1
|
Birren SJ, Goodrich LV, Segal RA. Satellite Glial Cells: No Longer the Most Overlooked Glia. Cold Spring Harb Perspect Biol 2025; 17:a041367. [PMID: 38768970 PMCID: PMC11694750 DOI: 10.1101/cshperspect.a041367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Many glial biologists consider glia the neglected cells of the nervous system. Among all the glia of the central and peripheral nervous system, satellite glia may be the most often overlooked. Satellite glial cells (SGCs) are located in ganglia of the cranial nerves and the peripheral nervous system. These small cells surround the cell bodies of neurons in the trigeminal ganglia (TG), spiral ganglia, nodose and petrosal ganglia, sympathetic ganglia, and dorsal root ganglia (DRG). Essential SGC features include their intimate connections with the associated neurons, their small size, and their derivation from neural crest cells. Yet SGCs also exhibit tissue-specific properties and can change rapidly, particularly in response to injury. To illustrate the range of SGC functions, we will focus on three types: those of the spiral, sympathetic, and DRG, and consider both their shared features and those that differ based on location.
Collapse
Affiliation(s)
- Susan J Birren
- Department of Biology, Brandeis University, Waltham, Massachusetts 02453, USA
| | - Lisa V Goodrich
- Department of Neurobiology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Rosalind A Segal
- Department of Neurobiology, Harvard Medical School, Boston, Massachusetts 02115, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA
| |
Collapse
|
2
|
Giri SS, Tripathi AS, Erkekoğlu P, Zaki MEA. Molecular pathway of pancreatic cancer-associated neuropathic pain. J Biochem Mol Toxicol 2024; 38:e23638. [PMID: 38613466 DOI: 10.1002/jbt.23638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 11/29/2023] [Accepted: 12/21/2023] [Indexed: 04/15/2024]
Abstract
The pancreas is a heterocrine gland that has both exocrine and endocrine parts. Most pancreatic cancer begins in the cells that line the ducts of the pancreas and is called pancreatic ductal adenocarcinoma (PDAC). PDAC is the most encountered pancreatic cancer type. One of the most important characteristic features of PDAC is neuropathy which is primarily due to perineural invasion (PNI). PNI develops tumor microenvironment which includes overexpression of fibroblasts cells, macrophages, as well as angiogenesis which can be responsible for neuropathy pain. In tumor microenvironment inactive fibroblasts are converted into an active form that is cancer-associated fibroblasts (CAFs). Neurotrophins they also increase the level of Substance P, calcitonin gene-related peptide which is also involved in pain. Matrix metalloproteases are the zinc-associated proteases enzymes which activates proinflammatory interleukin-1β into its activated form and are responsible for release and activation of Substance P which is responsible for neuropathic pain by transmitting pain signal via dorsal root ganglion. All the molecules and their role in being responsible for neuropathic pain are described below.
Collapse
Affiliation(s)
| | - Alok Shiomurti Tripathi
- Department of Pharmacology, Era College of Pharmacy, Era University, Lucknow, Uttar Pradesh, India
| | - Pınar Erkekoğlu
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| | - Magdi E A Zaki
- Department of Chemistry, Faculty of Science, Imam Mohammad lbn Saud Islamic University, Riyadh, Saudi Arabia
| |
Collapse
|
3
|
Konnova EA, Deftu AF, Chu Sin Chung P, Pertin M, Kirschmann G, Decosterd I, Suter MR. Characterisation of GFAP-Expressing Glial Cells in the Dorsal Root Ganglion after Spared Nerve Injury. Int J Mol Sci 2023; 24:15559. [PMID: 37958541 PMCID: PMC10647921 DOI: 10.3390/ijms242115559] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/16/2023] [Accepted: 10/18/2023] [Indexed: 11/15/2023] Open
Abstract
Satellite glial cells (SGCs), enveloping primary sensory neurons' somas in the dorsal root ganglion (DRG), contribute to neuropathic pain upon nerve injury. Glial fibrillary acidic protein (GFAP) serves as an SGC activation marker, though its DRG satellite cell specificity is debated. We employed the hGFAP-CFP transgenic mouse line, designed for astrocyte studies, to explore its expression within the peripheral nervous system (PNS) after spared nerve injury (SNI). We used diverse immunostaining techniques, Western blot analysis, and electrophysiology to evaluate GFAP+ cell changes. Post-SNI, GFAP+ cell numbers increased without proliferation, and were found near injured ATF3+ neurons. GFAP+ FABP7+ SGCs increased, yet 75.5% of DRG GFAP+ cells lacked FABP7 expression. This suggests a significant subset of GFAP+ cells are non-myelinating Schwann cells (nmSC), indicated by their presence in the dorsal root but not in the ventral root which lacks unmyelinated fibres. Additionally, patch clamp recordings from GFAP+ FABP7-cells lacked SGC-specific Kir4.1 currents, instead displaying outward Kv currents expressing Kv1.1 and Kv1.6 channels specific to nmSCs. In conclusion, this study demonstrates increased GFAP expression in two DRG glial cell subpopulations post-SNI: GFAP+ FABP7+ SGCs and GFAP+ FABP7- nmSCs, shedding light on GFAP's specificity as an SGC marker after SNI.
Collapse
Affiliation(s)
- Elena A. Konnova
- Pain Center, Department of Anesthesiology, Lausanne University Hospital (CHUV), 1005 Lausanne, Switzerland
| | - Alexandru-Florian Deftu
- Pain Center, Department of Anesthesiology, Lausanne University Hospital (CHUV), 1005 Lausanne, Switzerland
| | - Paul Chu Sin Chung
- Pain Center, Department of Anesthesiology, Lausanne University Hospital (CHUV), 1005 Lausanne, Switzerland
| | - Marie Pertin
- Pain Center, Department of Anesthesiology, Lausanne University Hospital (CHUV), 1005 Lausanne, Switzerland
| | - Guylène Kirschmann
- Pain Center, Department of Anesthesiology, Lausanne University Hospital (CHUV), 1005 Lausanne, Switzerland
| | - Isabelle Decosterd
- Pain Center, Department of Anesthesiology, Lausanne University Hospital (CHUV), 1005 Lausanne, Switzerland
- Department of Fundamental Neurosciences, Faculty of Biology and Medicine, University of Lausanne, 1005 Lausanne, Switzerland
| | - Marc R. Suter
- Pain Center, Department of Anesthesiology, Lausanne University Hospital (CHUV), 1005 Lausanne, Switzerland
- Department of Fundamental Neurosciences, Faculty of Biology and Medicine, University of Lausanne, 1005 Lausanne, Switzerland
| |
Collapse
|
4
|
Mustafa S, Bajic JE, Barry B, Evans S, Siemens KR, Hutchinson MR, Grace PM. One immune system plays many parts: The dynamic role of the immune system in chronic pain and opioid pharmacology. Neuropharmacology 2023; 228:109459. [PMID: 36775098 PMCID: PMC10015343 DOI: 10.1016/j.neuropharm.2023.109459] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 02/06/2023] [Accepted: 02/08/2023] [Indexed: 02/12/2023]
Abstract
The transition from acute to chronic pain is an ongoing major problem for individuals, society and healthcare systems around the world. It is clear chronic pain is a complex multidimensional biological challenge plagued with difficulties in pain management, specifically opioid use. In recent years the role of the immune system in chronic pain and opioid pharmacology has come to the forefront. As a highly dynamic and versatile network of cells, tissues and organs, the immune system is perfectly positioned at the microscale level to alter nociception and drive structural adaptations that underpin chronic pain and opioid use. In this review, we highlight the need to understand the dynamic and adaptable characteristics of the immune system and their role in the transition, maintenance and resolution of chronic pain. The complex multidimensional interplay of the immune system with multiple physiological systems may provide new transformative insight for novel targets for clinical management and treatment of chronic pain. This article is part of the Special Issue on "Opioid-induced changes in addiction and pain circuits".
Collapse
Affiliation(s)
- Sanam Mustafa
- School of Biomedicine, The University of Adelaide, Adelaide, SA, Australia; Australian Research Council Centre of Excellence for Nanoscale BioPhotonics, The University of Adelaide, Adelaide, SA, Australia; Davies Livestock Research Centre, The University of Adelaide, Roseworthy, SA, Australia.
| | - Juliana E Bajic
- School of Biomedicine, The University of Adelaide, Adelaide, SA, Australia; Davies Livestock Research Centre, The University of Adelaide, Roseworthy, SA, Australia
| | - Benjamin Barry
- School of Biomedicine, The University of Adelaide, Adelaide, SA, Australia
| | - Samuel Evans
- School of Biomedicine, The University of Adelaide, Adelaide, SA, Australia; Davies Livestock Research Centre, The University of Adelaide, Roseworthy, SA, Australia
| | - Kariel R Siemens
- School of Biomedicine, The University of Adelaide, Adelaide, SA, Australia
| | - Mark R Hutchinson
- School of Biomedicine, The University of Adelaide, Adelaide, SA, Australia; Australian Research Council Centre of Excellence for Nanoscale BioPhotonics, The University of Adelaide, Adelaide, SA, Australia; Davies Livestock Research Centre, The University of Adelaide, Roseworthy, SA, Australia
| | - Peter M Grace
- Laboratories of Neuroimmunology, Department of Symptom Research, University of Texas MD Anderson Cancer Center, Houston, TX, USA; MD Anderson Pain Research Consortium, Houston, TX, USA
| |
Collapse
|
5
|
Closing the Gap between the Auditory Nerve and Cochlear Implant Electrodes: Which Neurotrophin Cocktail Performs Best for Axonal Outgrowth and Is Electrical Stimulation Beneficial? Int J Mol Sci 2023; 24:ijms24032013. [PMID: 36768339 PMCID: PMC9916558 DOI: 10.3390/ijms24032013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/12/2023] [Accepted: 01/14/2023] [Indexed: 01/22/2023] Open
Abstract
Neurotrophins promote neurite outgrowth of auditory neurons and may help closing the gap to cochlear implant (CI) electrodes to enhance electrical hearing. The best concentrations and mix of neurotrophins for this nerve regrowth are unknown. Whether electrical stimulation (ES) during outgrowth is beneficial or may direct axons is another open question. Auditory neuron explant cultures of distinct cochlear turns of 6-7 days old mice were cultured for four days. We tested different concentrations and combinations of BDNF and NT-3 and quantified the numbers and lengths of neurites with an advanced automated analysis. A custom-made 24-well electrical stimulator based on two bulk CIs served to test different ES strategies. Quantification of receptors trkB, trkC, p75NTR, and histological analysis helped to analyze effects. We found 25 ng/mL BDNF to perform best, especially in basal neurons, a negative influence of NT-3 in combined BDNF/NT-3 scenarios, and tonotopic changes in trk and p75NTR receptor stainings. ES largely impeded neurite outgrowth and glia ensheathment in an amplitude-dependent way. Apical neurons showed slight benefits in neurite numbers and length with ES at 10 and 500 µA. We recommend BDNF as a potent drug to enhance the man-machine interface, but CIs should be better activated after nerve regrowth.
Collapse
|
6
|
Zheng Q, Dong X, Green DP, Dong X. Peripheral mechanisms of chronic pain. MEDICAL REVIEW 2022; 2:251-270. [PMID: 36067122 PMCID: PMC9381002 DOI: 10.1515/mr-2022-0013] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 06/13/2022] [Indexed: 11/15/2022]
Abstract
Abstract
Acutely, pain serves to protect us from potentially harmful stimuli, however damage to the somatosensory system can cause maladaptive changes in neurons leading to chronic pain. Although acute pain is fairly well controlled, chronic pain remains difficult to treat. Chronic pain is primarily a neuropathic condition, but studies examining the mechanisms underlying chronic pain are now looking beyond afferent nerve lesions and exploring new receptor targets, immune cells, and the role of the autonomic nervous system in contributing chronic pain conditions. The studies outlined in this review reveal how chronic pain is not only confined to alterations in the nervous system and presents findings on new treatment targets and for this debilitating disease.
Collapse
Affiliation(s)
- Qin Zheng
- Department of Anesthesiology and Critical Care Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Xintong Dong
- The Solomon H. Snyder Department of Neuroscience, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Dustin P. Green
- Department of Neuroscience, Cell Biology, and Anatomy, University of Texas Medical Branch, Galveston, TX, USA
| | - Xinzhong Dong
- The Solomon H. Snyder Department of Neuroscience, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
- Howard Hughes Medical Institute, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
7
|
Discrepancy in the Usage of GFAP as a Marker of Satellite Glial Cell Reactivity. Biomedicines 2021; 9:biomedicines9081022. [PMID: 34440226 PMCID: PMC8391720 DOI: 10.3390/biomedicines9081022] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/04/2021] [Accepted: 08/11/2021] [Indexed: 12/13/2022] Open
Abstract
Satellite glial cells (SGCs) surrounding the neuronal somas in peripheral sensory ganglia are sensitive to neuronal stressors, which induce their reactive state. It is believed that such induced gliosis affects the signaling properties of the primary sensory neurons and is an important component of the neuropathic phenotype leading to pain and other sensory disturbances. Efforts to understand and manipulate such gliosis relies on reliable markers to confirm induced SGC reactivity and ultimately the efficacy of targeted intervention. Glial fibrillary acidic protein (GFAP) is currently the only widely used marker for such analyses. However, we have previously described the lack of SGC upregulation of GFAP in a mouse model of sciatic nerve injury, suggesting that GFAP may not be a universally suitable marker of SGC gliosis across species and experimental models. To further explore this, we here investigate the regulation of GFAP in two different experimental models in both rats and mice. We found that whereas GFAP was upregulated in both rodent species in the applied inflammation model, only the rat demonstrated increased GFAP in SGCs following sciatic nerve injury; we did not observe any such GFAP upregulation in the mouse model at either protein or mRNA levels. Our results demonstrate an important discrepancy between species and experimental models that prevents the usage of GFAP as a universal marker for SGC reactivity.
Collapse
|
8
|
Gu X, Jin B, Qi Z, Yin X. Identification of potential microRNAs and KEGG pathways in denervation muscle atrophy based on meta-analysis. Sci Rep 2021; 11:13560. [PMID: 34193880 PMCID: PMC8245453 DOI: 10.1038/s41598-021-92489-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Accepted: 05/24/2021] [Indexed: 12/28/2022] Open
Abstract
The molecular mechanism of muscle atrophy has been studied a lot, but there is no comprehensive analysis focusing on the denervated muscle atrophy. The gene network that controls the development of denervated muscle atrophy needs further elucidation. We examined differentially expressed genes (DEGs) from five denervated muscle atrophy microarray datasets and predicted microRNAs that target these DEGs. We also included the differentially expressed microRNAs datasets of denervated muscle atrophy in previous studies as background information to identify potential key microRNAs. Finally, we compared denervated muscle atrophy with disuse muscle atrophy caused by other reasons, and obtained the Den-genes which only differentially expressed in denervated muscle atrophy. In this meta-analysis, we obtained 429 up-regulated genes, 525 down-regulated genes and a batch of key microRNAs in denervated muscle atrophy. We found eight important microRNA-mRNA interactions (miR-1/Jun, miR-1/Vegfa, miR-497/Vegfa, miR-23a/Vegfa, miR-206/Vegfa, miR-497/Suclg1, miR-27a/Suclg1, miR-27a/Mapk14). The top five KEGG pathways enriched by Den-genes are Insulin signaling pathway, T cell receptor signaling pathway, MAPK signaling pathway, Toll-like receptor signaling pathway and B cell receptor signaling pathway. Our research has delineated the RNA regulatory network of denervated muscle atrophy, and uncovered the specific genes and terms in denervated muscle atrophy.
Collapse
Affiliation(s)
- Xinyi Gu
- Department of Orthopedics and Traumatology, Peking University People's Hospital, Beijing, 100044, China.,Key Laboratory of Trauma and Neural Regeneration (Peking University), Beijing, 100044, China
| | - Bo Jin
- Department of Orthopedics and Traumatology, Peking University People's Hospital, Beijing, 100044, China.,Key Laboratory of Trauma and Neural Regeneration (Peking University), Beijing, 100044, China
| | - Zhidan Qi
- Department of Orthopedics and Traumatology, Peking University People's Hospital, Beijing, 100044, China.,Key Laboratory of Trauma and Neural Regeneration (Peking University), Beijing, 100044, China
| | - Xiaofeng Yin
- Department of Orthopedics and Traumatology, Peking University People's Hospital, Beijing, 100044, China. .,Key Laboratory of Trauma and Neural Regeneration (Peking University), Beijing, 100044, China.
| |
Collapse
|
9
|
Tran EL, Crawford LK. Revisiting PNS Plasticity: How Uninjured Sensory Afferents Promote Neuropathic Pain. Front Cell Neurosci 2020; 14:612982. [PMID: 33362476 PMCID: PMC7759741 DOI: 10.3389/fncel.2020.612982] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 11/12/2020] [Indexed: 11/13/2022] Open
Abstract
Despite the widespread study of how injured nerves contribute to chronic pain, there are still major gaps in our understanding of pain mechanisms. This is particularly true of pain resulting from nerve injury, or neuropathic pain, wherein tactile or thermal stimuli cause painful responses that are particularly difficult to treat with existing therapies. Curiously, this stimulus-driven pain relies upon intact, uninjured sensory neurons that transmit the signals that are ultimately sensed as painful. Studies that interrogate uninjured neurons in search of cell-specific mechanisms have shown that nerve injury alters intact, uninjured neurons resulting in an activity that drives stimulus-evoked pain. This review of neuropathic pain mechanisms summarizes cell-type-specific pathology of uninjured sensory neurons and the sensory ganglia that house their cell bodies. Uninjured neurons have demonstrated a wide range of molecular and neurophysiologic changes, many of which are distinct from those detected in injured neurons. These intriguing findings include expression of pain-associated molecules, neurophysiological changes that underlie increased excitability, and evidence that intercellular signaling within sensory ganglia alters uninjured neurons. In addition to well-supported findings, this review also discusses potential mechanisms that remain poorly understood in the context of nerve injury. This review highlights key questions that will advance our understanding of the plasticity of sensory neuron subpopulations and clarify the role of uninjured neurons in developing anti-pain therapies.
Collapse
Affiliation(s)
- Emily L Tran
- Department of Pathobiological Sciences, University of Wisconsin-Madison School of Veterinary Medicine, Madison, WI, United States
| | - LaTasha K Crawford
- Department of Pathobiological Sciences, University of Wisconsin-Madison School of Veterinary Medicine, Madison, WI, United States
| |
Collapse
|
10
|
Xie AX, Madayag A, Minton SK, McCarthy KD, Malykhina AP. Sensory satellite glial Gq-GPCR activation alleviates inflammatory pain via peripheral adenosine 1 receptor activation. Sci Rep 2020; 10:14181. [PMID: 32843670 PMCID: PMC7447794 DOI: 10.1038/s41598-020-71073-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 08/10/2020] [Indexed: 02/07/2023] Open
Abstract
Glial fibrillary acidic protein expressing (GFAP+) glia modulate nociceptive neuronal activity in both the peripheral nervous system (PNS) and the central nervous system (CNS). Resident GFAP+ glia in dorsal root ganglia (DRG) known as satellite glial cells (SGCs) potentiate neuronal activity by releasing pro-inflammatory cytokines and neuroactive compounds. In this study, we tested the hypothesis that SGC Gq-coupled receptor (Gq-GPCR) signaling modulates pain sensitivity in vivo using Gfap-hM3Dq mice. Complete Freund's adjuvant (CFA) was used to induce inflammatory pain, and mechanical sensitivity and thermal sensitivity were used to assess the neuromodulatory effect of glial Gq-GPCR activation in awake mice. Pharmacogenetic activation of Gq-GPCR signaling in sensory SGCs decreased heat-induced nociceptive responses and reversed inflammation-induced mechanical allodynia via peripheral adenosine A1 receptor activation. These data reveal a previously unexplored role of sensory SGCs in decreasing afferent excitability. The identified molecular mechanism underlying the analgesic role of SGCs offers new approaches for reversing peripheral nociceptive sensitization.
Collapse
MESH Headings
- Animals
- Benzilates/pharmacology
- Clozapine/analogs & derivatives
- Clozapine/pharmacology
- Freund's Adjuvant/toxicity
- GTP-Binding Protein alpha Subunits, Gq-G11/physiology
- Genes, Synthetic
- Hot Temperature
- Hyperalgesia/physiopathology
- Hyperalgesia/prevention & control
- Inflammation/chemically induced
- Inflammation/physiopathology
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Transgenic
- Muscarinic Agonists/pharmacology
- Neuroglia/enzymology
- Neuroglia/physiology
- Nociception/physiology
- Nortropanes/pharmacology
- Promoter Regions, Genetic
- Purinergic P1 Receptor Agonists/pharmacology
- Purinergic P1 Receptor Antagonists/pharmacology
- Receptor, Adenosine A1/drug effects
- Receptor, Adenosine A1/physiology
- Receptor, Muscarinic M3/drug effects
- Receptor, Muscarinic M3/genetics
- Receptor, Muscarinic M3/physiology
- Receptors, G-Protein-Coupled
- Recombinant Fusion Proteins/drug effects
- Recombinant Fusion Proteins/metabolism
- Theophylline/analogs & derivatives
- Theophylline/pharmacology
- Touch
- Xanthines/pharmacology
Collapse
Affiliation(s)
- Alison Xiaoqiao Xie
- Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill (UNC-CH), Chapel Hill, USA.
- Division of Urology, Department of Surgery, University of Colorado Denver (UCD), Anschutz Medical Campus (AMC), 12700E 19th Ave., Room 6440D, Mail stop C317, Aurora, CO, 80045, USA.
- Department of Surgery, UCD-AMC, Aurora, CO, USA.
| | - Aric Madayag
- Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill (UNC-CH), Chapel Hill, USA
- NeuroCycle Therapeutics, Inc., 3829 N Cramer St., Shorewood, WI, 53211, USA
| | - Suzanne K Minton
- Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill (UNC-CH), Chapel Hill, USA
- Certara, 5511 Capital Center Drive, Ste. 204, Raleigh, NC, 27606, USA
| | - Ken D McCarthy
- Professor Emeritus in the Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, 120 Mason Farm Road, 4010 Genetic Medicine Bldg, Campus Box 7365, Chapel Hill, NC, 27599-7365, USA
| | - Anna P Malykhina
- Division of Urology, Department of Surgery, University of Colorado Denver (UCD), Anschutz Medical Campus (AMC), 12700E 19th Ave., Room 6440D, Mail stop C317, Aurora, CO, 80045, USA
- Department of Physiology and Biophysics, University of Colorado School of Medicine, 12700 East 19th Ave., Rm 6001, Mail Stop C317, Aurora, CO, 80045, USA
| |
Collapse
|
11
|
The Delayed-Onset Mechanical Pain Behavior Induced by Infant Peripheral Nerve Injury Is Accompanied by Sympathetic Sprouting in the Dorsal Root Ganglion. BIOMED RESEARCH INTERNATIONAL 2020; 2020:9165475. [PMID: 32626770 PMCID: PMC7315272 DOI: 10.1155/2020/9165475] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 05/02/2020] [Accepted: 05/19/2020] [Indexed: 11/19/2022]
Abstract
Background Sympathetic sprouting in the dorsal root ganglion (DRG) following nerve injuries had been proved to induce adult neuropathic pain. However, it is unclear whether the abnormal sprouting occurs in infant nerve injury. Methods L5 spinal nerve ligation (SNL) or sham surgery was performed on adult rats and 10-day-old pups, and mechanical thresholds and heat hyperalgesia were analyzed on 3, 7, 14, 28, and 56 postoperative days. Tyrosine hydroxylase-labeled sympathetic fibers were observed at each time point, and 2 neurotrophin receptors (p75NTR and TrkA) were identified to explore the mechanisms of sympathetic sprouting. Results Adult rats rapidly developed mechanical and heat hyperalgesia from postoperative day 3, with concurrent sympathetic sprouting in DRG. In contrast, the pup rats did not show a significantly lower mechanical threshold until postoperative day 28, at which time the sympathetic sprouting became evident in the DRG. No heat hyperalgesia was presented in pup rats at any time point. There was a late expression of glial p75NTR in DRG of pups from postoperative day 28, which was parallel to the occurrence of sympathetic sprouting. The expression of TrkA did not show such a postoperative syncing change. Conclusion The delayed-onset mechanical allodynia in the infant nerve lesion was accompanied with parallel sympathetic sprouting in DRG. The late parallel expression of glial p75NTR injury may play an essential role in this process, which provides novel insight into the treatment of delayed adolescent neuropathic pain.
Collapse
|
12
|
Godinho MJ, Staal JL, Krishnan VS, Hodgetts SI, Pollett MA, Goodman DP, Teh L, Verhaagen J, Plant GW, Harvey AR. Regeneration of adult rat sensory and motor neuron axons through chimeric peroneal nerve grafts containing donor Schwann cells engineered to express different neurotrophic factors. Exp Neurol 2020; 330:113355. [PMID: 32422148 DOI: 10.1016/j.expneurol.2020.113355] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 04/28/2020] [Accepted: 05/04/2020] [Indexed: 11/18/2022]
Abstract
Large peripheral nerve (PN) defects require bridging substrates to restore tissue continuity and permit the regrowth of sensory and motor axons. We previously showed that cell-free PN segments repopulated ex vivo with Schwann cells (SCs) transduced with lentiviral vectors (LV) to express different growth factors (BDNF, CNTF or NT-3) supported the regeneration of axons across a 1 cm peroneal nerve defect (Godinho et al., 2013). Graft morphology, the number of regrown axons, the ratio of myelinated to unmyelinated axons, and hindlimb locomotor function differed depending on the growth factor engineered into SCs. Here we extend these observations, adding more LVs (expressing GDNF or NGF) and characterising regenerating sensory and motor neurons after injection of the retrograde tracer Fluorogold (FG) into peroneal nerve distal to grafts, 10 weeks after surgery. Counts were also made in rats with intact nerves and in animals receiving autografts, acellular grafts, or grafts containing LV-GFP transduced SCs. Counts and analysis of FG positive (+) DRG neurons were made from lumbar (L5) ganglia. Graft groups contained fewer labeled sensory neurons than non-operated controls, but this decrease was only significant in the LV-GDNF group. These grafts had a complex fascicular morphology that may have resulted in axon trapping. The proportion of FG+ sensory neurons immunopositive for calcitonin-gene related peptide (CGRP) varied between groups, there being a significantly higher percentage in autografts and most neurotrophic factor groups compared to the LV-CNTF, LV-GFP and acellular groups. Furthermore, the proportion of regenerating isolectin B4+ neurons was significantly greater in the LV-NT-3 group compared to other groups, including autografts and non-lesion controls. Immunohistochemical analysis of longitudinal graft sections revealed that all grafts contained a reduced number of choline acetyltransferase (ChAT) positive axons, but this decrease was significant only in the GDNF and NT-3 graft groups. We also assessed the number and phenotype of regrowing lumbar FG+ motor neurons in non-lesioned animals, and in rats with autografts, acellular grafts, or in grafts containing SCs expressing GFP, CNTF, NGF or NT-3. The overall number of FG+ motor neurons per section was similar in all groups; however in tissue immunostained for NeuN (expressed in α- but not γ-motor neurons) the proportion of NeuN negative FG+ neurons ranged from about 40-50% in all groups except the NT-3 group, where the percentage was 82%, significantly more than the SC-GFP group. Immunostaining for the vesicular glutamate transporter VGLUT-1 revealed occasional proprioceptive terminals in 'contact' with regenerating FG+ α-motor neurons in PN grafted animals, the acellular group having the lowest counts. In sum, while all graft types supported sensory and motor axon regrowth, there appeared to be axon trapping in SC-GDNF grafts, and data from the SC-NT-3 group revealed greater regeneration of sensory CGRP+ and IB4+ neurons, preferential regeneration of γ-motor neurons and perhaps partial restoration of monosynaptic sensorimotor relays.
Collapse
Affiliation(s)
- Maria João Godinho
- School of Human Sciences, The University of Western Australia, Crawley, WA 6009, Australia
| | - Jonas L Staal
- School of Human Sciences, The University of Western Australia, Crawley, WA 6009, Australia
| | - Vidya S Krishnan
- School of Human Sciences, The University of Western Australia, Crawley, WA 6009, Australia
| | - Stuart I Hodgetts
- School of Human Sciences, The University of Western Australia, Crawley, WA 6009, Australia; Perron Institute for Neurological and Translational Science, Nedlands, WA 6009, Australia
| | - Margaret A Pollett
- School of Human Sciences, The University of Western Australia, Crawley, WA 6009, Australia
| | - Douglas P Goodman
- School of Veterinary and Biomedical Sciences, Murdoch University, Murdoch, WA 6150, Australia
| | - Lip Teh
- Plastic Surgery Centre, St John of God Hospital, Murdoch, WA 6150, Australia
| | - Joost Verhaagen
- Netherlands Institute for Neuroscience, Meibergdreef 47, Amsterdam, the Netherlands
| | - Giles W Plant
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Alan R Harvey
- School of Human Sciences, The University of Western Australia, Crawley, WA 6009, Australia; Perron Institute for Neurological and Translational Science, Nedlands, WA 6009, Australia.
| |
Collapse
|
13
|
Jager SE, Pallesen LT, Richner M, Harley P, Hore Z, McMahon S, Denk F, Vaegter CB. Changes in the transcriptional fingerprint of satellite glial cells following peripheral nerve injury. Glia 2020; 68:1375-1395. [PMID: 32045043 DOI: 10.1002/glia.23785] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 01/09/2020] [Accepted: 01/10/2020] [Indexed: 01/13/2023]
Abstract
Satellite glial cells (SGCs) are homeostatic cells enveloping the somata of peripheral sensory and autonomic neurons. A wide variety of neuronal stressors trigger activation of SGCs, contributing to, for example, neuropathic pain through modulation of neuronal activity. However, compared to neurons and other glial cells of the nervous system, SGCs have received modest scientific attention and very little is known about SGC biology, possibly due to the experimental challenges associated with studying them in vivo and in vitro. Utilizing a recently developed method to obtain SGC RNA from dorsal root ganglia (DRG), we took a systematic approach to characterize the SGC transcriptional fingerprint by using next-generation sequencing and, for the first time, obtain an overview of the SGC injury response. Our RNA sequencing data are easily accessible in supporting information in Excel format. They reveal that SGCs are enriched in genes related to the immune system and cell-to-cell communication. Analysis of SGC transcriptional changes in a nerve injury-paradigm reveal a differential response at 3 days versus 14 days postinjury, suggesting dynamic modulation of SGC function over time. Significant downregulation of several genes linked to cholesterol synthesis was observed at both time points. In contrast, regulation of gene clusters linked to the immune system (MHC protein complex and leukocyte migration) was mainly observed after 14 days. Finally, we demonstrate that, after nerve injury, macrophages are in closer physical proximity to both small and large DRG neurons, and that previously reported injury-induced proliferation of SGCs may, in fact, be proliferating macrophages.
Collapse
Affiliation(s)
- Sara E Jager
- Danish Research Institute of Translational Neuroscience (DANDRITE), Nordic-EMBL Partnership for Molecular Medicine, Department of Biomedicine, Aarhus University, Aarhus C, Denmark.,Wolfson Centre for Age-Related Diseases, King's College London, Guy's Campus, London, UK
| | - Lone T Pallesen
- Danish Research Institute of Translational Neuroscience (DANDRITE), Nordic-EMBL Partnership for Molecular Medicine, Department of Biomedicine, Aarhus University, Aarhus C, Denmark
| | - Mette Richner
- Danish Research Institute of Translational Neuroscience (DANDRITE), Nordic-EMBL Partnership for Molecular Medicine, Department of Biomedicine, Aarhus University, Aarhus C, Denmark
| | - Peter Harley
- Wolfson Centre for Age-Related Diseases, King's College London, Guy's Campus, London, UK
| | - Zoe Hore
- Wolfson Centre for Age-Related Diseases, King's College London, Guy's Campus, London, UK
| | - Stephen McMahon
- Wolfson Centre for Age-Related Diseases, King's College London, Guy's Campus, London, UK
| | - Franziska Denk
- Wolfson Centre for Age-Related Diseases, King's College London, Guy's Campus, London, UK
| | - Christian B Vaegter
- Danish Research Institute of Translational Neuroscience (DANDRITE), Nordic-EMBL Partnership for Molecular Medicine, Department of Biomedicine, Aarhus University, Aarhus C, Denmark
| |
Collapse
|
14
|
Enes J, Haburčák M, Sona S, Gerard N, Mitchell AC, Fu W, Birren SJ. Satellite glial cells modulate cholinergic transmission between sympathetic neurons. PLoS One 2020; 15:e0218643. [PMID: 32017764 PMCID: PMC6999876 DOI: 10.1371/journal.pone.0218643] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 01/15/2020] [Indexed: 02/07/2023] Open
Abstract
Postganglionic sympathetic neurons and satellite glial cells are the two major cell types of the peripheral sympathetic ganglia. Sympathetic neurons project to and provide neural control of peripheral organs and have been implicated in human disorders ranging from cardiovascular disease to peripheral neuropathies. Here we show that satellite glia regulate synaptic activity of cultured postnatal sympathetic neurons, providing evidence for local ganglionic control of sympathetic drive. In addition to modulating neuron-to-neuron cholinergic neurotransmission, satellite glia promote synapse formation and contribute to neuronal survival. Examination of the cellular architecture of the rat sympathetic ganglia in vivo shows this regulation of neuronal properties takes place during a developmental period in which neuronal morphology and density are actively changing and satellite glia enwrap sympathetic neuronal somata. Cultured satellite glia make and release factors that promote neuronal activity and that can partially rescue the neurons from cell death following nerve growth factor deprivation. Thus, satellite glia play an early and ongoing role within the postnatal sympathetic ganglia, expanding our understanding of the contributions of local and target-derived factors in the regulation of sympathetic neuron function.
Collapse
Affiliation(s)
- Joana Enes
- Department of Biology, Brandeis University, Waltham, MA, United States of America
- Volen National Center for Complex Systems, Brandeis University, Waltham, MA, United States of America
| | - Marián Haburčák
- Department of Biology, Brandeis University, Waltham, MA, United States of America
- Volen National Center for Complex Systems, Brandeis University, Waltham, MA, United States of America
| | - Surbhi Sona
- Department of Biology, Brandeis University, Waltham, MA, United States of America
- Volen National Center for Complex Systems, Brandeis University, Waltham, MA, United States of America
| | - Nega Gerard
- Department of Biology, Brandeis University, Waltham, MA, United States of America
- Volen National Center for Complex Systems, Brandeis University, Waltham, MA, United States of America
| | - Alexander C. Mitchell
- Department of Biology, Brandeis University, Waltham, MA, United States of America
- Volen National Center for Complex Systems, Brandeis University, Waltham, MA, United States of America
| | - Wenqi Fu
- Department of Biology, Brandeis University, Waltham, MA, United States of America
- Volen National Center for Complex Systems, Brandeis University, Waltham, MA, United States of America
| | - Susan J. Birren
- Department of Biology, Brandeis University, Waltham, MA, United States of America
- Volen National Center for Complex Systems, Brandeis University, Waltham, MA, United States of America
- * E-mail:
| |
Collapse
|
15
|
Liu Y, Wang H. Peripheral nerve injury induced changes in the spinal cord and strategies to counteract/enhance the changes to promote nerve regeneration. Neural Regen Res 2020; 15:189-198. [PMID: 31552884 PMCID: PMC6905333 DOI: 10.4103/1673-5374.265540] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Peripheral nerve injury leads to morphological, molecular and gene expression changes in the spinal cord and dorsal root ganglia, some of which have positive impact on the survival of neurons and nerve regeneration, while the effect of others is the opposite. It is crucial to take prompt measures to capitalize on the positive effects of these reactions and counteract the negative impact after peripheral nerve injury at the level of spinal cord, especially for peripheral nerve injuries that are severe, located close to the cell body, involve long distance for axons to regrow and happen in immature individuals. Early nerve repair, exogenous supply of neurotrophic factors and Schwann cells can sustain the regeneration inductive environment and enhance the positive changes in neurons. Administration of neurotrophic factors, acetyl-L-carnitine, N-acetyl-cysteine, and N-methyl-D-aspartate receptor antagonist MK-801 can help counteract axotomy-induced neuronal loss and promote regeneration, which are all time-dependent. Sustaining and reactivation of Schwann cells after denervation provides another effective strategy. FK506 can be used to accelerate axonal regeneration of neurons, especially after chronic axotomy. Exploring the axotomy-induced changes after peripheral nerve injury and applying protective and promotional measures in the spinal cord which help to retain a positive functional status for neuron cell bodies will inevitably benefit regeneration of the peripheral nerve and improve functional outcomes.
Collapse
Affiliation(s)
- Yan Liu
- Department of Hand Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin Province, China; Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, USA
| | - Huan Wang
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
16
|
Koike T, Tanaka S, Hirahara Y, Oe S, Kurokawa K, Maeda M, Suga M, Kataoka Y, Yamada H. Morphological characteristics of p75 neurotrophin receptor‐positive cells define a new type of glial cell in the rat dorsal root ganglia. J Comp Neurol 2019; 527:2047-2060. [DOI: 10.1002/cne.24667] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 02/07/2019] [Accepted: 02/12/2019] [Indexed: 12/29/2022]
Affiliation(s)
- Taro Koike
- Department of Anatomy and Cell ScienceKansai Medical University Hirakata Osaka Japan
| | - Susumu Tanaka
- Department of Anatomy and Cell ScienceKansai Medical University Hirakata Osaka Japan
| | - Yukie Hirahara
- Department of Anatomy and Cell ScienceKansai Medical University Hirakata Osaka Japan
| | - Souichi Oe
- Department of Anatomy and Cell ScienceKansai Medical University Hirakata Osaka Japan
| | - Kiyoshi Kurokawa
- Department of Human Health ScienceOsaka International University Moriguchi Osaka Japan
| | - Mitsuyo Maeda
- Multi‐Modal Microstructure Analysis UnitRIKEN‐JEOL Collaboration Center Kobe Hyogo Japan
| | - Mitsuo Suga
- Multi‐Modal Microstructure Analysis UnitRIKEN‐JEOL Collaboration Center Kobe Hyogo Japan
| | - Yosky Kataoka
- Multi‐Modal Microstructure Analysis UnitRIKEN‐JEOL Collaboration Center Kobe Hyogo Japan
- Laboratory for Cellular Function ImagingRIKEN Center for Biosystems Dynamics Research Kobe Hyogo Japan
| | - Hisao Yamada
- Department of Anatomy and Cell ScienceKansai Medical University Hirakata Osaka Japan
| |
Collapse
|
17
|
Knockdown of Fidgetin Improves Regeneration of Injured Axons by a Microtubule-Based Mechanism. J Neurosci 2019; 39:2011-2024. [PMID: 30647150 DOI: 10.1523/jneurosci.1888-18.2018] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 11/21/2018] [Accepted: 12/24/2018] [Indexed: 12/16/2022] Open
Abstract
Fidgetin is a microtubule-severing protein that pares back the labile domains of microtubules in the axon. Experimental depletion of fidgetin results in elongation of the labile domains of microtubules and faster axonal growth. To test whether fidgetin knockdown assists axonal regeneration, we plated dissociated adult rat DRGs transduced using AAV5-shRNA-fidgetin on a laminin substrate with spots of aggrecan, a growth-inhibitory chondroitin sulfate proteoglycan. This cell culture assay mimics the glial scar formed after CNS injury. Aggrecan is more concentrated at the edge of the spot, such that axons growing from within the spot toward the edge encounter a concentration gradient that causes growth cones to become dystrophic and axons to retract or curve back on themselves. Fidgetin knockdown resulted in faster-growing axons on both laminin and aggrecan and enhanced crossing of axons from laminin onto aggrecan. Strikingly, axons from within the spot grew more avidly against the inhibitory aggrecan concentration gradient to cross onto laminin, without retracting or curving back. We also tested whether depleting fidgetin improves axonal regeneration in vivo after a dorsal root crush in adult female rats. Whereas control DRG neurons failed to extend axons across the dorsal root entry zone after injury, DRG neurons in which fidgetin was knocked down displayed enhanced regeneration of axons across the dorsal root entry zone into the spinal cord. Collectively, these results establish fidgetin as a novel therapeutic target to augment nerve regeneration and provide a workflow template by which microtubule-related targets can be compared in the future.SIGNIFICANCE STATEMENT Here we establish a workflow template from cell culture to animals in which microtubule-based treatments can be tested and compared with one another for their effectiveness in augmenting regeneration of injured axons relevant to spinal cord injury. The present work uses a viral transduction approach to knock down fidgetin from rat neurons, which coaxes nerve regeneration by elevating microtubule mass in their axons. Unlike previous strategies using microtubule-stabilizing drugs, fidgetin knockdown adds microtubule mass that is labile (rather than stable), thereby better recapitulating the growth status of a developing axon.
Collapse
|
18
|
Su YW, Chim SM, Zhou L, Hassanshahi M, Chung R, Fan C, Song Y, Foster BK, Prestidge CA, Peymanfar Y, Tang Q, Butler LM, Gronthos S, Chen D, Xie Y, Chen L, Zhou XF, Xu J, Xian CJ. Osteoblast derived-neurotrophin‑3 induces cartilage removal proteases and osteoclast-mediated function at injured growth plate in rats. Bone 2018; 116:232-247. [PMID: 30125729 PMCID: PMC6550307 DOI: 10.1016/j.bone.2018.08.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 07/25/2018] [Accepted: 08/14/2018] [Indexed: 01/08/2023]
Abstract
Faulty bony repair causes dysrepair of injured growth plate cartilage and bone growth defects in children; however, the underlying mechanisms are unclear. Recently, we observed the prominent induction of neurotrophin‑3 (NT-3) and its important roles as an osteogenic and angiogenic factor promoting the bony repair. The current study investigated its roles in regulating injury site remodelling. In a rat tibial growth plate drill-hole injury repair model, NT-3 was expressed prominently in osteoblasts at the injury site. Recombinant NT-3 (rhNT-3) systemic treatment enhanced, but NT-3 immunoneutralization attenuated, expression of cartilage-removal proteases (MMP-9 and MMP-13), presence of bone-resorbing osteoclasts and expression of osteoclast protease cathepsin K, and remodelling at the injury site. NT-3 was also highly induced in cultured mineralizing rat bone marrow stromal cells, and the conditioned medium augmented osteoclast formation and resorptive activity, an ability that was blocked by presence of anti-NT-3 antibody. Moreover, NT-3 and receptor TrkC were induced during osteoclastogenesis, and rhNT-3 treatment activated TrkC downstream kinase Erk1/2 in differentiating osteoclasts although rhNT-3 alone did not affect activation of osteoclastogenic transcription factors NF-κB or NFAT in RAW264.7 osteoclast precursor cells. Furthermore, rhNT-3 treatment increased, but NT-3 neutralization reduced, expression of osteoclastogenic cytokines (RANKL, TNF-α, and IL-1) in mineralizing osteoblasts and in growth plate injury site, and rhNT-3 augmented the induction of these cytokines caused by RANKL treatment in RAW264.7 cells. Thus, injury site osteoblast-derived NT-3 is important in promoting growth plate injury site remodelling, as it induces cartilage proteases for cartilage removal and augments osteoclastogenesis and resorption both directly (involving activing Erk1/2 and substantiating RANKL-induced increased expression of osteoclastogenic signals in differentiating osteoclasts) and indirectly (inducing osteoclastogenic signals in osteoblasts).
Collapse
Affiliation(s)
- Yu-Wen Su
- School of Pharmacy and Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, SA 5001, Australia.
| | - Shek Man Chim
- School of Pathology and Laboratory Medicine, University of Western Australia, Nedlands, WA 6009, Australia.
| | - Lin Zhou
- School of Pathology and Laboratory Medicine, University of Western Australia, Nedlands, WA 6009, Australia.
| | - Mohammadhossein Hassanshahi
- School of Pharmacy and Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, SA 5001, Australia.
| | - Rosa Chung
- School of Pharmacy and Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, SA 5001, Australia.
| | - Chiaming Fan
- School of Pharmacy and Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, SA 5001, Australia
| | - Yunmei Song
- School of Pharmacy and Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, SA 5001, Australia.
| | - Bruce K Foster
- Department of Orthopaedic Surgery, Women's and Children's Hospital, North Adelaide, SA 5006, Australia.
| | - Clive A Prestidge
- School of Pharmacy and Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, SA 5001, Australia; ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, University of South Australia, Mawson Lakes Campus, Mawson Lakes 5095, Australia.
| | - Yaser Peymanfar
- School of Pharmacy and Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, SA 5001, Australia.
| | - Qian Tang
- School of Pharmacy and Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, SA 5001, Australia.
| | - Lisa M Butler
- University of Adelaide Schools of Medicine and Medical Sciences, South Australian Health and Medical Research Institute, Adelaide, SA, Australia.
| | - Stan Gronthos
- University of Adelaide Schools of Medicine and Medical Sciences, South Australian Health and Medical Research Institute, Adelaide, SA, Australia.
| | - Di Chen
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL 60612, USA.
| | - Yangli Xie
- State Key Laboratory of Trauma, Burns and Combined Injury, Center of Bone Metabolism and Repair, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - Lin Chen
- State Key Laboratory of Trauma, Burns and Combined Injury, Center of Bone Metabolism and Repair, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - Xin-Fu Zhou
- School of Pharmacy and Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, SA 5001, Australia.
| | - Jiake Xu
- School of Pathology and Laboratory Medicine, University of Western Australia, Nedlands, WA 6009, Australia.
| | - Cory J Xian
- School of Pharmacy and Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, SA 5001, Australia.
| |
Collapse
|
19
|
Suppression of Sympathetic Nerve Sprouting by Local Administration of an α-antagonist Around the Dorsal Root Ganglion in a Lumbar Radiculopathy Model. Spine (Phila Pa 1976) 2018; 43:E321-E326. [PMID: 28723879 DOI: 10.1097/brs.0000000000002333] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN Animal experimental study with intervention. OBJECTIVE The purpose of this study was to elucidate whether local administration of an α-antagonist around the dorsal root ganglion (DRG) suppressed sympathetic nerve sprouting, from the acute to the chronic pain development phase, in a lumbar radiculopathy model using immunohistochemical methods. SUMMARY OF BACKGROUND DATA The abnormal sympathetic-somatosensory interaction may underlie some forms of neuropathic pain. There were several reports suggesting α-antagonists are effective to treat neuropathic pain. However, its pathophysiological mechanisms remain obscure. METHODS We used 70 male Sprague-Dawley rats. After root constriction (RC), rats received a series of three local injections of the nonselective α-antagonist phentolamine around the DRG for 3 days. There were three groups of rats: those that were injected from the day of surgery and those injected from day 4 and third group injected from day 11. The control rats were subjected to RC but equal-volume normal saline injections, and the naïve rats were not subjected to any surgical procedures. At the 14th postoperative day, the left L5 DRG was removed, embedded in paraffin, and sectioned. Sections were then immunostained with antibodies to tyrosine hydroxylase (TH). To quantify the extent of the presence of sympathetic nerve fibers, we counted TH-immunoreactive fibers in the DRG using a light microscope equipped with a micrometer graticule. We counted the squares of the graticule, which contained TH-immunoreactive fibers for each of five randomly selected sections of the DRG. RESULTS In the naïve group, TH-immunoreactive fibers were scarce in the DRG. α-antagonist injections from postoperative day 0 and 4 suppressed sympathetic nerve sprouting compared with the control group. α-antagonist injections from postoperative day 11 had no suppressant effect compared with the control group. CONCLUSION The α-antagonist administered around the DRG could suppress neural plastic changes in the early phase after nerve injury. LEVEL OF EVIDENCE N/A.
Collapse
|
20
|
Association Between Neurotrophic Factor Expression and Pain-Related Behavior Induced by Nucleus Pulposus Applied to Rat Nerve Root. Spine (Phila Pa 1976) 2018; 43:E7-E15. [PMID: 28505030 DOI: 10.1097/brs.0000000000002223] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN An experimental animal study. OBJECTIVE To investigate the relationship between pain-related behavior and the expression of neurotrophic factors in the dorsal root ganglion (DRG) and spinal cord (SC) using a nucleus pulposus (NP) rat model. SUMMARY OF BACKGROUND DATA Neurotrophic factors are released from activated glial cells and are associated with pain-related behavior. Nerve growth factor (NGF) is a neurotrophic factor that is induced by inflammation. METHODS Rats were divided into an NP group (n = 94) and a sham-operated group (n = 46). NP harvested from the tail was applied to the left L5 DRG. Rats in the NP group were then divided into five subgroups: one non-treatment and four treatment groups. In the treatment groups, a dose of anti-NGF antibody or phosphate-buffered saline was administered into the DRG. Behavioral testing was performed to investigate the mechanical withdrawal threshold of the left hind paw for all groups. Immunohistochemical localization of NGF, phosphorylated p38 (p38), and brain-derived neurotrophic factor (BDNF) in the DRGs and SCs was performed, and the numbers of immunoreactive (IR) cells were counted. RESULTS The withdrawal threshold in the nontreatment NP group was significantly decreased for 35 days, and that of the middle- and high-dose treatment rats was significantly higher than the phosphate-buffered saline group values. In the DRG, NGF-IR, p38-IR, and BDNF-IR cells were increased for days 21. In the SC, BDNF-IR, and p38-IR cells were increased from days 7 to 21. CONCLUSION In the DRG, NGF expression increased, mechanical thresholds were reduced, and p38 and BDNF expression was increased in the NP group. p38 and BDNF expression was increased in SC neurons during the same period. Inhibition of NGF may be a potential treatment for neuropathic pain due to lumbar disc herniation. LEVEL OF EVIDENCE 5.
Collapse
|
21
|
Pannese E. Biology and Pathology of Perineuronal Satellite Cells in Sensory Ganglia. BIOLOGY AND PATHOLOGY OF PERINEURONAL SATELLITE CELLS IN SENSORY GANGLIA 2018. [DOI: 10.1007/978-3-319-60140-3_1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
22
|
Ajijola OA, Hoover DB, Simerly TM, Brown TC, Yanagawa J, Biniwale RM, Lee JM, Sadeghi A, Khanlou N, Ardell JL, Shivkumar K. Inflammation, oxidative stress, and glial cell activation characterize stellate ganglia from humans with electrical storm. JCI Insight 2017; 2:94715. [PMID: 28931760 DOI: 10.1172/jci.insight.94715] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 08/08/2017] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Neuronal remodeling in human heart disease is not well understood. METHODS Stellate ganglia from patients with cardiomyopathy (CMY) and refractory ventricular arrhythmias undergoing cardiac sympathetic denervation (n = 8), and from organ donors with normal hearts (n = 8) collected at the time of organ procurement were compared. Clinical data on all subjects were reviewed. Electron microscopy (EM), histologic, and immunohistochemical assessments of neurotransmitter profiles, glial activation and distribution, and lipofuscin deposition, a marker of oxidative stress, were quantified. RESULTS In CMY specimens, lipofuscin deposits were larger, and present in more neurons (26.3% ± 6.3% vs. 16.7% ± 7.6%, P < 0.043), than age-matched controls. EM analysis revealed extensive mitochondrial degeneration in CMY specimens. T cell (CD3+) infiltration was identified in 60% of the CMY samples, with one case having large inflammatory nodules, while none were identified in controls. Myeloperoxidase-immunoreactive neutrophils were also identified at parenchymal sites distinct from inflammatory foci in CMY ganglia, but not in controls. The adrenergic phenotype of pathologic samples revealed a decrease in tyrosine hydroxylase staining intensity compared with controls. Evaluation of cholinergic phenotype by staining for the vesicular acetylcholine transporter revealed a low but comparable number of cholinergic neurons in ganglia from both groups and demonstrated that preganglionic cholinergic innervation was maintained in CMY ganglia. S100 staining (a glial cell marker) demonstrated no differences in glial distribution and relationship to neurons; however, glial activation demonstrated by glial fibrillary acidic protein (GFAP) staining was substantially increased in pathologic specimens compared with controls. CONCLUSIONS Stellate ganglia from patients with CMY and arrhythmias demonstrate inflammation, neurochemical remodeling, oxidative stress, and satellite glial cell activation. These changes likely contribute to excessive and dysfunctional efferent sympathetic tone, and provide a rationale for sympathectomy as a treatment for arrhythmias in this population. FUNDING This work was made possible by support from NIH grants HL125730 to OAA, GM107949 to DBH, and HL084261 and OT2OD023848 to KS.
Collapse
Affiliation(s)
- Olujimi A Ajijola
- UCLA Cardiac Arrhythmia Center and.,UCLA Neurocardiology Research Center of Excellence, University of California, Los Angeles, California, USA
| | - Donald B Hoover
- Department of Biomedical Sciences.,Center for Inflammation, Infectious Disease, and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee, USA. Departments of
| | - Thomas M Simerly
- Department of Biomedical Sciences.,Center for Inflammation, Infectious Disease, and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee, USA. Departments of
| | - T Christopher Brown
- Department of Biomedical Sciences.,Center for Inflammation, Infectious Disease, and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee, USA. Departments of
| | | | | | | | | | - Negar Khanlou
- Pathology, University of California, Los Angeles, California, USA
| | - Jeffrey L Ardell
- UCLA Cardiac Arrhythmia Center and.,UCLA Neurocardiology Research Center of Excellence, University of California, Los Angeles, California, USA
| | - Kalyanam Shivkumar
- UCLA Cardiac Arrhythmia Center and.,UCLA Neurocardiology Research Center of Excellence, University of California, Los Angeles, California, USA
| |
Collapse
|
23
|
Wu JR, Chen H, Yao YY, Zhang MM, Jiang K, Zhou B, Zhang DX, Wang J. Local injection to sciatic nerve of dexmedetomidine reduces pain behaviors, SGCs activation, NGF expression and sympathetic sprouting in CCI rats. Brain Res Bull 2017; 132:118-128. [DOI: 10.1016/j.brainresbull.2017.04.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 04/27/2017] [Indexed: 12/17/2022]
|
24
|
Su YW, Chung R, Ruan CS, Chim SM, Kuek V, Dwivedi PP, Hassanshahi M, Chen KM, Xie Y, Chen L, Foster BK, Rosen V, Zhou XF, Xu J, Xian CJ. Neurotrophin-3 Induces BMP-2 and VEGF Activities and Promotes the Bony Repair of Injured Growth Plate Cartilage and Bone in Rats. J Bone Miner Res 2016; 31:1258-74. [PMID: 26763079 DOI: 10.1002/jbmr.2786] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Revised: 01/06/2016] [Accepted: 01/08/2016] [Indexed: 12/20/2022]
Abstract
Injured growth plate is often repaired by bony tissue causing bone growth defects, for which the mechanisms remain unclear. Because neurotrophins have been implicated in bone fracture repair, here we investigated their potential roles in growth plate bony repair in rats. After a drill-hole injury was made in the tibial growth plate and bone, increased injury site mRNA expression was observed for neurotrophins NGF, BDNF, NT-3, and NT-4 and their Trk receptors. NT-3 and its receptor TrkC showed the highest induction. NT-3 was localized to repairing cells, whereas TrkC was observed in stromal cells, osteoblasts, and blood vessel cells at the injury site. Moreover, systemic NT-3 immunoneutralization reduced bone volume at injury sites and also reduced vascularization at the injured growth plate, whereas recombinant NT-3 treatment promoted bony repair with elevated levels of mRNA for osteogenic markers and bone morphogenetic protein (BMP-2) and increased vascularization and mRNA for vascular endothelial growth factor (VEGF) and endothelial cell marker CD31 at the injured growth plate. When examined in vitro, NT-3 promoted osteogenesis in rat bone marrow stromal cells, induced Erk1/2 and Akt phosphorylation, and enhanced expression of BMPs (particularly BMP-2) and VEGF in the mineralizing cells. It also induced CD31 and VEGF mRNA in rat primary endothelial cell culture. BMP activity appears critical for NT-3 osteogenic effect in vitro because it can be almost completely abrogated by co-addition of the BMP inhibitor noggin. Consistent with its angiogenic effect in vivo, NT-3 promoted angiogenesis in metatarsal bone explants, an effect abolished by co-treatment with anti-VEGF. This study suggests that NT-3 may be an osteogenic and angiogenic factor upstream of BMP-2 and VEGF in bony repair, and further studies are required to investigate whether NT-3 may be a potential target for preventing growth plate faulty bony repair or for promoting bone fracture healing. © 2016 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Yu-Wen Su
- School of Pharmacy and Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, Australia
| | - Rosa Chung
- School of Pharmacy and Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, Australia
| | - Chun-Sheng Ruan
- School of Pharmacy and Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, Australia
| | - Shek Man Chim
- School of Pathology and Laboratory Medicine, University of Western Australia, Nedlands, Australia
| | - Vincent Kuek
- School of Pathology and Laboratory Medicine, University of Western Australia, Nedlands, Australia
| | - Prem P Dwivedi
- School of Pharmacy and Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, Australia
| | - Mohammadhossein Hassanshahi
- School of Pharmacy and Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, Australia
| | - Ke-Ming Chen
- Institute of Orthopaedics, Lanzhou General Hospital, Lanzhou Command of CPLA, Lanzhou, China
| | - Yangli Xie
- Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns, and Combined Injury, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Lin Chen
- Center of Bone Metabolism and Repair, State Key Laboratory of Trauma, Burns, and Combined Injury, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Bruce K Foster
- Department of Orthopaedic Surgery, Women's and Children's Hospital, North Adelaide, Australia
| | - Vicki Rosen
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA, USA
| | - Xin-Fu Zhou
- School of Pharmacy and Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, Australia
| | - Jiake Xu
- School of Pathology and Laboratory Medicine, University of Western Australia, Nedlands, Australia
| | - Cory J Xian
- School of Pharmacy and Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, Australia
| |
Collapse
|
25
|
Nerve growth factor–induced synapse-like structures in contralateral sensory ganglia contribute to chronic mirror-image pain. Pain 2015; 156:2295-2309. [DOI: 10.1097/j.pain.0000000000000280] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
26
|
Christie K, Koshy D, Cheng C, Guo G, Martinez JA, Duraikannu A, Zochodne DW. Intraganglionic interactions between satellite cells and adult sensory neurons. Mol Cell Neurosci 2015; 67:1-12. [DOI: 10.1016/j.mcn.2015.05.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Revised: 04/12/2015] [Accepted: 05/11/2015] [Indexed: 11/25/2022] Open
|
27
|
Abstract
Neurotrophins (NTs) belong to a family of trophic factors that regulate the survival, growth and programmed cell death of neurons. In mammals, there are four structurally and functionally related NT proteins, viz. nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), neurotrophin 3 and neurotrophin 4. Most research on NTs to date has focussed on the effects of NGF and BDNF signalling via their respective cognate high affinity neurotrophic tyrosine kinase viz TrkA and TrkB receptors. Apart from the key physiologic roles of NGF and BDNF in peripheral and central nervous system function, NGF and BDNF signalling via TrkA and TrkB receptors respectively have been implicated in mechanisms underpinning neuropathic pain. Additionally, NGF and BDNF signalling via the low-affinity pan neurotrophin receptor at 75 kDa (p75NTR) may also contribute to the pathobiology of neuropathic pain. In this review, we critically assess the role of neurotrophins signalling via their cognate high affinity receptors as well as the low affinity p75NTR in the pathophysiology of peripheral neuropathic and central neuropathic pain. We also identify knowledge gaps to guide future research aimed at generating novel insight on how to optimally modulate NT signalling for discovery of novel therapeutics to improve neuropathic pain relief.
Collapse
|
28
|
Abstract
Aim of review Many chronic pain conditions remain difficult to treat, presenting a high burden to society. Conditions such as complex regional pain syndrome may be maintained or exacerbated by sympathetic activity. Understanding the interactions between sympathetic nervous system and sensory system will help to improve the effective management of pathological pain including intractable neuropathic pain and persistent inflammatory pain. Method We first described the discovery of abnormal connections between sympathetic and sensory neurons. Subsequently, the functional roles of sympathetic sprouting in altered neuronal excitability and increased pain sensitivity were discussed. The mechanisms of the sympathetic sprouting were focusing on its relationship with neurotrophins, local inflammation, and abnormal spontaneous activity. Finally, we discussed clinical implications and conflicting findings in the laboratory and clinical research with respect to the interaction between sympathetic system and sensory system. Recent findings The findings that sprouting of sympathetic fibers into the sensory ganglia (dorsal root ganglion) after peripheral nerve injury, offers a possible explanation of the sympathetic involvement in pain. It is also suggested that releases of adenosine triphosphate (ATP), in addition to norepinephrine, from sympathetic nerve endings play important roles in sympathetic-mediated pain. New evidence indicates the importance of sympathetic innervation in local inflammatory responses. Summary Hopefully, this review will reinvigorate the study of sympathetic-sensory interactions in chronic pain conditions, and help to better understand how sympathetic system contributes to this serious clinical problem.
Collapse
Affiliation(s)
- Si-Si Chen
- Pain Research Center, Department of Anesthesiology, University of Cincinnati College of Medicine, Cincinnati, USA
| | - Jun-Ming Zhang
- Pain Research Center, Department of Anesthesiology, University of Cincinnati College of Medicine, Cincinnati, USA
| |
Collapse
|
29
|
da Silva JT, Santos FMD, Giardini AC, Martins DDO, de Oliveira ME, Ciena AP, Gutierrez VP, Watanabe IS, Britto LRGD, Chacur M. Neural mobilization promotes nerve regeneration by nerve growth factor and myelin protein zero increased after sciatic nerve injury. Growth Factors 2015; 33:8-13. [PMID: 25489629 DOI: 10.3109/08977194.2014.953630] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Neurotrophins are crucial in relation to axonal regrowth and remyelination following injury; and neural mobilization (NM) is a noninvasive therapy that clinically is effective in neuropathic pain treatment, but its mechanisms remains unclear. We examined the effects of NM on the regeneration of sciatic nerve after chronic constriction injury (CCI) in rats. The CCI was performed on adult male rats, submitted to 10 sessions of NM, starting 14 days after CCI. Then, the nerves were analyzed using transmission electron microscopy and western blot for neural growth factor (NGF) and myelin protein zero (MPZ). We observed an increase of NGF and MPZ after CCI and NM. Electron microscopy revealed that CCI-NM samples had high numbers of axons possessing myelin sheaths of normal thickness and less inter-axonal fibrosis than the CCI. These data suggest that NM is effective in facilitating nerve regeneration and NGF and MPZ are involved in this effect.
Collapse
Affiliation(s)
- Joyce Teixeira da Silva
- Department of Anatomy, Laboratory of Functional Neuroanatomy of Pain, Institute of Biomedical Sciences, University of São Paulo , São Paulo , Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Hansebout CR, Su C, Reddy K, Zhang D, Jiang C, Rathbone MP, Jiang S. Enteric glia mediate neuronal outgrowth through release of neurotrophic factors. Neural Regen Res 2014; 7:2165-75. [PMID: 25538736 PMCID: PMC4268714 DOI: 10.3969/j.issn.1673-5374.2012.028.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2012] [Accepted: 07/24/2012] [Indexed: 01/25/2023] Open
Abstract
Previous studies have shown that transplanted enteric glia enhance axonal regeneration, reduce tissue damage, and promote functional recovery following spinal cord injury. However, the mechanisms by which enteric glia mediate these beneficial effects are unknown. Neurotrophic factors can promote neuronal differentiation, survival and neurite extension. We hypothesized that enteric glia may exert their protective effects against spinal cord injury partially through the secretion of neurotrophic factors. In the present study, we demonstrated that primary enteric glia cells release nerve growth factor, brain-derived neurotrophic factor and glial cell line-derived neurotrophic factor over time with their concentrations reaching approximately 250, 100 and 50 pg/mL of culture medium respectively after 48 hours. The biological relevance of this secretion was assessed by incubating dissociated dorsal root ganglion neuronal cultures in enteric glia-conditioned medium with and/or without neutralizing antibodies to each of these proteins and evaluating the differences in neurite growth. We discovered that conditioned medium enhances neurite outgrowth in dorsal root ganglion neurons. Even though there was no detectable amount of neurotrophin-3 secretion using ELISA analysis, the neurite outgrowth effect can be attenuated by the antibody-mediated neutralization of each of the aforementioned neurotrophic factors. Therefore, enteric glia secrete nerve growth factor, brain-derived neurotrophic factor, glial cell line-derived neurotrophic factor and neurotrophin-3 into their surrounding environment in concentrations that can cause a biological effect.
Collapse
Affiliation(s)
- Christopher R Hansebout
- Department of Surgery (Neurosurgery, Neuroscience and Neurobiology), McMaster University, Health Sciences Centre, Hamilton, ON L8S 4K1, Canada ; Hamilton NeuroRestorative Group (NRG), McMaster University, Health Sciences Centre, Hamilton, ON L8S 4K1, Canada
| | - Caixin Su
- Department of Surgery (Neurosurgery, Neuroscience and Neurobiology), McMaster University, Health Sciences Centre, Hamilton, ON L8S 4K1, Canada ; Hamilton NeuroRestorative Group (NRG), McMaster University, Health Sciences Centre, Hamilton, ON L8S 4K1, Canada
| | - Kiran Reddy
- Department of Surgery (Neurosurgery, Neuroscience and Neurobiology), McMaster University, Health Sciences Centre, Hamilton, ON L8S 4K1, Canada ; Hamilton NeuroRestorative Group (NRG), McMaster University, Health Sciences Centre, Hamilton, ON L8S 4K1, Canada
| | - Donald Zhang
- Hamilton NeuroRestorative Group (NRG), McMaster University, Health Sciences Centre, Hamilton, ON L8S 4K1, Canada ; Cleveland Clinic Spine Institute, Cleveland, OH 44195, USA
| | - Cai Jiang
- Hamilton NeuroRestorative Group (NRG), McMaster University, Health Sciences Centre, Hamilton, ON L8S 4K1, Canada ; Department of Medicine (Neurology, Neurobiochemistry), McMaster University, Health Sciences Centre, Hamilton, ON L8S 4K1, Canada
| | - Michel P Rathbone
- Hamilton NeuroRestorative Group (NRG), McMaster University, Health Sciences Centre, Hamilton, ON L8S 4K1, Canada ; Department of Medicine (Neurology, Neurobiochemistry), McMaster University, Health Sciences Centre, Hamilton, ON L8S 4K1, Canada
| | - Shucui Jiang
- Department of Surgery (Neurosurgery, Neuroscience and Neurobiology), McMaster University, Health Sciences Centre, Hamilton, ON L8S 4K1, Canada ; Hamilton NeuroRestorative Group (NRG), McMaster University, Health Sciences Centre, Hamilton, ON L8S 4K1, Canada
| |
Collapse
|
31
|
Abstract
Neuropathic pain often fails to respond to conventional pain management procedures. here we review the aetiology of neuropathic pain as would result from peripheral neuropathy or injury. We show that inflammatory mediators released from damaged nerves and tissue are responsible for triggering ectopic activity in primary afferents and that this, in turn, provokes increased spinal cord activity and the development of ‘central sensitization’. Although evidence is mounting to support the role of interleukin-1β, prostaglandins and other cytokines in the onset of neuropathic pain, the clinical efficacy of drugs which antagonize or prevent the actions of these mediators is yet to be determined. basic science findings do, however, support the use of pre-emptive analgesia during procedures which involve nerve manipulation and the use of anti-inflammatory steroids as soon as possible following traumatic nerve injury.
Collapse
|
32
|
Kao TH, Peng YJ, Salter DM, Lee HS. Nerve growth factor increases MMP9 activity in annulus fibrosus cells by upregulating lipocalin 2 expression. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2014; 24:1959-68. [PMID: 25412834 DOI: 10.1007/s00586-014-3675-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Revised: 11/12/2014] [Accepted: 11/13/2014] [Indexed: 10/24/2022]
Abstract
PURPOSE Nerve growth factor (NGF) expression and activity is important in chronic lower back pain but may also act as a pro-catabolic factor in the pathogenesis of intervertebral disc (IVD) degeneration. Lipocalin 2 (Lcn2) expression in IVD was upregulated by NGF stimulation in our previous study. The current study was undertaken to identify potential mechanisms of the latter effect including potential interactions between Lcn2 and matrix metalloproteinase 9 (MMP9). METHODS Rat annulus fibrosus (AF) cells were stimulated by NGF and subjected to microarray analysis, subsequent real-time PCR, western immunoblotting, and immunofluorescence. Cells were treated with NGF in the absence or presence of the NGF inhibitor Ro 08-2750. Zymography and functional MMP9 assays were used to determine MMP9 activity, whilst the dimethyl-methylene blue assay was used to quantify the release of glycosaminoglycans (GAGs) reflecting catabolic effects following NGF treatment. Immunoprecipitation with immunoblotting was used to identify interactions between MMP9 and Lcn2. RESULTS Increased expression of Lcn2 gene and protein following NGF stimulation was confirmed by microarray analysis, real-time PCR, western blot and immunofluorescence. Zymography showed that NGF enhanced 125-kDa gelatinase activity, identified as a Lcn2/MMP9 complex by immunoprecipitation and immunoblotting. Functional assays showed increased MMP9 activity and GAG release in the presence of NGF. The effects of NGF were neutralized by the presence of Ro 08-2750. CONCLUSIONS NGF upregulates Lcn2 expression and increases MMP9 activity in AF cells; processes which are likely to potentiate degeneration of AF tissue in vivo. Anti-NGF treatment may have benefit for management of pain relief and slowing down progression of AF tissue degeneration.
Collapse
Affiliation(s)
- Ting-Hsien Kao
- Graduate Institute of Medical Science, National Defense Medical Center, Taipei, Taiwan, Republic of China
| | | | | | | |
Collapse
|
33
|
Abstract
The neuroglia of the peripheral nervous system (PNS) are derived from the neural crest and are a diverse family of cells. They consist of myelinating Schwann cells, non-myelinating Schwann cells, satellite cells, and perisynaptic Schwann cells. Due to their prominent role in the formation of myelin, myelinating Schwann cells are the best recognised of these cells. However, Schwann cells and the other neuroglia of the PNS have many functions that are independent of myelination and contribute significantly to the functioning of the peripheral nerve in both health and disease. Here we discuss the contribution of PNS neuroglial cells to clinical deficit in neurodegenerative disease, peripheral neuropathy, and pain.
Collapse
Affiliation(s)
- Patricia J Armati
- Neuroinflammation Group, Brain & Mind Research Institute, University of Sydney, Sydney, Australia
| | | |
Collapse
|
34
|
Kao TH, Peng YJ, Tsou HK, Salter DM, Lee HS. Nerve growth factor promotes expression of novel genes in intervertebral disc cells that regulate tissue degradation: Laboratory investigation. J Neurosurg Spine 2014; 21:653-661. [PMID: 25062286 DOI: 10.3171/2014.6.spine13756] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
OBJECT Increased neurotrophin activity in degenerative intervertebral discs (IVDs) is one potential cause of chronic low-back pain (LBP). The aim of the study was to assess if nerve growth factor (NGF) might alter gene expression of IVD cells and contribute to disc degeneration by enhancing expression or activity of factors that cause breakdown of IVD matrix. METHODS Rat-tail IVD cells were stimulated by NGF and subjected to microarray analysis. Real-time polymerase chain reaction, Western blotting, and immunocytochemistry of rat and human IVD cells and tissues treated with NGF in vitro in the absence or presence of the NGF inhibitor Ro 08-2750 were used to confirm findings of the microarray studies. Phosphorylation of mitogen-activated protein kinase (MAPK) was used to identify cell signaling pathways involved in NGF stimulation in the absence or presence of Ro 08-2750. RESULTS Microarray analysis demonstrated increased expression of chitinase 3-like 1 (Chi3l1), lipocalin 2 (Lcn2), and matrix metalloproteinase-3 (Mmp3) following NGF stimulation of rat IVD cells in vitro. Increased gene expression was confirmed by real-time polymerase chain reaction with a relative increase in the Mmp/Timp ratio. Increased expression of Chi3l1, Lcn2, and Mmp3 following NGF stimulation was also demonstrated in rat cells and human tissue in vitro. Effects of NGF on protein expression were blocked by an NGF inhibitor and appear to function through the extracellular-regulation kinase 1/2 (ERK1/2) MAPK pathway. CONCLUSIONS Nerve growth factor has potential effects on matrix turnover activity and influences the catabolic/anabolic balance of IVD cells in an adverse way that may potentiate IVD degeneration. Anti-NGF treatment might be beneficial to ameliorate progressive tissue breakdown in IVD degeneration and may lead to pain relief.
Collapse
Affiliation(s)
- Ting-Hsien Kao
- Graduate Institute of Medical Science, National Defense Medical Center, and
| | | | | | | | | |
Collapse
|
35
|
Pettersson LME, Geremia NM, Ying Z, Verge VMK. Injury-associated PACAP expression in rat sensory and motor neurons is induced by endogenous BDNF. PLoS One 2014; 9:e100730. [PMID: 24968020 PMCID: PMC4072603 DOI: 10.1371/journal.pone.0100730] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Accepted: 05/28/2014] [Indexed: 11/19/2022] Open
Abstract
Peripheral nerve injury results in dramatic upregulation in pituitary adenylate cyclase activating polypeptide (PACAP) expression in adult rat dorsal root ganglia and spinal motor neurons mirroring that described for the neurotrophin brain derived neurotrophic factor (BDNF). Thus, we posited that injury-associated alterations in BDNF expression regulate the changes in PACAP expression observed in the injured neurons. The role of endogenous BDNF in induction and/or maintenance of PACAP mRNA expression in injured adult rat motor and sensory neurons was examined by intrathecally infusing or intraperitoneally injecting BDNF-specific antibodies or control IgGs immediately at the time of L4-L6 spinal nerve injury, or in a delayed fashion one week later for 3 days followed by analysis of impact on PACAP expression. PACAP mRNA in injured lumbar sensory and motor neurons was detected using in situ hybridization, allowing quantification of relative changes between experimental groups, with ATF-3 immunofluorescence serving to identify the injured subpopulation of motor neurons. Both the incidence and level of PACAP mRNA expression were dramatically reduced in injured sensory and motor neurons in response to immediate intrathecal anti-BDNF treatment. In contrast, neither intraperitoneal injections nor delayed intrathecal infusions of anti-BDNF had any discernible impact on PACAP expression. This impact on PACAP expression in response to BDNF immunoneutralization in DRG was confirmed using qRT-PCR or by using BDNF selective siRNAs to reduce neuronal BDNF expression. Collectively, our findings support that endogenous injury-associated BDNF expression is critically involved in induction, but not maintenance, of injury-associated PACAP expression in sensory and motor neurons.
Collapse
Affiliation(s)
- Lina M. E. Pettersson
- CMSNRC & Department of Anatomy & Cell Biology, University of Saskatchewan, Saskatoon, SK, Canada
- * E-mail:
| | - Nicole M. Geremia
- CMSNRC & Department of Anatomy & Cell Biology, University of Saskatchewan, Saskatoon, SK, Canada
| | - Zhengxin Ying
- CMSNRC & Department of Anatomy & Cell Biology, University of Saskatchewan, Saskatoon, SK, Canada
| | - Valerie M. K. Verge
- CMSNRC & Department of Anatomy & Cell Biology, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
36
|
Smithson LJ, Krol KM, Kawaja MD. Neuronal degeneration associated with sympathosensory plexuses in the trigeminal ganglia of aged mice that overexpress nerve growth factor. Neurobiol Aging 2014; 35:2812-2821. [PMID: 25037287 DOI: 10.1016/j.neurobiolaging.2014.06.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Revised: 05/15/2014] [Accepted: 06/10/2014] [Indexed: 10/25/2022]
Abstract
Aberrant sympathetic sprouting is seen in the uninjured trigeminal ganglia of transgenic mice that ectopically express nerve growth factor under the control of the glial fibrillary acidic protein promoter. These sympathetic axons form perineuronal plexuses around a subset of sensory somata in 2- to 3-month-old transgenic mice. Here, we show that aged transgenic mice (i.e., 11-14 and 16-18 months old) have dystrophic sympathetic plexuses (i.e., increased densities of swollen axons), and that satellite glial cells, specifically those in contact with dystrophic plexuses in the aged mice display strong immunostaining for tumor necrosis factor alpha. The colocalization of dystrophic plexuses and reactive satellite glial cells in the aged mice coincides with degenerative features in the enveloped sensory somata. Collectively, these novel results show that, with advancing age, sympathetic plexuses undergo dystrophic changes that heighten satellite glial cell reactivity and that together these cellular events coincide with neuronal degeneration.
Collapse
Affiliation(s)
- Laura J Smithson
- Centre for Neuroscience Studies, Queen's University, Kingston, Ontario, Canada
| | - Karmen M Krol
- Department of Anesthesiology, Queen's University, Kingston, Ontario, Canada
| | - Michael D Kawaja
- Centre for Neuroscience Studies, Queen's University, Kingston, Ontario, Canada; Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada.
| |
Collapse
|
37
|
Mirror-image pain is mediated by nerve growth factor produced from tumor necrosis factor alpha-activated satellite glia after peripheral nerve injury. Pain 2014; 155:906-920. [DOI: 10.1016/j.pain.2014.01.010] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Revised: 12/17/2013] [Accepted: 01/14/2014] [Indexed: 02/07/2023]
|
38
|
Richner M, Ulrichsen M, Elmegaard SL, Dieu R, Pallesen LT, Vaegter CB. Peripheral nerve injury modulates neurotrophin signaling in the peripheral and central nervous system. Mol Neurobiol 2014; 50:945-70. [PMID: 24752592 DOI: 10.1007/s12035-014-8706-9] [Citation(s) in RCA: 125] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Accepted: 04/01/2014] [Indexed: 12/21/2022]
Abstract
Peripheral nerve injury disrupts the normal functions of sensory and motor neurons by damaging the integrity of axons and Schwann cells. In contrast to the central nervous system, the peripheral nervous system possesses a considerable capacity for regrowth, but regeneration is far from complete and functional recovery rarely returns to pre-injury levels. During development, the peripheral nervous system strongly depends upon trophic stimulation for neuronal differentiation, growth and maturation. The perhaps most important group of trophic substances in this context is the neurotrophins (NGF, BDNF, NT-3 and NT-4/5), which signal in a complex spatial and timely manner via the two structurally unrelated p75(NTR) and tropomyosin receptor kinase (TrkA, Trk-B and Trk-C) receptors. Damage to the adult peripheral nerves induces cellular mechanisms resembling those active during development, resulting in a rapid and robust increase in the synthesis of neurotrophins in neurons and Schwann cells, guiding and supporting regeneration. Furthermore, the injury induces neurotrophin-mediated changes in the dorsal root ganglia and in the spinal cord, which affect the modulation of afferent sensory signaling and eventually may contribute to the development of neuropathic pain. The focus of this review is on the expression patterns of neurotrophins and their receptors in neurons and glial cells of the peripheral nervous system and the spinal cord. Furthermore, injury-induced changes of expression patterns and the functional consequences in relation to axonal growth and remyelination as well as to neuropathic pain development will be reviewed.
Collapse
Affiliation(s)
- Mette Richner
- Danish Research Institute of Translational Neuroscience DANDRITE, Nordic EMBL Partnership, and Lundbeck Foundation Research Center MIND, Department of Biomedicine, Aarhus University, Ole Worms Allé 3, 8000, Aarhus C, Denmark
| | | | | | | | | | | |
Collapse
|
39
|
Gallaher ZR, Johnston ST, Czaja K. Neural proliferation in the dorsal root ganglia of the adult rat following capsaicin-induced neuronal death. J Comp Neurol 2014; 522:3295-307. [PMID: 24700150 DOI: 10.1002/cne.23598] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Revised: 03/26/2014] [Accepted: 03/27/2014] [Indexed: 12/31/2022]
Abstract
Glial proliferation is a major component of the nervous system's response to injury. In addition to glial proliferation, injury may induce neuronal proliferation in areas of the adult nervous system not considered neurogenic. We have previously reported increased neural proliferation within adult nodose ganglia following capsaicin-induced neuronal death. However, proliferation within the dorsal root ganglia (DRG) remains to be characterized. We hypothesized that capsaicin-induced neuronal death would increase proliferation of satellite glial cells (SGCs) within the DRG. To test this hypothesis, 6-week-old Sprague-Dawley rats received a neurotoxic dose of capsaicin, and proliferation was quantified and characterized at multiple time points thereafter. Proliferation of satellite glial cells expressing the progenitor cell marker nestin was increased at 1 and 3 days following capsaicin administration as shown by BrdU incorporation. In addition to SGCs was a large population of proliferating resident macrophages, as shown by retrovirally mediated expression of GFP. SGC proliferation at these early time points was followed by recovery of neuronal numbers after a loss of 40% of the neuronal population in the DRG. This recovery in neuronal number correlated with recovery of function as shown by paw withdrawal from a noxious heat source. Further understanding of the role that glial proliferation plays in the recovery of neuronal numbers and function may lead to the development of therapeutic treatments for neurodegenerative conditions.
Collapse
Affiliation(s)
- Zachary R Gallaher
- Integrative Physiology and Neuroscience, College of Veterinary Medicine, Washington State University, Pullman, Washington, 99164-6520
| | | | | |
Collapse
|
40
|
Savastano LE, Laurito SR, Fitt MR, Rasmussen JA, Gonzalez Polo V, Patterson SI. Sciatic nerve injury: A simple and subtle model for investigating many aspects of nervous system damage and recovery. J Neurosci Methods 2014; 227:166-80. [DOI: 10.1016/j.jneumeth.2014.01.020] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Revised: 01/16/2014] [Accepted: 01/20/2014] [Indexed: 02/04/2023]
|
41
|
Nadeau JR, Wilson-Gerwing TD, Verge VMK. Induction of a reactive state in perineuronal satellite glial cells akin to that produced by nerve injury is linked to the level of p75NTR expression in adult sensory neurons. Glia 2014; 62:763-77. [PMID: 24616056 DOI: 10.1002/glia.22640] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Accepted: 01/16/2014] [Indexed: 12/19/2022]
Abstract
Satellite glial cells (SGCs) surrounding primary sensory neurons are similar to astrocytes of the central nervous system in that they buffer the extracellular environment via potassium and calcium channels and express the intermediate filament glial fibrillary acidic protein (GFAP). Peripheral nerve injury induces a reactive state in SGCs that includes SGC proliferation, increased SGC/SGC coupling via gap junctions, decreased inward rectifying potassium channel 4.1 (Kir 4.1) expression and increased expression of GFAP and the common neurotrophin receptor, p75NTR. In contrast, neuronal p75NTR expression, normally detected in ∼80% of adult rat sensory neurons, decreases in response to peripheral axotomy. Given the differential regulation of p75NTR expression in neurons versus SGCs with injury, we hypothesized that reduced signaling via neuronal p75NTR contributes to the induction of a reactive state in SGCs. We found that reducing neuronal p75NTR protein expression in uninjured sensory neurons by intrathecal subarachnoid infusion of p75NTR-selective anti-sense oligodeoxynucleotides for one week was sufficient to induce a "reactive-like" state in the perineuronal SGCs akin to that normally observed following peripheral nerve injury. This reactive state included significantly increased SGC p75NTR, GFAP and gap junction protein connexin-43 protein expression, increased numbers of SGCs surrounding individual sensory neurons and decreased SGC Kir 4.1 channel expression. Collectively, this supports the tenet that reductions in target-derived trophic support leading to, or as a consequence of, reduced neuronal p75NTR expression plays a critical role in switching the SGC to a reactive state.
Collapse
Affiliation(s)
- Joelle R Nadeau
- Department of Anatomy and Cell Biology, University of Saskatchewan/Cameco MS Neuroscience Research Center, Saskatoon City Hospital, Saskatoon, SK, Canada
| | | | | |
Collapse
|
42
|
McLachlan EM, Hu P. Inflammation in dorsal root ganglia after peripheral nerve injury: effects of the sympathetic innervation. Auton Neurosci 2013; 182:108-17. [PMID: 24418114 DOI: 10.1016/j.autneu.2013.12.009] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2013] [Accepted: 12/11/2013] [Indexed: 12/26/2022]
Abstract
Following a peripheral nerve injury, a sterile inflammation develops in sympathetic and dorsal root ganglia (DRGs) with axons that project in the damaged nerve trunk. Macrophages and T-lymphocytes invade these ganglia where they are believed to release cytokines that lead to hyperexcitability and ectopic discharge, possibly contributing to neuropathic pain. Here, we examined the role of the sympathetic innervation in the inflammation of L5 DRGs of Wistar rats following transection of the sciatic nerve, comparing the effects of specific surgical interventions 10-14 days prior to the nerve lesion with those of chronic administration of adrenoceptor antagonists. Immunohistochemistry was used to define the invading immune cell populations 7 days after sciatic transection. Removal of sympathetic activity in the hind limb by transecting the preganglionic input to the relevant lumbar sympathetic ganglia (ipsi- or bilateral decentralization) or by ipsilateral removal of these ganglia with degeneration of postganglionic axons (denervation), caused less DRG inflammation than occurred after a sham sympathectomy. By contrast, denervation of the lymph node draining the lesion site potentiated T-cell influx. Systemic treatment with antagonists of α1-adrenoceptors (prazosin) or β-adrenoceptors (propranolol) led to opposite but unexpected effects on infiltration of DRGs after sciatic transection. Prazosin potentiated the influx of macrophages and CD4(+) T-lymphocytes whereas propranolol tended to reduce immune cell invasion. These data are hard to reconcile with many in vitro studies in which catecholamines acting mainly via β2-adrenoceptors have inhibited the activation and proliferation of immune cells following an inflammatory challenge.
Collapse
Affiliation(s)
- Elspeth M McLachlan
- Neuroscience Research Australia, Randwick, NSW 2031, and the University of New South Wales, Sydney, NSW 2052, Australia.
| | - Ping Hu
- Neuroscience Research Australia, Randwick, NSW 2031, and the University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
43
|
Donegan M, Kernisant M, Cua C, Jasmin L, Ohara PT. Satellite glial cell proliferation in the trigeminal ganglia after chronic constriction injury of the infraorbital nerve. Glia 2013; 61:2000-8. [PMID: 24123473 DOI: 10.1002/glia.22571] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Accepted: 08/07/2013] [Indexed: 12/14/2022]
Abstract
We have examined satellite glial cell (SGC) proliferation in trigeminal ganglia following chronic constriction injury of the infraorbital nerve. Using BrdU labeling combined with immunohistochemistry for SGC specific proteins we positively confirmed proliferating cells to be SGCs. Proliferation peaks at approximately 4 days after injury and dividing SGCs are preferentially located around neurons that are immunopositive for ATF-3, a marker of nerve injury. After nerve injury there is an increase GFAP expression in SGCs associated with both ATF-3 immunopositive and immunonegative neurons throughout the ganglia. SGCs also express the non-glial proteins, CD45 and CD163, which label resident macrophages and circulating leukocytes, respectively. In addition to SGCs, we found some Schwann cells, endothelial cells, resident macrophages, and circulating leukocytes were BrdU immunopositive.
Collapse
Affiliation(s)
- Macayla Donegan
- University of California San Francisco, Center for Integrative Neuroscience, BOX 0444, 675 Nelson Rising Lane, San Francisco, California
| | | | | | | | | |
Collapse
|
44
|
Abstract
Autonomic cardiac neurons have a common origin in the neural crest but undergo distinct developmental differentiation as they mature toward their adult phenotype. Progenitor cells respond to repulsive cues during migration, followed by differentiation cues from paracrine sources that promote neurochemistry and differentiation. When autonomic axons start to innervate cardiac tissue, neurotrophic factors from vascular tissue are essential for maintenance of neurons before they reach their targets, upon which target-derived trophic factors take over final maturation, synaptic strength and postnatal survival. Although target-derived neurotrophins have a central role to play in development, alternative sources of neurotrophins may also modulate innervation. Both developing and adult sympathetic neurons express proNGF, and adult parasympathetic cardiac ganglion neurons also synthesize and release NGF. The physiological function of these “non-classical” cardiac sources of neurotrophins remains to be determined, especially in relation to autocrine/paracrine sustenance during development.
Cardiac autonomic nerves are closely spatially associated in cardiac plexuses, ganglia and pacemaker regions and so are sensitive to release of neurotransmitter, neuropeptides and trophic factors from adjacent nerves. As such, in many cardiac pathologies, it is an imbalance within the two arms of the autonomic system that is critical for disease progression. Although this crosstalk between sympathetic and parasympathetic nerves has been well established for adult nerves, it is unclear whether a degree of paracrine regulation occurs across the autonomic limbs during development. Aberrant nerve remodeling is a common occurrence in many adult cardiovascular pathologies, and the mechanisms regulating outgrowth or denervation are disparate. However, autonomic neurons display considerable plasticity in this regard with neurotrophins and inflammatory cytokines having a central regulatory function, including in possible neurotransmitter changes. Certainly, neurotrophins and cytokines regulate transcriptional factors in adult autonomic neurons that have vital differentiation roles in development. Particularly for parasympathetic cardiac ganglion neurons, additional examinations of developmental regulatory mechanisms will potentially aid in understanding attenuated parasympathetic function in a number of conditions, including heart failure.
Collapse
Affiliation(s)
- Wohaib Hasan
- Knight Cardiovascular Institute; Oregon Health & Science University; Portland, OR USA
| |
Collapse
|
45
|
Kurata S, Goto T, K. Gunjigake K, Kataoka S, N. Kuroishi K, Ono K, Toyono T, Kobayashi S, Yamaguchi K. Nerve Growth Factor Involves Mutual Interaction between Neurons and Satellite Glial Cells in the Rat Trigeminal Ganglion. Acta Histochem Cytochem 2013; 46:65-73. [PMID: 23720605 PMCID: PMC3661776 DOI: 10.1267/ahc.13003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Accepted: 03/07/2013] [Indexed: 12/24/2022] Open
Abstract
Nerve growth factor (NGF) plays a critical role in the trigeminal ganglion (TG) following peripheral nerve damage in the oral region. Although neurons in the TG are surrounded by satellite glial cells (SGCs) that passively support neural function, little is known regarding NGF expression and its interactions with TG neurons and SGCs. This study was performed to examine the expression of NGF in TG neurons and SGCs with nerve damage by experimental tooth movement. An elastic band was inserted between the first and second upper molars of rats. The TG was removed at 0–7 days after tooth movement. Using in situ hybridization, NGF mRNA was expressed in both neurons and SGCs. Immunostaining for NGF demonstrated that during tooth movement the number of NGF-immunoreactive SGCs increased significantly as compared with baseline and reached maximum levels at day 3. Furthermore, the administration of the gap junction inhibitor carbenoxolone at the TG during tooth movement significantly decreased the number of NGF-immunoreactive SGCs. These results suggested that peripheral nerve damage may induce signal transduction from neurons to SGCs via gap junctions, inducing NGF expression in SGCs around neurons, and released NGF may be involved in the restoration of damaged neurons.
Collapse
Affiliation(s)
- Sayaka Kurata
- Division of Orofacial Functions and Orthodontics, Kyushu Dental University
| | | | - Kaori K. Gunjigake
- Division of Orofacial Functions and Orthodontics, Kyushu Dental University
| | | | - Kayoko N. Kuroishi
- Division of Orofacial Functions and Orthodontics, Kyushu Dental University
| | - Kentaro Ono
- Division of Physiology, Kyushu Dental University
| | - Takashi Toyono
- Division of Oral Histology and Neurobiology, Kyushu Dental University
| | | | - Kazunori Yamaguchi
- Division of Orofacial Functions and Orthodontics, Kyushu Dental University
| |
Collapse
|
46
|
Domingo A, Mayoral O, Monterde S, Santafé MM. Neuromuscular damage and repair after dry needling in mice. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2013; 2013:260806. [PMID: 23662122 PMCID: PMC3638584 DOI: 10.1155/2013/260806] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Revised: 02/23/2013] [Accepted: 03/12/2013] [Indexed: 11/23/2022]
Abstract
Objective. Some dry needling treatments involve repetitive and rapid needle insertions into myofascial trigger points. This type of treatment causes muscle injury and can also damage nerve fibers. The aim of this study is to determine the injury caused by 15 repetitive punctures in the muscle and the intramuscular nerves in healthy mouse muscle and its ulterior regeneration. Methods. We repeatedly needled the levator auris longus muscle of mice, and then the muscles were processed with immunohistochemistry, methylene blue, and electron microscopy techniques. Results. Three hours after the dry needling procedure, the muscle fibers showed some signs of an inflammatory response, which progressed to greater intensity 24 hours after the procedure. Some inflammatory cells could still be seen when the muscle regeneration was almost complete seven days after the treatment. One day after the treatment, some changes in the distribution of receptors could be observed in the denervated postsynaptic component. Reinnervation was complete by the third day after the dry needling procedure. We also saw very fine axonal branches reinnervating all the postsynaptic components and some residual sprouts the same day. Conclusion. Repeated dry needling punctures in muscle do not perturb the different stages of muscle regeneration and reinnervation.
Collapse
Affiliation(s)
- Ares Domingo
- Unit of Histology and Neurobiology, Department of Basic Medical Sciences, Faculty of Medicine and Health Sciences, Rovira i Virgili University, Carrer St. Llorenç No. 21, 43201 Reus, Spain
| | - Orlando Mayoral
- Physical Therapy Unit, Hospital Provincial de Toledo, Cerro de San Servando s/n, 45006 Toledo, Spain
| | - Sonia Monterde
- Unit of Physiotherapy, Department of Medicine and Surgery, Faculty of Medicine and Health Sciences, Rovira i Virgili University, Carrer St. Llorenç No. 21, 43201 Reus, Spain
| | - Manel M. Santafé
- Unit of Histology and Neurobiology, Department of Basic Medical Sciences, Faculty of Medicine and Health Sciences, Rovira i Virgili University, Carrer St. Llorenç No. 21, 43201 Reus, Spain
| |
Collapse
|
47
|
Armati PJ, Mathey EK. An update on Schwann cell biology--immunomodulation, neural regulation and other surprises. J Neurol Sci 2013; 333:68-72. [PMID: 23422027 DOI: 10.1016/j.jns.2013.01.018] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2012] [Revised: 01/16/2013] [Accepted: 01/16/2013] [Indexed: 10/27/2022]
Abstract
Schwann cells are primarily discussed in the context of their ability to form myelin. However there are many subtypes of these neural crest derived cells including satellite cells of the dorsal root ganglia and autonomic ganglia, the perisynaptic Schwann cells of the neuromuscular junction and the non-myelin forming Schwann cells which ensheathe the unmyelinated fibres of the peripheral nervous system which are about 80% of peripheral nerves. This review discusses the many functions of these Schwann cell subsets including their seminal role in axonal ensheathment, perineuronal organisation, maintenance of normal neural function, synapse formation, response to damage and repair and an increasingly recognised active role in pain syndromes.
Collapse
Affiliation(s)
- Patricia J Armati
- Neuroinflammation Group, Brain Mind Research Institute, The University of Sydney, Camperdown, 2050 NSW, Australia.
| | | |
Collapse
|
48
|
Differences between tumor necrosis factor-α receptors types 1 and 2 in the modulation of spinal glial cell activation and mechanical allodynia in a rat sciatic nerve injury model. Spine (Phila Pa 1976) 2013; 38:11-6. [PMID: 22652595 DOI: 10.1097/brs.0b013e3182610fa9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN Immunohistological analysis of spinal glial cells and analysis of pain behavior in the rat neuropathic pain model were investigated to clarify the function of tumor necrosis factor (TNF)-α receptors p55 type 1 and p75 type 2. OBJECTIVE Our objective was to investigate changes in hyperalgesia and glial cell activation after injection of antibodies to each TNF receptor in a rat sciatic nerve injury model. SUMMARY OF BACKGROUND DATA Recent research has revealed that activation of spinal glia plays an important role in radicular and neuropathic pain. TNF-α is reportedly a modulator for glial cell activation; however, the precise relationship between TNF-α and its 2 receptors on glial cells has not been fully delineated. METHODS Chronic constriction sciatic nerve injury and sham-operated rats were used. Antibodies to p55 or p75 or saline were intrathecally injected at the L5 level into rats with chronic constriction injury. Mechanical allodynia was examined for 2 weeks. Spinal cords were removed for immunohistochemical studies of ionized calcium-binding adaptor molecule 1 or glial fibrillary acidic protein. RESULTS Saline rats showed significantly more mechanical allodynia and the number of ionized calcium-binding adaptor molecule 1--immunoreactive microglia and glial fibrillary acidic protein--immunoreactive astrocytes were significantly increased in the saline rats compared with sham-operated rats during the 2 weeks. Injection of both antibodies significantly reduced pain behavior and anti-p55 caused significantly greater reduction compared with anti-p75. The numbers of microglia in both the antibodies groups were significantly decreased when compared with the saline group. In addition, the anti-p55 antibody suppressed microglial activation more than the anti-p75 antibody. CONCLUSION These results indicate that the microglial TNF-α p55 pathway played a more important role than the TNF-α p75 pathway in the pathogenesis of peripheral nerve injury pain. This suggests that future studies seeking to clarify neuropathic pain should target TNF-α and p55 receptors in microglia.
Collapse
|
49
|
Siniscalco D, Giordano C, Rossi F, Maione S, de Novellis V. Role of neurotrophins in neuropathic pain. Curr Neuropharmacol 2012; 9:523-9. [PMID: 22654713 PMCID: PMC3263449 DOI: 10.2174/157015911798376208] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2010] [Revised: 07/06/2010] [Accepted: 07/06/2010] [Indexed: 11/27/2022] Open
Abstract
Neurotrophins (NTs) belong to a family of structurally and functionally related proteins, they are the subsets of neurotrophic factors. Neurotrophins are responsible for diverse actions in the developing peripheral and central nervous systems. They are important regulators of neuronal function, affecting neuronal survival and growth. They are able to regulate cell death and survival in development as well as in pathophysiologic states. NTs and their receptors are expressed in areas of the brain that undergo plasticity, indicating that they are able to modulate synaptic plasticity. Recently, neurotrophins have been shown to play significant roles in the development and transmission of neuropathic pain. Neuropathic pain is initiated by a primary lesion or dysfunction in the nervous system. It has a huge impact on the quality of life. It is debilitating and often has an associated degree of depression that contributes to decreasing human well being. Neuropathic pain ranks at the first place for sanitary costs. Neuropathic pain treatment is extremely difficult. Several molecular pathways are involved, making it a very complex disease. Excitatory or inhibitory pathways controlling neuropathic pain development show altered gene expression, caused by peripheral nerve injury. At present there are no valid treatments over time and neuropathic pain can be classified as an incurable disease. Nowadays, pain research is directing towards new molecular methods. By targeting neurotrophin molecules it may be possible to provide better pain control than currently available.
Collapse
Affiliation(s)
- Dario Siniscalco
- Department of Experimental Medicine, Division of Pharmacology "L. Donatelli", Second University of Naples, Via S. Maria di Costantinopoli, 16 - 80138 Naples, Italy
| | | | | | | | | |
Collapse
|
50
|
Santos FM, Silva JT, Giardini AC, Rocha PA, Achermann APP, S Alves A, Britto LRG, Chacur M. Neural mobilization reverses behavioral and cellular changes that characterize neuropathic pain in rats. Mol Pain 2012; 8:57. [PMID: 22839415 PMCID: PMC3495676 DOI: 10.1186/1744-8069-8-57] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2011] [Accepted: 07/06/2012] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND The neural mobilization technique is a noninvasive method that has proved clinically effective in reducing pain sensitivity and consequently in improving quality of life after neuropathic pain. The present study examined the effects of neural mobilization (NM) on pain sensitivity induced by chronic constriction injury (CCI) in rats. The CCI was performed on adult male rats, submitted thereafter to 10 sessions of NM, each other day, starting 14 days after the CCI injury. Over the treatment period, animals were evaluated for nociception using behavioral tests, such as tests for allodynia and thermal and mechanical hyperalgesia. At the end of the sessions, the dorsal root ganglion (DRG) and spinal cord were analyzed using immunohistochemistry and Western blot assays for neural growth factor (NGF) and glial fibrillary acidic protein (GFAP). RESULTS The NM treatment induced an early reduction (from the second session) of the hyperalgesia and allodynia in CCI-injured rats, which persisted until the end of the treatment. On the other hand, only after the 4th session we observed a blockade of thermal sensitivity. Regarding cellular changes, we observed a decrease of GFAP and NGF expression after NM in the ipsilateral DRG (68% and 111%, respectively) and the decrease of only GFAP expression after NM in the lumbar spinal cord (L3-L6) (108%). CONCLUSIONS These data provide evidence that NM treatment reverses pain symptoms in CCI-injured rats and suggest the involvement of glial cells and NGF in such an effect.
Collapse
Affiliation(s)
- Fabio M Santos
- Department of Anatomy, Laboratory of Functional Neuroanatomy of Pain, Sao Paulo, Brazil
- Professor of Anatomy from University Nine of July, Sao Paulo, Brazil
| | - Joyce T Silva
- Department of Anatomy, Laboratory of Functional Neuroanatomy of Pain, Sao Paulo, Brazil
| | - Aline C Giardini
- Department of Anatomy, Laboratory of Functional Neuroanatomy of Pain, Sao Paulo, Brazil
| | - Priscila A Rocha
- Department of Anatomy, Laboratory of Functional Neuroanatomy of Pain, Sao Paulo, Brazil
| | - Arnold PP Achermann
- Department of Anatomy, Laboratory of Functional Neuroanatomy of Pain, Sao Paulo, Brazil
| | - Adilson S Alves
- Department of Physiology and Biophysics, Laboratory of Cellular Neurobiology, Institute of Biomedical Sciences, University of São Paulo, Sao Paulo, Brazil
| | - Luiz RG Britto
- Department of Physiology and Biophysics, Laboratory of Cellular Neurobiology, Institute of Biomedical Sciences, University of São Paulo, Sao Paulo, Brazil
| | - Marucia Chacur
- Department of Anatomy, Laboratory of Functional Neuroanatomy of Pain, Sao Paulo, Brazil
- Laboratory of Functional Neuroanatomy of Pain Department of Anatomy Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Lineu Prestes, Sao Paulo, 2415 05508-900, Brazil
| |
Collapse
|