzyme β-glucuronidase, respectively, when compared with the rats gavaged with water only. β-glucuronidase is considered to be one of the enzymes that increases the risk for colorectal cancer. Moreover, gavaging rats with these teas resulted in 19% and 25.5% increments in the activity of β-glucosidase, respectively. In conclusion, Se-GTE showed both bifidogenic and lactogenic effects and the high level of selenium may be behind the superiority of this tea over CH-GTE.
Collapse
Affiliation(s)
- Abdul-Lateef Molan
- Institute of Food, Nutrition and Human Health, Massey University, Private Bag 11 222, Palmerston North, New Zealand.
| | | | | |
Collapse
|
40
|
The ability of blackcurrant extracts to positively modulate key markers of gastrointestinal function in rats. World J Microbiol Biotechnol 2010. [DOI: 10.1007/s11274-010-0352-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
41
|
Nishitani Y, Mizuno M. Anti-inflammatory Activities of Lactococcus lactis subsp. cremoris FC in In Vitro and In Vivo Gut Inflammation Models. Biosci Microflora 2010. [DOI: 10.12938/bifidus.29.169] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Affiliation(s)
- Yosuke Nishitani
- Organization of Advanced Science and Technology, Kobe University
| | - Masashi Mizuno
- Department of Agrobioscience, Graduate School of Agricultural Science
| |
Collapse
|
42
|
Lactococcus lactis subsp. cremoris FC alleviates symptoms of colitis induced by dextran sulfate sodium in mice. Int Immunopharmacol 2009; 9:1444-51. [PMID: 19733697 DOI: 10.1016/j.intimp.2009.08.018] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2009] [Revised: 08/07/2009] [Accepted: 08/25/2009] [Indexed: 12/14/2022]
Abstract
Probiotics have been used to treat human gastrointestinal inflammations including inflammatory bowel disease (IBD). However, the exact mechanisms by which probiotics act to protect against intestinal inflammation have yet to be fully elucidated. The aim of this study was to evaluate anti-inflammatory effects of Lactococcus lactis subsp. cremoris FC using in vivo and in vitro inflammation models. Colitis was induced in C57BL/6 mice by administration of 3% dextran sulfate sodium to drinking water. In the cellular level assessment, a gut inflammation model with the co-culture system consisting Caco-2 cells and RAW264.7 cells stimulated by LPS was used. Administration of L. lactis subsp. cremoris FC significantly ameliorated shortening of colon length and histological score of the colon in DSS-induce colitis mice. In addition, the treatment of L. lactis subsp. cremoris FC improved the aberrant mRNA expression in inflamed tissue near to control level through notable suppression of TNF-alpha (P<0.05), IFN-gamma (P<0.05), IL-6, iNOS, and MIP-2 mRNA expression. In addition, in a gut inflammation model, treatment with L. lactis subsp. cremoris FC resulted in significant down-regulation of IL-8 mRNA expression in Caco-2 cells and inhibition of NF-kappaB nuclear translocation in RAW264.7 cells. Our findings indicate that administration of L. lactis subsp. cremoris FC improves negative effects of DSS-induced colitis in mice through the inhibition of inflammatory cell infiltration.
Collapse
|
43
|
Probiotics, prebiotics, and synbiotics. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2008; 111:1-66. [PMID: 18461293 DOI: 10.1007/10_2008_097] [Citation(s) in RCA: 356] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
According to the German definition, probiotics are defined viable microorganisms, sufficient amounts of which reach the intestine in an active state and thus exert positive health effects. Numerous probiotic microorganisms (e.g. Lactobacillus rhamnosus GG, L. reuteri, bifidobacteria and certain strains of L. casei or the L. acidophilus-group) are used in probiotic food, particularly fermented milk products, or have been investigated--as well as Escherichia coli strain Nissle 1917, certain enterococci (Enterococcus faecium SF68) and the probiotic yeast Saccharomyces boulardii--with regard to their medicinal use. Among the numerous purported health benefits attributed to probiotic bacteria, the (transient) modulation of the intestinal microflora of the host and the capacity to interact with the immune system directly or mediated by the autochthonous microflora, are basic mechanisms. They are supported by an increasing number of in vitro and in vivo experiments using conventional and molecular biologic methods. In addition to these, a limited number of randomized, well-controlled human intervention trials have been reported. Well-established probiotic effects are: 1. Prevention and/or reduction of duration and complaints of rotavirus-induced or antibiotic-associated diarrhea as well as alleviation of complaints due to lactose intolerance. 2. Reduction of the concentration of cancer-promoting enzymes and/or putrefactive (bacterial) metabolites in the gut. 3. Prevention and alleviation of unspecific and irregular complaints of the gastrointestinal tracts in healthy people. 4. Beneficial effects on microbial aberrancies, inflammation and other complaints in connection with: inflammatory diseases of the gastrointestinal tract, Helicobacter pylori infection or bacterial overgrowth. 5. Normalization of passing stool and stool consistency in subjects suffering from obstipation or an irritable colon. 6. Prevention or alleviation of allergies and atopic diseases in infants. 7. Prevention of respiratory tract infections (common cold, influenza) and other infectious diseases as well as treatment of urogenital infections. Insufficient or at most preliminary evidence exists with respect to cancer prevention, a so-called hypocholesterolemic effect, improvement of the mouth flora and caries prevention or prevention or therapy of ischemic heart diseases or amelioration of autoimmune diseases (e.g. arthritis). A prebiotic is "a selectively fermented ingredient that allows specific changes, both in the composition and/or activity in the gastrointestinal microflora that confers benefits upon host well being and health", whereas synergistic combinations of pro- and prebiotics are called synbiotics. Today, only bifidogenic, non-digestible oligosaccharides (particularly inulin, its hydrolysis product oligofructose, and (trans)galactooligosaccharides), fulfill all the criteria for prebiotic classification. They are dietary fibers with a well-established positive impact on the intestinal microflora. Other health effects of prebiotics (prevention of diarrhoea or obstipation, modulation of the metabolism of the intestinal flora, cancer prevention, positive effects on lipid metabolism, stimulation of mineral adsorption and immunomodulatory properties) are indirect, i.e. mediated by the intestinal microflora, and therefore less-well proven. In the last years, successful attempts have been reported to make infant formula more breast milk-like by the addition of fructo- and (primarily) galactooligosaccharides.
Collapse
|
44
|
van der Kleij H, O'Mahony C, Shanahan F, O'Mahony L, Bienenstock J. Protective effects of Lactobacillus reuteri and Bifidobacterium infantis in murine models for colitis do not involve the vagus nerve. Am J Physiol Regul Integr Comp Physiol 2008; 295:R1131-7. [DOI: 10.1152/ajpregu.90434.2008] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The vagus nerve is an important pathway signaling immune activation of the gastrointestinal tract to the brain. Probiotics are live organisms that may engage signaling pathways of the brain-gut axis to modulate inflammation. The protective effects of Lactobacillus reuteri ( LR) and Bifidobacterium infantis ( BI) during intestinal inflammation were studied after subdiaphragmatic vagotomy in acute dextran sulfate sodium (DSS) colitis in BALB/c mice and chronic colitis induced by transfer of CD4+ CD62L+ T lymphocytes from BALB/c into SCID mice. LR and BI (1 × 109) were given daily. Clinical score, myeloperoxidase (MPO) levels, and in vivo and in vitro secreted inflammatory cytokine levels were found to be more severe in mice that were vagotomized compared with sham-operated animals. LR in the acute DSS model was effective in decreasing the MPO and cytokine levels in the tissue in sham and vagotomized mice. BI had a strong downregulatory effect on secreted in vitro cytokine levels and had a greater anti-inflammatory effect in vagotomized- compared with sham-operated mice. Both LR and BI retained anti-inflammatory effects in vagotomized mice. In SCID mice, vagotomy did not enhance inflammation, but BI was more effective in vagotomized mice than shams. Taken together, the intact vagus has a protective role in acute DSS-induced colitis in mice but not in the chronic T cell transfer model of colitis. Furthermore, LR and BI do not seem to engage their protective effects via this cholinergic anti-inflammatory pathway, but the results interestingly show that, in the T cell, transfer model vagotomy had a biological effect, since it increased the effectiveness of the BI in downregulation of colonic inflammation.
Collapse
|
45
|
The protective potency of probiotic bacteria and their microbial products against enteric infections-review. Folia Microbiol (Praha) 2008; 53:189-94. [DOI: 10.1007/s12223-008-0023-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2007] [Revised: 01/17/2008] [Indexed: 01/01/2023]
|
46
|
Borthakur A, Gill RK, Tyagi S, Koutsouris A, Alrefai WA, Hecht GA, Ramaswamy K, Dudeja PK. The probiotic Lactobacillus acidophilus stimulates chloride/hydroxyl exchange activity in human intestinal epithelial cells. J Nutr 2008; 138:1355-9. [PMID: 18567760 PMCID: PMC2705118 DOI: 10.1093/jn/138.7.1355] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Probiotics are viable nonpathogenic microorganisms that are considered to confer health benefits to the host. Recent studies indicated that some Lactobacillus species function as probiotics and have been used as alternative treatments for diarrhea, which occurs due to increased secretion, decreased absorption, or both. However, the direct effects of probiotics on intestinal electrolyte absorption are not known. Therefore, we examined the effects of Lactobacillus on luminal chloride/hydroxyl (Cl(-)/OH(-)) exchange activity in human intestinal epithelial cells. Postconfluent Caco-2 cells were treated with the Lactobacillus species Lactobacillus acidophilus (LA), Lactobacillus casei, Lactobacillus plantarum, or Lactobacillus rhamnosus (LR) for 3 h at a multiplicity of infection of 50. Cl(-)/OH(-) exchange activity was measured as 4,4'-diisothiocyanostilbene-2, 2'-disulfonic acid-sensitive (36)Cl uptake in base-loaded cells. Treatment with live, but not heat-killed, LA and LR significantly increased Cl(-)/OH(-) exchange activity (approximately 50%), whereas other species were ineffective. Similarly, the conditioned medium (supernatant) of live LA increased Cl(-)/OH(-) exchange. The ability of LA or its conditioned culture medium to enhance Cl(-)/OH(-) exchange activity was blocked by PI-3 kinase inhibition but was unaffected by inhibition of mitogen-activated protein kinases. Corresponding to the increased Cl(-)/OH(-) exchange activity, LA treatment increased the surface expression of the apical anion exchanger, SLC26A3 [Down Regulated in Adenoma (DRA)]. The increased DRA membrane localization might contribute to the increased Cl(-) absorption by LA. Our results suggest that LA secretes soluble effector molecule(s) into the culture medium that stimulate apical Cl(-)/OH(-) exchange activity via phosphatidylinositol-3 kinase mediated mechanism.
Collapse
|
47
|
Voutsadakis IA. The ubiquitin-proteasome system in colorectal cancer. Biochim Biophys Acta Mol Basis Dis 2008; 1782:800-8. [PMID: 18619533 DOI: 10.1016/j.bbadis.2008.06.007] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2008] [Revised: 06/12/2008] [Accepted: 06/13/2008] [Indexed: 01/01/2023]
Abstract
The proteasome is a multiprotein complex that regulates the stability of hundreds of cellular proteins and thus, it is implicated in virtually all cellular functions. Most of the time, to be recognized and processed by the proteasome, a protein has to be linked to a chain of ubiquitin molecules. Cell proliferation, apoptosis, angiogenesis and motility, processes with particular importance for carcinogenesis are regulated by the ubiquitin-proteasome system (UPS). In colorectal epithelium, UPS plays a role in the regulation of the Wnt/beta-catenin/APC/TCF4 signaling which regulates proliferation of colorectal epithelial cells in the bottom of the crypts and the inhibition of this proliferation as cells move towards colon villi tips. In most colorectal cancers APC (Adenomatous Polyposis Coli) disabling mutations interfere with the ability of the proteasome to degrade beta-catenin leading to uninhibited cell proliferation. Other key molecules in colorectal carcinogenesis such as p53, Smad4 and components of the k-ras pathways are also regulated by the UPS. In this review I discuss the role of UPS in colorectal carcinogenesis and colorectal cancer prognosis and aspects of its inhibition for therapeutic purposes.
Collapse
Affiliation(s)
- Ioannis A Voutsadakis
- Division of Medical Oncology, University Hospital of Larissa, Larissa 41110, Greece.
| |
Collapse
|
48
|
Savard J, Sawatzky JA. The Use of a Nursing Model to Understand Diarrhea and the Role of Probiotics in Patients With Inflammatory Bowel Disease. Gastroenterol Nurs 2007; 30:418-23; quiz 424-5. [DOI: 10.1097/01.sga.0000305223.24146.ab] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
49
|
Frick JS, Fink K, Kahl F, Niemiec MJ, Quitadamo M, Schenk K, Autenrieth IB. Identification of commensal bacterial strains that modulate Yersinia enterocolitica and dextran sodium sulfate-induced inflammatory responses: implications for the development of probiotics. Infect Immun 2007; 75:3490-7. [PMID: 17485456 PMCID: PMC1932957 DOI: 10.1128/iai.00119-07] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
An increasing body of evidence suggests that probiotic bacteria are effective in the treatment of enteric infections, although the molecular basis of this activity remains elusive. To identify putative probiotics, we tested commensal bacteria in terms of their toxicity, invasiveness, inhibition of Yersinia-induced inflammation in vitro and in vivo, and modulation of dextran sodium sulfate (DSS)-induced colitis in mice. The commensal bacteria Escherichia coli, Bifidobacterium adolescentis, Bacteroides vulgatus, Bacteroides distasonis, and Streptococcus salivarius were screened for adhesion to, invasion of, and toxicity for host epithelial cells (EC), and the strains were tested for their ability to inhibit Y. enterocolitica-induced NF-kappaB activation. Additionally, B. adolescentis was administered to mice orally infected with Y. enterocolitica and to mice with mucosae impaired by DSS treatment. None of the commensal bacteria tested was toxic for or invaded the EC. B. adolescentis, B. distasonis, B. vulgatus, and S. salivarius inhibited the Y. enterocolitica-induced NF-kappaB activation and interleukin-8 production in EC. In line with these findings, B. adolescentis-fed mice had significantly lower results for mean pathogen burden in the visceral organs, intestinal tumor necrosis factor alpha mRNA expression, and loss of body weight upon oral infection with Y. enterocolitica. In addition, the administration of B. adolescentis decelerated inflammation upon DSS treatment in mice. We suggest that our approach might help to identify new probiotics to be used for the treatment of inflammatory and infectious gastrointestinal disorders.
Collapse
Affiliation(s)
- Julia S Frick
- Institute of Medical Microbiology and Hygiene, University of Tübingen, Elfriede-Aulhorn-Strasse 6, D-72076 Tübingen, Germany.
| | | | | | | | | | | | | |
Collapse
|
50
|
Prescribing Probiotics. Integr Med (Encinitas) 2007. [DOI: 10.1016/b978-1-4160-2954-0.50108-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|