1
|
Kunnath AJ, Gifford RH, Wallace MT. Cholinergic modulation of sensory perception and plasticity. Neurosci Biobehav Rev 2023; 152:105323. [PMID: 37467908 PMCID: PMC10424559 DOI: 10.1016/j.neubiorev.2023.105323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 07/07/2023] [Accepted: 07/13/2023] [Indexed: 07/21/2023]
Abstract
Sensory systems are highly plastic, but the mechanisms of sensory plasticity remain unclear. People with vision or hearing loss demonstrate significant neural network reorganization that promotes adaptive changes in other sensory modalities as well as in their ability to combine information across the different senses (i.e., multisensory integration. Furthermore, sensory network remodeling is necessary for sensory restoration after a period of sensory deprivation. Acetylcholine is a powerful regulator of sensory plasticity, and studies suggest that cholinergic medications may improve visual and auditory abilities by facilitating sensory network plasticity. There are currently no approved therapeutics for sensory loss that target neuroplasticity. This review explores the systems-level effects of cholinergic signaling on human visual and auditory perception, with a focus on functional performance, sensory disorders, and neural activity. Understanding the role of acetylcholine in sensory plasticity will be essential for developing targeted treatments for sensory restoration.
Collapse
Affiliation(s)
- Ansley J Kunnath
- Neuroscience Graduate Program, Vanderbilt University, Nashville, TN, USA; Medical Scientist Training Program, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - René H Gifford
- Department of Otolaryngology, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Hearing and Speech Sciences, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Mark T Wallace
- Department of Hearing and Speech Sciences, Vanderbilt University School of Medicine, Nashville, TN, USA; Department of Psychology, Vanderbilt University, Nashville, TN, USA; Department of Pharmacology, Vanderbilt University, Nashville, TN, USA; Department of Psychiatry and Behavioral Sciences, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
2
|
Östberg A, Ledig C, Katila A, Maanpää HR, Posti JP, Takala R, Tallus J, Glocker B, Rueckert D, Tenovuo O. Volume Change in Frontal Cholinergic Structures After Traumatic Brain Injury and Cognitive Outcome. Front Neurol 2020; 11:832. [PMID: 32903569 PMCID: PMC7438550 DOI: 10.3389/fneur.2020.00832] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 07/03/2020] [Indexed: 01/02/2023] Open
Abstract
The cholinergic nuclei in the basal forebrain innervate frontal cortical structures regulating attention. Our aim was to investigate if cognitive test results measuring attention relate to the longitudinal volume change of cholinergically innervated structures following traumatic brain injury (TBI). During the prospective, observational TBIcare project patients with all severities of TBI (n = 114) and controls with acute orthopedic injuries (n = 17) were recruited. Head MRI was obtained in both acute (mean 2 weeks post-injury) and late (mean 8 months) time points. T1-weighted 3D MR images were analyzed with an automatic segmentation method to evaluate longitudinal, structural brain volume change. The cognitive outcome was assessed with the Cambridge Neuropsychological Test Automated Battery (CANTAB). Analyses included 16 frontal cortical structures, of which four showed a significant correlation between post-traumatic volume change and the CANTAB test results. The strongest correlation was found between the volume loss of the supplementary motor cortex and motor screening task results (R-sq 0.16, p < 0.0001), where poorer test results correlated with greater atrophy. Of the measured sum structures, greater cortical gray matter atrophy rate showed a significant correlation with the poorer CANTAB test results. TBI caused volume loss of frontal cortical structures that are heavily innervated by cholinergic neurons is associated with neuropsychological test results measuring attention.
Collapse
Affiliation(s)
- Anna Östberg
- Division of Clinical Neurosciences, Turku Brain Injury Centre, Turku University Hospital, Turku, Finland.,Department of Neurology, Institute of Clinical Medicine, University of Turku, Turku, Finland.,Department of Neurosurgery, Neurocenter, Turku University Hospital, Turku, Finland
| | - Christian Ledig
- Department of Computing, Imperial College London, London, United Kingdom
| | - Ari Katila
- Department of Perioperative Services, Intensive Care and Pain Medicine, Turku University Hospital, Turku, Finland
| | - Henna-Riikka Maanpää
- Department of Neurology, Institute of Clinical Medicine, University of Turku, Turku, Finland.,Department of Neurosurgery, Neurocenter, Turku University Hospital, Turku, Finland
| | - Jussi P Posti
- Division of Clinical Neurosciences, Turku Brain Injury Centre, Turku University Hospital, Turku, Finland.,Department of Neurology, Institute of Clinical Medicine, University of Turku, Turku, Finland.,Department of Neurosurgery, Neurocenter, Turku University Hospital, Turku, Finland
| | - Riikka Takala
- Department of Perioperative Services, Intensive Care and Pain Medicine, Turku University Hospital, Turku, Finland
| | - Jussi Tallus
- Department of Neurology, Institute of Clinical Medicine, University of Turku, Turku, Finland
| | - Ben Glocker
- Department of Computing, Imperial College London, London, United Kingdom
| | - Daniel Rueckert
- Department of Computing, Imperial College London, London, United Kingdom
| | - Olli Tenovuo
- Division of Clinical Neurosciences, Turku Brain Injury Centre, Turku University Hospital, Turku, Finland.,Department of Neurology, Institute of Clinical Medicine, University of Turku, Turku, Finland
| |
Collapse
|
3
|
Byrne KN, McDevitt EA, Sheremata SL, Peters MW, Mednick SC, Silver MA. Transient cholinergic enhancement does not significantly affect either the magnitude or selectivity of perceptual learning of visual texture discrimination. J Vis 2020; 20:5. [PMID: 32511666 PMCID: PMC7416900 DOI: 10.1167/jov.20.6.5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Perceptual learning (PL), often characterized by improvements in perceptual performance with training that are specific to the stimulus conditions used during training, exemplifies experience-dependent cortical plasticity. An improved understanding of how neuromodulatory systems shape PL promises to provide new insights into the mechanisms of plasticity, and by extension how PL can be generated and applied most efficiently. Previous studies have reported enhanced PL in human subjects following administration of drugs that increase signaling through acetylcholine (ACh) receptors, and physiological evidence indicates that ACh sharpens neuronal selectivity, suggesting that this neuromodulator supports PL and its stimulus specificity. Here we explored the effects of enhancing endogenous cholinergic signaling during PL of a visual texture discrimination task. We found that training on this task in the lower visual field yielded significant behavioral improvement at the trained location. However, a single dose of the cholinesterase inhibitor donepezil, administered before training, did not significantly impact either the magnitude or the location specificity of texture discrimination learning compared with placebo. We discuss potential explanations for discrepant findings in the literature regarding the role of ACh in visual PL, including possible differences in plasticity mechanisms in the dorsal and ventral cortical processing streams.
Collapse
|
4
|
尼古丁对内隐记忆与外显记忆的影响 <sup>*</sup>. ACTA PSYCHOLOGICA SINICA 2018. [DOI: 10.3724/sp.j.1041.2018.00940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
5
|
FTO gene variant modulates the neural correlates of visual food perception. Neuroimage 2016; 128:21-31. [DOI: 10.1016/j.neuroimage.2015.12.049] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2015] [Revised: 12/22/2015] [Accepted: 12/30/2015] [Indexed: 01/01/2023] Open
|
6
|
Handjaras G, Ricciardi E, Szczepanik J, Pietrini P, Furey ML. Cholinergic enhancement differentially modulates neural response to encoding during face identity and face location working memory tasks. Exp Biol Med (Maywood) 2013; 238:999-1008. [PMID: 23975732 DOI: 10.1177/1535370213497326] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Potentiation of cholinergic transmission influences stimulus processing by enhancing signal detection through suppression and/or filtering out of irrelevant information (bottom-up modulation) and with top-down task-oriented executive mechanisms based on the recruitment of prefrontal and parietal attentional systems. The cholinergic system also plays a critical role in working memory (WM) processes and preferentially modulates WM encoding, likely through stimulus-processing mechanisms. Previous research reported increased brain responses in visual extrastriate cortical regions during cholinergic enhancement in the encoding phase of WM, independently addressing object and spatial encoding. The current study used functional magnetic resonance imaging to determine the effects of cholinergic enhancement on encoding of key visual processing features. Subjects participated in two scanning sessions, one during an intravenous (i.v.) infusion of saline and the other during an infusion of the acetylcholinesterase inhibitor physostigmine. In each scan session, subjects alternated between a face identity recognition and a spatial location WM. Enhanced cholinergic function increased neural activity in the ventral stream during encoding of face identity and in the dorsal stream during encoding of face location. Conversely, a reduction in brain response was found for scrambled sensorimotor control images. The cholinergic effects on neural activity in the ventral stream during encoding of face identity were stronger than those observed in the dorsal stream during encoding of face location, likely as a consequence of the role of acetylcholine in establishing the inherently relevant nature of face identity. Despite the limited sample-size, the results suggest the stimulus-dependent role of cholinergic system in signal detection, as they show that cholinergic potentiation enhances neural activity in regions associated with early perceptual processing in a selective manner depending on the attended stimulus feature.
Collapse
Affiliation(s)
- Giacomo Handjaras
- Laboratory of Clinical Biochemistry and Molecular Biology, University of Pisa, Pisa 56126, Italy
| | | | | | | | | |
Collapse
|
7
|
Aggelopoulos NC, Liebe S, Logothetis NK, Rainer G. Cholinergic control of visual categorization in macaques. Front Behav Neurosci 2011; 5:73. [PMID: 22110428 PMCID: PMC3215973 DOI: 10.3389/fnbeh.2011.00073] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2011] [Accepted: 10/12/2011] [Indexed: 12/02/2022] Open
Abstract
Acetylcholine (ACh) is a neurotransmitter acting via muscarinic and nicotinic receptors that is implicated in several cognitive functions and impairments, such as Alzheimer’s disease. It is believed to especially affect the acquisition of new information, which is particularly important when behavior needs to be adapted to new situations and to novel sensory events. Categorization, the process of assigning stimuli to a category, is a cognitive function that also involves information acquisition. The role of ACh on categorization has not been previously studied. We have examined the effects of scopolamine, an antagonist of muscarinic ACh receptors, on visual categorization in macaque monkeys using familiar and novel stimuli. When the peripheral effects of scopolamine on the parasympathetic nervous system were controlled for, categorization performance was disrupted following systemic injections of scopolamine. This impairment was observed only when the stimuli that needed to be categorized had not been seen before. In other words, the monkeys were not impaired by the central action of scopolamine in categorizing a set of familiar stimuli (stimuli which they had categorized successfully in previous sessions). Categorization performance also deteriorated as the stimulus became less salient by an increase in the level of visual noise. However, scopolamine did not cause additional performance disruptions for difficult categorization judgments at lower coherence levels. Scopolamine, therefore, specifically affects the assignment of new exemplars to established cognitive categories, presumably by impairing the processing of novel information. Since we did not find an effect of scopolamine in the categorization of familiar stimuli, scopolamine had no significant central action on other cognitive functions such as perception, attention, memory, or executive control within the context of our categorization task.
Collapse
|
8
|
Cholinergic modulation of cognition: insights from human pharmacological functional neuroimaging. Prog Neurobiol 2011; 94:360-88. [PMID: 21708219 PMCID: PMC3382716 DOI: 10.1016/j.pneurobio.2011.06.002] [Citation(s) in RCA: 121] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2011] [Revised: 06/02/2011] [Accepted: 06/07/2011] [Indexed: 11/22/2022]
Abstract
Evidence from lesion and cortical-slice studies implicate the neocortical cholinergic system in the modulation of sensory, attentional and memory processing. In this review we consider findings from sixty-three healthy human cholinergic functional neuroimaging studies that probe interactions of cholinergic drugs with brain activation profiles, and relate these to contemporary neurobiological models. Consistent patterns that emerge are: (1) the direction of cholinergic modulation of sensory cortex activations depends upon top-down influences; (2) cholinergic hyperstimulation reduces top-down selective modulation of sensory cortices; (3) cholinergic hyperstimulation interacts with task-specific frontoparietal activations according to one of several patterns, including: suppression of parietal-mediated reorienting; decreasing ‘effort’-associated activations in prefrontal regions; and deactivation of a ‘resting-state network’ in medial cortex, with reciprocal recruitment of dorsolateral frontoparietal regions during performance-challenging conditions; (4) encoding-related activations in both neocortical and hippocampal regions are disrupted by cholinergic blockade, or enhanced with cholinergic stimulation, while the opposite profile is observed during retrieval; (5) many examples exist of an ‘inverted-U shaped’ pattern of cholinergic influences by which the direction of functional neural activation (and performance) depends upon both task (e.g. relative difficulty) and subject (e.g. age) factors. Overall, human cholinergic functional neuroimaging studies both corroborate and extend physiological accounts of cholinergic function arising from other experimental contexts, while providing mechanistic insights into cholinergic-acting drugs and their potential clinical applications.
Collapse
|
9
|
Abstract
As indicated by the profound cognitive impairments caused by cholinergic receptor antagonists, cholinergic neurotransmission has a vital role in cognitive function, specifically attention and memory encoding. Abnormally regulated cholinergic neurotransmission has been hypothesized to contribute to the cognitive symptoms of neuropsychiatric disorders. Loss of cholinergic neurons enhances the severity of the symptoms of dementia. Cholinergic receptor agonists and acetylcholinesterase inhibitors have been investigated for the treatment of cognitive dysfunction. Evidence from experiments using new techniques for measuring rapid changes in cholinergic neurotransmission provides a novel perspective on the cholinergic regulation of cognitive processes. This evidence indicates that changes in cholinergic modulation on a timescale of seconds is triggered by sensory input cues and serves to facilitate cue detection and attentional performance. Furthermore, the evidence indicates cholinergic induction of evoked intrinsic, persistent spiking mechanisms for active maintenance of sensory input, and planned responses. Models have been developed to describe the neuronal mechanisms underlying the transient modulation of cortical target circuits by cholinergic activity. These models postulate specific locations and roles of nicotinic and muscarinic acetylcholine receptors and that cholinergic neurotransmission is controlled in part by (cortical) target circuits. The available evidence and these models point to new principles governing the development of the next generation of cholinergic treatments for cognitive disorders.
Collapse
|
10
|
Klinkenberg I, Sambeth A, Blokland A. Acetylcholine and attention. Behav Brain Res 2010; 221:430-42. [PMID: 21108972 DOI: 10.1016/j.bbr.2010.11.033] [Citation(s) in RCA: 226] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2010] [Revised: 11/15/2010] [Accepted: 11/16/2010] [Indexed: 10/18/2022]
Abstract
Historically, ACh has been implicated in learning and short-term memory functions. However, more recent studies have provided support for a role of cortical ACh in attentional effort, orienting and the detection of behavioral significant stimuli. The current review article summarizes studies in animals and humans which have investigated the role of ACh in attention and cognition. An attempt has been made to differentiate between brain regions involved in attentional processes versus those important for other cognitive functions. To this purpose, various experimental methods and interventions were used. Animal behavioral studies have injected the selective immunotoxin IgG-saporin to induce specific cholinergic lesions, employed electrochemical techniques such as microdialysis, or have administered cholinergic compounds into discrete parts of the brain. Human studies that give some indication on the link between central cholinergic signaling and cognition are obviously confined to less invasive, imaging methods such as fMRI. The brain areas that are deemed most important for intact attentional processing in both animals and humans appear to be the (pre)frontal, parietal and somatosensory (especially visual) regions, where ACh plays a vital role in the top-down control of attentional orienting and stimulus discrimination. In contrast, cholinergic signaling in the septohippocampal system is suggested to be involved in memory processes. Thus, it appears that the role of ACh in cognition is different per brain region and between nicotinic versus muscarinic receptor subtypes.
Collapse
Affiliation(s)
- Inge Klinkenberg
- Faculty of Psychology and Neuroscience, Department of Neuropsychology and Psychopharmacology, European Graduate School of Neuroscience, Maastricht University, PO Box 616, 6200 MD Maastricht, The Netherlands.
| | | | | |
Collapse
|
11
|
Bentley P, Driver J, Dolan R. Modulation of fusiform cortex activity by cholinesterase inhibition predicts effects on subsequent memory. Brain 2009; 132:2356-71. [DOI: 10.1093/brain/awp176] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
12
|
A novel spatial Delayed Non-Match to Sample (DNMS) task in the Göttingen minipig. Behav Brain Res 2009; 196:93-8. [DOI: 10.1016/j.bbr.2008.07.019] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2008] [Revised: 07/15/2008] [Accepted: 07/17/2008] [Indexed: 11/30/2022]
|
13
|
Chapter 1 Cholinergic components of frontal lobe function and dysfunction. HANDBOOK OF CLINICAL NEUROLOGY 2008; 88:1-30. [DOI: 10.1016/s0072-9752(07)88001-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
14
|
McCoy PA, McMahon LL. Muscarinic receptor dependent long-term depression in rat visual cortex is PKC independent but requires ERK1/2 activation and protein synthesis. J Neurophysiol 2007; 98:1862-70. [PMID: 17634336 DOI: 10.1152/jn.00510.2007] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Intact cholinergic innervation of visual cortex is critical for normal processing of visual information and for spatial memory acquisition and retention. However, a complete description of the mechanisms by which the cholinergic system modifies synaptic function in visual cortex is lacking. Previously it was shown that activation of the m1 subtype of muscarinic receptor induces an activity-dependent and partially N-methyl-d-aspartate receptor (NMDAR)-dependent long-term depression (LTD) at layer 4-layer 2/3 synapses in rat visual cortex slices in vitro. The cellular mechanisms downstream of the Galphaq coupled m1 receptor required for induction of this LTD (which we term mLTD) are currently unknown. Here, we confirm a role for m1 receptors in mLTD induction and use a series of pharmacological tools to study the signaling molecules downstream of m1 receptor activation in mLTD induction. We found that mLTD is prevented by inhibitors of L-type Ca(2+) channels, the Src kinase family, and the mitogen-activated kinase/extracellular kinase. mLTD is also partially dependent on phospholipase C but is unaffected by blocking protein kinase C. mLTD expression can be long-lasting (>2 h) and its long-term maintenance requires translation. Thus we report the signaling mechanisms underlying induction of an m1 receptor-dependent LTD in visual cortex and the requirement of protein synthesis for long-term expression. This plasticity could be a mechanism by which the cholinergic system modifies glutamatergic synapse function to permit normal visual system processing required for cognition.
Collapse
Affiliation(s)
- Portia A McCoy
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294-0005, USA
| | | |
Collapse
|
15
|
Jacobsen LK, Slotkin TA, Westerveld M, Mencl WE, Pugh KR. Visuospatial memory deficits emerging during nicotine withdrawal in adolescents with prenatal exposure to active maternal smoking. Neuropsychopharmacology 2006; 31:1550-61. [PMID: 16341023 DOI: 10.1038/sj.npp.1300981] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Active maternal smoking during pregnancy elevates the risk of cognitive deficits and tobacco smoking among offspring. Preclinical work has shown that combined prenatal and adolescent exposure to nicotine produces more pronounced hippocampal changes and greater deficits in cholinergic activity upon nicotine withdrawal than does prenatal or adolescent exposure to nicotine alone. Few prior studies have examined the potential modifying effects of gestational exposure to active maternal smoking on cognitive or brain functional response to tobacco smoking or nicotine withdrawal in adolescents. We examined visuospatial and verbal memory in 35 adolescent tobacco smokers with prenatal exposure to active maternal smoking and 26 adolescent tobacco smokers with no prenatal exposure to maternal smoking who were similar in age, educational attainment, general intelligence, and baseline plasma cotinine. Subjects were studied during ad libitum smoking and after 24 h of abstinence from smoking. A subset of subjects from each group also underwent functional magnetic resonance imaging while performing a visuospatial encoding and recognition task. Adolescent tobacco smokers with prenatal exposure experienced greater nicotine withdrawal-related deficits in immediate and delayed visuospatial memory relative to adolescent smokers with no prenatal exposure. Among adolescent smokers with prenatal exposure, nicotine withdrawal was associated with increased activation of left parahippocampal gyrus during early recognition testing of visuospatial stimuli and increased activation of bilateral hippocampus during delayed recognition testing of visuospatial stimuli. These findings extend prior preclinical work and suggest that, in human adolescent tobacco smokers, prenatal exposure to active maternal smoking is associated with alterations in medial temporal lobe function and concomitant deficits in visuospatial memory.
Collapse
Affiliation(s)
- Leslie K Jacobsen
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06519, USA.
| | | | | | | | | |
Collapse
|
16
|
Schon K, Atri A, Hasselmo ME, Tricarico MD, LoPresti ML, Stern CE. Scopolamine reduces persistent activity related to long-term encoding in the parahippocampal gyrus during delayed matching in humans. J Neurosci 2005; 25:9112-23. [PMID: 16207870 PMCID: PMC6725748 DOI: 10.1523/jneurosci.1982-05.2005] [Citation(s) in RCA: 108] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2005] [Revised: 08/09/2005] [Accepted: 08/20/2005] [Indexed: 11/21/2022] Open
Abstract
Recent computational modeling and slice physiology studies have suggested that long-term encoding may depend on sustained spiking during brief memory delays in parahippocampal neurons, and that this persistent spiking activity is modulated by effects of acetylcholine at muscarinic receptors. Our recent functional magnetic resonance imaging (fMRI) study has shown that sustained parahippocampal delay period activity during delayed match-to-sample performance in healthy young individuals predicted subsequent memory of visual stimuli on a recognition memory assessment 20 min later (Schon et al., 2004). The current study combined this fMRI paradigm with a pharmacological manipulation to test whether this long-term encoding-related delay activity is reduced in subjects who receive the muscarinic cholinergic antagonist scopolamine before fMRI scanning. Subsequent memory was predicted by sustained activity during brief memory delays bilaterally in the perirhinal/entorhinal cortex, in the right posterior parahippocampal and mid-fusiform gyri, and in the hippocampal body in healthy young individuals without a scopolamine challenge. This activity was reduced in subjects receiving scopolamine. The results are consistent with computational modeling data and behavioral pharmacological studies, suggesting that long-term encoding-related activity may be reduced if cholinergic receptors are blocked by scopolamine.
Collapse
Affiliation(s)
- Karin Schon
- Department of Psychology, Boston University, Boston, Massachusetts 02215, USA
| | | | | | | | | | | |
Collapse
|
17
|
Peuskens H, Claeys KG, Todd JT, Norman JF, Van Hecke P, Orban GA. Attention to 3-D shape, 3-D motion, and texture in 3-D structure from motion displays. J Cogn Neurosci 2004; 16:665-82. [PMID: 15165355 DOI: 10.1162/089892904323057371] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
We used fMRI to directly compare the neural substrates of three-dimensional (3-D) shape and motion processing for realistic textured objects rotating in depth. Subjects made judgments about several different attributes of these objects, including 3-D shape, the 3-D motion, and the scale of surface texture. For all of these tasks, we equated visual input, motor output, and task difficulty, and we controlled for differences in spatial attention. Judgments about 3-D shape from motion involve both parietal and occipito-temporal regions. The processing of 3-D shape is associated with the analysis of 3-D motion in parietal regions and the analysis of surface texture in occipito-temporal regions, which is consistent with the different behavioral roles that are typically attributed to the dorsal and ventral processing streams.
Collapse
|
18
|
Thiel CM. Cholinergic modulation of learning and memory in the human brain as detected with functional neuroimaging. Neurobiol Learn Mem 2004; 80:234-44. [PMID: 14521866 DOI: 10.1016/s1074-7427(03)00076-5] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The advent of neuroimaging methods such as functional magnetic resonance imaging (fMRI) and positron emission tomography (PET) has provided investigators with a tool to study neuronal processes involved in cognitive functions in humans. Recent years have seen an increasing amount of studies which mapped higher cognitive functions to specific brain regions. These studies have had a great impact on our understanding of neuroanatomical correlates of learning and memory in the living human brain. Recently, advances were made to go beyond the use of fMRI as a pure cognitive brain mapping device. One of these advances includes the use of psychopharmacological approaches in conjunction with neuroimaging. The paper will introduce the combination of neuroimaging and psychopharmacology as a tool to study neurochemical modulation of human brain function. A review of imaging studies using cholinergic challenges in the context of explicit and implicit learning and memory paradigms is provided which show that cholinergic neurotransmission modulates task-related activity in sensory and frontal cortical brain areas.
Collapse
|
19
|
Schmithorst VJ, Holland SK. The effect of musical training on the neural correlates of math processing: a functional magnetic resonance imaging study in humans. Neurosci Lett 2004; 354:193-6. [PMID: 14700729 DOI: 10.1016/j.neulet.2003.10.037] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The neural correlates of the previously hypothesized link between formal musical training and mathematics performance are investigated using functional magnetic resonance imaging (fMRI). FMRI was performed on fifteen normal adults, seven with musical training since early childhood, and eight without, while they mentally added and subtracted fractions. Musical training was associated with increased activation in the left fusiform gyrus and prefrontal cortex, and decreased activation in visual association areas and the left inferior parietal lobule during the mathematical task. We hypothesize that the correlation between musical training and math proficiency may be associated with improved working memory performance and an increased abstract representation of numerical quantities.
Collapse
Affiliation(s)
- Vincent J Schmithorst
- Imaging Research Center, Children's Hospital Medical Center, 3333 Burnet Ave. ML 5031, Cincinnati, OH 45229, USA.
| | | |
Collapse
|
20
|
Bentley P, Vuilleumier P, Thiel CM, Driver J, Dolan RJ. Cholinergic enhancement modulates neural correlates of selective attention and emotional processing. Neuroimage 2003; 20:58-70. [PMID: 14527570 DOI: 10.1016/s1053-8119(03)00302-1] [Citation(s) in RCA: 107] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Neocortical cholinergic afferents are proposed to influence both selective attention and emotional processing. In a study of healthy adults we used event-related fMRI while orthogonally manipulating attention and emotionality to examine regions showing effects of cholinergic modulation by the anticholinesterase physostigmine. Either face or house pictures appeared at task-relevant locations, with the alternative picture type at irrelevant locations. Faces had either neutral or fearful expressions. Physostigmine increased relative activity within the anterior fusiform gyrus for faces at attended, versus unattended, locations, but decreased relative activity within the posterolateral occipital cortex for houses in attended, versus unattended, locations. A similar pattern of regional differences in the effect of physostigmine on cue-evoked responses was also present in the absence of stimuli. Cholinergic enhancement augmented the relative neuronal response within the middle fusiform gyrus to fearful faces, whether at attended or unattended locations. By contrast, physostigmine influenced responses in the orbitofrontal, intraparietal and cingulate cortices to fearful faces when faces occupied task-irrelevant locations. These findings suggest that acetylcholine may modulate both selective attention and emotional processes through independent, region-specific effects within the extrastriate cortex. Furthermore, cholinergic inputs to the frontoparietal cortex may influence the allocation of attention to emotional information.
Collapse
Affiliation(s)
- Paul Bentley
- Wellcome Department of Imaging Neuroscience, Institute of Neurology, 12 Queen Square, London WCIN 3BG, UK.
| | | | | | | | | |
Collapse
|
21
|
Thiel CM, Bentley P, Dolan RJ. Effects of cholinergic enhancement on conditioning-related responses in human auditory cortex. Eur J Neurosci 2002; 16:2199-206. [PMID: 12473087 DOI: 10.1046/j.1460-9568.2002.02272.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
It has previously been shown that cholinergic blockade attenuates conditioning-related neuronal responses in human auditory cortex. The present study was conducted to investigate the effect of cholinergic enhancement on such experience-dependent cortical responses. The cholinesterase inhibitor physostigmine, or a placebo control, were continuously infused into healthy young volunteers, during differential aversive conditioning whilst brain activity was measured using event-related functional magnetic resonance imaging (fMRI). Volunteers were presented with two tones, one of which (CS+) was conditioned by pairing with an electrical shock whereas the other was always presented without the shock (CS-). Conditioning-related activations, expressed as an enhanced blood oxygenation level dependent (BOLD) response to the salient CS+, were evident in left auditory cortex under placebo but not under physostigmine. This absence of conditioning-related activations under physostigmine was due to enhanced responses to the CS- under physostigmine as compared to placebo. We suggest that an overactive cholinergic system leads to increased processing of behaviourally irrelevant stimuli and thus attenuates differential conditioning-related cortical activations.
Collapse
Affiliation(s)
- C M Thiel
- Wellcome Department of Imaging Neuroscience, Institute of Neurology, 12 Queen Square, London, WC1 3BG, UK.
| | | | | |
Collapse
|
22
|
Vogels R, Sary G, Dupont P, Orban GA. Human brain regions involved in visual categorization. Neuroimage 2002; 16:401-14. [PMID: 12030825 DOI: 10.1006/nimg.2002.1109] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Categorization of dot patterns is a frequently used paradigm in the behavioral study of natural categorization. To determine the human brain regions involved in categorization, we used Positron Emission Tomography to compare regional Cerebral Blood Flow patterns in two tasks employing patterns that consisted of nine dots. In the categorization task, subjects categorized novel exemplars of two categories, generated by distorting two prototypes, and other random dot patterns. In the control task, subjects judged the position of similarly distorted patterns. Each task was presented at two matched levels of difficulty. Fixation of the fixation target served as baseline condition. The categorization task differentially activated the orbitofrontal cortex and two dorsolateral prefrontal regions. These three prefrontal regions were equally weakly active in the position discrimination task and the baseline condition. The intraparietal sulcus was activated in both tasks, albeit significantly less in the position discrimination than in the categorization task. A similar activation pattern was present in the neostriatum. Task difficulty had no effect. These functional imaging results show that the dot-pattern categorization task strongly engages prefrontal and parietal cortical areas. The activation of prefrontal cortex during visual categorization in humans agrees with the recent finding of category-related responses in macaque prefrontal neurons.
Collapse
Affiliation(s)
- Rufin Vogels
- Laboratorium voor Neuro-en Psychofysiologie, K. U. Leuven Medical School, B-3000 Leuven, Belgium
| | | | | | | |
Collapse
|
23
|
Sperling R, Greve D, Dale A, Killiany R, Holmes J, Rosas HD, Cocchiarella A, Firth P, Rosen B, Lake S, Lange N, Routledge C, Albert M. Functional MRI detection of pharmacologically induced memory impairment. Proc Natl Acad Sci U S A 2002; 99:455-60. [PMID: 11756667 PMCID: PMC117581 DOI: 10.1073/pnas.012467899] [Citation(s) in RCA: 157] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
To examine alterations in brain activation associated with pharmacologically induced memory impairment, we used functional MRI (fMRI) to study the effects of lorazepam and scopolamine on a face-name associative encoding paradigm. Ten healthy young subjects were scanned on four occasions, 2 weeks apart; they were administered i.v. saline during two placebo-scanning sessions and then alternately administered i.v. lorazepam (1 mg) or scopolamine (0.4 mg) in a double-blind, randomized, cross-over design. Both the extent and magnitude of activation within anatomic regions of interest (ROIs) were examined to determine the reproducibility of activation in the placebo sessions and the regional specificity of the pharmacologic effects. Activation within all ROIs was consistent across the two placebo scans during the encoding of novel face-name pairs (compared with visual fixation). With the administration of either lorazepam or scopolamine, significant decreases were observed in both the extent and magnitude of activation within the hippocampal, fusiform, and inferior prefrontal ROIs, but no significant alterations in activation in the striate cortex were found. Both medications impaired performance on postscan memory measures, and significant correlations between memory performance and extent of activation were found in hippocampal and fusiform ROIs. These findings suggest that pharmacologic effects can be detected with fMRI by using a reproducible experimental paradigm and that medications that impair memory also diminish activation in specific brain regions thought to subserve complex memory processes.
Collapse
|
24
|
Herholz K, Ehlen P, Kessler J, Strotmann T, Kalbe E, Markowitsch HJ. Learning face-name associations and the effect of age and performance: a PET activation study. Neuropsychologia 2001; 39:643-50. [PMID: 11257289 DOI: 10.1016/s0028-3932(00)00144-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Learning face-name associations is a complex task to be mastered in every day life that approaches the limits of cognitive capacity in most normal humans. We studied brain activation during face-name learning using positron emission tomography (PET) in 11 normal volunteers. The most intense activation was seen in occipital association cortex (BA 18) bilaterally, also involving lingual and fusiform gyrus (BA 37). In the left hemisphere additional activation were located in inferior temporal gyrus, the inferior part of pre- and postcentral gyrus, and orbitofrontal cortex (BA 11), whereas in the right hemisphere only a region in the precuneus (BA 19) was activated additionally. There was considerable interindividual variation of encoding success, which was significantly related to activation of BA 18 bilaterally. Subject ages covered a range of 26-72 years, but - in contrast to the effect of encoding success - there was no significant age effect on activations. Task-independent habituation effects were seen in cerebellum and left middle temporal gyrus. These results indicate that the intensity of information processing in ventral occipital association cortex is most important for success of face-name encoding. Learning is further mediated by a predominantly left-hemispheric network including inferior temporal and orbitofrontal cortex.
Collapse
Affiliation(s)
- K Herholz
- Max-Planck-Institut für neurologische Forschung and Neurologische Universitätsklinik, Gleuler Str. 50, D-50931, Cologne, Germany.
| | | | | | | | | | | |
Collapse
|
25
|
Abstract
Functional imaging in humans reveals the interplay of the many components of the human visual system: how they process the various types of information contained in the image to recover characteristics of the three-dimensional world surrounding us, but also how, in the course of this process, the retinal image is gradually integrated with non-retinal signals to provide information about the outside world in a format useful to other non-visual brain regions.
Collapse
Affiliation(s)
- G A Orban
- K.U. Leuven, School of Medicine, Laboratorium voor Neuro- en Psychofysiologie, Campus Gasthuisberg, B-3000 Leuven, Belgium.
| |
Collapse
|
26
|
Grill-Spector K, Kushnir T, Hendler T, Malach R. The dynamics of object-selective activation correlate with recognition performance in humans. Nat Neurosci 2000; 3:837-43. [PMID: 10903579 DOI: 10.1038/77754] [Citation(s) in RCA: 428] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
To investigate the relationship between perceptual awareness and brain activity, we measured both recognition performance and fMRI signal from object-related areas in human cortex while images were presented briefly using a masking protocol. Our results suggest that recognition performance is correlated with selective activation in object areas. Selective activation was correlated to object naming when exposure duration was varied from 20 to 500 milliseconds. Subjects' recognition during identical visual stimulation could be enhanced by training, which also increased the fMRI signal. Overall, the correlation between recognition performance and fMRI signal was highest in occipitotemporal object areas (the lateral occipital complex).
Collapse
Affiliation(s)
- K Grill-Spector
- Departments of Computer Science and Neurobiology, Weizmann Institute of Science, Rehovot 76100, Israel.
| | | | | | | |
Collapse
|