1
|
Krupa H, Gearhardt AN, Lewandowski A, Avena NM. Food Addiction. Brain Sci 2024; 14:952. [PMID: 39451967 PMCID: PMC11506718 DOI: 10.3390/brainsci14100952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/12/2024] [Accepted: 09/19/2024] [Indexed: 10/26/2024] Open
Abstract
In this review, we aim to draw a connection between drug addiction and overconsumption of highly palatable food (OHPF) by discussing common behaviors and neurochemical pathways shared by these two states. OHPF can stimulate reward pathways in the brain that parallel those triggered by drug use, increasing the risk of dependency. Behavioral similarities between food and drug addiction can be addressed by tracking their stages: loss of control when eating (bingeing), withdrawal, craving, sensitization, and cross-sensitization. The brain adapts to addiction by way of the mesolimbic dopamine system, endogenous opioids and receptors, acetylcholine and dopamine balance, and adaptations of serotonin in neuroanatomy. Studies from the current literature are reviewed to determine how various neurological chemicals contribute to the reinforcement of drug addiction and OHPF. Finally, protocols for treating food addiction are discussed, including both clinical and pharmacological modalities. There is consistent evidence that OHPF changes brain chemistry and leads to addiction in similar ways to drugs. However, more long-term research is needed on food addiction, binge eating, and their neurobiological effects.
Collapse
Affiliation(s)
- Haley Krupa
- Marian Regional Medical Center, Santa Maria, CA 93454, USA;
| | | | | | - Nicole M. Avena
- Icahn School of Medicine at Mount Sinai, New York, NY 10021, USA
| |
Collapse
|
2
|
Hochrainer N, Serafin P, D’Ingiullo S, Mollica A, Granica S, Brytan M, Kleczkowska P, Spetea M. In Vitro and In Vivo Pharmacological Profiles of LENART01, a Dermorphin-Ranatensin Hybrid Peptide. Int J Mol Sci 2024; 25:4007. [PMID: 38612817 PMCID: PMC11012005 DOI: 10.3390/ijms25074007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 03/30/2024] [Accepted: 04/01/2024] [Indexed: 04/14/2024] Open
Abstract
Diverse chemical and pharmacological strategies are currently being explored to minimize the unwanted side effects of currently used opioid analgesics while achieving effective pain relief. The use of multitarget ligands with activity at more than one receptor represents a promising therapeutic approach. We recently reported a bifunctional peptide-based hybrid LENART01 combining dermorphin and ranatensin pharmacophores, which displays activity to the mu-opioid receptor (MOR) and dopamine D2 receptor (D2R) in rat brains and spinal cords. In this study, we investigated the in vitro binding and functional activities to the human MOR and the in vivo pharmacology of LENART01 in mice after subcutaneous administration. In vitro binding assays showed LENART01 to bind and be selective to the human MOR over the other opioid receptor subtypes and delta, kappa and nociceptin receptors. In the [35S]GTPγS binding assay, LENART01 acted as a potent and full agonist to the human MOR. In mice, LENART01 produced dose-dependent antinociceptive effects in formalin-induced inflammatory pain, with increased potency than morphine. Antinociceptive effects were reversed by naloxone, indicating MOR activation in vivo. Behavioral studies also demonstrated LENART01's properties to induce less adverse effects without locomotor dysfunction and withdrawal syndrome compared to conventional opioid analgesics, such as morphine. LENART01 is the first peptide-based MOR-D2R ligand known to date and the first dual MOR-dopamine D2R ligand for which in vivo pharmacology is reported with antinociceptive efficacy and reduced opioid-related side effects. Our current findings may pave the way to new pain therapeutics with limited side effects in acute and chronic use.
Collapse
Affiliation(s)
- Nadine Hochrainer
- Department of Pharmaceutical Chemistry, Institute of Pharmacy and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, 6020 Innsbruck, Austria
| | - Pawel Serafin
- Military Institute of Hygiene and Epidemiology, 01-163 Warsaw, Poland; (P.S.); (M.B.)
| | - Sara D’Ingiullo
- Department of Pharmacy, University “G. d’Annunzio” of Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy; (S.D.); (A.M.)
| | - Adriano Mollica
- Department of Pharmacy, University “G. d’Annunzio” of Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy; (S.D.); (A.M.)
| | - Sebastian Granica
- Microbiota Lab, Department of Pharmacognosy and Molecular Basis of Phytotherapy, Medical University of Warsaw, 02-097 Warsaw, Poland;
| | - Marek Brytan
- Military Institute of Hygiene and Epidemiology, 01-163 Warsaw, Poland; (P.S.); (M.B.)
| | | | - Mariana Spetea
- Department of Pharmaceutical Chemistry, Institute of Pharmacy and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, 6020 Innsbruck, Austria
| |
Collapse
|
3
|
Hu RR, Yang MD, Ding XY, Wu N, Li J, Song R. Blockade of the Dopamine D 3 Receptor Attenuates Opioids-Induced Addictive Behaviours Associated with Inhibiting the Mesolimbic Dopamine System. Neurosci Bull 2023; 39:1655-1668. [PMID: 37040055 PMCID: PMC10603017 DOI: 10.1007/s12264-023-01059-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 01/23/2023] [Indexed: 04/12/2023] Open
Abstract
Opioid use disorder (OUD) has become a considerable global public health challenge; however, potential medications for the management of OUD that are effective, safe, and nonaddictive are not available. Accumulating preclinical evidence indicates that antagonists of the dopamine D3 receptor (D3R) have effects on addiction in different animal models. We have previously reported that YQA14, a D3R antagonist, exhibits very high affinity and selectivity for D3Rs over D2Rs, and is able to inhibit cocaine- or methamphetamine-induced reinforcement and reinstatement in self-administration tests. In the present study, our results illustrated that YQA14 dose-dependently reduced infusions under the fixed-ratio 2 procedure and lowered the breakpoint under the progressive-ratio procedure in heroin self-administered rats, also attenuated heroin-induced reinstatement of drug-seeking behavior. On the other hand, YQA14 not only reduced morphine-induced expression of conditioned place preference but also facilitated the extinguishing process in mice. Moreover, we elucidated that YQA14 attenuated opioid-induced reward or reinforcement mainly by inhibiting morphine-induced up-regulation of dopaminergic neuron activity in the ventral tegmental area and decreasing dopamine release in the nucleus accumbens with a fiber photometry recording system. These findings suggest that D3R might play a very important role in opioid addiction, and YQA14 may have pharmacotherapeutic potential in attenuating opioid-induced addictive behaviors dependent on the dopamine system.
Collapse
Affiliation(s)
- Rong-Rong Hu
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
- Department of Nuclear Medicine, Hainan Hospital of Chinese PLA General Hospital, Sanya, 572013, China
| | - Meng-Die Yang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| | - Xiao-Yan Ding
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| | - Ning Wu
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| | - Jin Li
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China.
| | - Rui Song
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China.
| |
Collapse
|
4
|
Greenwald MK, Ghosh S, Winston JR. A randomized, sham-controlled, quintuple-blinded trial to evaluate the NET device as an alternative to medication for promoting opioid abstinence. Contemp Clin Trials Commun 2022; 30:101018. [PMID: 36303593 PMCID: PMC9593273 DOI: 10.1016/j.conctc.2022.101018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 09/04/2022] [Accepted: 10/17/2022] [Indexed: 11/25/2022] Open
Abstract
Background There is an unmet need for non-medication approaches to illicit opioid discontinuation and relapse prevention. The NET (NeuroElectric Therapy) Device is a non-invasive, battery-operated, portable, re-useable device designed to deliver bilateral transcranial transcutaneous alternating current electrical stimulation, and is intended to treat opioid use disorder (OUD) without medication. The device is a CE-marked Class IIa, non-significant risk, investigational medical device. Objective This prospective trial (NRC021) tests the hypothesis that the NET Device provides safe and effective neurostimulation treatment for persons with OUD who express a desire to be opioid abstinent without medications for opioid use disorder (MOUD). Methods NRC021 is a randomized, parallel-group, sham-controlled, quintuple-blinded, single-site study. Persons with OUD entering a residential treatment facility for opioid detoxification are assigned to active or sham treatment (n = 50/group). Group assignment is stratified on presence of any current non-opioid substance use disorder and by sex. The biostatistician maintains the blinding so that the study sponsor, principal investigator, research assistants, treatment staff, and participants remain blinded. Following discharge from the inpatient facility, participants are assessed once weekly over 12 weeks for substance use (using timeline followback interview and video assessment of observed oral fluid sample provision and testing). The primary efficacy endpoint is each participant's overall percentage of weekly abstinence from illicit opioid use without use of MOUD. The secondary efficacy endpoint is each participant's percentage of non-opioid drug-free weeks. Safety outcomes are also measured. Conclusion NRC021 is designed to assess the efficacy of a novel non-medication treatment for OUD. Clinical trial registration ClinicalTrials.gov with the identifier NCT04916600.
Collapse
Affiliation(s)
- Mark K. Greenwald
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University, Detroit, MI, USA,Corresponding author. Department of Psychiatry and Behavioral Neurosciences, Tolan Park Medical Building, 3901 Chrysler Service Drive, Suite 2A, Detroit, MI, 48201, USA.
| | - Samiran Ghosh
- Department of Biostatistics and Data Science, University of Texas School of Public Health, Houston, TX, USA
| | | |
Collapse
|
5
|
Bongiovanni AR, Zhao P, Inan S, Wiah S, Shekarabi A, Farkas DJ, Watson MN, Wimmer ME, Ruff MR, Rawls SM. Multi-chemokine receptor antagonist RAP-103 inhibits opioid-derived respiratory depression, reduces opioid reinforcement and physical dependence, and normalizes opioid-induced dysregulation of mesolimbic chemokine receptors in rats. Drug Alcohol Depend 2022; 238:109556. [PMID: 35843139 PMCID: PMC9444981 DOI: 10.1016/j.drugalcdep.2022.109556] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/20/2022] [Accepted: 06/29/2022] [Indexed: 11/03/2022]
Abstract
Chemokine-opioid crosstalk is a physiological crossroads for influencing therapeutic and adverse effects of opioids. Activation of chemokine receptors, especially CCR2, CCR5 and CXCR4, reduces opioid-induced analgesia by desensitizing OPRM1 receptors. Chemokine receptor antagonists (CRAs) enhance opioid analgesia, but knowledge about how CRAs impact adverse opioid effects remains limited. We examined effects of RAP-103, a multi-CRA orally active peptide analog of "DAPTA", on opioid-derived dependence, reinforcement, and respiratory depression in male rats and on changes in chemokine and OPRM1 (µ opioid) receptor levels in mesolimbic substrates during opioid abstinence. In rats exposed to chronic morphine (75 mg pellet x 7 d), daily RAP-103 (1 mg/kg, IP) treatment reduced the severity of naloxone-precipitated withdrawal responses. For self-administration (SA) studies, RAP-103 (1 mg/kg, IP) reduced heroin acquisition (0.1 mg/kg/inf) and reinforcing efficacy (assessed by motivation on a progressive-ratio reinforcement schedule) but did not impact sucrose intake. RAP-103 (1-3 mg/kg, IP) also normalized the deficits in oxygen saturation and enhancement of respiratory rate caused by morphine (5 mg/kg, SC) exposure. Abstinence from chronic morphine elicited brain-region specific changes in chemokine receptor protein levels. CCR2 and CXCR4 were increased in the ventral tegmental area (VTA), whereas CCR2 and CCR5 were reduced in the nucleus accumbens (NAC). Effects of RAP-103 (1 mg/kg, IP) were focused in the NAC, where it normalized morphine-induced deficits in CCR2 and CCR5. These results identify CRAs as potential biphasic function opioid signaling modulators to enhance opioid analgesia and inhibit opioid-derived dependence and respiratory depression.
Collapse
Affiliation(s)
- Angela R Bongiovanni
- Department of Psychology and Neuroscience, Temple University, Philadelphia, PA, USA
| | - Pingwei Zhao
- Center for Substance Abuse Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Saadet Inan
- Center for Substance Abuse Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Sonita Wiah
- Center for Substance Abuse Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Aryan Shekarabi
- Center for Substance Abuse Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Daniel J Farkas
- Center for Substance Abuse Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Mia N Watson
- Center for Substance Abuse Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Mathieu E Wimmer
- Department of Psychology and Neuroscience, Temple University, Philadelphia, PA, USA
| | | | - Scott M Rawls
- Center for Substance Abuse Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA; Department of Neural Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA.
| |
Collapse
|
6
|
Altered Accumbal Dopamine Terminal Dynamics Following Chronic Heroin Self-Administration. Int J Mol Sci 2022; 23:ijms23158106. [PMID: 35897682 PMCID: PMC9332320 DOI: 10.3390/ijms23158106] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/19/2022] [Accepted: 07/19/2022] [Indexed: 11/30/2022] Open
Abstract
Administration of heroin results in the engagement of multiple brain regions and the rewarding and addictive effects are mediated, at least partially, through activation of the mesolimbic dopamine system. However, less is known about dopamine system function following chronic exposure to heroin. Withdrawal from chronic heroin exposure is likely to drive a state of low dopamine in the nucleus accumbens (NAc), as previously observed during withdrawal from other drug classes. Thus, we aimed to investigate alterations in NAc dopamine terminal function following chronic heroin self-administration to identify a mechanism for dopaminergic adaptations. Adult male Long Evans rats were trained to self-administer heroin (0.05 mg/kg/inf, IV) and then placed on a long access (FR1, 6-h, unlimited inf, 0.05 mg/kg/inf) protocol to induce escalation of intake. Following heroin self-administration, rats had decreased basal extracellular levels of dopamine and blunted dopamine response following a heroin challenge (0.1 mg/kg/inf, IV) in the NAc compared to saline controls. FSCV revealed that heroin-exposed rats exhibited reduced stimulated dopamine release during tonic-like, single-pulse stimulations, but increased phasic-like dopamine release during multi-pulse stimulation trains (5 pulses, 5–100 Hz) in addition to an altered dynamic range of release stimulation intensities when compared to controls. Further, we found that presynaptic D3 autoreceptor and kappa-opioid receptor agonist responsivity were increased following heroin self-administration. These results reveal a marked low dopamine state following heroin exposure and suggest the combination of altered dopamine release dynamics may contribute to increased heroin seeking.
Collapse
|
7
|
Receptor-Mediated AKT/PI3K Signalling and Behavioural Alterations in Zebrafish Larvae Reveal Association between Schizophrenia and Opioid Use Disorder. Int J Mol Sci 2022; 23:ijms23094715. [PMID: 35563106 PMCID: PMC9104710 DOI: 10.3390/ijms23094715] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/08/2022] [Accepted: 04/12/2022] [Indexed: 02/01/2023] Open
Abstract
The link between substance abuse and the development of schizophrenia remains elusive. In this study, we assessed the molecular and behavioural alterations associated with schizophrenia, opioid addiction, and opioid withdrawal using zebrafish as a biological model. Larvae of 2 days post fertilization (dpf) were exposed to domperidone (DMP), a dopamine-D2 dopamine D2 receptor antagonist, and morphine for 3 days and 10 days, respectively. MK801, an N-methyl-D-aspartate (NMDA) receptor antagonist, served as a positive control to mimic schizophrenia-like behaviour. The withdrawal syndrome was assessed 5 days after the termination of morphine treatment. The expressions of schizophrenia susceptibility genes, i.e., pi3k, akt1, slc6a4, creb1 and adamts2, in brains were quantified, and the levels of whole-body cyclic adenosine monophosphate (cAMP), serotonin and cortisol were measured. The aggressiveness of larvae was observed using the mirror biting test. After the short-term treatment with DMP and morphine, all studied genes were not differentially expressed. As for the long-term exposure, akt1 was downregulated by DMP and morphine. Downregulation of pi3k and slc6a4 was observed in the morphine-treated larvae, whereas creb1 and adamts2 were upregulated by DMP. The levels of cAMP and cortisol were elevated after 3 days, whereas significant increases were observed in all of the biochemical tests after 10 days. Compared to controls, increased aggression was observed in the DMP-, but not morphine-, treated group. These two groups showed reduction in aggressiveness when drug exposure was prolonged. Both the short- and long-term morphine withdrawal groups showed downregulation in all genes examined except creb1, suggesting dysregulated reward circuitry function. These results suggest that biochemical and behavioural alterations in schizophrenia-like symptoms and opioid dependence could be controlled by common mechanisms.
Collapse
|
8
|
Rodrigues RF, Fulco BCW, Nogueira CW. m-CF 3-substituted diphenyl diselenide attenuates all phases of morphine-induced behavioral locomotor sensitization in mice. J Trace Elem Med Biol 2022; 69:126889. [PMID: 34798514 DOI: 10.1016/j.jtemb.2021.126889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 09/12/2021] [Accepted: 10/28/2021] [Indexed: 11/24/2022]
Abstract
BACKGROUND Behavioral sensitization, thought to underlie some aspects of drug dependence, is typically measured as increased locomotion in response to repeated administration of a drug. The study aimed to investigate the (m-CF3-PhSe)2 effects on the acquisition, withdrawal, and re-exposure phases of morphine-induced behavioral locomotor sensitization. METHODS Swiss male mice were treated with saline or morphine at 10 mg/kg twice a day for 3 days; those of the morphine group were kept in the morphine withdrawal period (5 days). On day 9, mice were re-exposed to morphine. (m-CF3-PhSe)2 (10 mg/kg) or vehicle was administered at all phases of morphine protocol, and mice performed locomotor activity test. Oxidative stress markers and the levels of opioid, dopamine, and glutamate receptors were determined in samples of the cerebral cortex. (m-CF3-PhSe)2 administered at all phases of protocol attenuated morphine-induced locomotor sensitization. RESULTS Mice exposed to morphine showed reduced weight gain and increased locomotor activity, but (m-CF3-PhSe)2 treatment attenuates the weight gain and behavioral hyperlocomotion effects. (m-CF3-PhSe)2, independent of the administration phase, modulated the increase of opioidergic (MOR, DOR, KOR) and glutamatergic (NMDA 2A and 2B) protein contents and attenuated redox imbalance in the cerebral cortex of mice exposed to morphine. However, (m-CF3-PhSe)2 did not modulate cortical protein levels of dopaminergic (D1 and D2) receptors in the acquisition phase of morphine-induced locomotor sensitization protocol. CONCLUSION (m-CF3-PhSe)2 was effective against the behavioral and molecular alterations caused by morphine at all phases of locomotor sensitization.
Collapse
Affiliation(s)
- Renata F Rodrigues
- Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, Brazil
| | - Bruna C W Fulco
- Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, Brazil
| | - Cristina W Nogueira
- Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, Brazil.
| |
Collapse
|
9
|
Strickland JC, Gipson CD, Dunn KE. Dopamine Supersensitivity: A Novel Hypothesis of Opioid-Induced Neurobiological Mechanisms Underlying Opioid-Stimulant Co-use and Opioid Relapse. Front Psychiatry 2022; 13:835816. [PMID: 35492733 PMCID: PMC9051080 DOI: 10.3389/fpsyt.2022.835816] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 03/11/2022] [Indexed: 11/13/2022] Open
Abstract
Emergent harms presented by the co-use of opioids and methamphetamine highlight the broader public health challenge of preventing and treating opioid and stimulant co-use. Development of effective therapeutics requires an understanding of the physiological mechanisms that may be driving co-use patterns, specifically the underlying neurobiology of co-use and how they may facilitate (or be leveraged to prevent) continued use patterns. This narrative review summarizes largely preclinical data that demonstrate clinically-meaningful relationships between the dopamine and opioid systems with direct implications for opioid and stimulant co-use. Synthesized conclusions of this body of research include evidence that changes in the dopamine system occur only once physical dependence to opioids develops, that the chronicity of opioid exposure is associated with the severity of changes, and that withdrawal leaves the organism in a state of substantive dopamine deficit that persists long after the somatic or observed signs of opioid withdrawal appear to have resolved. Evidence also suggests that dopamine supersensitivity develops soon after opioid abstinence and results in increased response to dopamine agonists that increases in magnitude as the abstinence period continues and is evident several weeks into protracted withdrawal. Mechanistically, this supersensitivity appears to be mediated by changes in the sensitivity, not quantity, of dopamine D2 receptors. Here we propose a neural circuit mechanism unique to withdrawal from opioid use with implications for increased stimulant sensitivity in previously stimulant-naïve or inexperienced populations. These hypothesized effects collectively delineate a mechanism by which stimulants would be uniquely reinforcing to persons with opioid physical dependence, would contribute to the acute opioid withdrawal syndrome, and could manifest subjectively as craving and/or motivation to use that could prompt opioid relapse during acute and protracted withdrawal. Preclinical research is needed to directly test these hypothesized mechanisms. Human laboratory and clinical trial research is needed to explore these clinical predictions and to advance the goal of developing treatments for opioid-stimulant co-use and/or opioid relapse prevention and withdrawal remediation.
Collapse
Affiliation(s)
- Justin C Strickland
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Cassandra D Gipson
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY, United States
| | - Kelly E Dunn
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
10
|
Ahn S, Nesbit MO, Zou H, Vacca G, Axerio-Cilies P, Van Sung T, Phillips AG. Neural bases for attenuation of morphine withdrawal by Heantos-4: role of l-tetrahydropalmatine. Sci Rep 2020; 10:21275. [PMID: 33277581 PMCID: PMC7718916 DOI: 10.1038/s41598-020-78083-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 11/17/2020] [Indexed: 11/24/2022] Open
Abstract
Severe withdrawal symptoms triggered by cessation of long-term opioid use deter many individuals from seeking treatment. Opioid substitution and α2-adrenergic agonists are the current standard of pharmacotherapy for opioid use disorder in western medicine; however, each is associated with significant complications. Heantos-4 is a non-opioid botanical formulation used to facilitate opioid detoxification in Vietnam. While ongoing clinical use continues to validate its safety and effectiveness, a mechanism of action accounting for these promising effects remains to be specified. Here, we assess the effects of Heantos-4 in a rat model of morphine-dependence and present evidence that alleviation of naloxone-precipitated somatic withdrawal signs is related to an upregulation of mesolimbic dopamine activity and a consequent reversal of a hypodopaminergic state in the nucleus accumbens, a brain region implicated in opioid withdrawal. A central dopaminergic mechanism is further supported by the identification of l-tetrahydropalmatine as a key active ingredient in Heantos-4, which crosses the blood–brain barrier and shows a therapeutic efficacy comparable to its parent formulation in attenuating withdrawal signs. The anti-hypodopaminergic effects of l-tetrahydropalmatine may be related to antagonism of the dopamine autoreceptor, thus constituting a plausible mechanism contributing to the effectiveness of Heantos-4 in facilitating opioid detoxification.
Collapse
Affiliation(s)
- Soyon Ahn
- Department of Psychiatry, University of British Columbia, Vancouver, V6T 2A1, Canada
| | - Maya O Nesbit
- Department of Psychiatry, University of British Columbia, Vancouver, V6T 2A1, Canada
| | - Haiyan Zou
- Department of Psychiatry, University of British Columbia, Vancouver, V6T 2A1, Canada
| | - Giada Vacca
- Department of Psychiatry, University of British Columbia, Vancouver, V6T 2A1, Canada
| | - Peter Axerio-Cilies
- Department of Psychiatry, University of British Columbia, Vancouver, V6T 2A1, Canada
| | - Tran Van Sung
- Institute of Chemistry, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Anthony G Phillips
- Department of Psychiatry, University of British Columbia, Vancouver, V6T 2A1, Canada.
| |
Collapse
|
11
|
Dopamine D 1 or D 3 receptor modulators prevent morphine tolerance and reduce opioid withdrawal symptoms. Pharmacol Biochem Behav 2020; 194:172935. [PMID: 32335101 DOI: 10.1016/j.pbb.2020.172935] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 04/20/2020] [Accepted: 04/21/2020] [Indexed: 01/31/2023]
Abstract
The long-term treatment of chronic pain by opioids is limited by tolerance and risk of addiction/dependence. Previously, we have shown that combination treatment of morphine with a dopamine D1 or D3 receptor modulator restored morphine analgesia in morphine-resistant neuropathic pain and decreased morphine's reward potential in an acute setting. Here, we investigated whether such adjunct therapy with a dopamine D1 receptor preferring antagonist (SCH 39166) or a dopamine D3 receptor preferring agonist (pramipexole) could prevent morphine tolerance and reduce withdrawal symptoms. Initially, tolerance to the combination of morphine + pramipexole was assessed in mice. Mice receiving intraperitoneal injections of morphine showed reduced thermal thresholds on Day 7 whereas those receiving morphine + pramipexole maintained analgesia at Day 7. Next, tolerance and withdrawal to both combinations were tested over 14 days in rats. Rats were assigned one of four drug conditions, (1) saline, 2) morphine, 3) morphine + SCH 39166, 4) morphine + pramipexole), for chronic administration via osmotic pumps. Chronic administration of morphine over 14 days resulted in a significant reduction of morphine analgesia. However, analgesia was maintained when morphine was administered with either the dopamine D1 receptor preferring antagonist or the D3 receptor preferring agonist. Withdrawal symptoms peaked at 48 h and were decreased in rats receiving either combination compared to morphine alone. The data suggests that adjunct therapy with dopamine D1 or D3 receptor preferring modulators prevents morphine tolerance and reduces the duration of morphine withdrawal symptoms, and thus this combination has potential for long-term pain management therapy.
Collapse
|
12
|
Spagnolo PA, Kimes A, Schwandt ML, Shokri-Kojori E, Thada S, Phillips KA, Diazgranados N, Preston KL, Herscovitch P, Tomasi D, Ramchandani VA, Heilig M. Striatal Dopamine Release in Response to Morphine: A [ 11C]Raclopride Positron Emission Tomography Study in Healthy Men. Biol Psychiatry 2019; 86:356-364. [PMID: 31097294 PMCID: PMC6699765 DOI: 10.1016/j.biopsych.2019.03.965] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 02/04/2019] [Accepted: 03/05/2019] [Indexed: 11/19/2022]
Abstract
BACKGROUND Preclinical and human positron emission tomography studies have produced inconsistent results regarding the effects of opioids on mesolimbic dopamine (DA). Here, we quantify striatal DA release (measured by [11C]raclopride displacement) in response to an intravenous infusion of morphine, and its relationship with morphine-induced subjective effects, in healthy, nondependent opioid-experienced participants. METHODS Fifteen healthy male participants were initially included. Sessions were on separate days. On session 1, participants received intravenous morphine (10 mg/70 kg) in the clinic to ensure tolerability. Participants without adverse reactions (n = 10) then received intravenous morphine and placebo (saline) sessions, in counterbalanced order, while undergoing [11C]raclopride positron emission tomography scans. Subjective and physiological responses were assessed. Region-of-interest and voxelwise image analyses were used to assess changes in [11C]raclopride nondisplaceable binding potential. RESULTS Morphine produced marked subjective and physiological effects and induced a significant decrease in [11C]raclopride nondisplaceable binding potential, particularly in the nucleus accumbens and globus pallidus, where the change in [11C]raclopride nondisplaceable binding potential was approximately 9%. However, the subjective effects of morphine did not show a simple pattern of correlation with DA release. CONCLUSIONS This is, to our knowledge, the first study providing in vivo human evidence that DA transmission in the ventral striatum is affected by morphine. Further studies are required to fully delineate the DA contribution to the reinforcing effects of opioids.
Collapse
Affiliation(s)
- Primavera A Spagnolo
- Human Motor Control Section, National Institute on Neurological Disorders and Stroke, National Instutes of Health, Bethesda, Maryland
| | - Alane Kimes
- Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, Maryland
| | - Melanie L Schwandt
- Office of the Clinical Director, National Institute on Alcohol Abuse and Alcoholism, National Instutes of Health, Bethesda, Maryland
| | - Ehsan Shokri-Kojori
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, National Instutes of Health, Bethesda, Maryland
| | - Shantalaxmi Thada
- Positron Emission Tomography Department, Clinical Center, National Institute on Drug Abuse, National Institutes of Health, Baltimore, Maryland
| | - Karran A Phillips
- Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, Maryland
| | - Nancy Diazgranados
- Office of the Clinical Director, National Institute on Alcohol Abuse and Alcoholism, National Instutes of Health, Bethesda, Maryland
| | - Kenzie L Preston
- Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, Maryland
| | - Peter Herscovitch
- Positron Emission Tomography Department, Clinical Center, National Institute on Drug Abuse, National Institutes of Health, Baltimore, Maryland
| | - Dardo Tomasi
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, National Instutes of Health, Bethesda, Maryland
| | - Vijay A Ramchandani
- Section on Human Psychopharmacology, National Institute on Alcohol Abuse and Alcoholism, National Instutes of Health, Bethesda, Maryland.
| | - Markus Heilig
- Center for Social and Affective Neuroscience, Linköping University, Linköping, Sweden.
| |
Collapse
|
13
|
Solinas M, Belujon P, Fernagut PO, Jaber M, Thiriet N. Dopamine and addiction: what have we learned from 40 years of research. J Neural Transm (Vienna) 2018; 126:481-516. [PMID: 30569209 DOI: 10.1007/s00702-018-1957-2] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 11/17/2018] [Indexed: 12/22/2022]
Abstract
Among the neurotransmitters involved in addiction, dopamine (DA) is clearly the best known. The critical role of DA in addiction is supported by converging evidence that has been accumulated in the last 40 years. In the present review, first we describe the dopaminergic system in terms of connectivity, functioning and involvement in reward processes. Second, we describe the functional, structural, and molecular changes induced by drugs within the DA system in terms of neuronal activity, synaptic plasticity and transcriptional and molecular adaptations. Third, we describe how genetic mouse models have helped characterizing the role of DA in addiction. Fourth, we describe the involvement of the DA system in the vulnerability to addiction and the interesting case of addiction DA replacement therapy in Parkinson's disease. Finally, we describe how the DA system has been targeted to treat patients suffering from addiction and the result obtained in clinical settings and we discuss how these different lines of evidence have been instrumental in shaping our understanding of the physiopathology of drug addiction.
Collapse
Affiliation(s)
- Marcello Solinas
- Université de Poitiers, INSERM, U-1084, Laboratoire de Neurosciences Expérimentales et Cliniques, Poitiers, France.
| | - Pauline Belujon
- Université de Poitiers, INSERM, U-1084, Laboratoire de Neurosciences Expérimentales et Cliniques, Poitiers, France
| | - Pierre Olivier Fernagut
- Université de Poitiers, INSERM, U-1084, Laboratoire de Neurosciences Expérimentales et Cliniques, Poitiers, France
| | - Mohamed Jaber
- Université de Poitiers, INSERM, U-1084, Laboratoire de Neurosciences Expérimentales et Cliniques, Poitiers, France
- CHU de Poitiers, Poitiers, France
| | - Nathalie Thiriet
- Université de Poitiers, INSERM, U-1084, Laboratoire de Neurosciences Expérimentales et Cliniques, Poitiers, France
| |
Collapse
|
14
|
Blumenthal SA, Pratt WE. d-Fenfluramine and lorcaserin inhibit the binge-like feeding induced by μ-opioid receptor stimulation of the nucleus accumbens in the rat. Neurosci Lett 2018; 687:43-48. [PMID: 30227154 DOI: 10.1016/j.neulet.2018.09.028] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 09/13/2018] [Accepted: 09/14/2018] [Indexed: 02/04/2023]
Abstract
Multiple laboratories have shown that the stimulation of μ-opioid receptors in the nucleus accumbens (NAcc) powerfully increases intake of palatable and high-fat diets. Separate studies have demonstrated that serotonin agonists advance satiety processes, and several serotonin-targeting agents have been prescribed to promote weight loss. However, it is unknown if serotonin signaling can modulate the increased feeding elicited by activation of NAcc μ-opioid receptors. These experiments assessed the effects of systemic treatments with the serotonin agonists d-fenfluramine and lorcaserin on the binge-like feeding induced by μ-opioid receptor stimulation of the NAcc in Sprague-Dawley rats. Consistent with previous reports, stimulation of NAcc μ-opioid receptors (with 0.025 μg/0.5 μl/side DAMGO) significantly increased consumption of high-fat vegetable shortening, and systemic treatment with d-fenfluramine and lorcaserin dose-dependently decreased intake. Interestingly, d-fenfluramine and lorcaserin reversed the binge-like feeding observed following stimulation of NAcc μ-opioid receptors. Both serotonergic drugs also attenuated the increases of ambulation observed following administration of DAMGO in the NAcc. These data demonstrate that serotonergic anorectics, in addition to their known role in advancing satiety processes during normal feeding, can also inhibit the binge-like feeding that is elicited by activation of μ-opioid receptors within the ventral striatum.
Collapse
Affiliation(s)
| | - Wayne E Pratt
- Department of Psychology, Wake Forest University, United States.
| |
Collapse
|
15
|
Bates MLS, Hofford RS, Emery MA, Wellman PJ, Eitan S. The role of the vasopressin system and dopamine D1 receptors in the effects of social housing condition on morphine reward. Drug Alcohol Depend 2018; 188:113-118. [PMID: 29772497 DOI: 10.1016/j.drugalcdep.2018.03.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 02/07/2018] [Accepted: 03/05/2018] [Indexed: 01/17/2023]
Abstract
BACKGROUND The association with opioid-abusing individuals or even the perception of opioid abuse by peers are risk factors for the initiation and escalation of abuse. Similarly, we demonstrated that morphine-treated animals housed with only morphine-treated animals (referred to as morphine only) acquire morphine conditioned place-preference (CPP) more readily than morphine-treated animals housed with drug-naïve animals (referred to as morphine cage-mates). However, the molecular mechanisms underlying these effects are still elusive. METHODS Mice received repeated morphine or saline while housed as saline only, morphine only, or cage-mates. Then, they were examined for the expression levels of D1 dopamine receptor (D1DR), D2 dopamine receptor (D2DR), dopamine transporter (DAT), oxytocin, and Arginine-vasopressin (AVP) in the striatum using qPCR. Additionally, we examined the effects of the AVP-V1b receptor antagonist, SSR149415, on the acquisition of morphine conditioned place-preference (CPP). RESULTS Increased striatal expression of D1DR and AVP was observed in morphine only animals, but not morphine cage-mates. No significant effects were observed on the striatal expression of D2DR, DAT, or oxytocin. Antagonizing the AVP-V1b receptors decreased the acquisition of morphine CPP in the morphine only mice, but did not alter the acquisition of morphine CPP in the morphine cage-mate mice. CONCLUSIONS Housing with drug-naïve animals protects against the increase in striatal expression of D1DR and AVP elicited by morphine exposure. Moreover, our studies suggest that the protective effect of housing with drug-naïve animals on the acquisition of morphine reward might be, at least partially, mediated by AVP.
Collapse
Affiliation(s)
- M L Shawn Bates
- Department of Psychological and Brain Sciences, Behavioral and Cellular Neuroscience, Interdisciplinary Program in Neuroscience, Texas A&M Institute for Neuroscience (TAMIN), Texas A&M University, 4235 TAMU, College Station, TX 77843, USA
| | - Rebeca S Hofford
- Department of Psychological and Brain Sciences, Behavioral and Cellular Neuroscience, Interdisciplinary Program in Neuroscience, Texas A&M Institute for Neuroscience (TAMIN), Texas A&M University, 4235 TAMU, College Station, TX 77843, USA
| | - Michael A Emery
- Department of Psychological and Brain Sciences, Behavioral and Cellular Neuroscience, Interdisciplinary Program in Neuroscience, Texas A&M Institute for Neuroscience (TAMIN), Texas A&M University, 4235 TAMU, College Station, TX 77843, USA
| | - Paul J Wellman
- Department of Psychological and Brain Sciences, Behavioral and Cellular Neuroscience, Interdisciplinary Program in Neuroscience, Texas A&M Institute for Neuroscience (TAMIN), Texas A&M University, 4235 TAMU, College Station, TX 77843, USA
| | - Shoshana Eitan
- Department of Psychological and Brain Sciences, Behavioral and Cellular Neuroscience, Interdisciplinary Program in Neuroscience, Texas A&M Institute for Neuroscience (TAMIN), Texas A&M University, 4235 TAMU, College Station, TX 77843, USA.
| |
Collapse
|
16
|
Bazov I, Sarkisyan D, Kononenko O, Watanabe H, Yakovleva T, Hansson AC, Sommer WH, Spanagel R, Bakalkin G. Dynorphin and κ-Opioid Receptor Dysregulation in the Dopaminergic Reward System of Human Alcoholics. Mol Neurobiol 2018; 55:7049-7061. [PMID: 29383684 PMCID: PMC6061161 DOI: 10.1007/s12035-017-0844-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 12/18/2017] [Indexed: 12/13/2022]
Abstract
Molecular changes induced by excessive alcohol consumption may underlie formation of dysphoric state during acute and protracted alcohol withdrawal which leads to craving and relapse. A main molecular addiction hypothesis is that the upregulation of the dynorphin (DYN)/κ-opioid receptor (KOR) system in the nucleus accumbens (NAc) of alcohol-dependent individuals causes the imbalance in activity of D1- and D2 dopamine receptor (DR) expressing neural circuits that results in dysphoria. We here analyzed post-mortem NAc samples of human alcoholics to assess changes in prodynorphin (PDYN) and KOR (OPRK1) gene expression and co-expression (transcriptionally coordinated) patterns. To address alterations in D1- and D2-receptor circuits, we studied the regulatory interactions between these pathways and the DYN/KOR system. No significant differences in PDYN and OPRK1 gene expression levels between alcoholics and controls were evident. However, PDYN and OPRK1 showed transcriptionally coordinated pattern that was significantly different between alcoholics and controls. A downregulation of DRD1 but not DRD2 expression was seen in alcoholics. Expression of DRD1 and DRD2 strongly correlated with that of PDYN and OPRK1 suggesting high levels of transcriptional coordination between these gene clusters. The differences in expression and co-expression patterns were not due to the decline in neuronal proportion in alcoholic brain and thereby represent transcriptional phenomena. Dysregulation of DYN/KOR system and dopamine signaling through both alterations in co-expression patterns of opioid genes and decreased DRD1 gene expression may contribute to imbalance in the activity of D1- and D2-containing pathways which may lead to the negative affective state in human alcoholics.
Collapse
Affiliation(s)
- Igor Bazov
- Division of Biological Research on Drug Dependence, Department of Pharmaceutical Biosciences, Uppsala University, Box 591, BMC Husargatan 3, SE-75124, Uppsala, Sweden.
| | - Daniil Sarkisyan
- Division of Biological Research on Drug Dependence, Department of Pharmaceutical Biosciences, Uppsala University, Box 591, BMC Husargatan 3, SE-75124, Uppsala, Sweden
| | - Olga Kononenko
- Division of Biological Research on Drug Dependence, Department of Pharmaceutical Biosciences, Uppsala University, Box 591, BMC Husargatan 3, SE-75124, Uppsala, Sweden
| | - Hiroyuki Watanabe
- Division of Biological Research on Drug Dependence, Department of Pharmaceutical Biosciences, Uppsala University, Box 591, BMC Husargatan 3, SE-75124, Uppsala, Sweden
| | - Tatiana Yakovleva
- Division of Biological Research on Drug Dependence, Department of Pharmaceutical Biosciences, Uppsala University, Box 591, BMC Husargatan 3, SE-75124, Uppsala, Sweden
| | - Anita C Hansson
- Institute of Psychopharmacology, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, 68159, Mannheim, Germany
| | - Wolfgang H Sommer
- Institute of Psychopharmacology, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, 68159, Mannheim, Germany
| | - Rainer Spanagel
- Institute of Psychopharmacology, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, 68159, Mannheim, Germany
| | - Georgy Bakalkin
- Division of Biological Research on Drug Dependence, Department of Pharmaceutical Biosciences, Uppsala University, Box 591, BMC Husargatan 3, SE-75124, Uppsala, Sweden
| |
Collapse
|
17
|
Memory retrieval in addiction: a role for miR-105-mediated regulation of D1 receptors in mPFC neurons projecting to the basolateral amygdala. BMC Biol 2017; 15:128. [PMID: 29282124 PMCID: PMC5745965 DOI: 10.1186/s12915-017-0467-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Accepted: 12/01/2017] [Indexed: 12/17/2022] Open
Abstract
Background Drug addiction is a chronic brain disorder characterized by the compulsive use of drugs. The study of chronic morphine-induced adaptation in the brain and its functional significance is of importance to understand the mechanism of morphine addiction. Previous studies have found a number of chronic morphine-induced adaptive changes at molecular levels in the brain. A study from our lab showed that chronic morphine-induced increases in the expression of D1 receptors at presynaptic terminals coming from other structures to the basolateral amygdala (BLA) played an important role in environmental cue-induced retrieval of morphine withdrawal memory. However, the neurocircuitry where the increased D1 receptors are located and how chronic morphine increases D1 receptor expression in specific neurocircuits remain to be elucidated. Results Our results show that chronic morphine induces a persistent increase in D1 receptor expression in glutamatergic terminals of projection neurons from the medial prefrontal cortex (mPFC) to the BLA, but has no influence on D1 receptor expression in projection neurons from the hippocampus or the thalamus to the BLA. This adaptation to chronic morphine is mediated by reduced expression of miR-105 in the mPFC, which results in enhanced D1 receptor expression in glutamatergic terminals of projection neurons from the mPFC to the BLA. Ex vivo optogenetic experiments show that a chronic morphine-induced increase in D1 receptor expression in glutamatergic terminals of projection neurons from the mPFC to the BLA results in sensitization of the effect of D1 receptor agonist on presynaptic glutamate release. mPFC to BLA projection neurons are activated by withdrawal-associated environmental cues in morphine-withdrawal rats, and overexpression of miR-105 in the mPFC leads to reduced D1 receptor induction in response to chronic morphine in glutamatergic terminals of the projection neurons from the mPFC to the BLA, and a reduction in place aversion conditioned by morphine withdrawal. Conclusions These results suggest that chronic morphine use induces a persistent increase in D1 receptors in glutamatergic terminals of projection neurons from the mPFC to the BLA via downregulation of miR-105 in the mPFC, and that these adaptive changes contribute to environmental cue-induced retrieval of morphine withdrawal memory. Electronic supplementary material The online version of this article (doi:10.1186/s12915-017-0467-2) contains supplementary material, which is available to authorized users.
Collapse
|
18
|
Lee JR, Muckerman JE, Wright AM, Davis DJ, Childs TE, Gillespie CE, Vieira-Potter VJ, Booth FW, Ericsson AC, Will MJ. Sex determines effect of physical activity on diet preference: Association of striatal opioids and gut microbiota composition. Behav Brain Res 2017; 334:16-25. [PMID: 28743600 DOI: 10.1016/j.bbr.2017.07.018] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 07/10/2017] [Accepted: 07/17/2017] [Indexed: 01/14/2023]
Abstract
Previous studies suggest an interaction between the level of physical activity and diet preference. However, this relationship has not been well characterized for sex differences that may exist. The present study examined the influence of sex on diet preference in male and female Wistar rats that were housed under either sedentary (no wheel access) (SED) or voluntary wheel running access (RUN) conditions. Following a 1 week acclimation period to these conditions, standard chow was replaced with concurrent ad libitum access to a choice of 3 pelleted diets (high-fat, high-sucrose, and high-corn starch) in the home cage. SED and RUN conditions remained throughout the next 4 week diet preference assessment period. Body weight, running distance, and intake of each diet were measured daily. At the conclusion of the 4 week diet preference test, animals were sacrificed and brains were collected for mRNA analysis. Fecal samples were also collected before and after the 4 week diet preference phase to characterize microbiota composition. Results indicate sex dependent interactions between physical activity and both behavioral and physiological measures. Females in both RUN and SED conditions preferred the high-fat diet, consuming significantly more high-fat diet than either of the other two diets. While male SED rats also preferred the high-fat diet, male RUN rats consumed significantly less high-fat diet than the other groups, instead preferring all three diets equally. There was also a sex dependent influence of physical activity on both reward related opioid mRNA expression in the ventral striatum and the characterization of gut microbiota. The significant sex differences in response to physical activity observed through both behavioral and physiological measures suggest potential motivational or metabolic difference between males and females. The findings highlight the necessity for further exploration between male and female response to physical activity and feeding behavior.
Collapse
Affiliation(s)
- Jenna R Lee
- Interdisciplinary Neuroscience Program, University of Missouri, Columbia, MO, USA; Christopher Bond Life Sciences Center, University of Missouri, Columbia, MO, USA.
| | - Julie E Muckerman
- Department of Psychological Sciences, University of Missouri, Columbia, MO, USA
| | - Anna M Wright
- Department of Psychological Sciences, University of Missouri, Columbia, MO, USA
| | - Daniel J Davis
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO, USA
| | - Tom E Childs
- Department of Biomedical Sciences, University of Missouri, Columbia, MO, USA
| | | | | | - Frank W Booth
- Department of Biomedical Sciences, University of Missouri, Columbia, MO, USA
| | - Aaron C Ericsson
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO, USA
| | - Matthew J Will
- Interdisciplinary Neuroscience Program, University of Missouri, Columbia, MO, USA; Christopher Bond Life Sciences Center, University of Missouri, Columbia, MO, USA; Department of Psychological Sciences, University of Missouri, Columbia, MO, USA
| |
Collapse
|
19
|
Li Y, Xia B, Li R, Yin D, Liang W. Changes in Expression of Dopamine, Its Receptor, and Transporter in Nucleus Accumbens of Heroin-Addicted Rats with Brain-Derived Neurotrophic Factor (BDNF) Overexpression. Med Sci Monit 2017; 23:2805-2815. [PMID: 28598964 PMCID: PMC5473376 DOI: 10.12659/msm.904670] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 05/22/2017] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND The aim of this study was to explore how changes in the expression of BDNF in MLDS change the effect of BDNF on dopamine (DA) neurons, which may have therapeutic implications for heroin addiction. MATERIAL AND METHODS We established a rat model of heroin addiction and observed changes in the expression of BDNF, DA, dopamine receptor (DRD), dopamine transporter (DAT), and other relevant pathways in NAc. We also assessed the effect of BDNF overexpression in the NAc, behavioral changes of heroin-conditioned place preference (CPP), and naloxone withdrawal in rats with high levels of BDNF. We established 5 adult male rat groups: heroin addiction, lentivirus transfection, blank virus, sham operation, and control. The PCR gene chip was used to study gene expression changes. BDNF lentivirus transfection was used for BDNF overexpression. A heroin CPP model and a naloxone withdrawal model of rats were established. RESULTS Expression changes were found in 20 of the 84 DA-associated genes in the NAc of heroin-addicted rats. Weight loss and withdrawal symptoms in the lentivirus group for naloxone withdrawal was less than in the blank virus and the sham operation group. These 2 latter groups also showed significant behavioral changes, but such changes were not observed in the BDNF lentivirus group before or after training. DRD3 and DAT increased in the NAc of the lentivirus group. CONCLUSIONS BDNF and DA in the NAc are involved in heroin addiction. BDNF overexpression in NAc reduces withdrawal symptoms and craving behavior for medicine induced by environmental cues for heroin-addicted rats. BDNF participates in the regulation of the dopamine system by acting on DRD3 and DAT.
Collapse
|
20
|
Scheggi S, Ferrari A, Pelliccia T, Devoto P, De Montis MG, Gambarana C. Fasting biases μ-opioid receptors toward β-arrestin2-dependent signaling in the accumbens shell. Neuroscience 2017; 352:19-29. [PMID: 28391016 DOI: 10.1016/j.neuroscience.2017.03.056] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 03/03/2017] [Accepted: 03/28/2017] [Indexed: 10/19/2022]
Abstract
The μ-opioid receptor (MOR) and dopamine D1 receptor are co-expressed in the medium spiny neurons of striatal areas and the signaling pathways activated by these two receptors are in functional competition. However, in certain conditions an integrated response mediated by the dopamine D1 receptor transduction system is observed. In mice, morphine administration induces hypermotility and this response has been described in terms of a β-arrestin2-dependent mechanism that favors prevalent dopamine D1 receptor activation. In rats, acute morphine administration induces hypermotility only when the animals are food-deprived (FD). We aimed to further investigate the functional interaction between the MOR and dopamine D1 receptors in striatal areas and we studied the effects of acute pharmacological MOR stimulation on motility and nucleus accumbens shell (NAcS) dopamine D1 receptor signaling in control rats and rats with reduced β-arrestin2 expression in the NAcS, either non food-deprived (NFD) or FD. Motility and dopamine D1 receptor signaling increased only in FD rats in a β-arrestin2-dependent way. Moreover, FD rats showed a β-arrestin2-dependent increase in the levels of MOR-dopamine D1 receptor heteromeric complexes in the NAcS. Sucrose consumption is accompanied by release of endogenous opioids and dopamine in the NAcS. We then examined MOR-dopamine D1 receptor interactions after sucrose consumption. Sucrose increased NAcS dopamine D1 receptor signaling in NFD and FD rats, and a reduction in β-arrestin2 expression prevented this effect selectively in FD rats. These results show the β-arrestin2-dependent prevalence of dopamine D1 receptor signaling in response to acute morphine or sucrose consumption elicited by food deprivation in rats.
Collapse
Affiliation(s)
- Simona Scheggi
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Alberto Ferrari
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Teresa Pelliccia
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Paola Devoto
- Department of Biomedical Sciences, University of Cagliari, Italy
| | | | - Carla Gambarana
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy.
| |
Collapse
|
21
|
Multi-system state shifts and cognitive deficits induced by chronic morphine during abstinence. Neurosci Lett 2017; 640:144-151. [PMID: 27984200 DOI: 10.1016/j.neulet.2016.10.057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 10/27/2016] [Accepted: 10/27/2016] [Indexed: 11/20/2022]
Abstract
Chronic morphine administration induces neural plasticity followed by withdraw. And clinic observation indicates that obvious cognitive deficits are found during withdrawal. However, current neural substrates that regulate dysfunction in withdrawal are unknown. In our studies, chronic morphine administration was used to induce the spontaneous withdrawal model in rats. A series of cognitive abilities was tested to explore brain function. To further evaluate the neural substrates of dysfunction, Manganese-enhanced MRI(MEMRI) was used to map the dysfunctional regions in vivo.We observed that chronic morphine administration could induce obvious withdrawal behaviors in abstinence followed by cognitive impairments, such as impairments in working memory, reward, interaction and enhancement of anxiety. Our in-vivo MEMRI data using the voxel-wise comparisons showed that the manganese-enhanced signal intensity (VMI) within morphine withdrawal groups was increased in cingulate cortex (Cg), secondary motor cortex (M2), CA3 subfield of hippocampus, dorsal striatum (D-striatum), retrosplenial cortex (RS), shell subregion of NAc (AcbSh), core subregion of NAc (AcbC), central nucleus of amygdala (CeC), basolateral amygdaloid nucleus (BLA), central amygdaloid nucleus (CeM), anterior hypothalamic area, central (AHC), ventral tegmental area (VTA) and scaphoid thalamic nucleus (SC).However, decreasing of VMI was found in the ventrolateral striatum (V-striatum) and lateral posterior thalamic nucleus (LP) compared to the control group. These brain regions were beleived to be components of the memory, executive, limbic and regulatory systems. Therefore, our present studies indicate that withdrawal induced by chronic morphine adiministration could disturb brain function leading to multi-systems state shifts and cognitive deficits in abstinence.
Collapse
|
22
|
Mu-opioid receptor inhibition decreases voluntary wheel running in a dopamine-dependent manner in rats bred for high voluntary running. Neuroscience 2016; 339:525-537. [DOI: 10.1016/j.neuroscience.2016.10.020] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 09/15/2016] [Accepted: 10/03/2016] [Indexed: 01/06/2023]
|
23
|
Bakhtazad A, Vousooghi N, Garmabi B, Zarrindast MR. Evaluation of CART peptide level in rat plasma and CSF: Possible role as a biomarker in opioid addiction. Peptides 2016; 84:1-6. [PMID: 27349817 DOI: 10.1016/j.peptides.2016.06.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2016] [Revised: 06/23/2016] [Accepted: 06/23/2016] [Indexed: 11/28/2022]
Abstract
It has been shown previously that cocaine- and amphetamine-regulated transcript (CART) peptide has a modulatory role and homeostatic regulatory effect in motivation to and reward of the drugs of abuse specially psychostimulants. Recent data also showed that in addition to psychostimulants, CART is critically involved in the different stages of opioid addiction. Here we have evaluated the fluctuations in the level of CART peptide in plasma and CSF in different phases of opioid addiction to find out whether CART can serve as a suitable marker in opioid addiction studies. Male rats were randomly distributed in groups of control, acute low-dose (10mg/kg) morphine, acute high-dose morphine (80mg/kg), chronic escalating doses of morphine, withdrawal syndrome precipitated by administration of naloxone (1mg/kg), and abstinent after long-term drug-free maintenance of addicted animals. The level of CART peptide in CSF and plasma samples was measured by enzyme immunoassay. CART peptide concentration in the CSF and plasma was significantly elevated in acute high-dose morphine and withdrawal state animals and down-regulated in addicted rats. In abstinent group, CART peptide level was up-regulated in plasma but not in CSF samples. As the observed results are in agreement with data regarding the CART mRNA and protein expression in the brain reward pathway in opioid addiction phases, it may be suggested that evaluation of CART peptide level in CSF or plasma could be a suitable marker which reflects the rises and falls of the peptide concentration in brain in the development of opioid addiction.
Collapse
Affiliation(s)
- Atefeh Bakhtazad
- Department of Neuroscience, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Nasim Vousooghi
- Department of Neuroscience, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran; Genetics Laboratory, Iranian National Center for Addiction Studies (INCAS), Iranian Institute for Reduction of High-Risk Behaviors, Tehran University of Medical Sciences, Tehran, Iran; Cognitive Sciences and Behavior Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| | - Behzad Garmabi
- Department of Neuroscience, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Zarrindast
- Genetics Laboratory, Iranian National Center for Addiction Studies (INCAS), Iranian Institute for Reduction of High-Risk Behaviors, Tehran University of Medical Sciences, Tehran, Iran; Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Department of Cognitive Neuroscience, Institute for Cognitive Science Studies, Tehran, Iran; Genomics Center, School of Advanced Sciences, Tehran Medical Branch, Islamic Azad University, Tehran, Iran; School of Cognitive Sciences, Institute for Studies in Theoretical Physics and Mathematics, Tehran, Iran.
| |
Collapse
|
24
|
Neuronal Nicotinic Acetylcholine Receptor Modulators Reduce Sugar Intake. PLoS One 2016; 11:e0150270. [PMID: 27028298 PMCID: PMC4814119 DOI: 10.1371/journal.pone.0150270] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 02/11/2016] [Indexed: 12/21/2022] Open
Abstract
Excess sugar consumption has been shown to contribute directly to weight gain, thus contributing to the growing worldwide obesity epidemic. Interestingly, increased sugar consumption has been shown to repeatedly elevate dopamine levels in the nucleus accumbens (NAc), in the mesolimbic reward pathway of the brain similar to many drugs of abuse. We report that varenicline, an FDA-approved nicotinic acetylcholine receptor (nAChR) partial agonist that modulates dopamine in the mesolimbic reward pathway of the brain, significantly reduces sucrose consumption, especially in a long-term consumption paradigm. Similar results were observed with other nAChR drugs, namely mecamylamine and cytisine. Furthermore, we show that long-term sucrose consumption increases α4β2 * and decreases α6β2* nAChRs in the nucleus accumbens, a key brain region associated with reward. Taken together, our results suggest that nAChR drugs such as varenicline may represent a novel treatment strategy for reducing sugar consumption.
Collapse
|
25
|
Bakhtazad A, Vousooghi N, Garmabi B, Zarrindast MR. CART peptide and opioid addiction: Expression changes in male rat brain. Neuroscience 2016; 325:63-73. [PMID: 26955782 DOI: 10.1016/j.neuroscience.2016.02.071] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2015] [Revised: 02/09/2016] [Accepted: 02/29/2016] [Indexed: 01/21/2023]
Abstract
Previous studies have shown the prominence of cocaine- and amphetamine-regulated transcript (CART) peptide in rewarding and reinforcing effects of drugs of abuse specially psychostimulants. The data regarding the effects of different stages of opioid addiction on CART expression and the interconnection between CART and opioids are not much available. Here we have studied the changes in the expression level of CART mRNA and protein in various parts of the brain reward pathway in different stages of opioid addiction. Groups of male rats received acute low-dose (10mg/kg), acute high-dose (80mg/kg) and chronic escalating doses of morphine. In addition, withdrawal and abstinence states were evaluated after injection of naloxone (1mg/kg) and long-term maintenance of addicted animals, respectively. Expression of CART mRNA in the brain was measured by real-time PCR method. Western blotting was used to quantify the protein level. CART mRNA and protein were both up-regulated in high-dose morphine-administered animals and also in the withdrawal group in the nucleus accumbens (NAc), striatum and prefrontal cortex (PFC). In the addicted group, CART mRNA and protein were both down-regulated in NAc and striatum. In the abstinent group, CART mRNA was down-regulated in NAc. In the hippocampus, the only observed change was the up-regulation of CART mRNA in the withdrawal group. We suggest that the modulatory role of CART peptide in rewarding and reinforcing effects of opioids weakens when opioids are used for a long time and is stimulated when acute stress such as naloxone-induced withdrawal syndrome or acute high-dose administration of morphine occurs to the animal.
Collapse
Affiliation(s)
- A Bakhtazad
- Department of Neuroscience, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - N Vousooghi
- Department of Neuroscience, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran; Genetics Laboratory, Iranian National Center for Addiction Studies (INCAS), Iranian Institute for Reduction of High-Risk Behaviors, Tehran University of Medical Sciences, Tehran, Iran
| | - B Garmabi
- Department of Neuroscience, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - M R Zarrindast
- Genetics Laboratory, Iranian National Center for Addiction Studies (INCAS), Iranian Institute for Reduction of High-Risk Behaviors, Tehran University of Medical Sciences, Tehran, Iran; Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Department of Cognitive Neuroscience, Institute for Cognitive Science Studies, Tehran, Iran; Genomics Center, School of Advanced Sciences, Tehran Medical Branch, Islamic Azad University, Tehran, Iran; School of Cognitive Sciences, Institute for Studies in Theoretical Physics and Mathematics, Tehran, Iran.
| |
Collapse
|
26
|
Listos J, Baranowska-Bosiacka I, Wąsik A, Talarek S, Tarnowski M, Listos P, Łupina M, Antkiewicz-Michaluk L, Gutowska I, Tkacz M, Pilutin A, Orzelska-Górka J, Chlubek D, Fidecka S. The adenosinergic system is involved in sensitization to morphine withdrawal signs in rats-neurochemical and molecular basis in dopaminergic system. Psychopharmacology (Berl) 2016; 233:2383-97. [PMID: 27087433 PMCID: PMC4873537 DOI: 10.1007/s00213-016-4289-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 04/01/2016] [Indexed: 12/13/2022]
Abstract
RATIONALE Experimental data informs that not only do the dose and time duration of dependent drugs affect the severity of withdrawal episodes. Previous withdrawal experiences may intensify this process, which is referred as sensitization to withdrawal signs. Adenosine and dopamine (DA) receptors may be involved in this sensitization. OBJECTIVES Rats were continuously and sporadically treated with increasing doses of morphine for 8 days. In rats, sporadically treated with morphine, morphine administration was modified by adding three morphine-free periods. Adenosine agonists were given during each of the morphine-free periods (six injections in total). On the 9th day, morphine was injected. One hour later, naloxone was administered to induce morphine withdrawal signs. Then, the animals were placed into cylinders and the number of jumpings was recorded. Next, the rats were decapitated and brain and brain structures (striatum, hippocampus, and prefrontal cortex) were dissected for neurochemical, molecular, and immunohistochemical experiments within DAergic pathways. RESULTS We demonstrated that previous experiences of opioid withdrawal intensified subsequent withdrawal signs. Adenosine ligands attenuated the sensitization to withdrawal signs. In a neurochemical study, the release of DA and its metabolites was impaired in all structures. Significant alterations were also observed in mRNA and protein expression of DA receptors. CONCLUSIONS Results demonstrate that intermittent treatment with morphine induces alterations in the DAergic system which may be responsible for sensitization to morphine withdrawal signs. Although adenosine ligands attenuate this type of sensitization, they are not able to fully restore the physiological brain status.
Collapse
Affiliation(s)
- Joanna Listos
- Department of Pharmacology and Pharmacodynamics, Medical University of Lublin, Chodźki 4a St., 20-093, Lublin, Poland.
| | - Irena Baranowska-Bosiacka
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University, Powstańców Wlkp. 72 Av., 70-111, Szczecin, Poland
| | - Agnieszka Wąsik
- Department of Neurochemistry, Institute of Pharmacology, Polish Academy of Sciences, Smętna 12 St., 31-343, Kraków, Poland
| | - Sylwia Talarek
- Department of Pharmacology and Pharmacodynamics, Medical University of Lublin, Chodźki 4a St., 20-093, Lublin, Poland
| | - Maciej Tarnowski
- Department of Physiology, Pomeranian Medical University, Powstańców Wlkp. 72 Av., 70-111, Szczecin, Poland
| | - Piotr Listos
- Department of Pathological Anatomy, Faculty of Veterinary Medicine, University of Life Sciences, Głęboka 30 St., 20-612, Lublin, Poland
| | - Małgorzata Łupina
- Department of Pharmacology and Pharmacodynamics, Medical University of Lublin, Chodźki 4a St., 20-093, Lublin, Poland
| | - Lucyna Antkiewicz-Michaluk
- Department of Neurochemistry, Institute of Pharmacology, Polish Academy of Sciences, Smętna 12 St., 31-343, Kraków, Poland
| | - Izabela Gutowska
- Department of Biochemistry and Human Nutrition, Pomeranian Medical University, Broniewskiego 24 St., 71-460, Szczecin, Poland
| | - Marta Tkacz
- Department of Physiology, Pomeranian Medical University, Powstańców Wlkp. 72 Av., 70-111, Szczecin, Poland
| | - Anna Pilutin
- Department of Histology and Embryology, Pomeranian Medical University, Powstańców Wlkp. 72 Av., 70-111, Szczecin, Poland
| | - Jolanta Orzelska-Górka
- Department of Pharmacology and Pharmacodynamics, Medical University of Lublin, Chodźki 4a St., 20-093, Lublin, Poland
| | - Dariusz Chlubek
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University, Powstańców Wlkp. 72 Av., 70-111, Szczecin, Poland
| | - Sylwia Fidecka
- Department of Pharmacology and Pharmacodynamics, Medical University of Lublin, Chodźki 4a St., 20-093, Lublin, Poland
| |
Collapse
|
27
|
Abstract
Binge eating is seen across the spectrum of eating disorder diagnoses as well as among individuals who do not meet diagnostic criteria. Analyses of the specific types of foods that are frequently binged upon reveal that sugar-rich items feature prominently in binge-type meals, making the effects of binge consumption of sugar an important focus of study. One avenue to do this involves the use of animal models. Foundational and recent studies of animal models of sugar bingeing, both outlined here, lend insight into the various neurotransmitters and neuropeptides that may participate in or be altered by this behavior. Further, several preclinical studies incorporating sugar bingeing paradigms have explored the utility of pharmacological agents that target such neural systems for reducing sugar bingeing in an effort to enhance clinical treatment. Indeed, the translational implications of findings generated using animal models of sugar bingeing are considered here, along with potential avenues for further study.
Collapse
|
28
|
Moaddab M, Hyland BI, Brown CH. Oxytocin excites nucleus accumbens shell neurons in vivo. Mol Cell Neurosci 2015; 68:323-30. [DOI: 10.1016/j.mcn.2015.08.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Revised: 08/12/2015] [Accepted: 08/24/2015] [Indexed: 01/20/2023] Open
|
29
|
Cruz WS, Pereira LA, Cezar LC, Camarini R, Felicio LF, Bernardi MM, Teodorov E. Role of steroid hormones and morphine treatment in the modulation of opioid receptor gene expression in brain structures in the female rat. SPRINGERPLUS 2015; 4:355. [PMID: 26191482 PMCID: PMC4503706 DOI: 10.1186/s40064-015-1021-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2015] [Accepted: 05/11/2015] [Indexed: 12/27/2022]
Abstract
This study determined the effects of acute treatment with morphine on the expression of the Oprm1, Oprk1, and Oprd1 genes (which encode μ, κ, and δ receptors, respectively) in the striatum, hypothalamus, and periaqueductal gray (PAG) in ovariectomized female rats treated with estrogen. Ovariectomized female rats were divided into five equal groups. Two groups received estrogen (50 µg/kg, 54 h before testing) and saline (ES group) or 3.5 mg/kg morphine (EM group) 2 h before euthanasia. The SS group received saline solution 54 and 2 h before the experiments. The SM group received saline 54 h and 3.5 mg/kg morphine 2 h before the experiments. The W group remained undisturbed. The genes expression were evaluated. Oprm1 and Oprk1 expression were activated, respectively, in the hypothalamus and PAG and in the striatum and PAG by morphine only in estrogen-treated animals. Oprd1 expression in the hypothalamus and PAG was activated by morphine in both estrogen-treated and -nontreated animals. The Oprm1 and Oprk1 gene response to morphine might depend on estrogen, whereas the Oprd1 gene response to morphine might not depend on estrogen, supporting the hypothesis of a functional role for ovarian hormones in opioid receptor-mediated functional adaptations in the female brain.
Collapse
Affiliation(s)
- Wesley Soares Cruz
- Instituto de Ciências da Saúde, Universidade Paulista, UNIP, Dr. Bacelar, São Paulo, CEP 04026-002 Brazil
| | - Lucas Assis Pereira
- Instituto de Ciências da Saúde, Universidade Paulista, UNIP, Dr. Bacelar, São Paulo, CEP 04026-002 Brazil
| | - Luana Carvalho Cezar
- Instituto de Ciências da Saúde, Universidade Paulista, UNIP, Dr. Bacelar, São Paulo, CEP 04026-002 Brazil
| | - Rosana Camarini
- Instituto de Ciências Biomédicas, Universidade de São Paulo, Av. Prof. Lineu Prestes 2415, Cidade Universitária, SP CEP 05508-900 Brazil
| | - Luciano Freitas Felicio
- Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, Av. Prof. Dr. Orlando Marques de Paiva, 87, Cidade Universitária, CEP 05508 270 Brazil
| | - Maria Martha Bernardi
- Instituto de Ciências da Saúde, Universidade Paulista, UNIP, Dr. Bacelar, São Paulo, CEP 04026-002 Brazil ; Centro de Matemática, Computação e Cognição, Universidade Federal do ABC, Av. Dos Estados, 5001, Santo André, CEP 09210-971 Brazil ; Av dos Estados, 5001, Santo André, SP CEP 09210-970 Brazil
| | - Elizabeth Teodorov
- Centro de Matemática, Computação e Cognição, Universidade Federal do ABC, Av. Dos Estados, 5001, Santo André, CEP 09210-971 Brazil
| |
Collapse
|
30
|
Fructose:glucose ratios--a study of sugar self-administration and associated neural and physiological responses in the rat. Nutrients 2015; 7:3869-90. [PMID: 26007337 PMCID: PMC4446784 DOI: 10.3390/nu7053869] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Revised: 04/21/2015] [Accepted: 05/11/2015] [Indexed: 11/16/2022] Open
Abstract
This study explored whether different ratios of fructose (F) and glucose (G) in sugar can engender significant differences in self-administration and associated neurobiological and physiological responses in male Sprague-Dawley rats. In Experiment 1, animals self-administered pellets containing 55% F + 45% G or 30% F + 70% G, and Fos immunoreactivity was assessed in hypothalamic regions regulating food intake and reward. In Experiment 2, rats self-administered solutions of 55% F + 42% G (high fructose corn syrup (HFCS)), 50% F + 50% G (sucrose) or saccharin, and mRNA of the dopamine 2 (D2R) and mu-opioid (MOR) receptor genes were assessed in striatal regions involved in addictive behaviors. Finally, in Experiment 3, rats self-administered HFCS and sucrose in their home cages, and hepatic fatty acids were quantified. It was found that higher fructose ratios engendered lower self-administration, lower Fos expression in the lateral hypothalamus/arcuate nucleus, reduced D2R and increased MOR mRNA in the dorsal striatum and nucleus accumbens core, respectively, as well as elevated omega-6 polyunsaturated fatty acids in the liver. These data indicate that a higher ratio of fructose may enhance the reinforcing effects of sugar and possibly lead to neurobiological and physiological alterations associated with addictive and metabolic disorders.
Collapse
|
31
|
Abstract
The striosome (or patch) was first identified with anatomical techniques as neurons organized in a three-dimensional labyrinth inserted in and interdigitating the rest of neostriatum: the matrix. Striosome and matrix rapidly became known as two neuronal compartments expressing different biochemical markers, embryonic development and afferent and efferent connectivity. In spite of extensive intrinsic neuronal axonal and dendritic extensions supposed to exchange information between matrix and striosomes, evidence suggested the presence of independent areas. Here, we report that indeed these two areas do not exchange synaptic information. We used genetic expression of channel rhodopsin 2 carried by adeno-associated virus serotype 10 (AAVrh10) that only expresses in neurons of the matrix compartment. Whole-cell patch-clamp recordings of matrix neurons activated by light pulses consistently produced inhibitory postsynaptic currents (IPSCs), but the same manipulation did not evoke IPSCs in striosome neurons. The matrix contains both direct and indirect striatal output pathways. By targeting striatal matrix expression of designer receptors exclusively activated by a designer drug (DREADD) hM3di carried by AAVrh10, we were able to inhibit the matrix neuronal compartment of the dorsolateral striatum during performance of a learned single-pellet reach-to-grasp task. As expected, inhibition of matrix neurons by systemic administration of DREADD agonist clozapine-n-oxide interfered with performance of the learned task.
Collapse
|
32
|
Emery MA, Bates MLS, Wellman PJ, Eitan S. Differential effects of oxycodone, hydrocodone, and morphine on the responses of D2/D3 dopamine receptors. Behav Brain Res 2015; 284:37-41. [PMID: 25617530 DOI: 10.1016/j.bbr.2015.01.023] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Revised: 01/12/2015] [Accepted: 01/14/2015] [Indexed: 01/09/2023]
Abstract
Oxycodone and hydrocodone are opioids which are widely used for pain management and are also commonly misused and abused. The exposure to opioid analgesics has been associated with altered responses of D2-like dopamine receptors (D2DRs). Our recent results suggest that various opioids will differentially modulate the responses of D2DRs. The D2DRs are known to be involved in the pathology of addiction and other mental illnesses, indicating the need to improve our understanding of the effects of opioid analgesics on the responses of the D2DRs. Thus, in this study, we first established equianalgesic oral doses of oxycodone, hydrocodone, and morphine using the tail withdrawal assay. Then, mice were orally administered (gavage) with the various opioids or saline once daily for 6 days. Twenty-four hours later, the mice were tested for their locomotor response to quinpirole, a D2/D3 dopamine receptor agonist. Mice pretreated with oxycodone showed significantly greater locomotor supersensitivity to quinpirole than did morphine-pretreated mice, while hydrocodone-pretreated mice showed sensitivity in between that of mice treated with morphine and oxycodone. This finding suggests that various opioids differentially modulate the responses of D2DRs. It provides further evidence supporting of the notion that various opioids carry differential risks to the dopamine reward system.
Collapse
Affiliation(s)
- Michael A Emery
- Behavioral and Cellular Neuroscience, Department of Psychology, Texas A&M University, 4235 TAMU, College Station, TX 77843, USA; Interdisciplinary Program in Neuroscience, Texas A&M Institute for Neuroscience (TAMIN), USA
| | - M L Shawn Bates
- Behavioral and Cellular Neuroscience, Department of Psychology, Texas A&M University, 4235 TAMU, College Station, TX 77843, USA; Interdisciplinary Program in Neuroscience, Texas A&M Institute for Neuroscience (TAMIN), USA
| | - Paul J Wellman
- Behavioral and Cellular Neuroscience, Department of Psychology, Texas A&M University, 4235 TAMU, College Station, TX 77843, USA; Interdisciplinary Program in Neuroscience, Texas A&M Institute for Neuroscience (TAMIN), USA
| | - Shoshana Eitan
- Behavioral and Cellular Neuroscience, Department of Psychology, Texas A&M University, 4235 TAMU, College Station, TX 77843, USA; Interdisciplinary Program in Neuroscience, Texas A&M Institute for Neuroscience (TAMIN), USA.
| |
Collapse
|
33
|
Ranger M, Grunau RE. Early repetitive pain in preterm infants in relation to the developing brain. Pain Manag 2014; 4:57-67. [PMID: 24641344 DOI: 10.2217/pmt.13.61] [Citation(s) in RCA: 176] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Infants born preterm (<37 weeks of gestation) are particularly vulnerable to procedural stress and pain exposure during neonatal intensive care, at a time of rapid and complex brain development. Concerns regarding effects of neonatal pain on brain development have long been expressed. However, empirical evidence of adverse associations is relatively recent. Thus, many questions remain to be answered. This review discusses the short- and long-term effects of pain-related stress and associated treatments on brain maturation and neurodevelopmental outcomes in children born preterm. The current state of the evidence is presented and future research directions are proposed.
Collapse
Affiliation(s)
- Manon Ranger
- Pediatrics, University of British Columbia, BC, Canada
| | | |
Collapse
|
34
|
Chartoff EH, Connery HS. It's MORe exciting than mu: crosstalk between mu opioid receptors and glutamatergic transmission in the mesolimbic dopamine system. Front Pharmacol 2014; 5:116. [PMID: 24904419 PMCID: PMC4034717 DOI: 10.3389/fphar.2014.00116] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Accepted: 04/30/2014] [Indexed: 12/15/2022] Open
Abstract
Opioids selective for the G protein-coupled mu opioid receptor (MOR) produce potent analgesia and euphoria. Heroin, a synthetic opioid, is considered one of the most addictive substances, and the recent exponential rise in opioid addiction and overdose deaths has made treatment development a national public health priority. Existing medications (methadone, buprenorphine, and naltrexone), when combined with psychosocial therapies, have proven efficacy in reducing aspects of opioid addiction. Unfortunately, these medications have critical limitations including those associated with opioid agonist therapies (e.g., sustained physiological dependence and opioid withdrawal leading to high relapse rates upon discontinuation), non-adherence to daily dosing, and non-renewal of monthly injection with extended-release naltrexone. Furthermore, current medications fail to ameliorate key aspects of addiction such as powerful conditioned associations that trigger relapse (e.g., cues, stress, the drug itself). Thus, there is a need for developing novel treatments that target neural processes corrupted with chronic opioid use. This requires a basic understanding of molecular and cellular mechanisms underlying effects of opioids on synaptic transmission and plasticity within reward-related neural circuits. The focus of this review is to discuss how crosstalk between MOR-associated G protein signaling and glutamatergic neurotransmission leads to immediate and long-term effects on emotional states (e.g., euphoria, depression) and motivated behavior (e.g., drug-seeking, relapse). Our goal is to integrate findings on how opioids modulate synaptic release of glutamate and postsynaptic transmission via α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid and N-methyl-D-aspartate receptors in the nucleus accumbens and ventral tegmental area with the clinical (neurobehavioral) progression of opioid dependence, as well as to identify gaps in knowledge that can be addressed in future studies.
Collapse
Affiliation(s)
- Elena H Chartoff
- Department of Psychiatry, Harvard Medical School, McLean Hospital Belmont, MA, USA
| | - Hilary S Connery
- Department of Psychiatry, Harvard Medical School, McLean Hospital Belmont, MA, USA
| |
Collapse
|
35
|
Yuan Ma J, Zhi Gu S, Meng M, Hui Dang Y, Ya Huang C, Onaivi ES. Regional expression of extracellular signal-regulated kinase 1 and 2 mRNA in a morphine-induced conditioned place preference model. Brain Res 2013; 1543:191-9. [PMID: 24296091 DOI: 10.1016/j.brainres.2013.11.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2013] [Revised: 11/14/2013] [Accepted: 11/20/2013] [Indexed: 11/17/2022]
Abstract
Chronic morphine administration has been shown to change the expression of extracellular signal-regulated kinase (ERK), which is a molecule known to play an important role in homeostatic adaptations caused by addictive drugs. In the present study, we investigated the expression of ERK messenger ribonucleic acid (mRNA) of the prefrontal cortex (PFC), nucleus accumbens (NAc), hippocampus, and caudate putamen (CPu) in morphine-induced conditioned place preference (CPP) by real-time reverse transcriptase polymerase chain reaction (real-time PCR). CPP was established by alternate morphine (10 mg/kg) injections, extinguished after a 10-day extinction training, and reinstated by a priming injection of morphine (10 mg/kg). During three phases of morphine-induced CPP, the expression levels of ERK1 and ERK2 mRNA were altered in various brain regions. In the PFC, the expression levels of ERK1 and ERK2 mRNA were increased after chronic morphine injection (p=0.003, p=0.000), and did not return to the basal level after extinction training (p=0.025, p=0.000), but decreased after a priming injection (p=0.000, p=0.000). In the CPu, ERK1 mRNA had an abrupt increase following a priming injection (p=0.000). Different from other brain regions, the expression levels of ERK1 and ERK2 mRNA were decreased in three phases of morphine-induced CPP in the hippocampus (ERK1: p=0.000, p=0.040, p=0.000; ERK2: p=0.000, p=0.000, p=0.000, respectively). These results suggest region-specific changes of ERK1 and ERK2 mRNA expression during morphine-induced CPP.
Collapse
Affiliation(s)
- Jing Yuan Ma
- Department of Forensic Medicine, Xi'an Jiaotong University School of Medicine, Xi'an 710061, People's Republic of China
| | - Shan Zhi Gu
- Department of Forensic Medicine, Xi'an Jiaotong University School of Medicine, Xi'an 710061, People's Republic of China.
| | - Min Meng
- Department of Oncology, First Affiliated Hospital of Medical School of Xi'an Jiaotong University, Xi'an 710061, People's Republic of China
| | - Yong Hui Dang
- Department of Forensic Medicine, Xi'an Jiaotong University School of Medicine, Xi'an 710061, People's Republic of China
| | - Chong Ya Huang
- Department of Forensic Medicine, Xi'an Jiaotong University School of Medicine, Xi'an 710061, People's Republic of China
| | - Emmanuel S Onaivi
- Department of Biology, William Paterson University, Wayne, NJ 07470, USA
| |
Collapse
|
36
|
Listos J, Baranowska-Bosiacka I, Talarek S, Listos P, Orzelska J, Fidecka S, Gutowska I, Kolasa A, Rybicka M, Chlubek D. The effect of perinatal lead exposure on dopamine receptor D2 expression in morphine dependent rats. Toxicology 2013; 310:73-83. [DOI: 10.1016/j.tox.2013.05.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2013] [Revised: 04/29/2013] [Accepted: 05/14/2013] [Indexed: 11/25/2022]
|
37
|
Koizumi H, Morigaki R, Okita S, Nagahiro S, Kaji R, Nakagawa M, Goto S. Response of striosomal opioid signaling to dopamine depletion in 6-hydroxydopamine-lesioned rat model of Parkinson's disease: a potential compensatory role. Front Cell Neurosci 2013; 7:74. [PMID: 23730270 PMCID: PMC3656348 DOI: 10.3389/fncel.2013.00074] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Accepted: 05/02/2013] [Indexed: 12/16/2022] Open
Abstract
The opioid peptide receptors consist of three major subclasses, namely, μ, δ, and κ (MOR, DOR, and KOR, respectively). They are involved in the regulation of striatal dopamine functions, and increased opioid transmissions are thought to play a compensatory role in altered functions of the basal ganglia in Parkinson's disease (PD). In this study, we used an immunohistochemistry with tyramide signal amplification (TSA) protocols to determine the distributional patterns of opioid receptors in the striosome-matrix systems of the rat striatum. As a most striking feature of striatal opioid anatomy, MORs are highly enriched in the striosomes and subcallosal streak. We also found that DORs are localized in a mosaic pattern in the dorsal striatum (caudate-putamen), with heightened labeling for DOR in the striosomes relative to the matrix compartment. In the 6-hydroxydopamine-lesioned rat model of PD, lesions of the nigrostriatal pathways caused a significant reduction of striatal labeling for both the MOR and DOR in the striosomes, but not in the matrix compartment. Our results suggest that the activities of the striosome and matrix compartments are differentially regulated by the opioid signals involving the MORs and DORs, and that the striosomes may be more responsive to opioid peptides (e.g., enkephalin) than the matrix compartment. Based on a model in which the striosome compartment regulates the striatal activity, we propose a potent compensatory role of striosomal opioid signaling under the conditions of the striatal dopamine depletion that occurs in PD.
Collapse
Affiliation(s)
- Hidetaka Koizumi
- Department of Motor Neuroscience and Neurotherapeutics, Graduate School of Medical Sciences, Institute of Health Biosciences, University of Tokushima Tokushima, Japan ; Department of Clinical Neuroscience, Graduate School of Medical Sciences, Institute of Health Biosciences, University of Tokushima Tokushima, Japan ; Department of Neurology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine Kyoto, Japan
| | | | | | | | | | | | | |
Collapse
|
38
|
Abstract
Food and drugs can activate brain dopamine systems and sensitivity to the effects of drugs acting on those systems is influenced by amount and content of food consumed. This study examined the effects of drinking sucrose on behavioral effects of the direct-acting dopamine receptor agonist quinpirole. Male Sprague-Dawley rats (n=6/group) had free access to water or 10% sucrose and quinpirole dose-response curves (yawning and hypothermia) were generated weekly for 8 weeks. Subsequently, all rats drank water for 8 weeks with quinpirole dose-response curves determined on weeks 9, 10, and 16. In rats drinking sucrose, the ascending (D3 receptor-mediated), but not descending (D2 receptor-mediated), limb of the yawning dose-response curve shifted leftward. The D3 receptor-selective antagonist PG01037 shifted the ascending limb of the dose-response curve to the right in all rats. When rats that previously drank sucrose drank water, their sensitivity to quinpirole did not return to normal. Quinpirole-induced hypothermia was not different between groups. These data show that drinking sucrose increases sensitivity to a dopamine D3, but not D2, receptor-mediated effect and that this change is long lasting. Dopamine receptors mediate the effects of many drugs and the actions of those drugs are likely impacted by dietary factors.
Collapse
|
39
|
Farid WO, Lawrence AJ, Krstew EV, Tait RJ, Hulse GK, Dunlop SA. Maternally administered sustained-release naltrexone in rats affects offspring neurochemistry and behaviour in adulthood. PLoS One 2012; 7:e52812. [PMID: 23300784 PMCID: PMC3530485 DOI: 10.1371/journal.pone.0052812] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Accepted: 11/21/2012] [Indexed: 02/06/2023] Open
Abstract
Naltrexone is not recommended during pregnancy. However, sustained-release naltrexone implant use in humans has resulted in cases of inadvertent foetal exposure. Here, we used clinically relevant dosing to examine the effects of maternally administered sustained-release naltrexone on the rat brain by examining offspring at birth and in adulthood. Maternal treatment (naltrexone or placebo implant) started before conception and ceased during gestation, birth or weaning. Morphometry was assessed in offspring at birth and adulthood. Adult offspring were evaluated for differences in locomotor behaviour (basal and morphine-induced, 10 mg/kg, s.c.) and opioid neurochemistry, propensity to self-administer morphine and cue-induced drug-seeking after abstinence. Blood analysis confirmed offspring exposure to naltrexone during gestation, birth and weaning. Naltrexone exposure increased litter size and reduced offspring birth-weight but did not alter brain morphometry. Compared to placebo, basal motor activity of naltrexone-exposed adult offspring was lower, yet they showed enhanced development of psychomotor sensitization to morphine. Developmental naltrexone exposure was associated with resistance to morphine-induced down-regulation of striatal preproenkephalin mRNA expression in adulthood. Adult offspring also exhibited greater operant responding for morphine and, in addition, cue-induced drug-seeking was enhanced. Collectively, these data show pronounced effects of developmental naltrexone exposure, some of which persist into adulthood, highlighting the need for follow up of humans that were exposed to naltrexone in utero.
Collapse
Affiliation(s)
- Waleed O. Farid
- Experimental and Regenerative Neurosciences, School of Animal Biology, The University of Western Australia, Perth, Western Australia, Australia
- Unit for Research and Education in Drugs and Alcohol, School of Psychiatry and Clinical Neurosciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Andrew J. Lawrence
- Florey Neuroscience Institutes, The University of Melbourne, Melbourne, Victoria, Australia
- Centre for Neuroscience, The University of Melbourne, Melbourne, Victoria, Australia
| | - Elena V. Krstew
- Florey Neuroscience Institutes, The University of Melbourne, Melbourne, Victoria, Australia
| | - Robert J. Tait
- Unit for Research and Education in Drugs and Alcohol, School of Psychiatry and Clinical Neurosciences, The University of Western Australia, Perth, Western Australia, Australia
- Centre for Mental Health Research, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Gary K. Hulse
- Unit for Research and Education in Drugs and Alcohol, School of Psychiatry and Clinical Neurosciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Sarah A. Dunlop
- Experimental and Regenerative Neurosciences, School of Animal Biology, The University of Western Australia, Perth, Western Australia, Australia
- The Western Australian Institute for Medical Research, Perth, Western Australia, Australia
- * E-mail:
| |
Collapse
|
40
|
CRF2 receptor-deficiency eliminates opiate withdrawal distress without impairing stress coping. Mol Psychiatry 2012; 17:1283-94. [PMID: 21946917 DOI: 10.1038/mp.2011.119] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The opiate withdrawal syndrome is a severe stressor that powerfully triggers addictive drug intake. However, no treatment yet exists that effectively relieves opiate withdrawal distress and spares stress-coping abilities. The corticotropin-releasing factor (CRF) system mediates the stress response, but its role in opiate withdrawal distress and bodily strategies aimed to cope with is unknown. CRF-like signaling is transmitted by two receptor pathways, termed CRF(1) and CRF(2). Here, we report that CRF(2) receptor-deficient (CRF(2)(-/-)) mice lack the dysphoria-like and the anhedonia-like states of opiate withdrawal. Moreover, in CRF(2)(-/-) mice opiate withdrawal does not increase the activity of brain dynorphin, CRF and periaqueductal gray circuitry, which are major substrates of opiate withdrawal distress. Nevertheless, CRF(2) receptor-deficiency does not impair brain, neuroendocrine and autonomic stress-coping responses to opiate withdrawal. The present findings point to the CRF(2) receptor pathway as a unique target to relieve opiate withdrawal distress without impairing stress-coping abilities.
Collapse
|
41
|
Hofford RS, Wellman PJ, Eitan S. Morphine alters the locomotor responses to a D2/D3 dopamine receptor agonist differentially in adolescent and adult mice. J Psychopharmacol 2012; 26:1355-65. [PMID: 22522973 DOI: 10.1177/0269881112443741] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The D2-like dopamine receptors mediate the emotional/aversive state during morphine withdrawal. Given age-dependent differences in the affective responses to withdrawal, this study examined whether the response to dopamine receptor agonists is altered differentially across ages following morphine administration. Adolescent and adult mice were injected with morphine (twice daily, 10-40 mg/kg, s.c.) or saline for 6 days. Subsequently, they were examined for their locomotor response to quinpirole, a D2/D3 receptor agonist, and SKF 38393, a D1 receptor agonist. Quinpirole dose-dependently reduced locomotion in drug-naïve animals. Initial suppression was also observed in morphine-treated animals, but was followed by enhanced locomotion. Notably, this enhanced locomotion was markedly greater in adolescents than adults. Quinpirole-induced hypo-locomotion is thought to be mediated by the presynaptic D2Short receptors, whereas its activating effect is mediated by postsynaptic D2Long/D3 receptors. This suggests that following morphine administration, the postsynaptic, but not the presynaptic, dopaminergic signaling is differentially modulated across ages. This locomotor supersensitivity was not observed for SKF 38393, a D1 dopamine receptor agonist. The D2/D3 receptors are involved in the pathophysiology of many mental illnesses. Thus, this study offers a potential explanation for the increased psychiatric disorder co-morbidities when drug use begins during adolescence.
Collapse
Affiliation(s)
- Rebecca S Hofford
- Behavioral and Cellular Neuroscience, Department of Psychology, Texas A&M University, College Station, TX, USA
| | | | | |
Collapse
|
42
|
Abstract
The high prevalence of substance abuse in individuals with bulimia nervosa (BN) and the pervasive symptom substitution in many types of drug addiction suggest that a number of substances--including food--can impair an individual's self-control, even in the presence of negative consequences. Nonetheless, the neurobiological similarities between BN and drug addiction are not clearly established. This review explores how the specific eating patterns seen in BN (binge eating and purging, with intermittent dietary restriction) are particularly addictive and differentiate BN from other eating disorders and obesity. A number of peripheral and central biological aberrations seen in BN may result in altered reward sensitivity in these individuals, particularly through effects on the dopaminergic system. Neurobiological findings support the notion that BN is an addictive disorder, which has treatment implications for therapy and pharmacological manipulations.
Collapse
|
43
|
Deficits in dopamine D(2) receptors and presynaptic dopamine in heroin dependence: commonalities and differences with other types of addiction. Biol Psychiatry 2012; 71:192-8. [PMID: 22015315 PMCID: PMC3253988 DOI: 10.1016/j.biopsych.2011.08.024] [Citation(s) in RCA: 123] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2011] [Revised: 07/27/2011] [Accepted: 08/15/2011] [Indexed: 11/22/2022]
Abstract
BACKGROUND Positron emission tomography (PET) imaging studies have shown that addiction to a number of substances of abuse is associated with a decrease in dopamine D(2/3) receptor binding and decreased presynaptic dopamine release in the striatum. Some studies have also shown that these reductions are associated with the severity of addiction. For example, in cocaine dependence, low dopamine release is associated with the choice to self-administer cocaine. The goal of the present study was to investigate these parameters of striatal dopamine transmission in heroin dependence and their association with drug seeking behavior. METHODS Heroin-dependent and healthy control subjects were scanned with [(11)C]raclopride before and after stimulant administration (methylphenidate) to measure striatal D(2/3) receptor binding and presynaptic dopamine release. After the PET scans, the heroin-dependent subjects performed heroin self-administration sessions. RESULTS Both striatal D(2/3) receptor binding and dopamine release were reduced in the heroin-dependent subjects compared with healthy control subjects. However, neither PET measure of dopamine transmission predicted the choice to self-administer heroin. CONCLUSIONS These findings show that heroin addiction, like addiction to other drugs of abuse, is associated with low D(2/3) receptor binding and low presynaptic dopamine. However, neither of these outcome measures was associated with the choice to self-administer heroin.
Collapse
|
44
|
Pandit R, Mercer JG, Overduin J, la Fleur SE, Adan RAH. Dietary factors affect food reward and motivation to eat. Obes Facts 2012; 5:221-42. [PMID: 22647304 DOI: 10.1159/000338073] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2011] [Accepted: 10/25/2011] [Indexed: 01/09/2023] Open
Abstract
The propensity to indulge in unhealthy eating and overconsumption of palatable food is a crucial determinant in the rising prevalence of obesity in today's society. The tendency to consume palatable foods in quantities that exceed energy requirements has been linked to an addiction-like process. Although the existence of 'food addiction' has not been conclusively proven, evidence points to alterations in the brain reward circuitry induced by overconsumption of palatable foods that are similar to those seen in drug addiction. The diet-induced obesity paradigm is a common procedure to replicate features of human obesity in rodents. Here we review data on the effect of various obesogenic diets (high-fat, Ensure™, cafeteria type, sucrose) on the extent of leptin resistance, hypothalamic-neuropeptidergic adaptations and changes in feeding behavior. We also discuss to what extent such diets and properties such as macronutrient composition, physical structure, sensory stimuli, and post-ingestive effects influence the brain-reward pathways. Understanding the interaction between individual components of diets, feeding patterns, and brain reward pathways could facilitate the design of diets that limit overconsumption and prevent weight gain.
Collapse
Affiliation(s)
- Rahul Pandit
- Rudolf Magnus Institute of Neuroscience, Department of Neuroscience and Pharmacology, University Medical Center Utrecht, Utrecht, the Netherlands
| | | | | | | | | |
Collapse
|
45
|
Li T, Hou Y, Cao W, Yan CX, Chen T, Li SB. Role of dopamine D3 receptors in basal nociception regulation and in morphine-induced tolerance and withdrawal. Brain Res 2012; 1433:80-4. [DOI: 10.1016/j.brainres.2011.11.045] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2011] [Revised: 10/25/2011] [Accepted: 11/19/2011] [Indexed: 10/14/2022]
|
46
|
Schlussman SD, Cassin J, Zhang Y, Levran O, Ho A, Kreek MJ. Regional mRNA expression of the endogenous opioid and dopaminergic systems in brains of C57BL/6J and 129P3/J mice: strain and heroin effects. Pharmacol Biochem Behav 2011; 100:8-16. [PMID: 21807019 DOI: 10.1016/j.pbb.2011.07.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2011] [Revised: 07/08/2011] [Accepted: 07/17/2011] [Indexed: 12/12/2022]
Abstract
We have previously shown strain and dose differences in heroin-induced behavior, reward and regional expression of somatostatin receptor mRNAs in C57BL/6J and 129P3/J mice. Using Real Time PCR we examined the effects of five doses of heroin on the levels of the transcripts of endogenous opioid peptides and their receptors and dopaminergic receptors in the mesocorticolimbic and nigrostriatal pathways in these same mice. Compared to C57BL/6J animals, 129P3/J mice had higher mRNA levels of Oprk1 in the nucleus accumbens and of Oprd1 in the nucleus accumbens and a region containing both the substantia nigra and ventral tegmental area (SN/VTA). In the cortex of 129P3/J mice, lower levels of both Oprk1 and Oprd1 mRNAs were observed. Pdyn mRNA was also lower in the caudate putamen of 129P3/J mice. Strain differences were not found in the levels of Oprm1, Penk or Pomc mRNAs in any region examined. Within strains, complex patterns of heroin dose-dependent changes in the levels of Oprm1, Oprk1 and Oprd1 mRNAs were observed in the SN/VTA. Additionally, Oprd1 mRNA was dose-dependently elevated in the hypothalamus. Also in the hypothalamus, we found higher levels of Drd1a mRNA in C57BL/6J mice than in 129P3/J animals and higher levels of DAT (Slc6a3) mRNA in the caudate putamen of C57BL/6J animals than in 129P3/J counterparts. Heroin had dose-related effects on Drd1a mRNA in the hypothalamus and on Drd2 mRNA in the caudate putamen.
Collapse
Affiliation(s)
- S D Schlussman
- The Laboratory of the Biology of Addictive Diseases, The Rockefeller University, New York, NY 10065, USA.
| | | | | | | | | | | |
Collapse
|
47
|
Zhu J, Spencer TJ, Liu-Chen LY, Biederman J, Bhide PG. Methylphenidate and μ opioid receptor interactions: a pharmacological target for prevention of stimulant abuse. Neuropharmacology 2011; 61:283-92. [PMID: 21545805 PMCID: PMC3105120 DOI: 10.1016/j.neuropharm.2011.04.015] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2011] [Accepted: 04/12/2011] [Indexed: 11/28/2022]
Abstract
Methylphenidate (MPH) is one of the most commonly used and highly effective treatments for attention deficit hyperactivity disorder (ADHD) in children and adults. As the therapeutic use of MPH has increased, so has its abuse and illicit street-use. Yet, the mechanisms associated with development of MPH-associated abuse and dependence are not well understood making it difficult to develop methods to help its mitigation. As a result, many ADHD patients especially children and youth, that could benefit from MPH treatment do not receive it and risk lifelong disabilities associated with untreated ADHD. Therefore, understanding the mechanisms associated with development of MPH addiction and designing methods to prevent it assume high public health significance. Using a mouse model we show that supra-therapeutic doses of MPH produce rewarding effects (surrogate measure for addiction in humans) in a conditioned place preference paradigm and upregulate μ opioid receptor (MOPR) activity in the striatum and nucleus accumbens, brain regions associated with reward circuitry. Co-administration of naltrexone, a non-selective opioid receptor antagonist, prevents MPH-induced MOPR activation and the rewarding effects. The MPH-induced MOPR activation and rewarding effect require activation of the dopamine D1 but not the D2-receptor. These findings identify the MOPR as a potential target for attenuating rewarding effects of MPH and suggest that a formulation that combines naltrexone with MPH could be a useful pharmaceutical approach to alleviate abuse potential of MPH and other stimulants.
Collapse
Affiliation(s)
- Jinmin Zhu
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02129, USA
| | | | | | | | | |
Collapse
|
48
|
New operant model of reinstatement of food-seeking behavior in mice. Psychopharmacology (Berl) 2011; 215:49-70. [PMID: 21161187 DOI: 10.1007/s00213-010-2110-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2010] [Accepted: 11/23/2010] [Indexed: 10/18/2022]
Abstract
RATIONALE A major problem in treating obesity is the high rate of relapse to abnormal food-taking behavior when maintaining diet. OBJECTIVES The present study evaluates the reinstatement of extinguished palatable food-seeking behavior induced by cues previously associated with the palatable food, re-exposure to this food, or stress. The participation of the opioid and dopamine mechanisms in the acquisition, extinction, and cue-induced reinstatement was also investigated. MATERIALS AND METHODS C57BL/6 mice were first trained on a fixed-ratio-1 schedule of reinforcement to obtain chocolate-flavored pellets during 20 days, which was associated to a stimulus light. Operant behavior was then extinguished during 20 daily sessions. mRNA levels of opioid peptide precursors and dopamine receptors were evaluated in the brain by in situ hybridization and RT-PCR techniques. RESULTS A reinstatement of food-seeking behavior was only obtained after exposure to the food-associated cue. A down-regulation of prodynorphin mRNA was found in the dorsal striatum and nucleus accumbens after the acquisition, extinction, and reinstatement of the operant behavior. Extinction and reinstatement of this operant response enhanced proenkephalin mRNA in the dorsal striatum and/or the nucleus accumbens core. Down-regulation of D2 receptor expression was observed in the dorsal striatum and nucleus accumbens after reinstatement. An up-regulation of PDYN mRNA expression was found in the hypothalamus after extinction and reinstatement. CONCLUSIONS This study provides a new operant model in mice for the evaluation of food-taking behavior and reveals specific changes in the dopamine and opioid system associated to the behavioral responses directed to obtain a natural reward.
Collapse
|
49
|
Hood S, Cassidy P, Mathewson S, Stewart J, Amir S. Daily morphine injection and withdrawal disrupt 24-h wheel running and PERIOD2 expression patterns in the rat limbic forebrain. Neuroscience 2011; 186:65-75. [PMID: 21536108 DOI: 10.1016/j.neuroscience.2011.04.045] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2011] [Revised: 03/30/2011] [Accepted: 04/19/2011] [Indexed: 12/12/2022]
Abstract
Symptoms of opiate withdrawal include disturbances in circadian rhythms. We examined in male Wistar rats (n=48) the effects of a daily, mid-morning morphine injection (5-40 mg/kg, i.p.) and its withdrawal on 24-h wheel-running activity and on the expression of the clock protein, PERIOD2 (PER2), in the suprachiasmatic nucleus (SCN), oval nucleus of the bed nucleus of the stria terminalis (BNSTov), central amygdala (CEA), and dorsal striatum. Rats were killed over 2 days at 10, 22, 46, and 58 h after the last daily morphine injection at zeitgeber times (ZT) 1 or ZT13. Daily morphine injections and their withdrawal suppressed nighttime wheel running, but did not entrain any increase in activity in advance of the injection. Neither morphine injection nor its withdrawal affected PER2 expression in the SCN, whereas the normal daily peaks of PER2 in the BNSTov, CEA, and dorsal striatum were blunted both during morphine administration and its withdrawal. Treatment with a dopaminergic agonist (the D2/3 agonist, quinpirole, 1.0 mg/kg) or a noradrenergic agonist (alpha2 agonist, clonidine, 0.1 mg/kg) in morphine withdrawal did not restore normal PER2 patterns in each affected region; however, both quinpirole and clonidine themselves altered normal daily PER2 expression patterns in morphine-naive rats. These findings confirm and extend previous observations that opiates disrupt daily patterns of clock gene expression in the limbic forebrain. Furthermore, catecholaminergic drugs, which have been previously found to alleviate symptoms of opiate withdrawal, do not alleviate the effects of morphine withdrawal on PER2, but do modulate daily patterns of PER2 expression in saline controls.
Collapse
Affiliation(s)
- S Hood
- Center for Studies in Behavioral Neurobiology, Concordia University, Montreal, QC, Canada
| | | | | | | | | |
Collapse
|
50
|
Ishida S, Kawasaki Y, Araki H, Asanuma M, Matsunaga H, Sendo T, Kawasaki H, Gomita Y, Kitamura Y. α7 Nicotinic acetylcholine receptors in the central amygdaloid nucleus alter naloxone-induced withdrawal following a single exposure to morphine. Psychopharmacology (Berl) 2011; 214:923-31. [PMID: 21125398 DOI: 10.1007/s00213-010-2101-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2010] [Accepted: 11/11/2010] [Indexed: 11/25/2022]
Abstract
RATIONALE Negative motivational withdrawal from acute opiate dependence was induced by an opioid antagonist, and the withdrawal signs prevented by pretreatment with nicotine. OBJECTIVES The present study was undertaken to examine the mechanism of nicotine-induced attenuation of withdrawal precipitated by naloxone in rats administered a single dose of morphine. METHODS Conditioned place aversion (CPA) was precipitated by naloxone in rats exposed once to morphine. Nicotinic acetylcholine receptor (nAChR) agonists were microinjected into the central amygdaloid nucleus (CeA) before naloxone was administered. Additionally, c-Fos expression in the amygdala was measured in rats exposed to α7 nAChR ligands. RESULTS The microinjection of nicotine (0.3 and 1.0 μg/μl) into the CeA dose-dependently inhibited naloxone-induced CPA. This inhibition of CPA was reversed by methyllycaconitine (MLA), an α7 nAChR antagonist. CPA was also significantly attenuated by the microinjection of tropisetron (3.0 μg/μl), an α7 nAChR agonist and 5-hydroxytriptamine 3 (5-HT(3)) receptor antagonist, but not by ondansetron (1.0 and 3.0 μg/μl), a 5-HT(3) receptor antagonist. The microinjection of PNU-282987 (3.0 μg/μl), a selective α7 nAChR agonist, into the CeA also inhibited CPA. Furthermore, nicotine increased c-Fos expression in the CeA, but not the medial or basolateral amygdaloid nucleus. The increase of c-Fos in the CeA was significantly inhibited by MLA. CONCLUSION Nicotine-induced attenuation of CPA precipitated by naloxone is mediated by the α7 nAChR subtype, and the CeA is one of the regions of the brain involved in the effect of nicotine on acutely opiate-dependent subjects.
Collapse
Affiliation(s)
- Shigeru Ishida
- Department of Clinical Pharmacy, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1, Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|