1
|
Yoon IA, Galarneau D. Chronic pain outcomes of patients receiving electroconvulsive therapy: A systematic review and case series. Pain Pract 2023; 23:942-955. [PMID: 37434489 DOI: 10.1111/papr.13268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 06/04/2023] [Accepted: 06/20/2023] [Indexed: 07/13/2023]
Abstract
INTRODUCTION The potential benefits of electroconvulsive therapy (ECT) in chronic pain and several theories for its mechanism have been reported in the past, but mixed findings have also been reported. In the current systematic review and case series, our primary aim was to assess whether pain and functional outcomes are improved after ECT in patients with chronic pain. Secondary objectives included examining whether psychiatric improvement, specific pain diagnoses, and demographic or medical characteristics were associated with differences in pain treatment response. METHODS We performed a retrospective chart review to identify patients with chronic pain diagnoses for more than 3 months prior to the initiation of ECT and a systematic literature search on electronic databases for studies on chronic pain outcomes after ECT. RESULTS Eleven patients with various chronic pain diagnoses and comorbid psychiatric conditions were identified in the case series. Six patients reported improvement in pain while 10 patients reported improvement in mood following ECT. Systematic review identified 22 articles reporting a total of 109 cases. Eighty-five (78%) of cases reported reduction in pain while 96.3% of the patients with a comorbid psychiatric diagnosis reported improvement in mood symptoms post-ECT. While there was an association between improvement in mood and pain in studies with numeric ratings in both outcomes (r = 0.61; p < 0.001), some patients reported pain improvement without improvement in mood in both the case series and the pooled analysis of cases in the review. Certain pain diagnoses such as CRPS, phantom limb pain, neuropathic pain, and low back pain have consistently reported benefits and should be further studied in future studies with matched case controls. CONCLUSION ECT may be offered to patients with certain pain conditions who have not responded sufficiently to conventional therapies, particularly when comorbid mood symptoms are present. Improved documentation practices on the outcomes in chronic pain patients receiving ECT will help generate more studies that are needed on this topic.
Collapse
Affiliation(s)
- Isabel A Yoon
- Ochsner Clinical School, University of Queensland, New Orleans, Louisiana, USA
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, Minnesota, USA
| | - David Galarneau
- Ochsner Clinical School, University of Queensland, New Orleans, Louisiana, USA
- Department of Psychiatry, Ochsner Clinic Foundation, New Orleans, Louisiana, USA
| |
Collapse
|
2
|
Drexel M, Sperk G. Seizure-induced overexpression of NPY induces epileptic tolerance in a mouse model of spontaneous recurrent seizures. Front Mol Neurosci 2022; 15:974784. [PMID: 36311021 PMCID: PMC9608171 DOI: 10.3389/fnmol.2022.974784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 09/26/2022] [Indexed: 11/21/2022] Open
Abstract
Epileptic seizures result in pronounced over-expression of neuropeptide Y (NPY). In vivo and in vitro studies revealed that NPY exerts potent anticonvulsive actions through presynaptic Y2 receptors by suppressing glutamate release from principal neurons. We now investigated whether seizure-induced over-expression of NPY contributes to epileptic tolerance induced by preceding seizures. We used a previously established animal model based on selective inhibition of GABA release from parvalbumin (PV)-containing interneurons in the subiculum in mice. The animals present spontaneous recurrent seizures (SRS) and clusters of interictal spikes (IS). The frequency of SRS declined after five to six weeks, indicating development of seizure tolerance. In interneurons of the subiculum and sector CA1, SRS induced over-expression of NPY that persisted there for a prolonged time despite of a later decrease in SRS frequency. In contrast to NPY, somatostatin was not overexpressed in the respective axon terminals. Contrary to interneurons, NPY was only transiently expressed in mossy fibers. To demonstrate a protective function of endogenous, over-expressed NPY, we injected the selective NPY-Y2 receptor antagonist JNJ 5207787 simultaneously challenging the mice by a low dose of pentylenetetrazol (PTZ, 30 or 40 mg/kg, i.p.). In control mice, neither PTZ nor PTZ plus JNJ 5207787 induced convulsions. In mice with silenced GABA/PV neurons, PTZ alone only modestly enhanced EEG activity. When we injected JNJ 5207787 together with PTZ (either dose) the number of seizures, however, became significantly increased. In addition, in the epileptic mice CB1 receptor immunoreactivity was reduced in terminal areas of basket cells pointing to reduced presynaptic inhibition of GABA release from these neurons. Our experiments demonstrate that SRS result in overexpression of NPY in hippocampal interneurons. NPY overexpression persists for several weeks and may be related to later decreasing SRS frequency. Injection of the Y2 receptor antagonist JNJ 5207787 prevents this protective action of NPY only when release of the peptide is triggered by injection of PTZ and induces pronounced convulsions. Thus, over-expressed NPY released “on demand” by seizures may help terminating acute seizures and may prevent from recurrent epileptic activity.
Collapse
|
3
|
Rosen JB, Schulkin J. Hyperexcitability: From Normal Fear to Pathological Anxiety and Trauma. Front Syst Neurosci 2022; 16:727054. [PMID: 35993088 PMCID: PMC9387392 DOI: 10.3389/fnsys.2022.727054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 06/20/2022] [Indexed: 11/16/2022] Open
Abstract
Hyperexcitability in fear circuits is suggested to be important for development of pathological anxiety and trauma from adaptive mechanisms of fear. Hyperexcitability is proposed to be due to acquired sensitization in fear circuits that progressively becomes more severe over time causing changing symptoms in early and late pathology. We use the metaphor and mechanisms of kindling to examine gains and losses in function of one excitatory and one inhibitory neuropeptide, corticotrophin releasing factor and somatostatin, respectively, to explore this sensitization hypothesis. We suggest amygdala kindling induced hyperexcitability, hyper-inhibition and loss of inhibition provide clues to mechanisms for hyperexcitability and progressive changes in function initiated by stress and trauma.
Collapse
Affiliation(s)
- Jeffrey B. Rosen
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE, United States
- *Correspondence: Jeffrey B. Rosen,
| | - Jay Schulkin
- School of Medicine, University of Washington, Seattle, WA, United States
| |
Collapse
|
4
|
Somatostatin and Somatostatin-Containing Interneurons—From Plasticity to Pathology. Biomolecules 2022; 12:biom12020312. [PMID: 35204812 PMCID: PMC8869243 DOI: 10.3390/biom12020312] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/27/2022] [Accepted: 02/11/2022] [Indexed: 01/27/2023] Open
Abstract
Despite the obvious differences in the pathophysiology of distinct neuropsychiatric diseases or neurodegenerative disorders, some of them share some general but pivotal mechanisms, one of which is the disruption of excitation/inhibition balance. Such an imbalance can be generated by changes in the inhibitory system, very often mediated by somatostatin-containing interneurons (SOM-INs). In physiology, this group of inhibitory interneurons, as well as somatostatin itself, profoundly shapes the brain activity, thus influencing the behavior and plasticity; however, the changes in the number, density and activity of SOM-INs or levels of somatostatin are found throughout many neuropsychiatric and neurological conditions, both in patients and animal models. Here, we (1) briefly describe the brain somatostatinergic system, characterizing the neuropeptide somatostatin itself, its receptors and functions, as well the physiology and circuitry of SOM-INs; and (2) summarize the effects of the activity of somatostatin and SOM-INs in both physiological brain processes and pathological brain conditions, focusing primarily on learning-induced plasticity and encompassing selected neuropsychological and neurodegenerative disorders, respectively. The presented data indicate the somatostatinergic-system-mediated inhibition as a substantial factor in the mechanisms of neuroplasticity, often disrupted in a plethora of brain pathologies.
Collapse
|
5
|
Löscher W, Klein P. New approaches for developing multi-targeted drug combinations for disease modification of complex brain disorders. Does epilepsy prevention become a realistic goal? Pharmacol Ther 2021; 229:107934. [PMID: 34216705 DOI: 10.1016/j.pharmthera.2021.107934] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/16/2021] [Accepted: 06/16/2021] [Indexed: 12/14/2022]
Abstract
Over decades, the prevailing standard in drug discovery was the concept of designing highly selective compounds that act on individual drug targets. However, more recently, multi-target and combinatorial drug therapies have become an important treatment modality in complex diseases, including neurodegenerative diseases such as Alzheimer's and Parkinson's disease. The development of such network-based approaches is facilitated by the significant advance in our understanding of the pathophysiological processes in these and other complex brain diseases and the adoption of modern computational approaches in drug discovery and repurposing. However, although drug combination therapy has become an effective means for the symptomatic treatment of many complex diseases, the holy grail of identifying clinically effective disease-modifying treatments for neurodegenerative and other brain diseases remains elusive. Thus, despite extensive research, there remains an urgent need for novel treatments that will modify the progression of the disease or prevent its development in patients at risk. Here we discuss recent approaches with a focus on multi-targeted drug combinations for prevention or modification of epilepsy. Over the last ~10 years, several novel promising multi-targeted therapeutic approaches have been identified in animal models. We envision that synergistic combinations of repurposed drugs as presented in this review will be demonstrated to prevent epilepsy in patients at risk within the next 5-10 years.
Collapse
Affiliation(s)
- Wolfgang Löscher
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine, Hannover, Germany; Center for Systems Neuroscience, Hannover, Germany.
| | - Pavel Klein
- Mid-Atlantic Epilepsy and Sleep Center, Bethesda, MD, USA
| |
Collapse
|
6
|
Somatostatin, a Presynaptic Modulator of Glutamatergic Signal in the Central Nervous System. Int J Mol Sci 2021; 22:ijms22115864. [PMID: 34070785 PMCID: PMC8198526 DOI: 10.3390/ijms22115864] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/19/2021] [Accepted: 05/26/2021] [Indexed: 01/07/2023] Open
Abstract
Somatostatin is widely diffused in the central nervous system, where it participates to control the efficiency of synaptic transmission. This peptide mainly colocalizes with GABA, in inhibitory, GABA-containing interneurons from which it is actively released in a Ca2+ dependent manner upon application of depolarizing stimuli. Once released in the synaptic cleft, somatostatin acts locally, or it diffuses in the extracellular space through "volume diffusion", a mechanism(s) of distribution which mainly operates in the cerebrospinal fluid and that assures the progression of neuronal signalling from signal-secreting sender structures towards receptor-expressing targeted neurons located extrasynaptically, in a non-synaptic, inter-neuronal form of communication. Somatostatin controls the efficiency of central glutamate transmission by either modulating presynaptically the glutamate exocytosis or by metamodulating the activity of glutamate receptors colocalized and functionally coupled with somatostatin receptors in selected subpopulations of nerve terminals. Deciphering the role of somatostatin in the mechanisms of "volume diffusion" and in the "receptor-receptor interaction" unveils new perspectives in the central role of this fine tuner of synaptic strength, paving the road to new therapeutic approaches for the cure of central disorders.
Collapse
|
7
|
Ehrstedt C, Ahlsten G, Strömberg B, Lindskog C, Casar-Borota O. Somatostatin receptor expression and mTOR pathway activation in glioneuronal tumours of childhood. Seizure 2020; 76:123-130. [PMID: 32062323 DOI: 10.1016/j.seizure.2020.01.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 12/15/2019] [Accepted: 01/16/2020] [Indexed: 11/29/2022] Open
Abstract
PURPOSE To investigate the expression of somatostatin receptors (SSTRs) and markers of mTOR pathway in paediatric glioneuronal tumours and correlate these findings with tumour type, BRAFV600E mutational status and clinical characteristics such as tumour location, seizure frequency and duration, and age. METHOD 37 children and adolescents with a neuropathological diagnosis of glioneuronal tumour were identified over a 22-year period. Immunohistochemical analyses for SSTRs type 1, 2A, 3, 5 and ezrin-radixin-moesin (ERM) and phosphorylated S6 (pS6), which are indicators of mTOR pathway activation, were performed in tumour specimens from 33 patients and evaluated using the immunoreactive score (IRS). The IRS were compared to tumour type, BRAFV600E status and clinical characteristics. RESULTS Ganglioglioma (GG) was the most frequently encountered subgroup (n = 27), followed by dysembryoplastic neuroepithelial tumour (DNET; n = 4). GGs expressed SSTR2A and SSTR3 to a high extent, 56 % and 44 % respectively. Expression of SSTR2A was also found in DNETs. Signs of mTOR pathway activation were abundant in GGs, but only present in one DNET. No correlations with BRAFV600E presence or clinical characteristics were found. CONCLUSIONS Expression of SSTRs and activation of mTOR pathway in paediatric glioneuronal tumour suggest that somatostatin analogues and mTOR inhibitors may have potential therapeutic implications in a subset of inoperable childhood glioneuronal tumours causing medically refractory epilepsy and/or tumour growth. Further clinical studies are warranted to validate these findings.
Collapse
Affiliation(s)
- Christoffer Ehrstedt
- Department of Women´s and Children´s Health, Section for Paediatrics, Uppsala University, Sweden; Uppsala University Children´s Hospital, Uppsala, Sweden.
| | - Gunnar Ahlsten
- Department of Women´s and Children´s Health, Section for Paediatrics, Uppsala University, Sweden; Uppsala University Children´s Hospital, Uppsala, Sweden
| | - Bo Strömberg
- Department of Women´s and Children´s Health, Section for Paediatrics, Uppsala University, Sweden; Uppsala University Children´s Hospital, Uppsala, Sweden
| | - Cecilia Lindskog
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Olivera Casar-Borota
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden; Department of Clinical Pathology, Uppsala University Hospital, Uppsala, Sweden
| |
Collapse
|
8
|
Somani A, Perry C, Patodia S, Michalak Z, Ellis M, Sisodiya SM, Thom M. Neuropeptide depletion in the amygdala in sudden unexpected death in epilepsy: A postmortem study. Epilepsia 2020; 61:310-318. [PMID: 31958887 DOI: 10.1111/epi.16425] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 12/20/2019] [Accepted: 12/20/2019] [Indexed: 01/08/2023]
Abstract
OBJECTIVE Sudden unexpected death in epilepsy (SUDEP) is typically unwitnessed but can be preceded by seizures in the period prior to death. Peri-ictal respiratory dysfunction is a likely mechanism for some SUDEP, and central apnea has been shown following amygdala stimulation. The amygdala is enriched in neuropeptides that modulate neuronal activity and can be transiently depleted following seizures. In a postmortem SUDEP series, we sought to investigate alterations of neuropeptidergic networks in the amygdala, including cases with recent poor seizure control. METHODS In 15 SUDEP cases, 12 epilepsy controls, and 10 nonepilepsy controls, we quantified the labeling index (LI) for galanin, neuropeptide Y (NPY), and somatostatin (SST) in the lateral, basal, and accessory basal nuclei and periamygdala cortex with whole slide scanning image analysis. Within the SUDEP group, seven had recent generalized seizures with recovery 24 hours prior to death (SUDEP-R). RESULTS Galanin, NPY, and SST LIs were significantly lower in all amygdala regions in SUDEP cases compared to epilepsy controls (P < .05 to P < .0005), and galanin LI was lower in the lateral nucleus compared to nonepilepsy controls (P < .05). There was no difference in the LI in the SUDEP-R group compared to other SUDEP. Higher LI was noted in epilepsy controls than nonepilepsy controls; this was significant for NPY in lateral and basal nuclei (P < .005 and P < .05). SIGNIFICANCE A reduction in galanin in the lateral nucleus in SUDEP could represent acute depletion, relevant to postictal amygdala dysfunction. In addition, increased amygdala neuropeptides in epilepsy controls support their seizure-induced modulation, which is relatively deficient in SUDEP; this could represent a vulnerability factor for amygdala dysfunction in the postictal period.
Collapse
Affiliation(s)
- Alyma Somani
- Department of Clinical and Experimental Epilepsy, University College London Queen Square Institute of Neurology, London, UK
| | - Charlotte Perry
- Department of Clinical and Experimental Epilepsy, University College London Queen Square Institute of Neurology, London, UK
| | - Smriti Patodia
- Department of Clinical and Experimental Epilepsy, University College London Queen Square Institute of Neurology, London, UK
| | - Zuzanna Michalak
- Department of Clinical and Experimental Epilepsy, University College London Queen Square Institute of Neurology, London, UK
| | - Matthew Ellis
- Neuropathology Division, National Hospital for Neurology and Neurosurgery, London, UK
| | - Sanjay M Sisodiya
- Department of Clinical and Experimental Epilepsy, University College London Queen Square Institute of Neurology, London, UK.,Chalfont Centre for Epilepsy, Bucks, UK
| | - Maria Thom
- Department of Clinical and Experimental Epilepsy, University College London Queen Square Institute of Neurology, London, UK.,Neuropathology Division, National Hospital for Neurology and Neurosurgery, London, UK
| |
Collapse
|
9
|
Schidlitzki A, Bascuñana P, Srivastava PK, Welzel L, Twele F, Töllner K, Käufer C, Gericke B, Feleke R, Meier M, Polyak A, Ross TL, Gerhauser I, Bankstahl JP, Johnson MR, Bankstahl M, Löscher W. Proof-of-concept that network pharmacology is effective to modify development of acquired temporal lobe epilepsy. Neurobiol Dis 2019; 134:104664. [PMID: 31678583 DOI: 10.1016/j.nbd.2019.104664] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 10/08/2019] [Accepted: 10/30/2019] [Indexed: 10/25/2022] Open
Abstract
Epilepsy is a complex network phenomenon that, as yet, cannot be prevented or cured. We recently proposed network-based approaches to prevent epileptogenesis. For proof of concept we combined two drugs (levetiracetam and topiramate) for which in silico analysis of drug-protein interaction networks indicated a synergistic effect on a large functional network of epilepsy-relevant proteins. Using the intrahippocampal kainate mouse model of temporal lobe epilepsy, the drug combination was administered during the latent period before onset of spontaneous recurrent seizures (SRS). When SRS were periodically recorded by video-EEG monitoring after termination of treatment, a significant decrease in incidence and frequency of SRS was determined, indicating antiepileptogenic efficacy. Such efficacy was not observed following single drug treatment. Furthermore, a combination of levetiracetam and phenobarbital, for which in silico analysis of drug-protein interaction networks did not indicate any significant drug-drug interaction, was not effective to modify development of epilepsy. Surprisingly, the promising antiepileptogenic effect of the levetiracetam/topiramate combination was obtained in the absence of any significant neuroprotective or anti-inflammatory effects as indicated by multimodal brain imaging and histopathology. High throughput RNA-sequencing (RNA-seq) of the ipsilateral hippocampus of mice treated with the levetiracetam/topiramate combination showed that several genes that have been linked previously to epileptogenesis, were significantly differentially expressed, providing interesting entry points for future mechanistic studies. Overall, we have discovered a novel combination treatment with promise for prevention of epilepsy.
Collapse
Affiliation(s)
- Alina Schidlitzki
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, 30559 Hannover, Germany; Center for Systems Neuroscience, 30559 Hannover, Germany
| | - Pablo Bascuñana
- Department of Nuclear Medicine, Hannover Medical School, Germany
| | | | - Lisa Welzel
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, 30559 Hannover, Germany; Center for Systems Neuroscience, 30559 Hannover, Germany
| | - Friederike Twele
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, 30559 Hannover, Germany
| | - Kathrin Töllner
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, 30559 Hannover, Germany
| | - Christopher Käufer
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, 30559 Hannover, Germany
| | - Birthe Gericke
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, 30559 Hannover, Germany; Center for Systems Neuroscience, 30559 Hannover, Germany
| | - Rahel Feleke
- Division of Brain Sciences, Imperial College London, London, UK
| | - Martin Meier
- Central Animal Facility & Institute for Laboratory Animal Science, Hannover Medical School, Hannover, Germany
| | - Andras Polyak
- Department of Nuclear Medicine, Hannover Medical School, Germany
| | - Tobias L Ross
- Department of Nuclear Medicine, Hannover Medical School, Germany
| | - Ingo Gerhauser
- Department of Pathology, University of Veterinary Medicine Hannover, Germany
| | - Jens P Bankstahl
- Department of Nuclear Medicine, Hannover Medical School, Germany
| | | | - Marion Bankstahl
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, 30559 Hannover, Germany; Center for Systems Neuroscience, 30559 Hannover, Germany; Central Animal Facility & Institute for Laboratory Animal Science, Hannover Medical School, Hannover, Germany
| | - Wolfgang Löscher
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, 30559 Hannover, Germany; Center for Systems Neuroscience, 30559 Hannover, Germany.
| |
Collapse
|
10
|
Molecular and Cellular Mechanisms Underlying Somatostatin-Based Signaling in Two Model Neural Networks, the Retina and the Hippocampus. Int J Mol Sci 2019; 20:ijms20102506. [PMID: 31117258 PMCID: PMC6566141 DOI: 10.3390/ijms20102506] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 05/16/2019] [Accepted: 05/20/2019] [Indexed: 02/06/2023] Open
Abstract
Neural inhibition plays a key role in determining the specific computational tasks of different brain circuitries. This functional "braking" activity is provided by inhibitory interneurons that use different neurochemicals for signaling. One of these substances, somatostatin, is found in several neural networks, raising questions about the significance of its widespread occurrence and usage. Here, we address this issue by analyzing the somatostatinergic system in two regions of the central nervous system: the retina and the hippocampus. By comparing the available information on these structures, we identify common motifs in the action of somatostatin that may explain its involvement in such diverse circuitries. The emerging concept is that somatostatin-based signaling, through conserved molecular and cellular mechanisms, allows neural networks to operate correctly.
Collapse
|
11
|
Iwasawa C, Narita M, Tamura H. Regional and temporal regulation and role of somatostatin receptor subtypes in the mouse brain following systemic kainate-induced acute seizures. Neurosci Res 2019; 149:38-49. [PMID: 30685491 DOI: 10.1016/j.neures.2019.01.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 01/16/2019] [Accepted: 01/21/2019] [Indexed: 11/18/2022]
Abstract
Somatostatin reduces neuronal excitability via somatostatin receptors (Sst1-Sst5) and inhibits seizure activity. However, the expression status of the Sst subtypes in epileptic mice and their role in the antiepileptic effects of somatostatin remain unclear. Here, we show that the Sst subtypes are regulated differently by epileptic neuronal activity in mice. Systemic kainate injection rapidly and transiently elevated the Sst2 and Sst3 mRNA and reduced Sst1 and Sst4 mRNA in the hippocampus; however, among all the subtypes, only Sst2 mRNA was increased in the excitatory neurons of the basolateral amygdala, accompanied by a decrease in the level of Sst2 protein. Following kainate administration, recovery from seizure was delayed by reduced expression of Sst2 in the basolateral amygdala, but not in the dentate gyrus of the hippocampus; higher expression levels of Bdnf, a neuronal activity marker, were observed in both conditions. These results suggest that Sst2 contributes to seizure termination by feedback inhibition in the amygdala. This could be a potential therapeutic target for acute seizures.
Collapse
Affiliation(s)
- Chizuru Iwasawa
- Department of Pharmacology, Hoshi University School of Pharmacy and Pharmaceutical Sciences, 2-4-41, Ebara, Shinagawa-ku, Tokyo, 142-8501, Japan
| | - Minoru Narita
- Department of Pharmacology, Hoshi University School of Pharmacy and Pharmaceutical Sciences, 2-4-41, Ebara, Shinagawa-ku, Tokyo, 142-8501, Japan; Life Science Tokyo Advanced Research Center (L-StaR), Hoshi University School of Pharmacy and Pharmaceutical Sciences, 2-4-41, Ebara, Shinagawa-ku, Tokyo, 142-8501, Japan
| | - Hideki Tamura
- Life Science Tokyo Advanced Research Center (L-StaR), Hoshi University School of Pharmacy and Pharmaceutical Sciences, 2-4-41, Ebara, Shinagawa-ku, Tokyo, 142-8501, Japan.
| |
Collapse
|
12
|
Günther T, Tulipano G, Dournaud P, Bousquet C, Csaba Z, Kreienkamp HJ, Lupp A, Korbonits M, Castaño JP, Wester HJ, Culler M, Melmed S, Schulz S. International Union of Basic and Clinical Pharmacology. CV. Somatostatin Receptors: Structure, Function, Ligands, and New Nomenclature. Pharmacol Rev 2018; 70:763-835. [PMID: 30232095 PMCID: PMC6148080 DOI: 10.1124/pr.117.015388] [Citation(s) in RCA: 165] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Somatostatin, also known as somatotropin-release inhibitory factor, is a cyclopeptide that exerts potent inhibitory actions on hormone secretion and neuronal excitability. Its physiologic functions are mediated by five G protein-coupled receptors (GPCRs) called somatostatin receptor (SST)1-5. These five receptors share common structural features and signaling mechanisms but differ in their cellular and subcellular localization and mode of regulation. SST2 and SST5 receptors have evolved as primary targets for pharmacological treatment of pituitary adenomas and neuroendocrine tumors. In addition, SST2 is a prototypical GPCR for the development of peptide-based radiopharmaceuticals for diagnostic and therapeutic interventions. This review article summarizes findings published in the last 25 years on the physiology, pharmacology, and clinical applications related to SSTs. We also discuss potential future developments and propose a new nomenclature.
Collapse
Affiliation(s)
- Thomas Günther
- Institute of Pharmacology and Toxicology, Jena University Hospital, Friedrich-Schiller-University, Jena, Germany (T.G., A.L., S.S.); Unit of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy (G.T.); PROTECT, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Paris, France (P.D., Z.C.); Cancer Research Center of Toulouse, INSERM UMR 1037-University Toulouse III Paul Sabatier, Toulouse, France (C.B.); Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (H.-J.K.); Centre for Endocrinology, William Harvey Research Institute, Barts and London School of Medicine, Queen Mary University of London, London, United Kingdom (M.K.); Maimonides Institute for Biomedical Research of Cordoba, Córdoba, Spain (J.P.C.); Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain (J.P.C.); Reina Sofia University Hospital, Córdoba, Spain (J.P.C.); CIBER Fisiopatología de la Obesidad y Nutrición, Córdoba, Spain (J.P.C.); Pharmaceutical Radiochemistry, Technische Universität München, Munich, Germany (H.-J.W.); Culler Consulting LLC, Hopkinton, Massachusetts (M.C.); and Pituitary Center, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California (S.M.)
| | - Giovanni Tulipano
- Institute of Pharmacology and Toxicology, Jena University Hospital, Friedrich-Schiller-University, Jena, Germany (T.G., A.L., S.S.); Unit of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy (G.T.); PROTECT, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Paris, France (P.D., Z.C.); Cancer Research Center of Toulouse, INSERM UMR 1037-University Toulouse III Paul Sabatier, Toulouse, France (C.B.); Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (H.-J.K.); Centre for Endocrinology, William Harvey Research Institute, Barts and London School of Medicine, Queen Mary University of London, London, United Kingdom (M.K.); Maimonides Institute for Biomedical Research of Cordoba, Córdoba, Spain (J.P.C.); Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain (J.P.C.); Reina Sofia University Hospital, Córdoba, Spain (J.P.C.); CIBER Fisiopatología de la Obesidad y Nutrición, Córdoba, Spain (J.P.C.); Pharmaceutical Radiochemistry, Technische Universität München, Munich, Germany (H.-J.W.); Culler Consulting LLC, Hopkinton, Massachusetts (M.C.); and Pituitary Center, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California (S.M.)
| | - Pascal Dournaud
- Institute of Pharmacology and Toxicology, Jena University Hospital, Friedrich-Schiller-University, Jena, Germany (T.G., A.L., S.S.); Unit of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy (G.T.); PROTECT, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Paris, France (P.D., Z.C.); Cancer Research Center of Toulouse, INSERM UMR 1037-University Toulouse III Paul Sabatier, Toulouse, France (C.B.); Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (H.-J.K.); Centre for Endocrinology, William Harvey Research Institute, Barts and London School of Medicine, Queen Mary University of London, London, United Kingdom (M.K.); Maimonides Institute for Biomedical Research of Cordoba, Córdoba, Spain (J.P.C.); Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain (J.P.C.); Reina Sofia University Hospital, Córdoba, Spain (J.P.C.); CIBER Fisiopatología de la Obesidad y Nutrición, Córdoba, Spain (J.P.C.); Pharmaceutical Radiochemistry, Technische Universität München, Munich, Germany (H.-J.W.); Culler Consulting LLC, Hopkinton, Massachusetts (M.C.); and Pituitary Center, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California (S.M.)
| | - Corinne Bousquet
- Institute of Pharmacology and Toxicology, Jena University Hospital, Friedrich-Schiller-University, Jena, Germany (T.G., A.L., S.S.); Unit of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy (G.T.); PROTECT, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Paris, France (P.D., Z.C.); Cancer Research Center of Toulouse, INSERM UMR 1037-University Toulouse III Paul Sabatier, Toulouse, France (C.B.); Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (H.-J.K.); Centre for Endocrinology, William Harvey Research Institute, Barts and London School of Medicine, Queen Mary University of London, London, United Kingdom (M.K.); Maimonides Institute for Biomedical Research of Cordoba, Córdoba, Spain (J.P.C.); Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain (J.P.C.); Reina Sofia University Hospital, Córdoba, Spain (J.P.C.); CIBER Fisiopatología de la Obesidad y Nutrición, Córdoba, Spain (J.P.C.); Pharmaceutical Radiochemistry, Technische Universität München, Munich, Germany (H.-J.W.); Culler Consulting LLC, Hopkinton, Massachusetts (M.C.); and Pituitary Center, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California (S.M.)
| | - Zsolt Csaba
- Institute of Pharmacology and Toxicology, Jena University Hospital, Friedrich-Schiller-University, Jena, Germany (T.G., A.L., S.S.); Unit of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy (G.T.); PROTECT, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Paris, France (P.D., Z.C.); Cancer Research Center of Toulouse, INSERM UMR 1037-University Toulouse III Paul Sabatier, Toulouse, France (C.B.); Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (H.-J.K.); Centre for Endocrinology, William Harvey Research Institute, Barts and London School of Medicine, Queen Mary University of London, London, United Kingdom (M.K.); Maimonides Institute for Biomedical Research of Cordoba, Córdoba, Spain (J.P.C.); Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain (J.P.C.); Reina Sofia University Hospital, Córdoba, Spain (J.P.C.); CIBER Fisiopatología de la Obesidad y Nutrición, Córdoba, Spain (J.P.C.); Pharmaceutical Radiochemistry, Technische Universität München, Munich, Germany (H.-J.W.); Culler Consulting LLC, Hopkinton, Massachusetts (M.C.); and Pituitary Center, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California (S.M.)
| | - Hans-Jürgen Kreienkamp
- Institute of Pharmacology and Toxicology, Jena University Hospital, Friedrich-Schiller-University, Jena, Germany (T.G., A.L., S.S.); Unit of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy (G.T.); PROTECT, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Paris, France (P.D., Z.C.); Cancer Research Center of Toulouse, INSERM UMR 1037-University Toulouse III Paul Sabatier, Toulouse, France (C.B.); Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (H.-J.K.); Centre for Endocrinology, William Harvey Research Institute, Barts and London School of Medicine, Queen Mary University of London, London, United Kingdom (M.K.); Maimonides Institute for Biomedical Research of Cordoba, Córdoba, Spain (J.P.C.); Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain (J.P.C.); Reina Sofia University Hospital, Córdoba, Spain (J.P.C.); CIBER Fisiopatología de la Obesidad y Nutrición, Córdoba, Spain (J.P.C.); Pharmaceutical Radiochemistry, Technische Universität München, Munich, Germany (H.-J.W.); Culler Consulting LLC, Hopkinton, Massachusetts (M.C.); and Pituitary Center, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California (S.M.)
| | - Amelie Lupp
- Institute of Pharmacology and Toxicology, Jena University Hospital, Friedrich-Schiller-University, Jena, Germany (T.G., A.L., S.S.); Unit of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy (G.T.); PROTECT, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Paris, France (P.D., Z.C.); Cancer Research Center of Toulouse, INSERM UMR 1037-University Toulouse III Paul Sabatier, Toulouse, France (C.B.); Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (H.-J.K.); Centre for Endocrinology, William Harvey Research Institute, Barts and London School of Medicine, Queen Mary University of London, London, United Kingdom (M.K.); Maimonides Institute for Biomedical Research of Cordoba, Córdoba, Spain (J.P.C.); Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain (J.P.C.); Reina Sofia University Hospital, Córdoba, Spain (J.P.C.); CIBER Fisiopatología de la Obesidad y Nutrición, Córdoba, Spain (J.P.C.); Pharmaceutical Radiochemistry, Technische Universität München, Munich, Germany (H.-J.W.); Culler Consulting LLC, Hopkinton, Massachusetts (M.C.); and Pituitary Center, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California (S.M.)
| | - Márta Korbonits
- Institute of Pharmacology and Toxicology, Jena University Hospital, Friedrich-Schiller-University, Jena, Germany (T.G., A.L., S.S.); Unit of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy (G.T.); PROTECT, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Paris, France (P.D., Z.C.); Cancer Research Center of Toulouse, INSERM UMR 1037-University Toulouse III Paul Sabatier, Toulouse, France (C.B.); Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (H.-J.K.); Centre for Endocrinology, William Harvey Research Institute, Barts and London School of Medicine, Queen Mary University of London, London, United Kingdom (M.K.); Maimonides Institute for Biomedical Research of Cordoba, Córdoba, Spain (J.P.C.); Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain (J.P.C.); Reina Sofia University Hospital, Córdoba, Spain (J.P.C.); CIBER Fisiopatología de la Obesidad y Nutrición, Córdoba, Spain (J.P.C.); Pharmaceutical Radiochemistry, Technische Universität München, Munich, Germany (H.-J.W.); Culler Consulting LLC, Hopkinton, Massachusetts (M.C.); and Pituitary Center, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California (S.M.)
| | - Justo P Castaño
- Institute of Pharmacology and Toxicology, Jena University Hospital, Friedrich-Schiller-University, Jena, Germany (T.G., A.L., S.S.); Unit of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy (G.T.); PROTECT, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Paris, France (P.D., Z.C.); Cancer Research Center of Toulouse, INSERM UMR 1037-University Toulouse III Paul Sabatier, Toulouse, France (C.B.); Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (H.-J.K.); Centre for Endocrinology, William Harvey Research Institute, Barts and London School of Medicine, Queen Mary University of London, London, United Kingdom (M.K.); Maimonides Institute for Biomedical Research of Cordoba, Córdoba, Spain (J.P.C.); Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain (J.P.C.); Reina Sofia University Hospital, Córdoba, Spain (J.P.C.); CIBER Fisiopatología de la Obesidad y Nutrición, Córdoba, Spain (J.P.C.); Pharmaceutical Radiochemistry, Technische Universität München, Munich, Germany (H.-J.W.); Culler Consulting LLC, Hopkinton, Massachusetts (M.C.); and Pituitary Center, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California (S.M.)
| | - Hans-Jürgen Wester
- Institute of Pharmacology and Toxicology, Jena University Hospital, Friedrich-Schiller-University, Jena, Germany (T.G., A.L., S.S.); Unit of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy (G.T.); PROTECT, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Paris, France (P.D., Z.C.); Cancer Research Center of Toulouse, INSERM UMR 1037-University Toulouse III Paul Sabatier, Toulouse, France (C.B.); Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (H.-J.K.); Centre for Endocrinology, William Harvey Research Institute, Barts and London School of Medicine, Queen Mary University of London, London, United Kingdom (M.K.); Maimonides Institute for Biomedical Research of Cordoba, Córdoba, Spain (J.P.C.); Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain (J.P.C.); Reina Sofia University Hospital, Córdoba, Spain (J.P.C.); CIBER Fisiopatología de la Obesidad y Nutrición, Córdoba, Spain (J.P.C.); Pharmaceutical Radiochemistry, Technische Universität München, Munich, Germany (H.-J.W.); Culler Consulting LLC, Hopkinton, Massachusetts (M.C.); and Pituitary Center, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California (S.M.)
| | - Michael Culler
- Institute of Pharmacology and Toxicology, Jena University Hospital, Friedrich-Schiller-University, Jena, Germany (T.G., A.L., S.S.); Unit of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy (G.T.); PROTECT, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Paris, France (P.D., Z.C.); Cancer Research Center of Toulouse, INSERM UMR 1037-University Toulouse III Paul Sabatier, Toulouse, France (C.B.); Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (H.-J.K.); Centre for Endocrinology, William Harvey Research Institute, Barts and London School of Medicine, Queen Mary University of London, London, United Kingdom (M.K.); Maimonides Institute for Biomedical Research of Cordoba, Córdoba, Spain (J.P.C.); Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain (J.P.C.); Reina Sofia University Hospital, Córdoba, Spain (J.P.C.); CIBER Fisiopatología de la Obesidad y Nutrición, Córdoba, Spain (J.P.C.); Pharmaceutical Radiochemistry, Technische Universität München, Munich, Germany (H.-J.W.); Culler Consulting LLC, Hopkinton, Massachusetts (M.C.); and Pituitary Center, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California (S.M.)
| | - Shlomo Melmed
- Institute of Pharmacology and Toxicology, Jena University Hospital, Friedrich-Schiller-University, Jena, Germany (T.G., A.L., S.S.); Unit of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy (G.T.); PROTECT, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Paris, France (P.D., Z.C.); Cancer Research Center of Toulouse, INSERM UMR 1037-University Toulouse III Paul Sabatier, Toulouse, France (C.B.); Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (H.-J.K.); Centre for Endocrinology, William Harvey Research Institute, Barts and London School of Medicine, Queen Mary University of London, London, United Kingdom (M.K.); Maimonides Institute for Biomedical Research of Cordoba, Córdoba, Spain (J.P.C.); Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain (J.P.C.); Reina Sofia University Hospital, Córdoba, Spain (J.P.C.); CIBER Fisiopatología de la Obesidad y Nutrición, Córdoba, Spain (J.P.C.); Pharmaceutical Radiochemistry, Technische Universität München, Munich, Germany (H.-J.W.); Culler Consulting LLC, Hopkinton, Massachusetts (M.C.); and Pituitary Center, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California (S.M.)
| | - Stefan Schulz
- Institute of Pharmacology and Toxicology, Jena University Hospital, Friedrich-Schiller-University, Jena, Germany (T.G., A.L., S.S.); Unit of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy (G.T.); PROTECT, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Paris, France (P.D., Z.C.); Cancer Research Center of Toulouse, INSERM UMR 1037-University Toulouse III Paul Sabatier, Toulouse, France (C.B.); Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (H.-J.K.); Centre for Endocrinology, William Harvey Research Institute, Barts and London School of Medicine, Queen Mary University of London, London, United Kingdom (M.K.); Maimonides Institute for Biomedical Research of Cordoba, Córdoba, Spain (J.P.C.); Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain (J.P.C.); Reina Sofia University Hospital, Córdoba, Spain (J.P.C.); CIBER Fisiopatología de la Obesidad y Nutrición, Córdoba, Spain (J.P.C.); Pharmaceutical Radiochemistry, Technische Universität München, Munich, Germany (H.-J.W.); Culler Consulting LLC, Hopkinton, Massachusetts (M.C.); and Pituitary Center, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California (S.M.)
| |
Collapse
|
13
|
Differential plastic changes in synthesis and binding in the mouse somatostatin system after electroconvulsive stimulation. Acta Neuropsychiatr 2018; 30:192-202. [PMID: 29559016 DOI: 10.1017/neu.2018.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
OBJECTIVE Electroconvulsive therapy (ECT) is regularly used to treat patients with severe major depression, but the mechanisms underlying the beneficial effects remain uncertain. Electroconvulsive stimulation (ECS) regulates diverse neurotransmitter systems and induces anticonvulsant effects, properties implicated in mediating therapeutic effects of ECT. Somatostatin (SST) is a candidate for mediating these effects because it is upregulated by ECS and exerts seizure-suppressant effects. However, little is known about how ECS might affect the SST receptor system. The present study examined effects of single and repeated ECS on the synthesis of SST receptors (SSTR1-4) and SST, and SST receptor binding ([125I]LTT-SST28) in mouse hippocampal regions and piriform/parietal cortices. RESULTS A complex pattern of plastic changes was observed. In the dentate gyrus, SST and SSTR1 expression and the number of hilar SST immunoreactive cells were significantly increased at 1 week after repeated ECS while SSTR2 expression was downregulated by single ECS, and SSTR3 mRNA and SST binding were elevated 24 h after repeated ECS. In hippocampal CA1 and parietal/piriform cortices, we found elevated SST mRNA levels 1 week after repeated ECS and elevated SST binding after single ECS and 24 h after repeated ECS. In hippocampal CA3, repeated ECS increased SST expression 1 week after and SST binding 24 h after. In the parietal cortex, SSTR2 mRNA expression was downregulated after single ECS while SSTR4 mRNA expression was upregulated 24 h after repeated ECS. CONCLUSION Considering the known anticonvulsant effects of SST, it is likely that these ECS-induced neuroplastic changes in the SST system could participate in modulating neuronal excitability and potentially contribute to therapeutic effects of ECT.
Collapse
|
14
|
Soares JI, Valente MC, Andrade PA, Maia GH, Lukoyanov NV. Reorganization of the septohippocampal cholinergic fiber system in experimental epilepsy. J Comp Neurol 2017; 525:2690-2705. [PMID: 28472854 DOI: 10.1002/cne.24235] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 04/11/2017] [Accepted: 04/24/2017] [Indexed: 12/28/2022]
Abstract
The septohippocampal cholinergic neurotransmission has long been implicated in seizures, but little is known about the structural features of this projection system in epileptic brain. We evaluated the effects of experimental epilepsy on the areal density of cholinergic terminals (fiber varicosities) in the dentate gyrus. For this purpose, we used two distinct post-status epilepticus rat models, in which epilepsy was induced with injections of either kainic acid or pilocarpine. To visualize the cholinergic fibers, we used brain sections immunostained for the vesicular acetylcholine transporter. It was found that the density of cholinergic fiber varicosities was higher in epileptic rats versus control rats in the inner and outer zones of the dentate molecular layer, but it was reduced in the dentate hilus. We further evaluated the effects of kainate treatment on the total number, density, and soma volume of septal cholinergic cells, which were visualized in brain sections stained for either vesicular acetylcholine transporter or choline acetyltransferase (ChAT). Both the number of septal cells with cholinergic phenotype and their density were increased in epileptic rats when compared to control rats. The septal cells stained for vesicular acetylcholine transporter, but not for ChAT, have enlarged perikarya in epileptic rats. These results revealed previously unknown details of structural reorganization of the septohippocampal cholinergic system in experimental epilepsy, involving fiber sprouting into the dentate molecular layer and a parallel fiber retraction from the dentate hilus. We hypothesize that epilepsy-related neuroplasticity of septohippocampal cholinergic neurons is capable of increasing neuronal excitability of the dentate gyrus.
Collapse
Affiliation(s)
- Joana I Soares
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal.,Neuronal Networks Group, Instituto de Biologia Molecular e Celular da Universidade do Porto, Porto, Portugal.,Departamento de Biologia Experimental, Faculdade de Medicina da Universidade do Porto, Porto, Portugal.,Programa Doutoral em Neurociências, Universidade do Porto, Porto, Portugal
| | - Maria C Valente
- Departamento de Biologia Experimental, Faculdade de Medicina da Universidade do Porto, Porto, Portugal
| | - Pedro A Andrade
- Programa Doutoral em Neurociências, Universidade do Porto, Porto, Portugal.,Department of Neurobiology, A.I. Virtanen Institute, University of Eastern Finland, Kuopio, Finland
| | - Gisela H Maia
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal.,Neuronal Networks Group, Instituto de Biologia Molecular e Celular da Universidade do Porto, Porto, Portugal.,Departamento de Biologia Experimental, Faculdade de Medicina da Universidade do Porto, Porto, Portugal.,Programa Doutoral em Neurociências, Universidade do Porto, Porto, Portugal
| | - Nikolai V Lukoyanov
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal.,Neuronal Networks Group, Instituto de Biologia Molecular e Celular da Universidade do Porto, Porto, Portugal.,Departamento de Anatomia, Faculdade de Medicina da Universidade do Porto, Porto, Portugal
| |
Collapse
|
15
|
Clark RM, Blizzard CA, Young KM, King AE, Dickson TC. Calretinin and Neuropeptide Y interneurons are differentially altered in the motor cortex of the SOD1 G93A mouse model of ALS. Sci Rep 2017; 7:44461. [PMID: 28294153 PMCID: PMC5353592 DOI: 10.1038/srep44461] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Accepted: 02/08/2017] [Indexed: 12/13/2022] Open
Abstract
Increasing evidence indicates an excitatory/inhibitory imbalance may have a critical role in the pathogenesis of amyotrophic lateral sclerosis (ALS). Impaired inhibitory circuitry is consistently reported in the motor cortex of both familial and sporadic patients, closely associated with cortical hyperexcitability and ALS onset. Inhibitory network dysfunction is presumably mediated by intra-cortical inhibitory interneurons, however, the exact cell types responsible are yet to be identified. In this study we demonstrate dynamic changes in the number of calretinin- (CR) and neuropeptide Y-expressing (NPY) interneurons in the motor cortex of the familial hSOD1G93A ALS mouse model, suggesting their potential involvement in motor neuron circuitry defects. We show that the density of NPY-populations is significantly decreased by ~17% at symptom onset (8 weeks), and by end-stage disease (20 weeks) is significantly increased by ~30%. Conversely, the density of CR-populations is progressively reduced during later symptomatic stages (~31%) to end-stage (~36%), while CR-expressing interneurons also show alteration of neurite branching patterns at symptom onset. We conclude that a differential capacity for interneurons exists in the ALS motor cortex, which may not be a static phenomenon, but involves early dynamic changes throughout disease, implicating specific inhibitory circuitry.
Collapse
Affiliation(s)
- Rosemary M Clark
- Menzies Institute for Medical Research, University of Tasmania, Hobart, 7000, Australia
| | - Catherine A Blizzard
- Menzies Institute for Medical Research, University of Tasmania, Hobart, 7000, Australia
| | - Kaylene M Young
- Menzies Institute for Medical Research, University of Tasmania, Hobart, 7000, Australia
| | - Anna E King
- Wicking Dementia Research &Education Centre2, University of Tasmania, Hobart, 7000, Australia
| | - Tracey C Dickson
- Menzies Institute for Medical Research, University of Tasmania, Hobart, 7000, Australia
| |
Collapse
|
16
|
Natarajan G, Leibowitz JA, Zhou J, Zhao Y, McElroy JA, King MA, Ormerod BK, Carney PR. Adeno-associated viral vector-mediated preprosomatostatin expression suppresses induced seizures in kindled rats. Epilepsy Res 2017; 130:81-92. [PMID: 28167431 DOI: 10.1016/j.eplepsyres.2017.01.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 12/04/2016] [Accepted: 01/04/2017] [Indexed: 01/29/2023]
Abstract
Somatostatin is expressed widely in the hippocampus and notably in hilar GABAergic neurons that are vulnerable to seizure neuropathology in chronic temporal lobe epilepsy. We previously demonstrated that sustained bilateral preprosomatostatin (preproSST) expression in the hippocampus prevents the development of generalized seizures in the amygdala kindling model of temporal lobe epilepsy. Here we tested whether sustained preproSST expression is anticonvulsant in rats already kindled to high-grade seizures. Rats were kindled until they exhibited 3 consecutive Racine Grade 5 seizures before adeno-associated virus serotype 5 (AAV5) vector driving either eGFP (AAV5-CBa-eGFP) or preproSST and eGFP (AAV5-CBa-preproSST-eGFP) expression was injected bilaterally into the hippocampal dentate gyrus and CA1 region. Retested 3 weeks later, rats that received control vector (AAV5-CBa-eGFP) continued to exhibit high-grade seizures whereas 6/13 rats that received preproSST vector (AAV5-CBa-preproSST-eGFP) were seizure-free. Of these rats, 5/6 remained seizure-free after repeated stimulation sessions and when the stimulation current was increased. These results suggest that vector-mediated expression of preproSST may be a viable therapeutic strategy for temporal lobe epilepsy.
Collapse
Affiliation(s)
- Gowri Natarajan
- Wilder Center of Excellence for Epilepsy Research, University of Florida, Gainesville, FL 32611, USA; J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611, USA; Department of Pediatrics, University of Florida, Gainesville, FL 32611, USA; Department of Neurology, University of Florida, Gainesville, FL 32611, USA; Department of Neuroscience, University of Florida, Gainesville, FL 32611, USA; McKnight Brain Institute, University of Florida, Gainesville, FL 32611, USA
| | - Jeffrey A Leibowitz
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611, USA
| | - Junli Zhou
- Wilder Center of Excellence for Epilepsy Research, University of Florida, Gainesville, FL 32611, USA; Department of Pediatrics, University of Florida, Gainesville, FL 32611, USA; Department of Neurology, University of Florida, Gainesville, FL 32611, USA
| | - Yang Zhao
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL 32611, USA
| | - Jessica A McElroy
- Wilder Center of Excellence for Epilepsy Research, University of Florida, Gainesville, FL 32611, USA; Department of Pediatrics, University of Florida, Gainesville, FL 32611, USA
| | - Michael A King
- McKnight Brain Institute, University of Florida, Gainesville, FL 32611, USA; Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL 32611, USA; NF/SG VA Medical Center, University of Florida, Gainesville, FL 32611, USA
| | - Brandi K Ormerod
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611, USA; Department of Neuroscience, University of Florida, Gainesville, FL 32611, USA; McKnight Brain Institute, University of Florida, Gainesville, FL 32611, USA
| | - Paul R Carney
- Wilder Center of Excellence for Epilepsy Research, University of Florida, Gainesville, FL 32611, USA; J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611, USA; Department of Pediatrics, University of Florida, Gainesville, FL 32611, USA; Department of Neurology, University of Florida, Gainesville, FL 32611, USA; Department of Neuroscience, University of Florida, Gainesville, FL 32611, USA; McKnight Brain Institute, University of Florida, Gainesville, FL 32611, USA.
| |
Collapse
|
17
|
Botterill JJ, Nogovitsyn N, Caruncho HJ, Kalynchuk LE. Selective plasticity of hippocampal GABAergic interneuron populations following kindling of different brain regions. J Comp Neurol 2016; 525:389-406. [PMID: 27362579 DOI: 10.1002/cne.24071] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 06/06/2016] [Accepted: 06/28/2016] [Indexed: 12/20/2022]
Abstract
The vulnerability and plasticity of hippocampal GABAergic interneurons is a topic of broad interest and debate in the field of epilepsy. In this experiment, we used the electrical kindling model of epilepsy to determine whether seizures that originate in different brain regions have differential effects on hippocampal interneuron subpopulations. Long-Evans rats received 99 electrical stimulations of the hippocampus, amygdala, or caudate nucleus, followed by sacrifice and immunohistochemical or western blot analyses. We analyzed markers of dendritic (somatostatin), perisomatic (parvalbumin), and interneuron-selective (calretinin) inhibition, as well as an overall indicator (GAD67) of interneuron distribution across all major hippocampal subfields. Our results indicate that kindling produces selective effects on the number and morphology of different functional classes of GABAergic interneurons. In particular, limbic kindling appears to enhance dendritic inhibition, indicated by a greater number of somatostatin-immunoreactive (-ir) cells in the CA1 pyramidal layer and robust morphological sprouting in the dentate gyrus. We also found a reduction in the number of interneuron-selective calretinin-ir cells in the dentate gyrus of hippocampal-kindled rats, which suggests a possible reduction of synchronized dendritic inhibition. In contrast, perisomatic inhibition indicated by parvalbumin immunoreactivity appears to be largely resilient to the effects of kindling. Finally, we found a significant induction in the number of GAD67-cells in caudate-kindled rats in the dentate gyrus and CA3 hippocampal subfields. Taken together, our results demonstrate that kindling has subfield-selective effects on the different functional classes of hippocampal GABAergic interneurons. J. Comp. Neurol. 525:389-406, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- J J Botterill
- Department of Psychology, University of Saskatchewan, Saskatoon, SK, Canada
| | - N Nogovitsyn
- Department of Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - H J Caruncho
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK, Canada
| | - L E Kalynchuk
- Department of Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
18
|
Trans-Modulation of the Somatostatin Type 2A Receptor Trafficking by Insulin-Regulated Aminopeptidase Decreases Limbic Seizures. J Neurosci 2015; 35:11960-75. [PMID: 26311777 DOI: 10.1523/jneurosci.0476-15.2015] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
UNLABELLED Within the hippocampus, the major somatostatin (SRIF) receptor subtype, the sst2A receptor, is localized at postsynaptic sites of the principal neurons where it modulates neuronal activity. Following agonist exposure, this receptor rapidly internalizes and recycles slowly through the trans-Golgi network. In epilepsy, a high and chronic release of somatostatin occurs, which provokes, in both rat and human tissue, a decrease in the density of this inhibitory receptor at the cell surface. The insulin-regulated aminopeptidase (IRAP) is involved in vesicular trafficking and shares common regional distribution with the sst2A receptor. In addition, IRAP ligands display anticonvulsive properties. We therefore sought to assess by in vitro and in vivo experiments in hippocampal rat tissue whether IRAP ligands could regulate the trafficking of the sst2A receptor and, consequently, modulate limbic seizures. Using pharmacological and cell biological approaches, we demonstrate that IRAP ligands accelerate the recycling of the sst2A receptor that has internalized in neurons in vitro or in vivo. Most importantly, because IRAP ligands increase the density of this inhibitory receptor at the plasma membrane, they also potentiate the neuropeptide SRIF inhibitory effects on seizure activity. Our results further demonstrate that IRAP is a therapeutic target for the treatment of limbic seizures and possibly for other neurological conditions in which downregulation of G-protein-coupled receptors occurs. SIGNIFICANCE STATEMENT The somatostatin type 2A receptor (sst2A) is localized on principal hippocampal neurons and displays anticonvulsant properties. Following agonist exposure, however, this receptor rapidly internalizes and recycles slowly. The insulin-regulated aminopeptidase (IRAP) is involved in vesicular trafficking and shares common regional distribution with the sst2A receptor. We therefore assessed by in vitro and in vivo experiments whether IRAP could regulate the trafficking of this receptor. We demonstrate that IRAP ligands accelerate sst2A recycling in hippocampal neurons. Because IRAP ligands increase the density of sst2A receptors at the plasma membrane, they also potentiate the effects of this inhibitory receptor on seizure activity. Our results further demonstrate that IRAP is a therapeutic target for the treatment of limbic seizures.
Collapse
|
19
|
Somatostatin, neuronal vulnerability and behavioral emotionality. Mol Psychiatry 2015; 20:377-87. [PMID: 25600109 PMCID: PMC4355106 DOI: 10.1038/mp.2014.184] [Citation(s) in RCA: 139] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Revised: 10/13/2014] [Accepted: 11/17/2014] [Indexed: 12/16/2022]
Abstract
Somatostatin (SST) deficits are common pathological features in depression and other neurological disorders with mood disturbances, but little is known about the contribution of SST deficits to mood symptoms or causes of these deficits. Here we show that mice lacking SST (Sst(KO)) exhibit elevated behavioral emotionality, high basal plasma corticosterone and reduced gene expression of Bdnf, Cortistatin and Gad67, together recapitulating behavioral, neuroendocrine and molecular features of human depression. Studies in Sst(KO) and heterozygous (Sst(HZ)) mice show that elevated corticosterone is not sufficient to reproduce the behavioral phenotype, suggesting a putative role for Sst cell-specific molecular changes. Using laser capture microdissection, we show that cortical SST-positive interneurons display significantly greater transcriptome deregulations after chronic stress compared with pyramidal neurons. Protein translation through eukaryotic initiation factor 2 (EIF2) signaling, a pathway previously implicated in neurodegenerative diseases, was most affected and suppressed in stress-exposed SST neurons. We then show that activating EIF2 signaling through EIF2 kinase inhibition mitigated stress-induced behavioral emotionality in mice. Taken together, our data suggest that (1) low SST has a causal role in mood-related phenotypes, (2) deregulated EIF2-mediated protein translation may represent a mechanism for vulnerability of SST neurons and (3) that global EIF2 signaling has antidepressant/anxiolytic potential.
Collapse
|
20
|
Thom M. Review: Hippocampal sclerosis in epilepsy: a neuropathology review. Neuropathol Appl Neurobiol 2015; 40:520-43. [PMID: 24762203 PMCID: PMC4265206 DOI: 10.1111/nan.12150] [Citation(s) in RCA: 360] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Accepted: 04/23/2014] [Indexed: 12/12/2022]
Abstract
Hippocampal sclerosis (HS) is a common pathology encountered in mesial temporal lobe epilepsy (MTLE) as well as other epilepsy syndromes and in both surgical and post-mortem practice. The 2013 International League Against Epilepsy (ILAE) classification segregates HS into typical (type 1) and atypical (type 2 and 3) groups, based on the histological patterns of subfield neuronal loss and gliosis. In addition, granule cell reorganization and alterations of interneuronal populations, neuropeptide fibre networks and mossy fibre sprouting are distinctive features of HS associated with epilepsies; they can be useful diagnostic aids to discriminate from other causes of HS, as well as highlighting potential mechanisms of hippocampal epileptogenesis. The cause of HS remains elusive and may be multifactorial; the contribution of febrile seizures, genetic susceptibility, inflammatory and neurodevelopmental factors are discussed. Post-mortem based research in HS, as an addition to studies on surgical samples, has the added advantage of enabling the study of the wider network changes associated with HS, the long-term effects of epilepsy on the pathology and associated comorbidities. It is likely that HS is heterogeneous in aspects of its cause, epileptogenetic mechanisms, network alterations and response to medical and surgical treatments. Future neuropathological studies will contribute to better recognition and understanding of these clinical and patho-aetiological subtypes of HS.
Collapse
Affiliation(s)
- Maria Thom
- Departments of Neuropathology and Clinical and Experimental Epilepsy, Institute of Neurology, University College London, London, UK
| |
Collapse
|
21
|
GABAergic somatostatin-immunoreactive neurons in the amygdala project to the entorhinal cortex. Neuroscience 2015; 290:227-42. [PMID: 25637800 DOI: 10.1016/j.neuroscience.2015.01.028] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Revised: 01/14/2015] [Accepted: 01/16/2015] [Indexed: 11/21/2022]
Abstract
The entorhinal cortex and other hippocampal and parahippocampal cortices are interconnected by a small number of GABAergic nonpyramidal neurons in addition to glutamatergic pyramidal cells. Since the cortical and basolateral amygdalar nuclei have cortex-like cell types and have robust projections to the entorhinal cortex, we hypothesized that a small number of amygdalar GABAergic nonpyramidal neurons might participate in amygdalo-entorhinal projections. To test this hypothesis we combined Fluorogold (FG) retrograde tract tracing with immunohistochemistry for the amygdalar nonpyramidal cell markers glutamic acid decarboxylase (GAD), parvalbumin (PV), somatostatin (SOM), neuropeptide Y (NPY), vasoactive intestinal peptide (VIP), and the m2 muscarinic cholinergic receptor (M2R). Injections of FG into the rat entorhinal cortex labeled numerous neurons that were mainly located in the cortical and basolateral nuclei of the amygdala. Although most of these amygdalar FG+ neurons labeled by entorhinal injections were large pyramidal cells, 1-5% were smaller long-range nonpyramidal neurons (LRNP neurons) that expressed SOM, or both SOM and NPY. No amygdalar FG+ neurons in these cases were PV+ or VIP+. Cell counts revealed that LRNP neurons labeled by injections into the entorhinal cortex constituted about 10-20% of the total SOM+ population, and 20-40% of the total NPY population in portions of the lateral amygdalar nucleus that exhibited a high density of FG+ neurons. Sixty-two percent of amygdalar FG+/SOM+ neurons were GAD+, and 51% were M2R+. Since GABAergic projection neurons typically have low perikaryal levels of GABAergic markers, it is actually possible that most or all of the amygdalar LRNP neurons are GABAergic. Like GABAergic LRNP neurons in hippocampal/parahippocampal regions, amygdalar LRNP neurons that project to the entorhinal cortex are most likely involved in synchronizing oscillatory activity between the two regions. These oscillations could entrain synchronous firing of amygdalar and entorhinal pyramidal neurons, thus facilitating functional interactions between them, including synaptic plasticity.
Collapse
|
22
|
Clynen E, Swijsen A, Raijmakers M, Hoogland G, Rigo JM. Neuropeptides as targets for the development of anticonvulsant drugs. Mol Neurobiol 2014; 50:626-46. [PMID: 24705860 PMCID: PMC4182642 DOI: 10.1007/s12035-014-8669-x] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Accepted: 02/27/2014] [Indexed: 11/04/2022]
Abstract
Epilepsy is a common neurological disorder characterized by recurrent seizures. These seizures are due to abnormal excessive and synchronous neuronal activity in the brain caused by a disruption of the delicate balance between excitation and inhibition. Neuropeptides can contribute to such misbalance by modulating the effect of classical excitatory and inhibitory neurotransmitters. In this review, we discuss 21 different neuropeptides that have been linked to seizure disorders. These neuropeptides show an aberrant expression and/or release in animal seizure models and/or epilepsy patients. Many of these endogenous peptides, like adrenocorticotropic hormone, angiotensin, cholecystokinin, cortistatin, dynorphin, galanin, ghrelin, neuropeptide Y, neurotensin, somatostatin, and thyrotropin-releasing hormone, are able to suppress seizures in the brain. Other neuropeptides, such as arginine-vasopressine peptide, corticotropin-releasing hormone, enkephalin, β-endorphin, pituitary adenylate cyclase-activating polypeptide, and tachykinins have proconvulsive properties. For oxytocin and melanin-concentrating hormone both pro- and anticonvulsive effects have been reported, and this seems to be dose or time dependent. All these neuropeptides and their receptors are interesting targets for the development of new antiepileptic drugs. Other neuropeptides such as nesfatin-1 and vasoactive intestinal peptide have been less studied in this field; however, as nesfatin-1 levels change over the course of epilepsy, this can be considered as an interesting marker to diagnose patients who have suffered a recent epileptic seizure.
Collapse
Affiliation(s)
- Elke Clynen
- Biomedical Research Institute BIOMED, Hasselt University, Martelarenlaan 42, 3500, Hasselt, Belgium,
| | | | | | | | | |
Collapse
|
23
|
Aourz N, Portelli J, Coppens J, De Bundel D, Di Giovanni G, Van Eeckhaut A, Michotte Y, Smolders I. Cortistatin-14 mediates its anticonvulsant effects via sst2 and sst3 but not ghrelin receptors. CNS Neurosci Ther 2014; 20:662-70. [PMID: 24685142 DOI: 10.1111/cns.12259] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Revised: 02/28/2014] [Accepted: 03/04/2014] [Indexed: 12/12/2022] Open
Abstract
Cortistatin (CST)-14, a neuropeptide that is structurally and functionally related to somatostatin-14 (SRIF) binds all five somatostatin receptor subtypes (sst1-sst5). Using in vivo microdialysis and telemetry-based electroencephalographic recordings, we provide the first experimental evidence for anticonvulsive effects of CST-14 in a pilocarpine-induced seizure model in rats and mice and for the involvement of sst2 and sst3 receptors in these anticonvulsant actions of CST-14. Both receptor subtypes are required for the anticonvulsant effects of CST-14 given that co-perfusion of a selective sst2 antagonist (cyanamid15486) or a selective sst3 antagonist (SST3-ODN-8) reversed anticonvulsant effect of CST-14, and this, independently of each other. Next, as the ghrelin receptor has been proposed as a target for the biological effects of CST-14, we used ghrelin receptor knockout mice and their wild type littermates to study the involvement of this receptor in the anticonvulsive actions of CST-14. Our results show a significant decrease in seizure duration in both genotypes when CST-14 treated mice were compared with corresponding control animals receiving only pilocarpine. In addition, this CST-14-induced decrease was comparable in both genotypes. We here thus provide the first evidence that ghrelin receptors are not involved in mediating anticonvulsant actions of CST-14 in vivo.
Collapse
Affiliation(s)
- Najat Aourz
- Department of Pharmaceutical Chemistry, Drug Analysis and Drug Information, Research Group Experimental Pharmacology, Center for Neurosciences (C4N), Vrije Universiteit Brussel, Brussels, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Lin LC, Sibille E. Reduced brain somatostatin in mood disorders: a common pathophysiological substrate and drug target? Front Pharmacol 2013; 4:110. [PMID: 24058344 PMCID: PMC3766825 DOI: 10.3389/fphar.2013.00110] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2013] [Accepted: 08/13/2013] [Indexed: 12/23/2022] Open
Abstract
Our knowledge of the pathophysiology of affect dysregulation has progressively increased, but the pharmacological treatments remain inadequate. Here, we summarize the current literature on deficits in somatostatin, an inhibitory modulatory neuropeptide, in major depression and other neurological disorders that also include mood disturbances. We focus on direct evidence in the human postmortem brain, and review rodent genetic and pharmacological studies probing the role of the somatostatin system in relation to mood. We also briefly go over pharmacological developments targeting the somatostatin system in peripheral organs and discuss the challenges of targeting the brain somatostatin system. Finally, the fact that somatostatin deficits are frequently observed across neurological disorders suggests a selective cellular vulnerability of somatostatin-expressing neurons. Potential cell intrinsic factors mediating those changes are discussed, including nitric oxide induced oxidative stress, mitochondrial dysfunction, high inflammatory response, high demand for neurotrophic environment, and overall aging processes. Together, based on the co-localization of somatostatin with gamma-aminobutyric acid (GABA), its presence in dendritic-targeting GABA neuron subtypes, and its temporal-specific function, we discuss the possibility that deficits in somatostatin play a central role in cortical local inhibitory circuit deficits leading to abnormal corticolimbic network activity and clinical mood symptoms across neurological disorders.
Collapse
Affiliation(s)
- Li-Chun Lin
- Department of Psychiatry, Center for Neuroscience, University of Pittsburgh Pittsburgh, PA, USA
| | | |
Collapse
|
25
|
El Idrissi A, Shen CH, L'amoreaux WJ. Neuroprotective role of taurine during aging. Amino Acids 2013; 45:735-50. [PMID: 23963537 DOI: 10.1007/s00726-013-1544-7] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Accepted: 06/24/2013] [Indexed: 11/26/2022]
Abstract
Aging of the brain is characterized by several neurochemical modifications involving structural proteins, neurotransmitters, neuropeptides and related receptors. Alterations of neurochemical indices of synaptic function are indicators of age-related impairment of central functions, such as locomotion, memory and sensory performances. Several studies demonstrate that ionotropic GABA receptors, glutamate decarboxylase (GAD), and somatostatinergic subpopulations of GABAergic neurons are markedly decreased in experimental animal brains during aging. Additionally, levels of several neuropeptides co-expressed with GAD decrease during aging. Thus, the age-related decline in cognitive functions could be attributable, at least in part, to decrements in GABA inhibitory neurotransmission. In this study, we showed that chronic supplementation of taurine to aged mice significantly ameliorated the age-dependent decline in spatial memory acquisition and retention. We also demonstrated that concomitant with the amelioration in cognitive function, taurine caused significant alterations in the GABAergic and somatostatinergic system. These changes included (1) increased levels of the neurotransmitters GABA and glutamate, (2) increased expression of both isoforms of GAD (65 and 67) and the neuropeptide somatostatin, (3) decreased hippocampal expression of the β3 subunits of the GABAA receptor, (4) increased expression in the number of somatostatin-positive neurons, (5) increased amplitude and duration of population spikes recorded from CA1 in response to Schaefer collateral stimulation and (6) enhanced paired pulse facilitation in the hippocampus. These specific alterations of the inhibitory system caused by taurine treatment oppose those naturally occurring in the aging brain, suggesting a protective role of taurine in this process. An increased understanding of age-related neurochemical changes in the GABAergic system will be important in elucidating the underpinnings of the functional changes of aging. Taurine supplementation might help forestall the age-related decline in cognitive functions through interaction with the GABAergic system.
Collapse
Affiliation(s)
- Abdeslem El Idrissi
- Department of Biology, Center for Developmental Neuroscience, City University of New York Graduate School, Staten Island, NY, 10314, USA,
| | | | | |
Collapse
|
26
|
Zhao R, Zhang R, Li W, Liao Y, Tang J, Miao Q, Hao W. Genome-wide DNA methylation patterns in discordant sib pairs with alcohol dependence. Asia Pac Psychiatry 2013; 5:39-50. [PMID: 23857790 DOI: 10.1111/appy.12010] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2012] [Accepted: 09/10/2012] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Alcohol dependence is a complex disease caused by a confluence of environmental and genetic factors. Epigenetic mechanisms have been shown to play an important role in the pathogenesis of alcohol dependence. METHODS To determine if alterations in gene-specific methylation were associated with alcohol dependence, a genome-wide DNA methylation analysis was performed on peripheral blood mononuclear cells from alcohol-dependent patients and siblings without alcohol dependence as controls. The Illumina Infinium Human Methylation450 BeadChip was used and gene-specific methylation of DNA isolated from peripheral blood mononuclear cells was assessed. Genes ALDH1L2, GAD1, DBH and GABRP were selected to validate beadchip results by pyrosequencing. RESULTS Compared to normal controls, 865 hypomethylated and 716 hypermethylated CG sites in peripheral blood mononuclear cell DNA in alcohol-dependent patients were identified. The most hypomethylated CG site is located in the promoter of SSTR4 (somatostatin receptor 4) and the most hypermethylated CG site is GABRP (gamma-aminobutyric acid A receptor). The results from beadchip analysis were consistent with that of pyrosequencing. DISCUSSION DNA methylation might be associated with alcohol dependence. Genes SSTR4, ALDH1L2, GAD1, DBH and GABRP may participate in the biological process of alcohol dependence.
Collapse
Affiliation(s)
- Rongrong Zhao
- Mental Health Institute, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | | | | | | | | | | | | |
Collapse
|
27
|
Hou ZH, Yu X. Activity-regulated somatostatin expression reduces dendritic spine density and lowers excitatory synaptic transmission via postsynaptic somatostatin receptor 4. J Biol Chem 2012; 288:2501-9. [PMID: 23233668 DOI: 10.1074/jbc.m112.419051] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Neuronal activity regulates multiple aspects of the morphological and functional development of neural circuits. One mechanism by which it achieves this is through regulation of gene expression. In a screen for activity-induced genes, we identified somatostatin (SST), a neuropeptide secreted by the SST subtype of interneurons. Using real time quantitative PCR and ELISA, we showed that persistent elevation of neuronal activity increased both the gene expression and protein secretion of SST over a relatively prolonged time course of 48 h. Using primary hippocampal neuronal cultures, we found that SST treatment for 1 day significantly reduced the density of dendritic spines, the morphological bases of excitatory synapses. Furthermore, the density of pre- and postsynaptic markers of excitatory synapses was significantly lowered following SST treatment, whereas that of inhibitory synapses was not affected. Consistently, SST treatment reduced the frequency of miniature excitatory postsynaptic currents, without affecting inhibition. Finally, lowering the endogenous level of SST receptor subtype 4 in individual hippocampal pyramidal neurons significantly blocked the effect of SST in reducing spine density and excitatory synaptic transmission in a cell autonomous fashion, suggesting that the effect of SST in regulating excitatory synaptic transmission is mainly mediated by SST receptor subtype 4. Together, our results demonstrated that activity-dependent release of SST reduced the density of dendritic spines and the number of excitatory synapses through postsynaptic activation of SST receptor subtype 4 in pyramidal neurons. To our knowledge, this is the first demonstration of the long term effect of SST on neuronal morphology.
Collapse
Affiliation(s)
- Zai-Hua Hou
- Institute of Neuroscience and State Key Laboratory of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | | |
Collapse
|
28
|
Prakash O, Lukiw WJ, Peruzzi F, Reiss K, Musto AE. Gliomas and seizures. Med Hypotheses 2012; 79:622-6. [PMID: 22959996 DOI: 10.1016/j.mehy.2012.07.037] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Accepted: 07/28/2012] [Indexed: 10/27/2022]
Abstract
Glial neoplasms account for nearly 50% of all adult primary brain tumors. They originate from glial cells in the brain and/or spinal cord and include low-grade diffuse astrocytomas, anaplastic-astrocytomas, and glioblastomas. Of all brain tumors, glioblastoma multiforme (GBM) is the most aggressive and is characterized by rapid glial cell growth, resistance to radio- and chemo- therapies, and relentless infiltration and spreading throughout the central nervous system (CNS). In glioblastomas, primary tumor growth and CNS invasion are associated with the activation of complex structural molecular and metabolic changes within the tumor tissue, which profoundly affect the surrounding neuronal networks and may in part explain induction of epilepsy. In fact, epileptic seizures are very common among patients with glial tumors, reaching nearly 50% in glioblastoma patients and almost 90% in low-grade astrocytomas. The overall hypothesis presented here discusses the possibility that the aberrant tumor cell metabolism may act directly on neuronal network, and this leads to seizure susceptibility. Further invasion and growth of the malignant glial cells exacerbate this initial pathologic state which promotes recurrent seizures (epileptogenesis).
Collapse
Affiliation(s)
- O Prakash
- LSUHSC - Cancer Center, Neurosurgery Department and Neuroscience Center of Excellence, 2020 Gravier St., New Orleans, LA 70112, USA
| | | | | | | | | |
Collapse
|
29
|
Wei XY, Zhao Y, Wong-Riley MTT, Ju G, Liu YY. Synaptic relationship between somatostatin- and neurokinin-1 receptor-immunoreactive neurons in the pre-Bötzinger complex of rats. J Neurochem 2012; 122:923-33. [DOI: 10.1111/j.1471-4159.2012.07862.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
30
|
Kim JA, Connors BW. High temperatures alter physiological properties of pyramidal cells and inhibitory interneurons in hippocampus. Front Cell Neurosci 2012; 6:27. [PMID: 22783167 PMCID: PMC3390787 DOI: 10.3389/fncel.2012.00027] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Accepted: 06/13/2012] [Indexed: 01/14/2023] Open
Abstract
Temperature has multiple effects on neurons, yet little is known about the effects of high temperature on the physiology of mammalian central neurons. Hyperthermia can influence behavior and cause febrile seizures. We studied the effects of acute hyperthermia on the immature hippocampus in vitro by recording from pyramidal neurons and inhibitory oriens-lacunosum moleculare (O-LM) interneurons (identified by green fluorescent protein (GFP) expression in the GIN mouse line). Warming to 41°C caused depolarization, spontaneous action potentials, reduced input resistance and membrane time constant, and increased spontaneous synaptic activity of most pyramidal cells and O-LM interneurons. Pyramidal neurons of area CA3 were more strongly excited by hyperthermia than those of area CA1. About 90% of O-LM interneurons in both CA1 and CA3 increased their firing rates at hyperthermic temperatures; interneurons in CA3 fired faster than those in CA1 on average. Blockade of fast synaptic transmission did not abolish the effect of hyperthermia on neuronal excitability. Our results suggest that hyperthermia increases hippocampal excitability, particularly in seizure-prone area CA3, by altering the intrinsic membrane properties of pyramidal cells and interneurons.
Collapse
Affiliation(s)
- Jennifer A Kim
- Department of Neuroscience, Brown University, Providence RI, USA
| | | |
Collapse
|
31
|
Somatostatin and neuropeptide Y neurons undergo different plasticity in parahippocampal regions in kainic acid-induced epilepsy. J Neuropathol Exp Neurol 2012; 71:312-29. [PMID: 22437342 DOI: 10.1097/nen.0b013e31824d9882] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Parahippocampal brain areas including the subiculum, presubiculum and parasubiculum, and entorhinal cortex give rise to major input and output neurons of the hippocampus and exert increased excitability in animal models and human temporal lobe epilepsy. Using immunohistochemistry and in situ hybridization for somatostatin and neuropeptide Y, we investigated plastic morphologic and neurochemical changes in parahippocampal neurons in the kainic acid (KA) model of temporal lobe epilepsy. Although constitutively contained in similar subclasses of γ-aminobutyric acid (GABA)-ergic neurons, both neuropeptide systems undergo distinctly different changes in their expression. Somatostatin messenger RNA (mRNA) is rapidly but transiently expressed de novo in pyramidal neurons of the subiculum and entorhinal cortex 24 hours after KA. Surviving somatostatin interneurons display increased mRNA levels at late intervals (3 months) after KA and increased labeling of their terminals in the outer molecular layer of the subiculum; the labeling correlates with the number of spontaneous seizures, suggesting that the seizures may trigger somatostatin expression. In contrast, neuropeptide Y mRNA is consistently expressed in principal neurons of the proximal subiculum and the lateral entorhinal cortex and labeling for the peptide persistently increased in virtually all major excitatory pathways of the hippocampal formation. The pronounced plastic changes differentially involving both neuropeptide systems indicate marked rearrangement of parahippocampal areas, presumably aiming at endogenous seizure protection. Their receptors may be targets for anticonvulsive drug therapy.
Collapse
|
32
|
Ramírez-Jarquín JO, Lara-Hernández S, López-Guerrero JJ, Aguileta MA, Rivera-Angulo AJ, Sampieri A, Vaca L, Ordaz B, Peña-Ortega F. Somatostatin modulates generation of inspiratory rhythms and determines asphyxia survival. Peptides 2012; 34:360-72. [PMID: 22386651 DOI: 10.1016/j.peptides.2012.02.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2011] [Revised: 02/15/2012] [Accepted: 02/15/2012] [Indexed: 10/28/2022]
Abstract
Breathing and the activity of its generator (the pre-Bötzinger complex; pre-BötC) are highly regulated functions. Among neuromodulators of breathing, somatostatin (SST) is unique: it is synthesized by a subset of glutamatergic pre-BötC neurons, but acts as an inhibitory neuromodulator. Moreover, SST regulates breathing both in normoxic and in hypoxic conditions. Although it has been implicated in the neuromodulation of breathing, neither the locus of SST modulation, nor the receptor subtypes involved have been identified. In this study, we aimed to fill in these blanks by characterizing the SST-induced regulation of inspiratory rhythm generation in vitro and in vivo. We found that both endogenous and exogenous SST depress all preBötC-generated rhythms. While SST abolishes sighs, it also decreases the frequency and increases the regularity of eupnea and gasping. Pharmacological experiments showed that SST modulates inspiratory rhythm generation by activating SST receptor type-2, whose mRNA is abundantly expressed in the pre-Bötzinger complex. In vivo, blockade of SST receptor type-2 reduces gasping amplitude and consequently, it precludes auto-resuscitation after asphyxia. Based on our findings, we suggest that SST functions as an inhibitory neuromodulator released by excitatory respiratory neurons when they become overactivated in order to stabilize breathing rhythmicity in normoxic and hypoxic conditions.
Collapse
Affiliation(s)
- Josué O Ramírez-Jarquín
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, UNAM-Campus Juriquilla, Mexico.
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Zafar R, King MA, Carney PR. Adeno associated viral vector-mediated expression of somatostatin in rat hippocampus suppresses seizure development. Neurosci Lett 2012; 509:87-91. [PMID: 22245439 DOI: 10.1016/j.neulet.2011.12.035] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2011] [Revised: 12/19/2011] [Accepted: 12/21/2011] [Indexed: 11/26/2022]
Abstract
Somatostatin (SST) has been suggested to play an important role in maintaining hippocampal homeostasis by modulating excitatory neurotransmission. The putative anticonvulsant role for SST was tested in an electrical amygdala kindling model. SST was cloned into serotype 5 of the adeno-associated viral (AAV) vector and delivered bilaterally into the hippocampus of adult male Sprague Dawley rats that were subsequently electrically kindled. Behavioral severity and duration of kindled seizures was compared to uninjected and GFP-injected control rats. Results demonstrated that 70% of SST treated animals did not experience class IV or V seizures without affecting the threshold for individual stimulation-evoked seizures. This result was significantly different from control groups where 100% of animals reached class V seizures. No difference in the number of stimulations required to reach the first class I-III seizures was observed in the experimental cohort relative to age-matched controls. These preclinical results suggest a putative role for SST as an anticonvulsant therapeutic modality for epilepsy.
Collapse
Affiliation(s)
- Rabia Zafar
- Departments of Pediatrics and Neurology, University of Florida, 1600 SW Archer Road, HD 403, P.O. Box 100296, Gainesville, FL 32610-0296, USA.
| | | | | |
Collapse
|
34
|
El Idrissi A, Yan X, L'Amoreaux W, Brown WT, Dobkin C. Neuroendocrine alterations in the fragile X mouse. Results Probl Cell Differ 2012; 54:201-221. [PMID: 22009354 DOI: 10.1007/978-3-642-21649-7_11] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The expression of GABA(A) receptors in the fragile X mouse brain is significantly downregulated. We additionally found that the expression of somatostatin and voltage-sensitive calcium channels (VSCCs) is also reduced. GABA(A) and the VSCCs, through a synergistic interaction, perform a critical role in mediating activity-dependent developmental processes. In the developing brain, GABA is excitatory and its actions are mediated through GABA(A) receptors. Subsequent to GABA-mediated depolarization, the VSCCs are activated and intracellular calcium is increased, which mediates gene transcription and other cellular events. GABAergic excitation mediated through GABA(A) receptors and the subsequent activation of the VSCCs are critically important for the establishment of neuronal connectivity within immature neuronal networks. Data from our laboratories suggest that there is a dysregulation of axonal pathfinding during development in the fragile X mouse brain and that this is likely due to a dysregulation of the synergistic interactions of GABA and VSCC. Thus, we hypothesize that the altered expression of these critical channels in the early stages of brain development leads to altered activity-dependent gene expression that may potentially lead to the developmental delay characteristic of the fragile X syndrome.
Collapse
|
35
|
Afanador L, Yarosh H, Wang J, Ali SF, Angulo JA. Contrasting Effects of the Neuropeptides Substance P, Somatostatin, and Neuropeptide Y on the Methamphetamine-Induced Production of Striatal Nitric Oxide in Mice. ACTA ACUST UNITED AC 2012; 1. [PMID: 25383232 DOI: 10.4303/jdar/235604] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Several laboratories have shown that methamphetamine (METH) neurotoxicity is associated with increases of nitric oxide (NO) production in striatal tissue and blockade of NO production protects from METH. Because substance P modulates NO production, we tested the hypothesis that intrinsic striatal neuropeptides such as somatostatin and neuropeptide Y (NPY) modulate striatal NO production in the presence of METH. To that end, METH (30 mg/kg, IP) was injected into adult male mice alone or in combination with pharmacological agonists or antagonists of the neurokinin-1 (substance P), somatostatin or NPY receptors and 3-nitrotyrosine (an indirect index of NO production) was assessed utilizing HPLC or a histological method. Pre-treatment with the systemic neurokinin-1 receptor antagonist WIN-51,708 significantly attenuated the METH-induced production of striatal 3-NT measured at two hours post-METH. Conversely, intrastriatal injection of NPY1 or 2 receptor agonists inhibited the METH-induced production of striatal 3-NT. Similarly, intrastriatal infusion of the somatostatin receptor agonist octreotide attenuated the METH-induced striatal production of 3-NT. Taken together, our results suggest the hypothesis that the neuropeptide substance P is pro-damage while the neuropeptides somatostatin and NPY are anti-damage in the presence of METH by targeting the production of NO.
Collapse
Affiliation(s)
- Lauriaselle Afanador
- Department of Biological Sciences, Hunter College, 695 Park Avenue, NY 10021, USA ; The Graduate Center, City University of New York, 365 Fifth Avenue, New York, NY 10016, USA
| | - Haley Yarosh
- Department of Biological Sciences, Hunter College, 695 Park Avenue, NY 10021, USA ; The Graduate Center, City University of New York, 365 Fifth Avenue, New York, NY 10016, USA
| | - Jing Wang
- Department of Biological Sciences, Hunter College, 695 Park Avenue, NY 10021, USA ; The Graduate Center, City University of New York, 365 Fifth Avenue, New York, NY 10016, USA
| | - Syed F Ali
- Neurochemistry Laboratory, Division of Neurotoxicology, National Center for Toxicological Research/FDA, Jefferson, AR 72079, USA
| | - Jesus A Angulo
- Department of Biological Sciences, Hunter College, 695 Park Avenue, NY 10021, USA ; The Graduate Center, City University of New York, 365 Fifth Avenue, New York, NY 10016, USA
| |
Collapse
|
36
|
Martel G, Dutar P, Epelbaum J, Viollet C. Somatostatinergic systems: an update on brain functions in normal and pathological aging. Front Endocrinol (Lausanne) 2012; 3:154. [PMID: 23230430 PMCID: PMC3515867 DOI: 10.3389/fendo.2012.00154] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Accepted: 11/20/2012] [Indexed: 11/29/2022] Open
Abstract
Somatostatin is highly expressed in mammalian brain and is involved in many brain functions such as motor activity, sleep, sensory, and cognitive processes. Five somatostatin receptors have been described: sst(1), sst(2) (A and B), sst(3), sst(4), and sst(5), all belonging to the G-protein-coupled receptor family. During the recent years, numerous studies contributed to clarify the role of somatostatin systems, especially long-range somatostatinergic interneurons, in several functions they have been previously involved in. New advances have also been made on the alterations of somatostatinergic systems in several brain diseases and on the potential therapeutic target they represent in these pathologies.
Collapse
Affiliation(s)
| | | | | | - Cécile Viollet
- *Correspondence: Cécile Viollet, Inserm UMR894 - Center for Psychiatry and Neuroscience, Université Paris Descartes, Sorbonne Paris Cité, 2 ter rue d’Alésia, 75014 Paris, France. e-mail:
| |
Collapse
|
37
|
Aourz N, De Bundel D, Stragier B, Clinckers R, Portelli J, Michotte Y, Smolders I. Rat hippocampal somatostatin sst3 and sst4 receptors mediate anticonvulsive effects in vivo: indications of functional interactions with sst2 receptors. Neuropharmacology 2011; 61:1327-33. [PMID: 21854790 DOI: 10.1016/j.neuropharm.2011.08.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2011] [Revised: 07/13/2011] [Accepted: 08/02/2011] [Indexed: 11/29/2022]
Abstract
Somatostatin-14 (SRIF) is a potent anticonvulsant in rodent models of limbic seizures in which the hippocampus is its major site of action. However, the distribution of hippocampal sst receptors and their role in the anticonvulsant effects of SRIF remain controversial. Moreover, striking differences have been described between mice and rats. In rats, sst(2) but not sst(1) receptors play a critical role in the anticonvulsant effects of SRIF. At present, the role of rat sst(3) and sst(4) receptors in these anticonvulsive effects remains unknown. Here we demonstrate in vivo anticonvulsive actions of rat hippocampal sst(3) and sst(4) receptors. Using microdialysis and telemetry-based electroencephalographic recordings we show that intrahippocampal administration of the sst(2) agonist L-779,976 (500 nM), the sst(3) agonist L-796,778 (100 nM) or the sst(4) agonist L-803,087 (100 nM) protects rats against focal pilocarpine-induced seizures. SRIF (1 μM)-, sst(3)- and sst(4)-mediated anticonvulsive actions are reversed by the selective sst(2) receptor antagonist cyanamid 154806 (100 nM). Moreover, the selective sst(3) antagonist SST3-ODN-8 (100 nM) blocks the sst(4)-mediated anticonvulsant effect. Sst(3) antagonism does not reverse the sst(2)- or SRIF-mediated anticonvulsant effects. Our findings provide the first in vivo evidence for potent anticonvulsive properties of sst(3) and sst(4) receptors in the rat hippocampus. Nevertheless, selective sst(2) receptor antagonism prevented these sst(3)- or sst(4) receptor-mediated anticonvulsant effects, suggesting a functional cooperation with rat hippocampal sst(2) receptors.
Collapse
Affiliation(s)
- Najat Aourz
- Center for Neuroscience, Department of Pharmaceutical Chemistry and Drug Analysis, CePhar, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium
| | | | | | | | | | | | | |
Collapse
|
38
|
Aydin S, Dag E, Ozkan Y, Arslan O, Koc G, Bek S, Kirbas S, Kasikci T, Abasli D, Gokcil Z, Odabasi Z, Catak Z. Time-dependent changes in the serum levels of prolactin, nesfatin-1 and ghrelin as a marker of epileptic attacks young male patients. Peptides 2011; 32:1276-1280. [PMID: 21554911 DOI: 10.1016/j.peptides.2011.04.021] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2011] [Revised: 04/21/2011] [Accepted: 04/22/2011] [Indexed: 11/24/2022]
Abstract
A relationship between hormones and seizures has been reported in animals and humans. Therefore, the purpose of this study was to investigate the association between serum levels of prolactin, nesfatin-1 and ghrelin measured different times after a seizure or non-epileptic event and compared with controls. The study included a total of 70 subjects, and of whom 18 patients had secondary generalized epilepsy (SGE), 16 patients had primary generalized epilepsy (PGE), 16 patients exhibited paroxysmal event (psychogenic) and 20 healthy males were control subjects. The first sample was taken within 5min of a seizure, with further samples taken after 1, 24, and 48h so long as the patient did not exhibit further clinically observable seizures; blood samples were taken once from control subjects. Prolactin was measured immediately using TOSOH Bioscience hormone assays. Nesfatin-1 and ghrelin peptides were measured using a commercial immunoassay kit. Patients suffering from focal epilepsy with secondary generalization and primary generalized epilepsy presented with significantly higher levels of serum prolactin and nesfatin-1 and lower ghrelin levels 5min, 1 and 24h after a seizure than patients presenting with paroxysmal events (psychogenic) and control subjects; the data were similar but not statistically significant after 48h. The present study suggests that increased serum prolactin and nesfatin-1 concentrations, decreased ghrelin concentrations could be used as markers to identify patients that have suffered a recent epileptic seizure or other paroxysmal event (psychogenic).
Collapse
Affiliation(s)
- Suleyman Aydin
- Firat University, Medical School, Department of Medical Biochemistry, Elazig, Turkey.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Ataie Z, Golzar MG, Babri S, Ebrahimi H, Mohaddes G. Does ghrelin level change after epileptic seizure in rats? Seizure 2011; 20:347-9. [PMID: 21295498 DOI: 10.1016/j.seizure.2011.01.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2010] [Revised: 12/29/2010] [Accepted: 01/10/2011] [Indexed: 10/18/2022] Open
Abstract
AIM Epilepsy is one of the most common neurologic problems worldwide. A relationship between epilepsy and hormones has been demonstrated. This study was designed to investigate the effect of seizure on blood ghrelin level. METHODS Twenty male Wistar rats were divided into two groups. The control group received saline and the pentylenetetrazole (PTZ) group received a single convulsive dose (50mg/kg) of PTZ. Thirty minutes later blood samples were collected and acylated and unacylated ghrelin levels in the plasma were assayed. RESULTS Acylated or active form of ghrelin decreased significantly (p<0.05) after a PTZ-induced seizure, but the reduction of unacylated and total blood ghrelin levels failed to reach statistical significance. CONCLUSION These findings may reflect that PTZ-induced epilepsy decreases AG of plasma.
Collapse
Affiliation(s)
- Z Ataie
- Drug Applied Research Centre of Tabriz University of Medical Sciences, Tabriz, Iran
| | | | | | | | | |
Collapse
|
40
|
Beneyto M, Morris HM, Rovensky KC, Lewis DA. Lamina- and cell-specific alterations in cortical somatostatin receptor 2 mRNA expression in schizophrenia. Neuropharmacology 2011; 62:1598-605. [PMID: 21215273 DOI: 10.1016/j.neuropharm.2010.12.029] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2010] [Revised: 12/02/2010] [Accepted: 12/22/2010] [Indexed: 11/26/2022]
Abstract
Disturbed cortical γ-aminobutyric acid (GABA) neurotransmission in schizophrenia is evident from lamina- and cell type- specific alterations in presynaptic markers. In the dorsolateral prefrontal cortex (DLPFC), these alterations include lower transcript expression of glutamic acid decarboxylase (GAD67) and somatostatin (SST), a neuropeptide expressed in the Martinotti subpopulation of GABA neurons whose axons innervate the distal apical dendrites of pyramidal neurons. However, whether the alterations in SST-containing interneurons are associated with changes in post-synaptic receptors for SST has not been examined. Thus, we used in situ hybridization to quantify the mRNA expression levels of SST receptors subtype 1 (SSTR1) and subtype 2 (SSTR2) in DLPFC area 9 from 23 matched pairs of subjects with schizophrenia and normal comparison subjects. We also assessed the effects of potential confounding variables within the human subjects and in brain specimens from macaque monkeys with long term exposure to antipsychotic drugs. SSTR1 mRNA levels did not differ between subject groups. In contrast, mean cortical SSTR2 mRNA levels were significantly 19% lower in the subjects with schizophrenia. Laminar and cellular level analyses revealed that lower SSTR2 mRNA levels were localized to pyramidal cells in cortical layers 5-6. Expression of SSTR2 mRNA did not differ between monkeys exposed chronically to high doses of haloperidol or olanzapine and control animals, or between subjects with schizophrenia on or off antipsychotic medications at the time of death. However, levels of SSTR2 mRNA were significantly 37.6% lower in monkeys exposed chronically to low dose haloperidol, suggesting that the lower levels of SSTR2 mRNA selectively in pyramidal neurons in DLPFC layers 5-6 in schizophrenia should be interpreted with caution. In concert with prior findings of lower SST mRNA expression in the same subjects, the results of this study suggest the convergence of pre- and post-synaptic mechanisms to reduce inhibitory inputs to pyramidal neurons in the infragranular layers of the DLPFC.
Collapse
Affiliation(s)
- Monica Beneyto
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | | | | | | |
Collapse
|
41
|
Neuropeptide receptor positive allosteric modulation in epilepsy: galanin modulation revealed. Proc Natl Acad Sci U S A 2010; 107:14943-4. [PMID: 20713719 DOI: 10.1073/pnas.1010365107] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
42
|
Lepousez G, Csaba Z, Bernard V, Loudes C, Videau C, Lacombe J, Epelbaum J, Viollet C. Somatostatin interneurons delineate the inner part of the external plexiform layer in the mouse main olfactory bulb. J Comp Neurol 2010; 518:1976-94. [PMID: 20394054 DOI: 10.1002/cne.22317] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Neuropeptides play a major role in the modulation of information processing in neural networks. Somatostatin, one of the most concentrated neuropeptides in the brain, is found in many sensory systems including the olfactory pathway. However, its cellular distribution in the mouse main olfactory bulb (MOB) is yet to be characterized. Here we show that approximately 95% of mouse bulbar somatostatin-immunoreactive (SRIF-ir) cells describe a homogeneous population of interneurons. These are restricted to the inner lamina of the external plexiform layer (iEPL) with dendritic field strictly confined to the region. iEPL SRIF-ir neurons share some morphological features of Van Gehuchten short-axon cells, and always express glutamic acid decarboxylase, calretinin, and vasoactive intestinal peptide. One-half of SRIF-ir neurons are parvalbumin-ir, revealing an atypical neurochemical profile when compared to SRIF-ir interneurons of other forebrain regions such as cortex or hippocampus. Somatostatin is also present in fibers and in a few sparse presumptive deep short-axon cells in the granule cell layer (GCL), which were previously reported in other mammalian species. The spatial distribution of somatostatin interneurons in the MOB iEPL clearly outlines the region where lateral dendrites of mitral cells interact with GCL inhibitory interneurons through dendrodendritic reciprocal synapses. Symmetrical and asymmetrical synaptic contacts occur between SRIF-ir dendrites and mitral cell dendrites. Such restricted localization of somatostatin interneurons and connectivity in the bulbar synaptic network strongly suggest that the peptide plays a functional role in the modulation of olfactory processing.
Collapse
Affiliation(s)
- Gabriel Lepousez
- Inserm UMR 894, Center for Psychiatry and Neurosciences, F-75014 Paris, France
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Abstract
Somatostatin-14 (SRIF-14) exerts anticonvulsive effects in several rat seizure models, generally attributed to sst(2) receptor activation. Whereas sst(1) immunoreactivity has been localized to both polymorphic interneurons and principal cells in the rat hippocampus, its potential role as an inhibitory autoreceptor or as a receptor involved in mediating anticonvulsive actions remains unknown. We showed that intrahippocampal administration of the sst(1) antagonist SRA880 (1 microM) induced a robust increase in hippocampal SST-14 levels without affecting gamma-aminobutyric acid levels in conscious rats, indicating that the sst(1) receptor acts as an inhibitory autoreceptor. SRA880 did not affect seizure severity and did not reverse the anticonvulsive action of SRIF-14 (1 microM) against pilocarpine-induced seizures, suggesting that hippocampal sst(1) receptors are not involved in the anticonvulsive effects of SRIF-14.
Collapse
|
44
|
Troxler T, Hurth K, Schuh KH, Schoeffter P, Langenegger D, Enz A, Hoyer D. Decahydroisoquinoline derivatives as novel non-peptidic, potent and subtype-selective somatostatin sst3 receptor antagonists. Bioorg Med Chem Lett 2010; 20:1728-34. [DOI: 10.1016/j.bmcl.2010.01.063] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2009] [Revised: 01/06/2010] [Accepted: 01/07/2010] [Indexed: 01/11/2023]
|
45
|
Somatostatin contributes to in vivo gamma oscillation modulation and odor discrimination in the olfactory bulb. J Neurosci 2010; 30:870-5. [PMID: 20089895 DOI: 10.1523/jneurosci.4958-09.2010] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Neuropeptides are systematically encountered in local interneurons, but their functional contribution in neural networks is poorly documented. In the mouse main olfactory bulb (MOB), somatostatin is mainly concentrated in local GABAergic interneurons restricted to the external plexiform layer (EPL). Immunohistochemical experiments revealed that the sst2 receptor, the major somatostatin receptor subtype in the telencephalon, is expressed by mitral cells, the MOB principal cells. As odor-activated mitral cells synchronize and generate gamma oscillations of the local field potentials, we investigated whether pharmacological manipulations of sst2 receptors could influence these oscillations in freely behaving mice. In wild-type, but not in sst2 knock-out mice, gamma oscillation power decreased lastingly after intrabulbar injection of an sst2-selective antagonist (BIM-23627), while sst2-selective agonists (octreotide and L-779976) durably increased it. Sst2-mediated oscillation changes were correlated with modifications of the dendrodendritic synaptic transmission between mitral and granule cells. Finally, bilateral injections of BIM-23627 and octreotide respectively decreased and increased odor discrimination performances. Together, these results suggest that endogenous somatostatin, presumably released from EPL interneurons, affects gamma oscillations through the dendrodendritic reciprocal synapse and contributes to olfactory processing. This provides the first direct correlation between synaptic, oscillatory, and perceptual effects induced by an intrinsic neuromodulator.
Collapse
|
46
|
Engin E, Treit D. Anxiolytic and antidepressant actions of somatostatin: the role of sst2 and sst3 receptors. Psychopharmacology (Berl) 2009; 206:281-9. [PMID: 19609508 DOI: 10.1007/s00213-009-1605-5] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2009] [Accepted: 06/26/2009] [Indexed: 12/21/2022]
Abstract
RATIONALE AND OBJECTIVES Somatostatin is a cyclic polypeptide that inhibits the release of a variety of regulatory hormones (e.g., growth hormone, insulin, glucagon, and thyrotropin). Somatostatin is also widely distributed within the central nervous system (CNS), acting both as a neurotransmitter and as a neuromodulator. Recently, we showed that intracerebroventricular (i.c.v.) administration of somatostatin reduced anxiety-like and depression-like behaviors in animal models. The somatostatin receptor subtypes that are involved in these behavioral effects, however, have not been investigated. In the CNS, the neurotransmitter actions of somatostatin are mediated through five G-protein coupled receptors (sst1 to sst5). MATERIALS AND METHODS We examined the behavioral effects of i.c.v. microinfusions of different doses of selective agonists of each of the five somatostatin receptor subtypes. Their behavioral effects were assessed in the elevated plus-maze and the forced swim apparatus, rodent models of anxiolytic and antidepressant drug effects, respectively. RESULTS Anxiety-like behavior was reduced following i.c.v. infusions of a selective sst2 receptor agonist, but not after infusions of the other four receptor agonists. An antidepressant-like effect was observed following infusions of either sst2 or sst3 agonists. CONCLUSIONS The results add to our nascent understanding of the role of somatostatin in anxiety- and depression-like behavior and suggest a clinical role for somatostatin agonists for the simultaneous treatment of anxiety and depression, which are often comorbid.
Collapse
Affiliation(s)
- Elif Engin
- Department of Psychology, Centre for Neuroscience, University of Alberta, Edmonton, T6G 2E9, AB, Canada
| | | |
Collapse
|
47
|
Uzüm G, Bahçekapili N, Diler AS, Ziylan YZ. TOLERANCE TO PENTYLENTETRAZOL-INDUCED CONVULSIONS AND PROTECTION OF CEREBROVASCULAR INTEGRITY BY CHRONIC NICOTINE. Int J Neurosci 2009; 114:735-48. [PMID: 15204062 DOI: 10.1080/00207450490440975] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The authors' previous studies have shown that in nicotine-induced seizures sensitivity was decreased and blood-brain barrier (BBB) disruption was prevented as a consequence of nicotine pretreatment. This study aimed to investigate the possible protective actions of nicotine on cerebrovascular permeability and seizures induced by pentylentetrazol (PTZ) injection. Cerebrovascular effects of nicotine were evaluated by measuring the permeability changes of BBB using Evans-Blue (EB) dye and specific gravity (SG), which indicates brain water and protein content. The experiments were carried out on Wistar rats. Animals were randomly divided into two groups. Convulsions were induced by injection of PTZ (80 mg/kg i.v.) in rats either pretreated with nicotine daily with a low dose of 0.8 mg/kg day for 21 days or injected with a single dose of 6 mg/kg mecamylamine. The same procedures were followed in control rats with the exception that they were injected only with saline. PTZ injection caused tonic-clonic convulsions and increased the EB dye leakage and specific gravity values in saline-injected control rat brains. Daily injection of nicotine lessened the intensity of seizures. These were accompanied by marked decreases in both the leakage of EB and brain water content. Acute administration of a nAChR antagonist mecamylamine significantly increased seizure latency and decreased the duration of seizures. Thereby, mecamylamine reduced the EB leakage and water content in most brain regions. These results indicate that development of tolerance to PTZ convulsions can be produced by chronic nicotine administration in rats. The mechanism for this effect currently needs clarification. Moreover, the data also suggest that cholinergic activity may account for occurrence of PTZ-induced convulsions.
Collapse
Affiliation(s)
- Gülay Uzüm
- Istanbul University, Medical School, Department of Physiology, Istanbul, Turkey
| | | | | | | |
Collapse
|
48
|
Le Verche V, Kaindl AM, Verney C, Csaba Z, Peineau S, Olivier P, Adle-Biassette H, Leterrier C, Vitalis T, Renaud J, Dargent B, Gressens P, Dournaud P. The somatostatin 2A receptor is enriched in migrating neurons during rat and human brain development and stimulates migration and axonal outgrowth. PLoS One 2009; 4:e5509. [PMID: 19434240 PMCID: PMC2677669 DOI: 10.1371/journal.pone.0005509] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2008] [Accepted: 04/16/2009] [Indexed: 01/06/2023] Open
Abstract
The neuropeptide somatostatin has been suggested to play an important role during neuronal development in addition to its established modulatory impact on neuroendocrine, motor and cognitive functions in adults. Although six somatostatin G protein-coupled receptors have been discovered, little is known about their distribution and function in the developing mammalian brain. In this study, we have first characterized the developmental expression of the somatostatin receptor sst2A, the subtype found most prominently in the adult rat and human nervous system. In the rat, the sst2A receptor expression appears as early as E12 and is restricted to post-mitotic neuronal populations leaving the ventricular zone. From E12 on, migrating neuronal populations immunopositive for the receptor were observed in numerous developing regions including the cerebral cortex, hippocampus and ganglionic eminences. Intense but transient immunoreactive signals were detected in the deep part of the external granular layer of the cerebellum, the rostral migratory stream and in tyrosine hydroxylase- and serotonin- positive neurons and axons. Activation of the sst2A receptor in vitro in rat cerebellar microexplants and primary hippocampal neurons revealed stimulatory effects on neuronal migration and axonal growth, respectively. In the human cortex, receptor immunoreactivity was located in the preplate at early development stages (8 gestational weeks) and was enriched to the outer part of the germinal zone at later stages. In the cerebellum, the deep part of the external granular layer was strongly immunoreactive at 19 gestational weeks, similar to the finding in rodents. In addition, migrating granule cells in the internal granular layer were also receptor-positive. Together, theses results strongly suggest that the somatostatin sst2A receptor participates in the development and maturation of specific neuronal populations during rat and human brain ontogenesis.
Collapse
Affiliation(s)
- Virginia Le Verche
- Inserm, Unité Mixte de Recherche U676, Paris, France
- Université de Médecine Denis Diderot-Paris 7, Paris, France
| | - Angela M. Kaindl
- Inserm, Unité Mixte de Recherche U676, Paris, France
- Université de Médecine Denis Diderot-Paris 7, Paris, France
| | - Catherine Verney
- Inserm, Unité Mixte de Recherche U676, Paris, France
- Université de Médecine Denis Diderot-Paris 7, Paris, France
| | - Zsolt Csaba
- Inserm, Unité Mixte de Recherche U676, Paris, France
- Université de Médecine Denis Diderot-Paris 7, Paris, France
| | - Stéphane Peineau
- MRC centre for Synaptic Plasticity, Department of Anatomy, Bristol, United Kingdom
| | - Paul Olivier
- Inserm, Unité Mixte de Recherche U676, Paris, France
- Université de Médecine Denis Diderot-Paris 7, Paris, France
| | - Homa Adle-Biassette
- Inserm, Unité Mixte de Recherche U676, Paris, France
- Université de Médecine Denis Diderot-Paris 7, Paris, France
| | - Christophe Leterrier
- Inserm, Unité Mixte de Recherche 641, Marseille, France
- Université de la Méditerranée, Faculté de Médecine Secteur-Nord, Institut Fédératif de Recherche 11, Marseille, France
| | - Tania Vitalis
- Ecole Supérieure de Physique et de Chimie Industrielles–CNRS 7537, Paris, France
| | - Julie Renaud
- Inserm, Unité Mixte de Recherche S968, Institut de la Vision, Department of Development, Paris, France
- Université Pierre et Marie Curie-Paris 6, Institut de la Vision, Paris, France
| | - Bénédicte Dargent
- Inserm, Unité Mixte de Recherche 641, Marseille, France
- Université de la Méditerranée, Faculté de Médecine Secteur-Nord, Institut Fédératif de Recherche 11, Marseille, France
| | - Pierre Gressens
- Inserm, Unité Mixte de Recherche U676, Paris, France
- Université de Médecine Denis Diderot-Paris 7, Paris, France
| | - Pascal Dournaud
- Inserm, Unité Mixte de Recherche U676, Paris, France
- Université de Médecine Denis Diderot-Paris 7, Paris, France
- * E-mail:
| |
Collapse
|
49
|
Engrand N, Crespel A. Bases physiopathologiques des états de mal épileptiques. Rev Neurol (Paris) 2009; 165:315-9. [DOI: 10.1016/j.neurol.2008.11.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2008] [Accepted: 11/25/2008] [Indexed: 11/28/2022]
|
50
|
De Bundel D, Smolders I, Vanderheyden P, Michotte Y. Ang II and Ang IV: unraveling the mechanism of action on synaptic plasticity, memory, and epilepsy. CNS Neurosci Ther 2009; 14:315-39. [PMID: 19040556 DOI: 10.1111/j.1755-5949.2008.00057.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The central angiotensin system plays a crucial role in cardiovascular regulation. More recently, angiotensin peptides have been implicated in stress, anxiety, depression, cognition, and epilepsy. Angiotensin II (Ang II) exerts its actions through AT(1) and AT(2) receptors, while most actions of its metabolite Ang IV were believed to be independent of AT(1) or AT(2) receptor activation. A specific binding site with high affinity for Ang IV was discovered and denominated "AT(4) receptor". The beneficiary effects of AT(4) ligands in animal models for cognitive impairment and epileptic seizures initiated the search for their mechanism of action. This proved to be a challenging task, and after 20 years of research, the nature of the "AT(4) receptor" remains controversial. Insulin-regulated aminopeptidase (IRAP) was first identified as the high-affinity binding site for AT(4) ligands. Recently, the hepatocyte growth factor receptor c-MET was also proposed as a receptor for AT(4) ligands. The present review focuses on the effects of Ang II and Ang IV on synaptic transmission and plasticity, learning, memory, and epileptic seizure activity. Possible interactions of Ang IV with the classical AT(1) and AT(2) receptor subtypes are evaluated, and other potential mechanisms by which AT(4) ligands may exert their effects are discussed. Identification of these mechanisms may provide a valuable target in the development in novel drugs for the treatment of cognitive disorders and epilepsy.
Collapse
Affiliation(s)
- Dimitri De Bundel
- Research Group Experimental Pharmacology, Department of Pharmaceutical Chemistry, Drug Analysis and Drug Information, Vrije Universiteit Brussel, Brussels, Belgium
| | | | | | | |
Collapse
|