1
|
Machuca J, Wirkus J, Ead AS, Vahmani P, Matsukuma KE, Mackenzie GG, Oteiza PI. Dietary ω-3 Fatty Acids Mitigate Intestinal Barrier Integrity Alterations in Mice Fed a High-Fat Diet: Implications for Pancreatic Carcinogenesis. J Nutr 2025; 155:197-210. [PMID: 39510504 DOI: 10.1016/j.tjnut.2024.10.054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 10/24/2024] [Accepted: 10/31/2024] [Indexed: 11/15/2024] Open
Abstract
BACKGROUND Although body fatness is a recognized risk factor for pancreatic ductal adenocarcinoma (PDAC), the underlying mechanisms of how fat composition affects pancreatic carcinogenesis are poorly understood. High-fat diets (HFDs) can disrupt intestinal barrier function, potentially accelerating carcinogenesis. Omega-3 (ω-3) polyunsaturated fatty acids (FAs) have anti-inflammatory properties and help preserve intestinal integrity. OBJECTIVE The objective of this study was to evaluate how ω-3 FAs affect the colonic barrier in the context of HFD-induced changes, in a mouse model of PDAC [p48-Cre; LSL-KrasG12D (KC)]. METHODS Male and female KC mice were randomly assigned into 1 of the following 4 groups: 1) a control diet containing ∼11% total calories from fat with an ω-6:ω-3 FA ratio of 10:1 (C), 2) the control diet with high concentrations of ω-3 FA with an ω-6:ω-3 FA ratio of 1:1 (Cω3), 3) an HFD containing 60% total calories from fat with an ω-6:ω-3 FA ratio of approximately 10:1 (HF), and 4) an HFD with high concentrations of ω-3 FA with an ω-6:ω-3 FA ratio of 1:1 (HFω3). RESULTS Consumption of an HFD for 8 wk caused: 1) disruption of tight junction structure and function; 2) decreased goblet cell number; 3) higher colonic Toll-like receptor 4 (TLR4) and NADPH oxidase 1 expression; 4) activation of TLR4-triggered pathways, that is, NF-κB, c-Jun N-terminal kinase; 5) elevated plasma lipopolysaccharide concentrations; and 6) higher pancreatic TLR4 expression, and 7) accelerated acinar-to-ductal metaplasia. All of these events were mitigated in mice fed the HFω3. CONCLUSIONS Our findings support the concept that, in the context of obesity, ω-3 FAs have protective effects during early-stage pancreatic carcinogenesis through the regulation of intestinal permeability and endotoxemia.
Collapse
Affiliation(s)
- Jazmin Machuca
- Department of Nutrition, University of California, Davis, CA, United States
| | - Joanna Wirkus
- Department of Nutrition, University of California, Davis, CA, United States
| | - Aya S Ead
- Department of Nutrition, University of California, Davis, CA, United States
| | - Payam Vahmani
- Department of Animal Science, University of California, Davis, CA, United States
| | - Karen E Matsukuma
- Department of Pathology and Laboratory Medicine, University of California, Davis Medical Center, Sacramento, CA, United States; University of California Davis Comprehensive Cancer Center, University of California, Sacramento, CA, United States
| | - Gerardo G Mackenzie
- Department of Nutrition, University of California, Davis, CA, United States; University of California Davis Comprehensive Cancer Center, University of California, Sacramento, CA, United States.
| | - Patricia I Oteiza
- Department of Nutrition, University of California, Davis, CA, United States; Department of Environmental Toxicology, University of California, Davis, CA, United States.
| |
Collapse
|
2
|
Seethaler B, Lehnert K, Yahiaoui-Doktor M, Basrai M, Vetter W, Kiechle M, Bischoff SC. Omega-3 polyunsaturated fatty acids improve intestinal barrier integrity-albeit to a lesser degree than short-chain fatty acids: an exploratory analysis of the randomized controlled LIBRE trial. Eur J Nutr 2023; 62:2779-2791. [PMID: 37318580 PMCID: PMC10468946 DOI: 10.1007/s00394-023-03172-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 05/04/2023] [Indexed: 06/16/2023]
Abstract
PURPOSE Adherence to the Mediterranean diet is associated with beneficial health effects, including gastrointestinal disorders. Preclinical studies suggest that omega-3 polyunsaturated fatty acids (n-3 PUFAs), found in Mediterranean foods like nuts and fish, improve intestinal barrier integrity. Here, we assessed possible effects of n-3 PUFAs on barrier integrity in a randomized controlled trial. METHODS We studied 68 women from the open-label LIBRE trial (clinicaltrials.gov: NCT02087592) who followed either a Mediterranean diet (intervention group, IG) or a standard diet (control group, CG). Study visits comprised baseline, month 3, and month 12. Barrier integrity was assessed by plasma lipopolysaccharide binding protein (LBP) and fecal zonulin; fatty acids by gas chromatography with mass spectrometry. Median and interquartile ranges are shown. RESULTS Adherence to the Mediterranean diet increased the proportion of the n-3 docosahexaenoic acid (DHA) (IG + 1.5% [0.9;2.5, p < 0.001]/ + 0.3% [- 0.1;0.9, p < 0.050] after 3/12 months; CG + 0.9% [0.5;1.6, p < 0.001]/ ± 0%) and decreased plasma LBP (IG - 0.3 µg/ml [- 0.6;0.1, p < 0.010]/ - 0.3 µg/ml [- 1.1; - 0.1, p < 0.001]; CG - 0.2 µg/ml [- 0.8; - 0.1, p < 0.001]/ ± 0 µg/ml) and fecal zonulin levels (IG - 76 ng/mg [- 164; - 12, p < 0.010]/ - 74 ng/mg [- 197;15, p < 0.001]; CG - 59 ng/mg [- 186;15, p < 0.050]/ + 10 ng/mg [- 117;24, p > 0.050]). Plasma DHA and LBP (R2: 0.14-0.42; all p < 0.070), as well as plasma DHA and fecal zonulin (R2: 0.18-0.48; all p < 0.050) were found to be inversely associated in bi- and multivariate analyses. Further multivariate analyses showed that the effect of DHA on barrier integrity was less pronounced than the effect of fecal short-chain fatty acids on barrier integrity. CONCLUSIONS Our data show that n-3 PUFAs can improve intestinal barrier integrity. TRIAL REGISTRATION NUMBER The trial was registered prospectively at ClinicalTrials.gov (reference: NCT02087592).
Collapse
Affiliation(s)
- Benjamin Seethaler
- Institute of Nutritional Medicine, University of Hohenheim, Fruwirthstr. 12, 70593, Stuttgart, Germany
| | - Katja Lehnert
- Institute of Food Chemistry, University of Hohenheim, Stuttgart, Germany
| | - Maryam Yahiaoui-Doktor
- Institute for Medical Informatics, Statistics and Epidemiology (IMISE), University of Leipzig, Leipzig, Germany
| | - Maryam Basrai
- Institute of Nutritional Medicine, University of Hohenheim, Fruwirthstr. 12, 70593, Stuttgart, Germany
| | - Walter Vetter
- Institute of Food Chemistry, University of Hohenheim, Stuttgart, Germany
| | - Marion Kiechle
- Department of Gynecology, Center for Hereditary Breast and Ovarian Cancer, Klinikum Rechts der Isar, Technical University Munich and Comprehensive Cancer Center Munich, Munich, Germany
| | - Stephan C Bischoff
- Institute of Nutritional Medicine, University of Hohenheim, Fruwirthstr. 12, 70593, Stuttgart, Germany.
| |
Collapse
|
3
|
Sundaram TS, Giromini C, Rebucci R, Pistl J, Bhide M, Baldi A. Role of omega-3 polyunsaturated fatty acids, citrus pectin, and milk-derived exosomes on intestinal barrier integrity and immunity in animals. J Anim Sci Biotechnol 2022; 13:40. [PMID: 35399093 PMCID: PMC8996583 DOI: 10.1186/s40104-022-00690-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 02/07/2022] [Indexed: 11/10/2022] Open
Abstract
The gastrointestinal tract of livestock and poultry is prone to challenge by feedborne antigens, pathogens, and other stress factors in the farm environment. Excessive physiological inflammation and oxidative stress that arises firstly disrupts the intestinal epithelial barrier followed by other components of the gastrointestinal tract. In the present review, the interrelationship between intestinal barrier inflammation and oxidative stress that contributes to the pathogenesis of inflammatory bowel disease was described. Further, the role of naturally existing immunomodulatory nutrients such as the omega-3 polyunsaturated fatty acids, citrus pectin, and milk-derived exosomes in preventing intestinal barrier inflammation was discussed. Based on the existing evidence, the possible molecular mechanism of these bioactive nutrients in the intestinal barrier was outlined for application in animal diets.
Collapse
Affiliation(s)
- Tamil Selvi Sundaram
- Department of Veterinary Science for Health, Animal Production and Food Safety, University of Milan, Via Trentacoste 2, 20134, Milan, Italy.
- University of Veterinary Medicine and Pharmacy in Košice, Komenského 68/73, 04181, Košice, Slovakia.
| | - Carlotta Giromini
- Department of Veterinary Science for Health, Animal Production and Food Safety, University of Milan, Via Trentacoste 2, 20134, Milan, Italy
| | - Raffaella Rebucci
- Department of Veterinary Science for Health, Animal Production and Food Safety, University of Milan, Via Trentacoste 2, 20134, Milan, Italy
| | - Juraj Pistl
- University of Veterinary Medicine and Pharmacy in Košice, Komenského 68/73, 04181, Košice, Slovakia
| | - Mangesh Bhide
- University of Veterinary Medicine and Pharmacy in Košice, Komenského 68/73, 04181, Košice, Slovakia
| | - Antonella Baldi
- Department of Veterinary Science for Health, Animal Production and Food Safety, University of Milan, Via Trentacoste 2, 20134, Milan, Italy
| |
Collapse
|
4
|
Rubbino F, Garlatti V, Garzarelli V, Massimino L, Spanò S, Iadarola P, Cagnone M, Giera M, Heijink M, Guglielmetti S, Arena V, Malesci A, Laghi L, Danese S, Vetrano S. GPR120 prevents colorectal adenocarcinoma progression by sustaining the mucosal barrier integrity. Sci Rep 2022; 12:381. [PMID: 35013389 PMCID: PMC8748819 DOI: 10.1038/s41598-021-03787-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 11/29/2021] [Indexed: 12/26/2022] Open
Abstract
GPR120 (encoded by FFAR4 gene) is a receptor for long chain fatty acids, activated by ω-3 Polyunsaturated Fatty Acids (PUFAs), and expressed in many cell types. Its role in the context of colorectal cancer (CRC) is still puzzling with many controversial evidences. Here, we explored the involvement of epithelial GPR120 in the CRC development. Both in vitro and in vivo experiments were conducted to mimic the conditional deletion of the receptor from gut epithelium. Intestinal permeability and integrity of mucus layer were assessed by using Evans blue dye and immunofluorescence for MUC-2 protein, respectively. Microbiota composition, presence of lipid mediators and short chain fatty acids were analyzed in the stools of conditional GPR120 and wild type (WT) mice. Incidence and grade of tumors were evaluated in all groups of mice before and after colitis-associated cancer. Finally, GPR120 expression was analyzed in 9 human normal tissues, 9 adenomas, and 17 primary adenocarcinomas. Our work for the first time highlights the role of the receptor in the progression of colorectal cancer. We observed that the loss of epithelial GPR120 in the gut results into increased intestinal permeability, microbiota translocation and dysbiosis, which turns into hyperproliferation of epithelial cells, likely through the activation of β -catenin signaling. Therefore, the loss of GPR120 represents an early event of CRC, but avoid its progression as invasive cancer. these results demonstrate that the epithelial GPR120 receptor is essential to maintain the mucosal barrier integrity and to prevent CRC developing. Therefore, our data pave the way to GPR120 as an useful marker for the phenotypic characterization of CRC lesions and as new potential target for CRC prevention.
Collapse
Affiliation(s)
- Federica Rubbino
- Laboratory of Molecular Gastroenterology, IRCCS Humanitas Research Hospital, Rozzano (Mi), Italy
| | - Valentina Garlatti
- Department of Pharmaceutical Science, Università Degli Studi del Piemonte Orientale "Amedeo Avogadro", Novara, Italy
| | | | - Luca Massimino
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
- Laboratory of Gastrointestinal Immunopathology, IBD Center, IRCCS Humanitas Research Hospital, Rozzano (Mi), Italy
| | - Salvatore Spanò
- Laboratory of Gastrointestinal Immunopathology, IBD Center, IRCCS Humanitas Research Hospital, Rozzano (Mi), Italy
| | - Paolo Iadarola
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Pavia, Italy
| | | | - Martin Giera
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - Marieke Heijink
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - Simone Guglielmetti
- Division of Food Microbiology and Bioprocesses, Department of Food Environmental and Nutritional Sciences (DeFENS), Università Degli Studi Di Milano, Milan, Italy
| | - Vincenzo Arena
- Fondazione Policlinico Universitario Agostino Gemelli, IRCCS Università Cattolica del Sacro Cuore, Rome, Italy
| | - Alberto Malesci
- Laboratory of Molecular Gastroenterology, IRCCS Humanitas Research Hospital, Rozzano (Mi), Italy
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
| | - Luigi Laghi
- Laboratory of Molecular Gastroenterology, IRCCS Humanitas Research Hospital, Rozzano (Mi), Italy
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Silvio Danese
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
- Laboratory of Gastrointestinal Immunopathology, IBD Center, IRCCS Humanitas Research Hospital, Rozzano (Mi), Italy
| | - Stefania Vetrano
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy.
- Laboratory of Gastrointestinal Immunopathology, IBD Center, IRCCS Humanitas Research Hospital, Rozzano (Mi), Italy.
| |
Collapse
|
5
|
Durkin LA, Childs CE, Calder PC. Omega-3 Polyunsaturated Fatty Acids and the Intestinal Epithelium-A Review. Foods 2021; 10:foods10010199. [PMID: 33478161 PMCID: PMC7835870 DOI: 10.3390/foods10010199] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/07/2021] [Accepted: 01/11/2021] [Indexed: 12/13/2022] Open
Abstract
Epithelial cells (enterocytes) form part of the intestinal barrier, the largest human interface between the internal and external environments, and responsible for maintaining regulated intestinal absorption and immunological control. Under inflammatory conditions, the intestinal barrier and its component enterocytes become inflamed, leading to changes in barrier histology, permeability, and chemical mediator production. Omega-3 (ω-3) polyunsaturated fatty acids (PUFAs) can influence the inflammatory state of a range of cell types, including endothelial cells, monocytes, and macrophages. This review aims to assess the current literature detailing the effects of ω-3 PUFAs on epithelial cells. Marine-derived ω-3 PUFAs, eicosapentaenoic acid and docosahexaenoic acid, as well as plant-derived alpha-linolenic acid, are incorporated into intestinal epithelial cell membranes, prevent changes to epithelial permeability, inhibit the production of pro-inflammatory cytokines and eicosanoids and induce the production of anti-inflammatory eicosanoids and docosanoids. Altered inflammatory markers have been attributed to changes in activity and/or expression of proteins involved in inflammatory signalling including nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), peroxisome proliferator activated receptor (PPAR) α and γ, G-protein coupled receptor (GPR) 120 and cyclooxygenase (COX)-2. Effective doses for each ω-3 PUFA are difficult to determine due to inconsistencies in dose and time of exposure between different in vitro models and between in vivo and in vitro models. Further research is needed to determine the anti-inflammatory potential of less-studied ω-3 PUFAs, including docosapentaenoic acid and stearidonic acid.
Collapse
Affiliation(s)
- Luke A. Durkin
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK; (C.E.C.); (P.C.C.)
- Correspondence:
| | - Caroline E. Childs
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK; (C.E.C.); (P.C.C.)
- Institute of Life Sciences, University of Southampton, Southampton SO17 1BJ, UK
| | - Philip C. Calder
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK; (C.E.C.); (P.C.C.)
- Institute of Life Sciences, University of Southampton, Southampton SO17 1BJ, UK
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust and University of Southampton, Southampton SO16 6YD, UK
| |
Collapse
|
6
|
Du L, Yang YH, Xu J, Wang YM, Xue CH, Kurihara H, Takahashi K. Transport and uptake effects of marine complex lipid liposomes in small intestinal epithelial cell models. Food Funct 2016; 7:1904-14. [DOI: 10.1039/c6fo00066e] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Transport and uptake effects of marine complex lipid liposomes in Caco-2 and M cell monolayer models.
Collapse
Affiliation(s)
- Lei Du
- Faculty of Fisheries Sciences
- Hokkaido University
- Hakodate
- Japan
| | - Yu-Hong Yang
- Faculty of Fisheries Sciences
- Hokkaido University
- Hakodate
- Japan
| | - Jie Xu
- College of Food Science and Engineering
- Ocean University of China
- Qingdao
- People's Republic of China
| | - Yu-Ming Wang
- College of Food Science and Engineering
- Ocean University of China
- Qingdao
- People's Republic of China
| | - Chang-Hu Xue
- College of Food Science and Engineering
- Ocean University of China
- Qingdao
- People's Republic of China
| | | | | |
Collapse
|
7
|
Murakami Y, Tanabe S, Suzuki T. High-fat Diet-induced Intestinal Hyperpermeability is Associated with Increased Bile Acids in the Large Intestine of Mice. J Food Sci 2015; 81:H216-22. [DOI: 10.1111/1750-3841.13166] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Accepted: 10/25/2015] [Indexed: 02/06/2023]
Affiliation(s)
- Yuki Murakami
- Dept. of Biofunctional Science and Technology, Graduate School of Biosphere Science; Hiroshima Univ; Higashi-Hiroshima Japan
| | - Soichi Tanabe
- Dept. of Biofunctional Science and Technology, Graduate School of Biosphere Science; Hiroshima Univ; Higashi-Hiroshima Japan
| | - Takuya Suzuki
- Dept. of Biofunctional Science and Technology, Graduate School of Biosphere Science; Hiroshima Univ; Higashi-Hiroshima Japan
| |
Collapse
|
8
|
Delarue J, Lallès JP. Nonalcoholic fatty liver disease: Roles of the gut and the liver and metabolic modulation by some dietary factors and especially long-chain n-3 PUFA. Mol Nutr Food Res 2015; 60:147-59. [DOI: 10.1002/mnfr.201500346] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2015] [Revised: 06/25/2015] [Accepted: 07/24/2015] [Indexed: 12/21/2022]
Affiliation(s)
- Jacques Delarue
- Department of Nutritional Sciences; University Hospital and University of Brest; Brest France
- Breton Federation of Food and Human Nutrition (FED4216); University of Brest; Brest France
| | - Jean-Paul Lallès
- Breton Federation of Food and Human Nutrition (FED4216); University of Brest; Brest France
- Institut National de la Recherche Agronomique; UR1341; Alimentation et Adaptations Digestives; Nerveuses et Comportementales (ADNC); Saint-Gilles France
- Centre de Recherche en Nutrition Humaine-Ouest; Nantes Cedex 1 France
| |
Collapse
|
9
|
Pastorelli L, De Salvo C, Mercado JR, Vecchi M, Pizarro TT. Central role of the gut epithelial barrier in the pathogenesis of chronic intestinal inflammation: lessons learned from animal models and human genetics. Front Immunol 2013; 4:280. [PMID: 24062746 PMCID: PMC3775315 DOI: 10.3389/fimmu.2013.00280] [Citation(s) in RCA: 336] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Accepted: 08/29/2013] [Indexed: 12/12/2022] Open
Abstract
The gut mucosa is constantly challenged by a bombardment of foreign antigens and environmental microorganisms. As such, the precise regulation of the intestinal barrier allows the maintenance of mucosal immune homeostasis and prevents the onset of uncontrolled inflammation. In support of this concept, emerging evidence points to defects in components of the epithelial barrier as etiologic factors in the pathogenesis of inflammatory bowel diseases (IBDs). In fact, the integrity of the intestinal barrier relies on different elements, including robust innate immune responses, epithelial paracellular permeability, epithelial cell integrity, as well as the production of mucus. The purpose of this review is to systematically evaluate how alterations in the aforementioned epithelial components can lead to the disruption of intestinal immune homeostasis, and subsequent inflammation. In this regard, the wealth of data from mouse models of intestinal inflammation and human genetics are pivotal in understanding pathogenic pathways, for example, that are initiated from the specific loss of function of a single protein leading to the onset of intestinal disease. On the other hand, several recently proposed therapeutic approaches to treat human IBD are targeted at enhancing different elements of gut barrier function, further supporting a primary role of the epithelium in the pathogenesis of chronic intestinal inflammation and emphasizing the importance of maintaining a healthy and effective intestinal barrier.
Collapse
Affiliation(s)
- Luca Pastorelli
- Department of Pathology, Case Western Reserve University School of Medicine , Cleveland, OH , USA ; Department of Biomedical Sciences for Health, University of Milan , Milan , Italy ; Gastroenterology and Digestive Endoscopy Unit, IRCCS Policlinico San Donato , San Donato Milanese , Italy
| | | | | | | | | |
Collapse
|
10
|
Beguin P, Errachid A, Larondelle Y, Schneider YJ. Effect of polyunsaturated fatty acids on tight junctions in a model of the human intestinal epithelium under normal and inflammatory conditions. Food Funct 2013; 4:923-31. [PMID: 23660640 DOI: 10.1039/c3fo60036j] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Owing to their immune-modulatory action on the intestinal mucosa immune cells, the n-3 and n-6 polyunsaturated fatty acids (PUFA) have been suggested to modulate the risk and development of inflammatory bowel diseases. Failure in the intestinal barrier is an important hallmark of inflammatory bowel diseases. This study aimed at evaluating the impact of dietary PUFA on tight junction protein localisation and on the modulation of epithelial permeability under physiological conditions or under an inflammatory stress. For this purpose, we first confirmed the accumulation of PUFA in phospholipid fractions of Caco-2 cells upon 7 days of incubation with specific PUFA. Thereafter, Caco-2 cells were cultured in inserts, which provide a model of the human intestinal barrier. Accumulation of dietary n-3 PUFA in phospholipids did not affect the presence of occludin in tight junction complexes, while that of dietary n-6 PUFA decreased it. Whatever the PUFA, at 30 μM, no distortion of the Caco-2 barrier function was observed. Otherwise, 150 μM of docosahexaenoic acid (DHA) affected ZO-1 intensity under normal conditions, but not occludin or the barrier function parameters. Finally, to simulate an inflammatory state, cells were exposed for 24 h to interleukin-1β, tumor necrosis factor-α, interferon-γ at their basolateral side and to lypopolysaccharides at both sides. DHA limited the effect of inflammatory stimulus on occludin, ZO-1 and barrier function. In conclusion, this study has evidenced the specific effect of individual PUFA to modulate occludin and ZO-1 localization, according to the inflammatory status of this in vitro model of the intestinal barrier.
Collapse
Affiliation(s)
- Pauline Beguin
- Institut des Sciences de la Vie & UCLouvain, Croix du Sud, 1348 Louvain-la-Neuve, Belgium
| | | | | | | |
Collapse
|
11
|
Dombrowsky H, Lautenschläger I, Zehethofer N, Lindner B, Schultz H, Uhlig S, Frerichs I, Weiler N. Ingestion of (n-3) fatty acids augments basal and platelet activating factor-induced permeability to dextran in the rat mesenteric vascular bed. J Nutr 2011; 141:1635-42. [PMID: 21775525 DOI: 10.3945/jn.111.143016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Loss of intestinal barrier function and subsequent edema formation remains a serious clinical problem leading to hypoperfusion, anastomotic leakage, bacterial translocation, and inflammatory mediator liberation. The inflammatory mediator platelet activating factor (PAF) promotes eicosanoid-mediated edema formation and vasoconstriction. Fish oil-derived (n-3) fatty acids (FA) favor the production of less injurious eicosanoids but may also increase intestinal paracellular permeability. We hypothesized that dietary (n-3) FA would ameliorate PAF-induced vasoconstriction and enhance vascular leakage of dextran tracers. Rats were fed either an (n-3) FA-rich diet (EPA-rich diet; 4.0 g/kg EPA, 2.8 g/kg DHA) or a control diet (CON diet; 0.0 g/kg EPA and DHA) for 3 wk. Subsequently, isolated and perfused small intestines were stimulated with PAF and arterial pressure and the translocation of fluid and macromolecules from the vasculature to lumen and lymphatics were analyzed. In intestines of rats fed the EPA-rich diet, intestinal phospholipids contained up to 470% more EPA and DHA at the expense of arachidonic acid (AA). The PAF-induced increase in arterial pressure was not affected by the EPA-rich diet. However, PAF-induced fluid loss from the vascular perfusate was higher in intestines of rats fed the EPA-rich diet. This was accompanied by a greater basal loss of dextran from the vascular perfusate and a higher PAF-induced transfer of dextran from the vasculature to the lumen (P = 0.058) and lymphatics. Our data suggest that augmented intestinal barrier permeability to fluid and macromolecules is a possible side effect of (n-3) FA-rich diet supplementation.
Collapse
Affiliation(s)
- Heike Dombrowsky
- Department of Anesthesiology and Intensive Care Medicine, University Medical Center Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | | | | | | | | | | | | | | |
Collapse
|
12
|
De Quelen F, Chevalier J, Rolli-Derkinderen M, Mourot J, Neunlist M, Boudry G. n-3 polyunsaturated fatty acids in the maternal diet modify the postnatal development of nervous regulation of intestinal permeability in piglets. J Physiol 2011; 589:4341-52. [PMID: 21746785 DOI: 10.1113/jphysiol.2011.214056] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The intestinal epithelial barrier (IEB) plays a key role in the maintenance of gut homeostasis and the development of the immune system in newborns. The enteric nervous system (ENS), a key regulator of gastrointestinal functions, has been shown to be modulated by nutritional factors. However, it remains currently unknown whether maternal diet, in particular n-3 polyunsaturated fatty acids (n-3PUFAs), can impact upon the IEB in newborn piglets and whether the ENS is involved in this effect. Sows received either a control diet (lard based) or an n-3PUFA diet (linseed oil based) during gestation and lactation. Intestinal paracellular permeability was assessed in Ussing chambers on piglets at birth, 3, 7, 14, 21 and 28 postnatal days (PND). Basal jejunal permeability increased significantly and similarly in both groups until PND14 and decreased thereafter. However, at PND28, permeability was higher in n-3PUFA animals as compared to controls. In addition, a vasoactive intestinal peptide (VIP) receptor antagonist increased paracellular permeability in controls but not in n-3PUFA piglets. Conversely, atropine and hexamethonium decreased paracellular permeability in the n-3PUFA group but not in the control group. Moreover, the n-3PUFA diet increased the proportion of choline acetyltransferase (ChAT)-immunoreactive (IR) neurons and decreased the proportion of VIP-IR neurons in the submucosal plexus of piglet jejunum compared to controls. In addition, in primary culture of rat ENS, we showed that 20:5n-3 but not 18:3n-3 increased the proportion of ChAT-IR neurons and decreased the proportion of VIP-IR neurons. In conclusion, supplementation of the maternal diet with n-3PUFAs modified intestinal permeability probably via diet-induced neuroplastic changes in the ENS of newborn piglets.
Collapse
Affiliation(s)
- F De Quelen
- INRA, UMR 1079, SENAH, F-35000 Rennes, France; Agrocampus Rennes, UMR 1079, SENAH, F-35000 Rennes, France; Valorex, F-35210 Combourtillé, France
| | | | | | | | | | | |
Collapse
|
13
|
Otranto M, Do Nascimento AP, Monte-Alto-Costa A. Effects of supplementation with different edible oils on cutaneous wound healing. Wound Repair Regen 2010; 18:629-36. [DOI: 10.1111/j.1524-475x.2010.00617.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
14
|
Amasheh M, Andres S, Amasheh S, Fromm M, Schulzke JD. Barrier effects of nutritional factors. Ann N Y Acad Sci 2009; 1165:267-73. [PMID: 19538315 DOI: 10.1111/j.1749-6632.2009.04063.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
High dietary intake of fruits and vegetables is associated with a reduced disease risk. Therefore, clinical interest is growing in therapies based on dietary supplements and effects of food components. Immune-modulatory and barrier-protective effects have been described for the amino acid glutamine and the trace element zinc. In Caco-2-cells, zinc is necessary to maintain the expression of proteins like ZO-1 and occludin, and experimental evidence exists that glutamine has enterocyte-protective effects and modulates intestinal barrier function in stressed animals and humans. Polyunsaturated fatty acids (PUFA) improve paracellular permeability after IL-4 incubation. Enhancement of barrier properties by long-chain PUFA is discussed controversially, but a beneficial role preventing the redistribution of occludin and ZO-1 and reduction of epithelial resistance by IFN-gamma and TNF-alpha exists. In addition, a group of secondary plant compounds, the polyphenols, are supposed to be important in this respect. The flavonoid quercetin and its metabolite DHBA increased epithelial resistance of Caco-2-cells to 157 +/- 4% of control values, and DHBA up to 119 +/- 4% of control values, respectively. This is due to a 2.3 +/- 0.1-fold expression rate of the tight junction protein claudin-4.
Collapse
Affiliation(s)
- Maren Amasheh
- Department of Gastroenterology,Charité, Campus Benjamin Franklin, Berlin, Germany.
| | | | | | | | | |
Collapse
|
15
|
Boudry G, Douard V, Mourot J, Lallès JP, Le Huërou-Luron I. Linseed oil in the maternal diet during gestation and lactation modifies fatty acid composition, mucosal architecture, and mast cell regulation of the ileal barrier in piglets. J Nutr 2009; 139:1110-7. [PMID: 19403717 DOI: 10.3945/jn.108.102640] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
In this study, we investigated the effect of supplementation of the maternal diet with linseed oil [rich in 18:3(n-3)] on fatty acid composition, mucosal architecture, and mast cell regulation of barrier function in piglet ileum. Sixteen sows were fed a lard (LAR)- or a linseed oil (LSO)-based diet during gestation and lactation. Fatty acid composition of maternal RBC at parturition and of milk at d 14 of lactation were determined. Fatty acid composition, villous-crypt structure, and permeability to horseradish peroxidase in Ussing chambers after mast cell degranulation were determined in the ileum of piglets at d 0, 7, and 28. At d 0, 18:3(n-3) and 20:5(n-3) levels were higher, but 22:6(n-3) and 20:4(n-6) levels were lower in both maternal RBC and piglet ileum of the LSO group. Levels of 18:3(n-3) were also higher in the milk of LSO sows. Levels of 18:3(n-3) were higher in LSO piglet ileum at d 7 and 28. Moreover, at d 28, 20:4(n-6) ileal levels tended (P = 0.09) to be lower in LSO than in LAR piglets, in parallel with a lower mRNA expression of Delta5 desaturase. LSO piglets had shorter villi at d 0 and shorter crypts at d 7 compared with LAR piglets. The effect of mast cell degranulation on ileal permeability decreased with age in both groups but reached a minimum sooner in the LSO group (d 7) than in the LAR group (d 28). In conclusion, linseed oil supplementation of the maternal diet profoundly modifies the fatty acid composition, structure, and physiology of the offspring ileum.
Collapse
Affiliation(s)
- Gaëlle Boudry
- INRA, UMR1079, Systèmes d'Elevage, Nutrition Animale et Humaine, F-35000 Rennes, France.
| | | | | | | | | |
Collapse
|
16
|
Kanwar JR, Kanwar RK. Gut health immunomodulatory and anti-inflammatory functions of gut enzyme digested high protein micro-nutrient dietary supplement-Enprocal. BMC Immunol 2009; 10:7. [PMID: 19183498 PMCID: PMC2667481 DOI: 10.1186/1471-2172-10-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2008] [Accepted: 01/31/2009] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Enprocal is a high-protein micro-nutrient rich formulated supplementary food designed to meet the nutritional needs of the frail elderly and be delivered to them in every day foods. We studied the potential of Enprocal to improve gut and immune health using simple and robust bioassays for gut cell proliferation, intestinal integrity/permeability, immunomodulatory, anti-inflammatory and anti-oxidative activities. Effects of Enprocal were compared with whey protein concentrate 80 (WPC), heat treated skim milk powder, and other commercially available milk derived products. RESULTS Enprocal (undigested) and digested (Enprocal D) selectively enhanced cell proliferation in normal human intestinal epithelial cells (FHs74-Int) and showed no cytotoxicity. In a dose dependent manner Enprocal induced cell death in Caco-2 cells (human colon adencarcinoma epithelial cells). Digested Enprocal (Enprocal D: gut enzyme cocktail treated) maintained the intestinal integrity in transepithelial resistance (TEER) assay, increased the permeability of horseradish peroxidase (HRP) and did not induce oxidative stress to the gut epithelial cells. Enprocal D upregulated the surface expression of co-stimulatory (CD40, CD86, CD80), MHC I and MHC II molecules on PMA differentiated THP-1 macrophages in coculture transwell model, and inhibited the monocyte/lymphocyte (THP-1/Jurkat E6-1 cells)-epithelial cell adhesion. In cytokine secretion analyses, Enprocal D down-regulated the secretion of proinflammatory cytokines (IL-1beta and TNF-alpha) and up-regulated IFN-gamma, IL-2 and IL-10. CONCLUSION Our results indicate that Enprocal creates neither oxidative injury nor cytotoxicity, stimulates normal gut cell proliferation, up regulates immune cell activation markers and may aid in the production of antibodies. Furthermore, through downregulation of proinflammatory cytokines, Enprocal appears to be beneficial in reducing the effects of chronic gut inflammatory diseases such as inflammatory bowel disease (IBD). Stimulation of normal human fetal intestinal cell proliferation without cell cytotoxicity indicates it may also be given as infant food particularly for premature babies.
Collapse
Affiliation(s)
- Jagat R Kanwar
- BioDeakin, Institute for Technology & Research Innovation, Deakin University, Geelong Technology Precinct, Geelong, Victoria, Australia.
| | | |
Collapse
|
17
|
Abstract
Ingestion of selected nutrients modulates dermal properties. In the present study, two groups of women ingested flaxseed or borage oil for 12 weeks. The control group received a placebo containing medium-chain fatty acids. Dose was 2·2 g total fatty acids/d with α-linolenic acid and linoleic acid as major constituents in the flaxseed oil group; in the borage oil group linoleic and γ-linolenic acid were predominant. In the flaxseed oil group, the contribution of α-linolenic acid to total fatty acids in plasma was significantly increased on weeks 6 and 12, whereas there was an increase in γ-linolenic acid in the borage oil group (P < 0·05). Skin irritation was performed by nicotinate treatment, and changes in skin reddening and blood flow were monitored. Compared to week 0, skin reddening was diminished in both groups; blood flow was also lowered. Skin hydration was significantly increased after 12 weeks of treatment compared to week 0, with flaxseed or borage oil (P < 0·05). Transepidermal water loss was decreased in both oil groups by about 10 % after 6 weeks of supplementation. A further decrease was determined after 12 weeks in the flaxseed oil group. Surface evaluation of living skin revealed that roughness and scaling of the skin were significantly decreased with flaxseed and borage oil comparing week 0 and week 12 (P < 0·05). Except for hydration, none of the parameters was affected in the placebo group. The present data provide evidence that skin properties can be modulated by an intervention with dietary lipids.
Collapse
|
18
|
Willemsen LEM, Koetsier MA, Balvers M, Beermann C, Stahl B, van Tol EAF. Polyunsaturated fatty acids support epithelial barrier integrity and reduce IL-4 mediated permeability in vitro. Eur J Nutr 2008; 47:183-91. [PMID: 18497998 DOI: 10.1007/s00394-008-0712-0] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2007] [Accepted: 05/08/2008] [Indexed: 11/28/2022]
Abstract
BACKGROUND The intestinal mucosa functions as a barrier against harmful dietary and microbial antigens. An intact gut barrier forms a prerequisite for protection against infection and allergy. Both allergic and inflammatory mediators (e.g. IL-4, IFN-gamma) are known to compromise the epithelial barrier integrity by enhancing permeability. Breast milk provides protection against infection and allergy and contains polyunsaturated fatty acids (PUFA). AIM OF THE STUDY Although PUFA are commonly used in infant formulas their effect on intestinal barrier is still poorly understood. Therefore the effects of distinct PUFA (n-6: LA, GLA, DGLA, AA; n-3: ALA, EPA, DHA) and a fat blend with PUFA composition similar to that of the human breast milk fat fraction, on barrier integrity were investigated. METHODS Human intestinal epithelial cells (T84) were pre-incubated with individual PUFA or a lipase treated fat blend, with or without subsequent IL-4 exposure. Barrier integrity was evaluated by measuring transepithelial resistance and permeability. Membrane phospholipid composition was determined by capillary gas chromatography. RESULTS DGLA, AA, EPA, DHA and to a lesser extend GLA enhanced basal TER and strongly reduced IL-4 mediated permeability, while LA and ALA were ineffective. Furthermore, the lipase treated fat blend effectively supported barrier function. PUFA were incorporated in the membrane phospholipid fraction of T84 cells. CONCLUSIONS Long chain PUFA DGLA, AA, EPA and DHA were particularly effective in supporting barrier integrity by improving resistance and reducing IL-4 mediated permeability. Fat blends that release specific PUFA upon digestion in the gastrointestinal tract may support natural resistance.
Collapse
|
19
|
Bock J, Liebisch G, Schweimer J, Schmitz G, Rogler G. Exogenous sphingomyelinase causes impaired intestinal epithelial barrier function. World J Gastroenterol 2007; 13:5217-25. [PMID: 17876892 PMCID: PMC4171303 DOI: 10.3748/wjg.v13.i39.5217] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To test the hypothesis that hydrolysis of sphingomyelin to ceramide changes the composition of tight junctions (TJs) with increasing permeability of the intestinal epithelium.
METHODS: Monolayers of Caco-2 cells were used as an in vitro model for the intestinal barrier. Permeability was determined by quantification of transepithelial flux and transepithelial resistance. Sphingolipid-rich membrane microdomains were isolated by a discontinuous sucrose gradient and characterized by Western-blot. Lipid content of microdomains was analysed by tandem mass spectrometry. Ceramide was subcellularly localized by immunofluorescent staining.
RESULTS: Exogenous sphingomyelinase increased transepithelial permeability and decreased transepithelial resistance at concentrations as low as 0.01 U/mL. Lipid analysis showed rapid accumulation of ceramide in the membrane fractions containing occludin and claudin-4, representing TJs. In these fractions we observed a concomitant decrease of sphingomyelin and cholesterol with increasing concentrations of ceramide. Immunofluorescent staining confirmed clustering of ceramide at the sites of cell-cell contacts. Neutralization of surface ceramide prevented the permeability-increase induced by platelet activating factor.
CONCLUSION: Our findings indicate that changes in lipid composition of TJs impair epithelial barrier functions. Generation of ceramide by sphingomyelinases might contribute to disturbed barrier function seen in diseases such as inflammatory, infectious, toxic or radiogenic bowel disease.
Collapse
Affiliation(s)
- Jurgen Bock
- Department of Internal Medicine I, University of Regensburg, Regensburg, Germany.
| | | | | | | | | |
Collapse
|
20
|
Ahmed OAA, Pourzand C, Blagbrough IS. Varying the unsaturation in N4,N9-dioctadecanoyl spermines: nonviral lipopolyamine vectors for more efficient plasmid DNA formulation. Pharm Res 2006; 23:31-40. [PMID: 16382281 DOI: 10.1007/s11095-005-8717-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2005] [Accepted: 09/23/2005] [Indexed: 11/25/2022]
Abstract
PURPOSE The aim of the study is to analyze the effect of varying the degree of unsaturation in synthesized N4,N9-dioctadecanoyl spermines on DNA condensation and then to compare their transfection efficiency in cell culture. METHODS The N4,N9-di-C18 lipopolyamines-saturated (stearoyl), C9-cis- (oleoyl), and C9,12-di-cis- (linoleoyl)-were synthesized from the naturally occurring polyamine spermine. The ability of these novel compounds to condense DNA and form nanoparticles was studied using ethidium bromide fluorescence quenching and nanoparticle characterization techniques. Transfection efficiency was studied in several primary skin cells (FEK4, FCP4, FCP5, FCP7, and FCP8) and in an immortalized cancer cell line (HtTA) and was compared with the commercially available nonliposomal transfection formulation Transfectam (dioctadecylamidoglycyl spermine), which also contains two saturated C18 lipid chains. RESULTS N4,N9-Dilinoleoyl spermine (C18, di-cis-9,12) is efficient at circular plasmid DNA (pEGFP) condensation and gives the most effective transfection in a series of primary skin cells and cancer cell lines at low charge ratios of 5.5 (+/-ammonium/phosphate). CONCLUSIONS The dienoic fatty acyl spermine conjugate N4,N9-dilinoleoyl spermine efficiently condenses DNA and achieves the highest transfection levels among the studied lipopolyamines in cultured cells.
Collapse
Affiliation(s)
- Osama A A Ahmed
- Department of Pharmacy and Pharmacology, University of Bath, Bath, BA2 7AY, UK
| | | | | |
Collapse
|
21
|
Pyo N, Tanaka S, McNamee CE, Kanda Y, Fukumori Y, Ichikawa H, Higashitani K. Effect of the cell type and cell density on the binding of living cells to a silica particle: An atomic force microscope study. Colloids Surf B Biointerfaces 2006; 53:278-87. [PMID: 17098400 DOI: 10.1016/j.colsurfb.2006.09.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2006] [Revised: 09/01/2006] [Accepted: 09/26/2006] [Indexed: 10/24/2022]
Abstract
We used the atomic force microscope to study how the cell type and the density of cells adsorbed at a substrate can affect the adhesion between a living cell and a model drug delivery system (DDS) carrier nano-particle. We used three different anchorage-dependent cells, i.e., a living mouse fibroblast cell (L929), a living human colon cancer cell (Caco2), and a living mouse malignant melanoma cell (B16F10). For the DDS model nano-particle, we used a silica colloid. In order to correlate the adhesion force with the cell types, the growth curve of the cells were determined with a haemocytometer. The shapes of the cells at the different stages were monitored by light microscopy, and the morphology of their surfaces obtained by tapping mode atomic force microscopy. Force measurements showed that the Caco2 cell bound little to a silica particle, regardless of the cell density. The L929 cell bound well to a silica particle for low and high cell densities. The B16F10 cell bound little to a silica particle for low cell densities, but bound well for high cell densities. AFM images showed that the L929 cell did not contain folds. The B16F10 cells, however, displayed folds in the cell surface for low cell densities, but no folds in the cell for high cell densities. As literature also reported that the Caco2 cell contains folds, these results suggested that cells with folds showed less adhesion to a silica particle than cells without folds. The presence of folds in the cell presumably decreased the number of sites on the cell that could hydrogen bond or undergo van der Waals binding with the silanol groups of the silica particle.
Collapse
Affiliation(s)
- Nayoung Pyo
- Department of Chemical Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | | | | | | | | | | | | |
Collapse
|
22
|
Whiting CV, Bland PW, Tarlton JF. Dietary n-3 polyunsaturated fatty acids reduce disease and colonic proinflammatory cytokines in a mouse model of colitis. Inflamm Bowel Dis 2005; 11:340-9. [PMID: 15803023 DOI: 10.1097/01.mib.0000164016.98913.7c] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
BACKGROUND n-3 polyunsaturated fatty acids (PUFAs) reduce the severity of chronic inflammatory bowel disease, probably by means of reduction of immune cell activation or enhancement of the epithelial barrier. Using the severe combined immunodeficient (SCID) mouse model of colitis, this study examined the effect of dietary n-3 PUFAs on development of colitis and on immunologic, epithelial, and matrix parameters in the intestines of control and colitic animals. METHODS SCID mice were fed n-3-enriched or control diet for 3 weeks before colitis induction by transplantation of CD45RB T cells and maintained on the same diet for 4 to 8 weeks. Phenotype of infiltrating cells, epithelial ZO-1 protein, and mucosal type I collagen were assessed by immunohistology and tissue cytokines by ELISA. RESULTS Transplanted n-3-fed animals had significantly reduced pathology scores, colonic tumor necrosis factor-alpha, interleukin-12, and interleukin-1beta compared with animals fed standard diet. Proinflammatory cytokines were reduced despite a similar level of immune cell infiltration by T cells, CD11c cells, and CD11b cells. Neutrophil infiltration was significantly reduced in n-3-fed control and colitic mice, and other myeloid populations were reduced in mice on the n-3 diet. Epithelial ZO-1 expression was increased, and myofibroblast activation significantly decreased in transplanted n-3-fed animals compared with standard diet mice. Submucosal collagen synthesis was enhanced in n-3-fed mice. CONCLUSIONS Dietary n-3 PUFAs reduced clinical colitis and colonic immunopathology in this model of colonic inflammation by decreasing proinflammatory cytokine synthesis, reducing myeloid cell recruitment and activation, and enhancing epithelial barrier function and mucosal wound healing mechanisms.
Collapse
Affiliation(s)
- Christine V Whiting
- Veterinary Pathology Infection and Immunity, School Clinical Veterinary Sciences, University of Bristol, Bristol, United Kingdom.
| | | | | |
Collapse
|
23
|
Korotkova M, Telemo E, Hanson LA, Strandvik B. Modulation of neonatal immunological tolerance to ovalbumin by maternal essential fatty acid intake. Pediatr Allergy Immunol 2004; 15:112-22. [PMID: 15059186 DOI: 10.1046/j.1399-3038.2003.00139.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The present study examines whether dietary essential fatty acid (EFA) intake influences the induction of oral tolerance to ovalbumin (OA) in neonatal and adult rats. During late gestation and throughout lactation Sprague-Dawley rats were fed a diet supplemented (S) with EFA (7% soybean oil), or a diet deficient (D) in EFA (7% hydrogenated lard). The rat offspring were subsequently exposed to OA either via the milk at 10-16 days (neonatal rats), or as adults via the drinking water at 7-9 wk of age. Oral administration of OA to the adult rats lead to suppression of the delayed-type hypersensitivity (DTH) reactivity and IgG antibody response against OA, which was not influenced by their diets. In the offspring of the dams fed the D diet antigen exposure via the milk resulted in suppression of the serum antibody levels and DTH reaction against OA indicating induction of oral tolerance. Higher transforming growth factor beta (TGF-beta) mRNA levels in the draining lymph nodes suggested this to be mediated by regulatory T cells. In contrast, OA exposure of the dams fed the S diet did not result in a suppressed OA response of their offspring. Thus, the quality of FA ingested by the mother may have effects on the development of immunological tolerance to dietary antigens in the offspring. Our results might have importance for the understanding of the increase in allergy related to the Western type of diet.
Collapse
Affiliation(s)
- Marina Korotkova
- Department of Pediatrics, Göteborg University, Göteborg, Sweden.
| | | | | | | |
Collapse
|
24
|
Yamagata K, Tagami M, Takenaga F, Yamori Y, Nara Y, Itoh S. Polyunsaturated fatty acids induce tight junctions to form in brain capillary endothelial cells. Neuroscience 2003; 116:649-56. [PMID: 12573708 DOI: 10.1016/s0306-4522(02)00715-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Tight junctions create a rate-limiting barrier to the diffusion of solutes between vertebrate epithelial cells and endothelial cells. They are also controlled within individual cells by a variety of physiologically relevant signals. We investigated the effects of polyunsaturated fatty acids on the formation of tight junctions in brain capillary endothelial cells, monitoring the transepithelial electrical resistance, and analyzed the expression of occludin messenger RNA. Brain-capillary endothelial cells were grown to confluence on filters and exposed to eicosapentaenoic acids, gamma linolenic acid and linoleic acid. Transepithelial electrical resistance was determined with voltage-measuring electrodes. The messenger RNA expression of occludin was quantitated by real-time quantitative reverse transcriptase-polymerase chain reaction. The basal resistance across monolayers of porcine brain capillary endothelial cells was 83+/-8.1 Omega cm(2). Cells cultured in eicosapentaenoic acids and gamma linolenic acid, but not linolenic acid, displayed a 2.7-fold increase in transepithelial electrical resistance at 10 microM in brain capillary endothelial cells. The expression level of occludin messenger RNA increased markedly immediately after the exposure to eicosapentaenoic acids or gamma linolenic acid. Following an 8 h exposure to exogenous eicosapentaenoic acids or gamma linolenic acid, occludin messenger RNA levels were significantly increased. In addition, the rise in transepithelial electrical resistance induced by eicosapentaenoic acids and gamma linolenic acid was markedly inhibited by the tyrosine kinase inhibitors genistein and PP2 and protein kinase C inhibitor, calphostin C. In contrast, the rise in transepithelial electrical resistance induced by eicosapentaenoic acids and gamma linolenic acid was not inhibited by the PI 3-kinase inhibitor, LY294002. We conclude that eicosapentaenoic acids and gamma linolenic acid increased the transepithelial electrical resistance and the expression of occludin messenger RNA in brain capillary endothelial cells. This gamma linolenic acid and eicosapentaenoic acid induced assembly of tight junction is likely to be regulated by protein kinase C and tyrosine kinase activity.
Collapse
Affiliation(s)
- K Yamagata
- Division of Life Science, Graduate School of Integrated Science and Art, University of East Asia, Shimonoseki, Yamaguchi, Japan.
| | | | | | | | | | | |
Collapse
|
25
|
Del Castillo IC, Alvarez JG, Freedman SD, Ollero M, Claros L, Song JC, Yoo J, Matthews JB. Docosahexaenoic acid selectively augments muscarinic stimulation of epithelial Cl- secretion. J Surg Res 2003; 110:338-43. [PMID: 12788663 DOI: 10.1016/s0022-4804(02)00092-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND We investigated the effect of various fatty acids on electrogenic chloride secretion in T84 cells, a model for intestinal epithelium. MATERIALS AND METHODS T84 intestinal epithelial cells grown on permeable supports were studied by conventional current-voltage clamping. Membrane lipids from T84 cells were extracted, transmethylated, and analyzed by gas chromatography. Lipid extracts were fractionated into nonpolar, free fatty acids, and phospholipids by amynopropil column chromatography. RESULTS Docosahexaenoic acid (DHA) but not eicosapentanoic acid or other fatty acids selectively enhanced the secretory response to the muscarinic agonist carbachol but not the response to other Ca2+ agonists (histamine, thapsigargin, or ionomycin) or the response to the cAMP agonist forskolin. The ability of DHA to augment Cl- secretion appeared to correlate closer with free DHA levels than with membrane-bound DHA. Other effects of DHA on T84 cells included a reduction in transepithelial resistance (a measure of barrier function), actions that were dissociated from the effect on Cl- secretion. CONCLUSION The results suggest that DHA, which has been shown to reverse organ pathology in experimental cystic fibrosis, may selectively affect agonist-regulated transport events and other fundamental properties of epithelial cells.
Collapse
Affiliation(s)
- Isabel Calvo Del Castillo
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Abstract
Intestinal barrier function regulates transport and host defense mechanisms at the mucosal interface with the outside world. Transcellular and paracellular fluxes are tightly controlled by membrane pumps, ion channels and tight junctions, adapting permeability to physiological needs. Food and microbial antigens are under constant surveillance of the mucosal immune system. Tolerance against commensals and immunity against pathogens require intact antigen uptake, recognition, processing and response mechanisms. Disturbance at any level, but particularly bacterial translocation due to increased permeability and breakdown of oral tolerance due to compromised epithelial and T cell interaction, can result in inflammation and tissue damage. New therapeutic approaches including probiotics and peptides to restore disrupted barrier function are evolving.
Collapse
Affiliation(s)
- Daniel C Baumgart
- Charité Medical Center - Virchow Hospital, Medical School of the Humboldt-University of Berlin, Department of Medicine, Division of Hepatology and Gastroenterology, Germany.
| | | |
Collapse
|
27
|
Vine DF, Charman SA, Gibson PR, Sinclair AJ, Porter CJH. Effect of dietary fatty acids on the intestinal permeability of marker drug compounds in excised rat jejunum. J Pharm Pharmacol 2002; 54:809-19. [PMID: 12078997 DOI: 10.1211/0022357021779159] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The aim of this study was to explore the effects of diets containing saturated fatty acids (SFA), monounsaturated fatty acids (MUFA), and omega-3 and omega-6 polyunsaturated fatty acids (omega-3 and omega-6 PUFA, respectively) on the passive and active transport properties of rat jejunum using marker compounds. Rats were fed diets supplemented with 18.4% (w/w) lipid (4 groups) or standard rat chow (1 group) for a period of 30 days. At the end of the dietary period, mucosal scrapings were taken for the determination of membrane phospholipids, and the apparent jejunal permeability of radiolabelled marker compounds was determined using modified Ussing chambers. Changes in the phospholipid content of the brush border membrane reflected the different lipid content of the diets. The passive paracellular permeability of mannitol was not significantly affected by the fatty acid composition of the diet, although there was a trend toward decreased mannitol permeability in the rats fed both the omega-3 and omega-6 PUFA diets. In comparison, the transcellular diffusion of diazepam was reduced by 20% (P < 0.05) in rats fed diets supplemented with omega-3 and omega-6 PUFA. In the lipid-fed rats, the serosal to mucosal flux of digoxin, an intestinal P-glycoprotein substrate, was reduced by 20% (P < 0.05) relative to the chow-fed group, however there were no significant differences between the different lipid groups. The active absorption of D-glucose via the Na+-dependent transport pathway was highest in the SFA, MUFA and PUFA omega-3 dietary groups, intermediate in the low-fat chow group and lowest in the PUFA omega-6 group, and was positively correlated with short-circuit current. These studies indicate that dietary fatty acid changes can result in moderate changes to the active and passive transport properties of excised rat jejunum.
Collapse
Affiliation(s)
- D F Vine
- Department of Pharmaceutics, Victorian College of Pharmacy, Monash University, Parkville, Australia
| | | | | | | | | |
Collapse
|