1
|
Tatenhorst L, Maass F, Paul H, Dambeck V, Bähr M, Dono R, Lingor P. Glypican-4 serum levels are associated with cognitive dysfunction and vascular risk factors in Parkinson's disease. Sci Rep 2024; 14:5005. [PMID: 38424123 PMCID: PMC10904781 DOI: 10.1038/s41598-024-54800-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 02/16/2024] [Indexed: 03/02/2024] Open
Abstract
Glypicans are biomarkers for various pathologies, including cardiovascular disease, cancer and diabetes. Increasing evidence suggests that glypicans also play a role in the context of neurodegenerative disorders. Initially described as supporting functionality of synapses via glutamate receptors during CNS development, Glypican 4 (GPC-4) also plays a role in the context of dementia via tau hyperphosphorylation in Alzheimer's disease, which is also a co-pathology in Parkinson's disease dementia. However, clinical evidence of circulating GPC-4 in Parkinson's disease (PD) is missing so far. We therefore investigated GPC-4 in biofluids of PD patients. We analyzed GPC-4 levels in cerebrospinal fluid (CSF, n = 140), serum (n = 80), and tear fluid samples (n = 70) of PD patients and control subjects in a similar age range by ELISA (serum, CSF) and western blot (tear fluid). Expression of circulating GPC-4 was confirmed in all three biofluids, with highest levels in serum. Interestingly, GPC-4 levels were age-dependent, and multiple regression analysis revealed a significant association between GPC-4 serum levels and MoCA score, suggesting an involvement of GPC-4 in PD-associated cognitive decline. Furthermore, stratification of PD patients for vascular risk factors revealed a significant increase of GPC-4 serum levels in PD patients with vascular risk factors. Our results suggest GPC-4 as a clinical biomarker for vascular risk stratification in order to identify PD patients with increased risk of developing dementia.
Collapse
Affiliation(s)
- Lars Tatenhorst
- Department of Neurology, University Medical Center Göttingen, 37099, Göttingen, Germany
- Center for Biostructural Imaging of Neurodegeneration (BIN), University Medical Center Göttingen, 37099, Göttingen, Germany
| | - Fabian Maass
- Department of Neurology, University Medical Center Göttingen, 37099, Göttingen, Germany
| | - Hannah Paul
- Department of Neurology, University Medical Center Göttingen, 37099, Göttingen, Germany
- Center for Biostructural Imaging of Neurodegeneration (BIN), University Medical Center Göttingen, 37099, Göttingen, Germany
| | - Vivian Dambeck
- Department of Neurology, University Medical Center Göttingen, 37099, Göttingen, Germany
- Center for Biostructural Imaging of Neurodegeneration (BIN), University Medical Center Göttingen, 37099, Göttingen, Germany
| | - Mathias Bähr
- Department of Neurology, University Medical Center Göttingen, 37099, Göttingen, Germany
- Center for Biostructural Imaging of Neurodegeneration (BIN), University Medical Center Göttingen, 37099, Göttingen, Germany
| | - Rosanna Dono
- Aix Marseille Univ, CNRS, IBDM, Turing Center for Living Systems, NeuroMarseille, 13288, Marseille, France
| | - Paul Lingor
- Department of Neurology, University Medical Center Göttingen, 37099, Göttingen, Germany.
- Center for Biostructural Imaging of Neurodegeneration (BIN), University Medical Center Göttingen, 37099, Göttingen, Germany.
- Clinical Department of Neurology, School of Medicine, University Hospital Rechts der Isar, Technical University of Munich, 81679, Munich, Germany.
| |
Collapse
|
2
|
Han BH, Cofell B, Everhart E, Humpal C, Kang SS, Lee SK, Kim-Han JS. Amentoflavone Promotes Cellular Uptake and Degradation of Amyloid-Beta in Neuronal Cells. Int J Mol Sci 2022; 23:ijms23115885. [PMID: 35682567 PMCID: PMC9180170 DOI: 10.3390/ijms23115885] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/20/2022] [Accepted: 05/21/2022] [Indexed: 02/04/2023] Open
Abstract
Deposition of fibrillar forms of amyloid β-protein (Aβ) is commonly found in patients with Alzheimer's disease (AD) associated with cognitive decline. Impaired clearance of Aβ species is thought to be a major cause of late-onset sporadic AD. Aβ secreted into the extracellular milieu can be cleared from the brain through multiple pathways, including cellular uptake in neuronal and non-neuronal cells. Recent studies have showed that the naturally-occurring polyphenol amentoflavone (AMF) exerts anti-amyloidogenic effects. However, its effects on metabolism and cellular clearance of Aβ remain to be tested. In the present study, we demonstrated that AMF significantly increased the cellular uptake of both Aβ1-40 and Aβ1-42, but not inverted Aβ42-1 in mouse neuronal N2a cells. Though AMF promoted internalization of cytotoxic Aβ1-42, it significantly reduced cell death in our assay condition. Our data further revealed that the internalized Aβ is translocated to lysosomes and undergoes enzymatic degradation. The saturable kinetic of Aβ uptake and our pharmacologic experiments showed the involvement of receptor-mediated endocytosis, in part, through the class A scavenger receptors as a possible mechanism of action of AMF. Taken together, our findings indicate that AMF can lower the levels of extracellular Aβ by increasing their cellular uptake and clearance, suggesting the therapeutic potential of AMF for the treatment of AD.
Collapse
Affiliation(s)
- Byung Hee Han
- Department of Pharmacology, Kirksville College of Osteopathic Medicine, A.T. Still University of Health Sciences, Kirksville, MO 63501, USA; (B.C.); (E.E.); (C.H.); (J.S.K.-H.)
- Correspondence:
| | - Brooke Cofell
- Department of Pharmacology, Kirksville College of Osteopathic Medicine, A.T. Still University of Health Sciences, Kirksville, MO 63501, USA; (B.C.); (E.E.); (C.H.); (J.S.K.-H.)
| | - Emily Everhart
- Department of Pharmacology, Kirksville College of Osteopathic Medicine, A.T. Still University of Health Sciences, Kirksville, MO 63501, USA; (B.C.); (E.E.); (C.H.); (J.S.K.-H.)
| | - Courtney Humpal
- Department of Pharmacology, Kirksville College of Osteopathic Medicine, A.T. Still University of Health Sciences, Kirksville, MO 63501, USA; (B.C.); (E.E.); (C.H.); (J.S.K.-H.)
| | - Sam-Sik Kang
- College of Pharmacy, Seoul National University, Seoul 08826, Korea; (S.-S.K.); (S.K.L.)
| | - Sang Kook Lee
- College of Pharmacy, Seoul National University, Seoul 08826, Korea; (S.-S.K.); (S.K.L.)
| | - Jeong Sook Kim-Han
- Department of Pharmacology, Kirksville College of Osteopathic Medicine, A.T. Still University of Health Sciences, Kirksville, MO 63501, USA; (B.C.); (E.E.); (C.H.); (J.S.K.-H.)
| |
Collapse
|
3
|
Clark GT, Yu Y, Urban CA, Fu G, Wang C, Zhang F, Linhardt RJ, Hurley JM. Circadian control of heparan sulfate levels times phagocytosis of amyloid beta aggregates. PLoS Genet 2022; 18:e1009994. [PMID: 35143487 PMCID: PMC8830681 DOI: 10.1371/journal.pgen.1009994] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 12/14/2021] [Indexed: 12/17/2022] Open
Abstract
Alzheimer's Disease (AD) is a neuroinflammatory disease characterized partly by the inability to clear, and subsequent build-up, of amyloid-beta (Aβ). AD has a bi-directional relationship with circadian disruption (CD) with sleep disturbances starting years before disease onset. However, the molecular mechanism underlying the relationship of CD and AD has not been elucidated. Myeloid-based phagocytosis, a key component in the metabolism of Aβ, is circadianly-regulated, presenting a potential link between CD and AD. In this work, we revealed that the phagocytosis of Aβ42 undergoes a daily circadian oscillation. We found the circadian timing of global heparan sulfate proteoglycan (HSPG) biosynthesis was the molecular timer for the clock-controlled phagocytosis of Aβ and that both HSPG binding and aggregation may play a role in this oscillation. These data highlight that circadian regulation in immune cells may play a role in the intricate relationship between the circadian clock and AD.
Collapse
Affiliation(s)
- Gretchen T. Clark
- Rensselaer Polytechnic Institute, Biological Sciences, Troy, New York, United States of America
| | - Yanlei Yu
- Rensselaer Polytechnic Institute, Chemistry and Chemical Biology, Troy, New York, United States of America
| | - Cooper A. Urban
- Rensselaer Polytechnic Institute, Biological Sciences, Troy, New York, United States of America
| | - Guo Fu
- Rensselaer Polytechnic Institute, Biological Sciences, Troy, New York, United States of America
- Now at the Innovation and Integration Center of New Laser Technology, Chinese Academy of Sciences, Shanghai, China
| | - Chunyu Wang
- Rensselaer Polytechnic Institute, Biological Sciences, Troy, New York, United States of America
- Rensselaer Polytechnic Institute, Chemistry and Chemical Biology, Troy, New York, United States of America
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York, United States of America
| | - Fuming Zhang
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York, United States of America
- Rensselaer Polytechnic Institute, Chemical and Biological Engineering, Troy, New York, United States of America
| | - Robert J. Linhardt
- Rensselaer Polytechnic Institute, Biological Sciences, Troy, New York, United States of America
- Rensselaer Polytechnic Institute, Chemistry and Chemical Biology, Troy, New York, United States of America
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York, United States of America
- Rensselaer Polytechnic Institute, Chemical and Biological Engineering, Troy, New York, United States of America
| | - Jennifer M. Hurley
- Rensselaer Polytechnic Institute, Biological Sciences, Troy, New York, United States of America
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York, United States of America
| |
Collapse
|
4
|
Floden AM, Combs CK. Microglia demonstrate age-dependent interaction with amyloid-β fibrils. J Alzheimers Dis 2011; 25:279-93. [PMID: 21403390 DOI: 10.3233/jad-2011-101014] [Citation(s) in RCA: 119] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Alzheimer's disease (AD) is an age-associated disease characterized by increased accumulation of extracellular amyloid-β (Aβ) plaques within the brain. Histological examination has also revealed profound microglial activation in diseased brains often in association with these fibrillar peptide aggregates. The paradoxical presence of increased, reactive microglia yet accumulating extracellular debris suggests that these cells may be phagocytically compromised during disease. Prior work has demonstrated that primary microglia from adult mice are unable to phagocytose fibrillar Aβ1-42 in vitro when compared to microglia cultured from early postnatal animals. These data suggest that microglia undergo an age-associated decrease in microglial ability to interact with Aβ fibrils. In order to better define a temporal profile of microglia-Aβ interaction, acutely isolated, rather than cultured, microglia from 2 month, 6 month, and postnatal day 0 C57BL/6 mice were compared. Postnatal day 0 microglia demonstrated a CD47 dependent ability to phagocytose Aβ fibrils that was lost by 6 months. This corresponded with the ability of postnatal day 0 but not adult microglia to decrease Aβ immunoreactive plaque load from AD sections in vitro. In spite of limited Aβ uptake ability, adult microglia had functional phagocytic uptake of bacterial bioparticles and demonstrated the ability to adhere to both Aβ plaques and in vitro fibrillized Aβ. These data demonstrate a temporal profile of specifically Aβ-microglia interaction with a critical developmental period at 6 months in which cells remain able to interact with Aβ fibrils but lose their ability to phagocytose it.
Collapse
Affiliation(s)
- Angela Marie Floden
- Department of Pharmacology, Physiology and Therapeutics, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND 58203-9037, USA
| | | |
Collapse
|
5
|
Affiliation(s)
- Satomi Nadanaka
- Department of Biochemistry, Kobe Pharmaceutical University, Kobe 658-8558, Japan
| | | |
Collapse
|
6
|
Requirement of aggregation propensity of Alzheimer amyloid peptides for neuronal cell surface binding. BMC Neurosci 2007; 8:29. [PMID: 17475015 PMCID: PMC1871596 DOI: 10.1186/1471-2202-8-29] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2006] [Accepted: 05/02/2007] [Indexed: 02/03/2023] Open
Abstract
Background Aggregation of the amyloid peptides, Aβ40 and Aβ42, is known to be involved in the pathology of Alzheimer's disease (AD). Here we investigate the relationship between peptide aggregation and cell surface binding of three forms of Aβ (Aβ40, Aβ42, and an Aβ mutant). Results Using confocal microscopy and flow cytometry with fluorescently labelled Aβ, we demonstrate a correlation between the aggregation propensity of the Alzheimer amyloid peptides and their neuronal cell surface association. We find that the highly aggregation prone Aβ42 associates with the surface of neuronal cells within one hour, while the less aggregation prone Aβ40 associates over 24 hours. We show that a double mutation in Aβ42 that reduces its aggregation propensity also reduces its association with the cell surface. Furthermore, we find that a cell line that is resistant to Aβ cytotoxicity, the non-neuronal human lymphoma cell line U937, does not bind either Aβ40 or Aβ42. Conclusion Taken together, our findings reveal that amyloid peptide aggregation propensity is an essential determinant of neuronal cell surface association. We anticipate that our approach, involving Aβ imaging in live cells, will be highly useful for evaluating the efficacy of therapeutic drugs that prevent toxic Aβ association with neuronal cells.
Collapse
|
7
|
Gervais F, Paquette J, Morissette C, Krzywkowski P, Yu M, Azzi M, Lacombe D, Kong X, Aman A, Laurin J, Szarek WA, Tremblay P. Targeting soluble Abeta peptide with Tramiprosate for the treatment of brain amyloidosis. Neurobiol Aging 2006; 28:537-47. [PMID: 16675063 DOI: 10.1016/j.neurobiolaging.2006.02.015] [Citation(s) in RCA: 196] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2005] [Revised: 12/22/2005] [Accepted: 02/16/2006] [Indexed: 10/24/2022]
Abstract
Amyloid beta-peptide (Abeta) is a major constituent of senile plaques in Alzheimer's disease (AD). Neurotoxicity results from the conformational transition of Abeta from random-coil to beta-sheet and its oligomerization. Among a series of ionic compounds able to interact with soluble Abeta, Tramiprosate (3-amino-1-propanesulfonic acid; 3APS; Alzhemedtrade mark) was found to maintain Abeta in a non-fibrillar form, to decrease Abeta(42)-induced cell death in neuronal cell cultures, and to inhibit amyloid deposition. Tramiprosate crosses the murine blood-brain barrier (BBB) to exert its activity. Treatment of TgCRND8 mice with Tramiprosate resulted in significant reduction (approximately 30%) in the brain amyloid plaque load and a significant decrease in the cerebral levels of soluble and insoluble Abeta(40) and Abeta(42) (approximately 20-30%). A dose-dependent reduction (up to 60%) of plasma Abeta levels was also observed, suggesting that Tramiprosate influences the central pool of Abeta, changing either its efflux or its metabolism in the brain. We propose that Tramiprosate, which targets soluble Abeta, represents a new and promising therapeutic class of drugs for the treatment of AD.
Collapse
Affiliation(s)
- Francine Gervais
- Neurochem Inc., 275 Armand-Frappier Blvd., Laval, QC, Canada H7V 4A7
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Huang KS, Holmgren J, Reik L, Lucas-McGady D, Roberts J, Liu CM, Levin W. High-throughput methods for measuring heparanase activity and screening potential antimetastatic and anti-inflammatory agents. Anal Biochem 2005; 333:389-98. [PMID: 15450817 DOI: 10.1016/j.ab.2004.06.023] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2004] [Indexed: 11/28/2022]
Abstract
Heparanase plays an important role in the degradation of the extracellular matrix. It is implicated in inflammation, tumor angiogenesis and metastasis. We have developed two high-throughput methods for measuring heparanase activity and screening potential inhibitors. The first method involves coating fibroblast growth factor (FGF) on microtiter plates and capturing fluorescein isothiocyanate (FITC)-labeled heparin sulfate (HS), which is used as a substrate for heparanase digestion. Labeled HS fragments are released into the medium and quantitated by fluorescence intensity measurement. We have implemented this assay method into a Zeiss uHTS system and screened compound libraries for heparanase inhibitors. The second method involves labeling HS with biotin followed by FITC to generate a dual-labeled HS. The labeled material is bound to streptavidin-coated plates and used as a substrate for heparanase digestion. Both methods are sensitive and easily applicable to robotic systems. In addition, we have labeled both HS and biotin-HS with Eu-chelate, a fluorophore that exhibits long decay fluorescence. Assays using Eu-labeled HS and Eu-labeled biotin-HS have been developed and show higher sensitivity than those using FITC-labeled material. Furthermore, assays using Eu-chelate HS (or biotin-HS) should eliminate the interference of fluorescence compounds.
Collapse
Affiliation(s)
- Kuo-Sen Huang
- Department of Discovery Technologies, Hoffmann-La Roche Inc., 340 Kingsland Street, Nutley, NJ 07110, USA.
| | | | | | | | | | | | | |
Collapse
|
9
|
van Horssen J, Wesseling P, van den Heuvel LPWJ, de Waal RMW, Verbeek MM. Heparan sulphate proteoglycans in Alzheimer's disease and amyloid-related disorders. Lancet Neurol 2003; 2:482-92. [PMID: 12878436 DOI: 10.1016/s1474-4422(03)00484-8] [Citation(s) in RCA: 165] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Proteoglycans are associated with all kinds of amyloid deposits in the human body. These complex macromolecules, in particular heparan sulphate proteoglycans, have also been implicated in several features of the pathogenesis of Alzheimer's disease (AD), including the genesis of senile plaques, cerebrovascular amyloid, and neurofibrillary tangles. In this review we focus on the role of proteoglycans and glycosaminoglycans in amyloidogenesis in general and in AD in particular. Heparan sulphate proteoglycans may promote amyloid-beta peptide (Abeta) or tau fibrillisation on the one hand, and provide resistance against proteolytic breakdown on the other. Knowledge about the role of proteoglycans in AD pathology may eventually be of therapeutic use, because small polysulphated compounds, which can interfere with the interaction between proteoglycan and Abeta, have been shown to stop or even prevent amyloidogenesis.
Collapse
Affiliation(s)
- Jack van Horssen
- Department of Pathology, University Medical Center, Nijmegen, Netherlands.
| | | | | | | | | |
Collapse
|
10
|
van Horssen J, Kleinnijenhuis J, Maass CN, Rensink AAM, Otte-Höller I, David G, van den Heuvel LPWJ, Wesseling P, de Waal RMW, Verbeek MM. Accumulation of heparan sulfate proteoglycans in cerebellar senile plaques. Neurobiol Aging 2002; 23:537-45. [PMID: 12009503 DOI: 10.1016/s0197-4580(02)00010-6] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Alzheimer's disease (AD) brains are characterized by the presence of senile plaques (SPs), which primarily consist of amyloid beta protein (Abeta). Besides Abeta, several other proteins with the ability to modulate amyloid fibril formation accumulate in SPs, e.g. heparan sulfate proteoglycans (HSPGs). Cerebellar SPs are predominantly of the diffuse type, whereas fibrillar SPs are rarely observed. Furthermore, because of the spatial separation of non-fibrillar and fibrillar SPs in the cerebellum, this brain region provides a model for the study of the association of Abeta-associated factors with various stages of SP formation. In the present study, we performed an immunohistochemical analysis to investigate the expression of the HSPG species agrin, perlecan, glypican-1 and the syndecans 1-3 as well as glycosaminoglycan side-chains in cerebellar SPs. We demonstrated that agrin and glypican-1 were expressed in both non-fibrillar and fibrillar cerebellar SPs, whereas the syndecans were only associated with fibrillar cerebellar SPs. Perlecan expression was absent in all cerebellar SPs. Since fibrillar and non-fibrillar SPs may develop independently in the cerebellum, it is likely that agrin, glypican-1 as well as heparan sulfate glycosaminoglycans may contribute to the formation of both cerebellar plaque types, whereas syndecan only seems to play a role in the generation of cerebellar fibrillar plaques.
Collapse
Affiliation(s)
- Jack van Horssen
- Department of Pathology, University Medical Center, Nijmegen, The Netherlands.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Tiffany HL, Lavigne MC, Cui YH, Wang JM, Leto TL, Gao JL, Murphy PM. Amyloid-beta induces chemotaxis and oxidant stress by acting at formylpeptide receptor 2, a G protein-coupled receptor expressed in phagocytes and brain. J Biol Chem 2001; 276:23645-52. [PMID: 11316806 DOI: 10.1074/jbc.m101031200] [Citation(s) in RCA: 129] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Amyloid-beta, the pathologic protein in Alzheimer's disease, induces chemotaxis and production of reactive oxygen species in phagocytic cells, but mechanisms have not been fully defined. Here we provide three lines of evidence that the phagocyte G protein-coupled receptor (N-formylpeptide receptor 2 (FPR2)) mediates these amyloid-beta-dependent functions in phagocytic cells. First, transfection of FPR2, but not related receptors, including the other known N-formylpeptide receptor FPR, reconstituted amyloid-beta-dependent chemotaxis and calcium flux in HEK 293 cells. Second, amyloid-beta induced both calcium flux and chemotaxis in mouse neutrophils (which express endogenous FPR2) with similar potency as in FPR2-transfected HEK 293 cells. This activity could be specifically desensitized in both cell types by preincubation with a specific FPR2 agonist, which desensitizes the receptor, or with pertussis toxin, which uncouples it from G(i)-dependent signaling. Third, specific and reciprocal desensitization of superoxide production was observed when N-formylpeptides and amyloid-beta were used to sequentially stimulate neutrophils from FPR -/- mice, which express FPR2 normally. Potential biological relevance of these results to the neuroinflammation associated with Alzheimer's disease was suggested by two additional findings: first, FPR2 mRNA could be detected by PCR in mouse brain; second, induction of FPR2 expression correlated with induction of calcium flux and chemotaxis by amyloid-beta in the mouse microglial cell line N9. Further, in sequential stimulation experiments with N9 cells, N-formylpeptides and amyloid-beta were able to reciprocally cross-desensitize each other. Amyloid-beta was also a specific agonist at the human counterpart of FPR2, the FPR-like 1 receptor. These results suggest a unified signaling mechanism for linking amyloid-beta to phagocyte chemotaxis and oxidant stress in the brain.
Collapse
MESH Headings
- Amyloid beta-Peptides/pharmacology
- Animals
- Brain/drug effects
- Brain/immunology
- Calcium/metabolism
- Cell Line
- Cells, Cultured
- Chemotactic Factors/pharmacology
- Chemotaxis, Leukocyte
- GTP-Binding Protein alpha Subunits, Gi-Go/metabolism
- Humans
- Mice
- Microglia/immunology
- Neutrophils/immunology
- Oxidative Stress
- Phagocytes/drug effects
- Phagocytes/immunology
- RNA, Messenger/biosynthesis
- Receptors, Formyl Peptide
- Receptors, Immunologic/biosynthesis
- Receptors, Immunologic/genetics
- Receptors, Immunologic/physiology
- Receptors, Peptide/biosynthesis
- Receptors, Peptide/genetics
- Receptors, Peptide/physiology
- Superoxides/metabolism
- Transfection
Collapse
Affiliation(s)
- H L Tiffany
- Molecular Signaling and Genetic Immunotherapy Sections, Laboratory of Host Defenses, NIAID, National Institutes of Health, Bethesda, Maryland 20982, USA
| | | | | | | | | | | | | |
Collapse
|
12
|
McLaurin J, Golomb R, Jurewicz A, Antel JP, Fraser PE. Inositol stereoisomers stabilize an oligomeric aggregate of Alzheimer amyloid beta peptide and inhibit abeta -induced toxicity. J Biol Chem 2000; 275:18495-502. [PMID: 10764800 DOI: 10.1074/jbc.m906994199] [Citation(s) in RCA: 207] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Inositol has 8 stereoisomers, four of which are physiologically active. myo-Inositol is the most abundant isomer in the brain and more recently shown that epi- and scyllo-inositol are also present. myo-Inositol complexes with Abeta42 in vitro to form a small stable micelle. The ability of inositol stereoisomers to interact with and stabilize small Abeta complexes was addressed. Circular dichroism spectroscopy demonstrated that epi- and scyllo- but not chiro-inositol were able to induce a structural transition from random to beta-structure in Abeta42. Alternatively, none of the stereoisomers were able to induce a structural transition in Abeta40. Electron microscopy demonstrated that inositol stabilizes small aggregates of Abeta42. We demonstrate that inositol-Abeta interactions result in a complex that is non-toxic to nerve growth factor-differentiated PC-12 cells and primary human neuronal cultures. The attenuation of toxicity is the result of Abeta-inositol interaction, as inositol uptake inhibitors had no effect on neuronal survival. The use of inositol stereoisomers allowed us to elucidate an important structure-activity relationship between Abeta and inositol. Inositol stereoisomers are naturally occurring molecules that readily cross the blood-brain barrier and may represent a viable treatment for AD through the complexation of Abeta and attenuation of Abeta neurotoxic effects.
Collapse
Affiliation(s)
- J McLaurin
- Centre for Research in Neurodegenerative Diseases, Department of Laboratory Medicine, University of Toronto, Toronto, Ontario, M5S 3H2, Canada.
| | | | | | | | | |
Collapse
|
13
|
Kanfer JN, Sorrentino G, Sitar DS. Amyloid beta peptide membrane perturbation is the basis for its biological effects. Neurochem Res 1999; 24:1621-30. [PMID: 10591414 DOI: 10.1023/a:1021172620295] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Experimental studies have indicated that the mechanisms offered for explaining the neurotoxicity of amyloid beta peptide (AbetaP) are diverse, and include altered enzyme activities, disrupted calcium homeostasis, and increased free radical formation. AbetaP appears to interact at the cell membrane with a multitude of receptor sites and also inserts physically into the membrane matrix. This membrane insertion affects the membrane fluidity and potentially influences the function of resident membrane proteins. We propose a unifying hypothesis to explain the experimental observations of the diverse cellular responses to AbetaP. The indiscriminate physical insertion of AbetaP into the cell membrane unspecifically activates a host of membrane processes by perturbation of the membrane proteins. This recurrent activation of membrane processes eventually culminates in neuronal cell death. We recommend that successful therapeutic interventions should be directed at reducing or preventing the interaction of AbetaP with neuronal cell membranes.
Collapse
Affiliation(s)
- J N Kanfer
- Department of Biochemistry and Molecular Biology, University of Manitoba, Winnipeg, Canada
| | | | | |
Collapse
|
14
|
Toyoshima M, Nakajima M. Human heparanase. Purification, characterization, cloning, and expression. J Biol Chem 1999; 274:24153-60. [PMID: 10446189 DOI: 10.1074/jbc.274.34.24153] [Citation(s) in RCA: 242] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Heparan sulfate and heparan sulfate proteoglycans are present in the extracellular matrix as well as on the external cell surface. They bind various molecules such as growth factors and cytokines and modulate the biological functions of binding proteins. Heparan sulfate proteoglycans are also important structural components of the basement membrane. Heparanase is an endo-beta-D-glucuronidase capable of cleaving heparan sulfate and has been implicated in inflammation and tumor angiogenesis and metastasis. In this study, we report the purification of a human heparanase from an SV40-transformed embryonic fibroblast cell line WI38/VA13 by four sequential column chromatographies. The activity was measured by high speed gel permeation chromatography of the degradation products of fluorescein isothiocyanate-labeled heparan sulfate. The enzyme was purified to homogeneity, yielding a peptide with an apparent molecular mass of 50 kDa when analyzed by SDS-polyacrylamide gel electrophoresis. Using the amino acid sequences of the N-terminal and internal heparanase peptides, a cDNA coding for human heparanase was cloned. NIH3T3 and COS-7 cells stably transfected with pBK-CMV expression vectors containing the heparanase cDNA showed high heparanase activities. The homology search revealed that no homologous protein had been reported.
Collapse
Affiliation(s)
- M Toyoshima
- Discovery Research, Takarazuka Research Institute, Novartis Pharma K. K., 10-66 Miyuki-cho, Takarazuka 665-8666, Japan.
| | | |
Collapse
|