1
|
Gacso Z, Adamson G, Slama J, Xie C, Burdick E, Persaud K, Chowdhury S, Ahmed ZS, Vaysman E, Aminov A, Ranaldi R, Galaj E. Fentanyl exposure alters rat CB1 receptor expression in the insula, nucleus accumbens and substantia nigra. Neurosci Lett 2025; 844:138058. [PMID: 39577686 DOI: 10.1016/j.neulet.2024.138058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 11/15/2024] [Accepted: 11/18/2024] [Indexed: 11/24/2024]
Abstract
Prolonged periods of opioid use have been shown to cause neuroadaptations in the brain's reward circuitry, contributing to addictive behaviors and drug dependence. Recently, considerable focus has been placed on the role of the endocannabinoid system (ECS) and its CB receptors in opioid-driven behaviors. However, opioid-induced neuroadaptations to the ECS remain understudied. In this study, we systematically assessed CB1 receptor (CB1R) protein expression within the cortico-mesolimbic-basal ganglia circuit in rats following chronic fentanyl exposure. Male and female Long Evans rats were administered increasing daily doses of fentanyl or saline for 14 days. During naloxone-precipitated withdrawal, fentanyl-treated rats exhibited significantly higher withdrawal symptoms than saline-treated controls. Using Western Blotting, we demonstrated that the fentanyl-treated rats had significantly higher CB1R expression in the insula and significantly lower CB1R expression in the nucleus accumbens and substantia nigra compared to saline-treated rats. No significant differences in CB1R expression were detected between saline and fentanyl-treated rats in the prefrontal cortex, dorsal striatum, medial septum, hypothalamus, amygdala, hippocampus, ventral tegmental area, periaqueductal gray area, pedunculopontine tegmentum, and laterodorsal tegmentum (LDT). These findings suggest that chronic fentanyl exposure leads to region-specific neuroadaptations of CB1R protein expression in motivation- and addiction-associated brain regions.
Collapse
Affiliation(s)
- Zuzu Gacso
- Department of Psychological and Brain Sciences, Colgate University, Hamilton, NY, USA
| | - George Adamson
- Department of Psychological and Brain Sciences, Colgate University, Hamilton, NY, USA
| | - Joseph Slama
- Department of Psychological and Brain Sciences, Colgate University, Hamilton, NY, USA
| | - Coco Xie
- Department of Psychological and Brain Sciences, Colgate University, Hamilton, NY, USA
| | - Emma Burdick
- Department of Psychological and Brain Sciences, Colgate University, Hamilton, NY, USA
| | - Kirk Persaud
- Department of Psychology, Queens College of the City University of New York, Flushing, NY, USA
| | - Sharnom Chowdhury
- Department of Psychology, Queens College of the City University of New York, Flushing, NY, USA
| | - Zaki Sya Ahmed
- Department of Psychology, Queens College of the City University of New York, Flushing, NY, USA
| | - Emily Vaysman
- Department of Psychology, Queens College of the City University of New York, Flushing, NY, USA
| | - Arthur Aminov
- Department of Psychology, Queens College of the City University of New York, Flushing, NY, USA
| | - Robert Ranaldi
- Department of Psychology, Queens College of the City University of New York, Flushing, NY, USA; The Graduate Center of the City University of New York, New York, NY, USA
| | - Ewa Galaj
- Department of Psychological and Brain Sciences, Colgate University, Hamilton, NY, USA.
| |
Collapse
|
2
|
Gamble MC, Miracle S, Williams BR, Logan RW. Endocannabinoid agonist 2-arachidonoylglycerol differentially alters diurnal activity and sleep during fentanyl withdrawal in male and female mice. Pharmacol Biochem Behav 2024; 240:173791. [PMID: 38761993 PMCID: PMC11166043 DOI: 10.1016/j.pbb.2024.173791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 05/11/2024] [Accepted: 05/15/2024] [Indexed: 05/20/2024]
Abstract
Fentanyl has become the leading driver of opioid overdoses in the United States. Cessation of opioid use represents a challenge as the experience of withdrawal drives subsequent relapse. One of the most prominent withdrawal symptoms that can contribute to opioid craving and vulnerability to relapse is sleep disruption. The endocannabinoid agonist, 2-Arachidonoylglycerol (2-AG), may promote sleep and reduce withdrawal severity; however, the effects of 2-AG on sleep disruption during opioid withdrawal have yet to be assessed. Here, we investigated the effects of 2-AG administration on sleep-wake behavior and diurnal activity in mice during withdrawal from fentanyl. Sleep-wake activity measured via actigraphy was continuously recorded before and after chronic fentanyl administration in both male and female C57BL/6J mice. Immediately following cessation of fentanyl administration, 2-AG was administered intraperitoneally to investigate the impact of endocannabinoid agonism on opioid-induced sleep disruption. We found that female mice maintained higher activity levels in response to chronic fentanyl than male mice. Furthermore, fentanyl administration increased wake and decreased sleep during the light period and inversely increased sleep and decreased wake in the dark period in both sexes. 2-AG treatment increased arousal and decreased sleep in both sexes during first 24-h of withdrawal. On withdrawal day 2, only females showed increased wakefulness with no changes in males, but by withdrawal day 3 male mice displayed decreased rapid-eye movement sleep during the dark period with no changes in female mice. Overall, repeated administration of fentanyl altered sleep and diurnal activity and administration of the endocannabinoid agonist, 2-AG, had sex-specific effects on fentanyl-induced sleep and diurnal changes.
Collapse
Affiliation(s)
- Mackenzie C Gamble
- Molecular and Translational Medicine, Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Sophia Miracle
- Graduate Program in Neuroscience, Boston University, Boston, MA, USA
| | - Benjamin R Williams
- Department of Psychiatry, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Ryan W Logan
- Department of Psychiatry, University of Massachusetts Chan Medical School, Worcester, MA, USA; Department of Neurobiology, University of Massachusetts Chan Medical School, Worcester, MA, USA.
| |
Collapse
|
3
|
Socha J, Grochecki P, Marszalek-Grabska M, Skrok A, Smaga I, Slowik T, Prazmo W, Kotlinski R, Filip M, Kotlinska JH. Cannabidiol Protects against the Reinstatement of Oxycodone-Induced Conditioned Place Preference in Adolescent Male but Not Female Rats: The Role of MOR and CB1R. Int J Mol Sci 2024; 25:6651. [PMID: 38928357 PMCID: PMC11204276 DOI: 10.3390/ijms25126651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/04/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024] Open
Abstract
Cannabidiol (CBD), a phytocannabinoid, appeared to satisfy several criteria for a safe approach to preventing drug-taking behavior, including opioids. However, most successful preclinical and clinical results come from studies in adult males. We examined whether systemic injections of CBD (10 mg/kg, i.p.) during extinction of oxycodone (OXY, 3 mg/kg, i.p.) induced conditioned place preference (CPP) could attenuate the reinstatement of CPP brought about by OXY (1.5 mg/kg, i.p.) priming in adolescent rats of both sexes, and whether this effect is sex dependent. Accordingly, a priming dose of OXY produced reinstatement of the previously extinguished CPP in males and females. In both sexes, this effect was linked to locomotor sensitization that was blunted by CBD pretreatments. However, CBD was able to prevent the reinstatement of OXY-induced CPP only in adolescent males and this outcome was associated with an increased cannabinoid 1 receptor (CB1R) and a decreased mu opioid receptor (MOR) expression in the prefrontal cortex (PFC). The reinstatement of CCP in females was associated with a decreased MOR expression, but no changes were detected in CB1R in the hippocampus (HIP). Moreover, CBD administration during extinction significantly potentialized the reduced MOR expression in the PFC of males and showed a tendency to potentiate the reduced MOR in the HIP of females. Additionally, CBD reversed OXY-induced deficits of recognition memory only in males. These results suggest that CBD could reduce reinstatement to OXY seeking after a period of abstinence in adolescent male but not female rats. However, more investigation is required.
Collapse
Affiliation(s)
- Justyna Socha
- Department of Pharmacology and Pharmacodynamics, Medical University of Lublin, Chodzki 4a, 20-093 Lublin, Poland; (J.S.); (P.G.); (A.S.)
| | - Pawel Grochecki
- Department of Pharmacology and Pharmacodynamics, Medical University of Lublin, Chodzki 4a, 20-093 Lublin, Poland; (J.S.); (P.G.); (A.S.)
| | - Marta Marszalek-Grabska
- Department of Experimental and Clinical Pharmacology, Medical University, Jaczewskiego 8b, 20-090 Lublin, Poland;
| | - Aleksandra Skrok
- Department of Pharmacology and Pharmacodynamics, Medical University of Lublin, Chodzki 4a, 20-093 Lublin, Poland; (J.S.); (P.G.); (A.S.)
| | - Irena Smaga
- Department of Drug Addiction Pharmacology, Maj Institute of Pharmacology Polish Academy of Sciences, Smetna 12, 31-343 Krakow, Poland; (I.S.); (M.F.)
| | - Tymoteusz Slowik
- Experimental Medicine Center, Medical University, Jaczewskiego 8, 20-090 Lublin, Poland;
| | - Wojciech Prazmo
- Breast Surgery Department, Provincial Specialist Hospital, Al. Krasnicka 100, 20-718 Lublin, Poland;
| | - Robert Kotlinski
- Clinical Department of Cardiac Surgery, University of Rzeszow, Lwowska 60, 35-301 Rzeszow, Poland;
| | - Malgorzata Filip
- Department of Drug Addiction Pharmacology, Maj Institute of Pharmacology Polish Academy of Sciences, Smetna 12, 31-343 Krakow, Poland; (I.S.); (M.F.)
| | - Jolanta H. Kotlinska
- Department of Pharmacology and Pharmacodynamics, Medical University of Lublin, Chodzki 4a, 20-093 Lublin, Poland; (J.S.); (P.G.); (A.S.)
| |
Collapse
|
4
|
Gobira PH, Joca SR, Moreira FA. Roles of cannabinoid CB1 and CB2 receptors in the modulation of psychostimulant responses. Acta Neuropsychiatr 2024; 36:67-77. [PMID: 35993329 DOI: 10.1017/neu.2022.23] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Addiction to psychostimulant drugs, such as cocaine, D-amphetamine, and methamphetamine, is a public health issue that substantially contributes to the global burden of disease. Psychostimulant drugs promote an increase in dopamine levels within the mesocorticolimbic system, which is central to the rewarding properties of such drugs. Cannabinoid receptors (CB1R and CB2R) are expressed in the main areas of this system and implicated in the neuronal mechanisms underlying the rewarding effect of psychostimulant drugs. Here, we reviewed studies focusing on pharmacological intervention targeting cannabinoid CB1R and CB2R and their interaction in the modulation of psychostimulant responses.
Collapse
Affiliation(s)
- P H Gobira
- Department of Biomolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - S R Joca
- Department of Biomolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - F A Moreira
- Department of Pharmacology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| |
Collapse
|
5
|
Gamble MC, Miracle S, Williams BR, Logan RW. Sex-specific Effects of the Endocannabinoid Agonist 2-Arachidonoylglycerol on Sleep and Circadian Disruptions during Fentanyl Withdrawal. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.19.572466. [PMID: 38187736 PMCID: PMC10769247 DOI: 10.1101/2023.12.19.572466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Fentanyl has become the leading driver of opioid overdoses. Cessation of opioid use represents a challenge as the experience of withdrawal drives subsequent relapse. One of the most prominent withdrawal symptoms that can contribute to opioid craving and vulnerability to relapse is sleep disruption. The endocannabinoid agonist, 2-Arachidonoylglycerol (2-AG), may promote sleep and reduce withdrawal severity; however, the effects of 2-AG on sleep disruption during opioid withdrawal have yet to be assessed. Here, we investigate the effects of 2-AG administration on sleep-wake behavior and diurnal activity in mice during withdrawal from fentanyl. Sleep-wake activity was continuously recorded before and after chronic fentanyl administration in both male and female C57BL/6J mice. Immediately following cessation of fentanyl administration, 2-AG was administered intraperitoneally to investigate the impact of endocannabinoid agonism on opioid-induced sleep disruption. Female mice maintained higher activity levels in response to chronic fentanyl than male mice. Furthermore, fentanyl increased wake and decreased sleep during the light period and inversely increased sleep and decreased wake in the dark period in both sexes. 2-AG treatment increased arousal and decreased sleep in both sexes during first 24 hrs of withdrawal. On withdrawal day 2, only female showed increased wakefulness with no changes in males, but by withdrawal day 3 male mice displayed decreased rapid-eye movement sleep during the dark period with no changes in female mice. Overall, repeated administration of fentanyl altered sleep and diurnal activity and administration of the endocannabinoid agonist, 2-AG, had sex-specific effects on fentanyl-induced sleep and diurnal changes.
Collapse
|
6
|
Slivicki RA, Wang JG, Nhat VTT, Kravitz AV, Creed MC, Gereau RW. Impact of Δ 9-Tetrahydrocannabinol and oxycodone co-administration on measures of antinociception, dependence, circadian activity, and reward in mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.04.569809. [PMID: 38105953 PMCID: PMC10723318 DOI: 10.1101/2023.12.04.569809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Oxycodone is commonly prescribed for moderate to severe pain disorders. While efficacious, long-term use can result in tolerance, physical dependence, and the development of opioid use disorder. Cannabis and its derivatives such as Δ9-Tetrahydrocannabinol (Δ9-THC) have been reported to enhance oxycodone analgesia in animal models and in humans. However, it remains unclear if Δ9-THC may facilitate unwanted aspects of oxycodone intake, such as tolerance, dependence, and reward at analgesic doses. This study sought to evaluate the impact of co-administration of Δ9-THC and oxycodone across behavioral measures related to antinociception, dependence, circadian activity, and reward in both male and female mice. Oxycodone and Δ9-THC produced dose-dependent antinociceptive effects in the hotplate assay that were similar between sexes. Repeated treatment (twice daily for 5 days) resulted in antinociceptive tolerance. Combination treatment of oxycodone and Δ9-THC produced a greater antinociceptive effect than either administered alone, and delayed the development of antinociceptive tolerance. Repeated treatment with oxycodone produced physical dependence and alterations in circadian activity, neither of which were exacerbated by co-treatment with Δ9-THC. Combination treatment of oxycodone and Δ9-THC produced CPP when co-administered at doses that did not produce preference when administered alone. These data indicate that Δ9-THC may facilitate oxycodone-induced antinociception without augmenting certain unwanted features of opioid intake (e.g. dependence, circadian rhythm alterations). However, our findings also indicate that Δ9-THC may facilitate rewarding properties of oxycodone at therapeutically relevant doses which warrant consideration when evaluating this combination for its potential therapeutic utility.
Collapse
Affiliation(s)
- Richard A. Slivicki
- Washington University Pain Center and Department of Anesthesiology, Washington University, St. Louis, MO
| | - Justin G. Wang
- Washington University Pain Center and Department of Anesthesiology, Washington University, St. Louis, MO
- Neuroscience Graduate Program, Division of Biology & Biomedical Sciences, Washington University, St. Louis, MO
| | - Vy Trinh Tran Nhat
- Washington University Pain Center and Department of Anesthesiology, Washington University, St. Louis, MO
| | - Alexxai V. Kravitz
- Washington University Pain Center and Department of Anesthesiology, Washington University, St. Louis, MO
- Department of Psychiatry, Washington University, St. Louis, MO
- Department of Neuroscience, Washington University, St. Louis, MO
| | - Meaghan C. Creed
- Washington University Pain Center and Department of Anesthesiology, Washington University, St. Louis, MO
- Department of Neuroscience, Washington University, St. Louis, MO
| | - Robert W. Gereau
- Washington University Pain Center and Department of Anesthesiology, Washington University, St. Louis, MO
- Department of Neuroscience, Washington University, St. Louis, MO
- Department of Biomedical Engineering, Washington University, St. Louis, MO
| |
Collapse
|
7
|
AlKhelb D, Kirunda A, Ho TC, Makriyannis A, Desai RI. Effects of the cannabinoid CB 1-receptor neutral antagonist AM4113 and antagonist/inverse agonist rimonabant on fentanyl discrimination in male rats. Drug Alcohol Depend 2022; 240:109646. [PMID: 36191533 DOI: 10.1016/j.drugalcdep.2022.109646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 08/22/2022] [Accepted: 09/23/2022] [Indexed: 01/06/2023]
Abstract
Evidence suggests the existence of a functional interaction between endogenous cannabinoid (CB) and opioid systems. Thus, targeting CB1 receptors might be a viable approach to develop new medications for opioid use disorders (OUD). The present studies were undertaken to evaluate the effects of the neutral CB1 antagonist AM4113 and the CB1 antagonist/inverse agonist rimonabant in male rats trained to discriminate 0.032 mg/kg fentanyl from saline under a 10-response fixed-ratio (FR-10) schedule of food reinforcement. Results show that the µ-opioid agonists (fentanyl, oxycodone, and morphine) substituted fully and dose-dependently for fentanyl, whereas pretreatment with the µ-opioid antagonist naltrexone antagonized fentanyl's discriminative-stimulus effects. In interaction studies, AM4113 (0.32 or 1.0 mg/kg) was more effective in blocking fentanyl discrimination at 10-fold lower doses that did not modify rates of food-maintained responding, whereas rimonabant (1.0-10 mg/kg) produced some attenuation of fentanyl's discriminative-stimulus effects at the highest dose tested which also significantly decreased response rates. These results extend our recent work showing that AM4113 can effectively block the behavioral effects of heroin without producing rimonabant-like adverse effects. Taken together, these data suggests that CB1 neutral antagonists effectively block the behavioral effects of structurally distinct morphinan (heroin) and phenylpiperidine-based (fentanyl) opioids and may provide a novel therapeutic option for the treatment of OUD.
Collapse
Affiliation(s)
- Dalal AlKhelb
- Center for Drug Discovery, Northeastern University, Boston, MA 02115, USA; Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 12371, Saudi Arabia
| | - Andre Kirunda
- Center for Drug Discovery, Northeastern University, Boston, MA 02115, USA
| | - Thanh C Ho
- Center for Drug Discovery, Northeastern University, Boston, MA 02115, USA
| | | | - Rajeev I Desai
- Center for Drug Discovery, Northeastern University, Boston, MA 02115, USA; Department of Psychiatry, Behavioral Biology Program, Integrative Neurochemistry Laboratory, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
8
|
Hasbi A, Madras BK, George SR. Daily THC and withdrawal increase dopamine D1-D2 receptor heteromer to mediate anhedonia and anxiogenic-like behavior through a dynorphin and kappa opioid receptor mechanism. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2022. [PMID: 37519471 PMCID: PMC10382712 DOI: 10.1016/j.bpsgos.2022.07.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022] Open
Abstract
Background Frequent cannabis use is associated with a higher risk of developing cannabis use disorder and other adverse consequences. However, rodent models studying the underlying mechanisms of the reinforcing and withdrawal effects of the primary constituent of cannabis, Δ9-tetrahydrocannabinol (THC), have been limited. Methods This study investigated the effects of daily THC (1 mg/kg, intraperitoneal, 9 days) and spontaneous withdrawal (7 days) on hedonic and aversion-like behaviors in male rats. In parallel, underlying neuroadaptive changes in dopaminergic, opioidergic, and cannabinoid signaling in the nucleus accumbens were evaluated, along with a candidate peptide designed to reverse altered signaling. Results Chronic THC administration induced anhedonic- and anxiogenic-like behaviors not attributable to altered locomotor activity. These effects persisted after drug cessation. In the nucleus accumbens, THC treatment and withdrawal catalyzed increased cannabinoid CB1 receptor activity without modifying receptor expression. Dopamine D1-D2 receptor heteromer expression rose steeply with THC, accompanied by increased calcium-linked signaling, activation of BDNF/TrkB (brain-derived neurotrophic factor/tropomyosin receptor kinase B) pathway, dynorphin expression, and kappa opioid receptor signaling. Disruption of the D1-D2 heteromer by an interfering peptide during withdrawal reversed the anxiogenic-like and anhedonic-like behaviors as well as the neurochemical changes. Conclusions Chronic THC increases nucleus accumbens dopamine D1-D2 receptor heteromer expression and function, which results in increased dynorphin expression and kappa opioid receptor activation. These changes plausibly reduce dopamine release to trigger anxiogenic- and anhedonic-like behaviors after daily THC administration that persist for at least 7 days after drug cessation. These findings conceivably provide a therapeutic strategy to alleviate negative symptoms associated with cannabis use and withdrawal.
Collapse
|
9
|
Fernández-Espejo E, Núñez-Domínguez L. Endocannabinoid-mediated synaptic plasticity and substance use disorders. Neurologia 2022; 37:459-465. [PMID: 30857785 DOI: 10.1016/j.nrl.2018.12.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 11/27/2018] [Accepted: 12/03/2018] [Indexed: 01/15/2023] Open
Abstract
Drugs impact brain reward circuits, causing dependence and addiction, in a condition currently described as substance use disorders. Mechanisms of synaptic plasticity in these circuits are crucial in the development of addictive behaviour, and endocannabinoids, particularly anandamide and 2-arachidonyl-glycerol, participate in normal neuroplasticity. Substance use disorders are known to be associated with disruption of endocannabinoid-mediated synaptic plasticity, among other phenomena. Endocannabinoids mediate neuroplasticity in the short and the long term. In the short term, we may stress «inhibitory» phenomena, such as depolarisation-induced suppression of inhibition and depolarisation-induced suppression of excitation, and such «disinhibitory» phenomena as long-lasting disinhibition of neuronal activity, particularly in the striatum, and suppression of hippocampal GABA release. Drugs of abuse can also disrupt normal endocannabinoid-mediated long-term potentiation and long-term depression. Endocannabinoids are also involved in the development of drug-induced hypofrontality and sensitisation. In summary, substance abuse causes a disruption in the synaptic plasticity of the brain circuits involved in addiction, with the alteration of normal endocannabinoid activity playing a prominent role. This facilitates abnormal changes in the brain and the development of the addictive behaviours that characterise substance use disorders.
Collapse
Affiliation(s)
- E Fernández-Espejo
- Departamento de Fisiología Médica y Biofísica, Facultad de Medicina, Universidad de Sevilla, Sevilla, España.
| | | |
Collapse
|
10
|
Endocannabinoid-mediated synaptic plasticity and substance use disorders. NEUROLOGÍA (ENGLISH EDITION) 2022; 37:459-465. [PMID: 34538595 DOI: 10.1016/j.nrleng.2018.12.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 12/03/2018] [Indexed: 11/21/2022] Open
Abstract
Drugs impact brain reward circuits, causing dependence and addiction, in a condition currently described as substance use disorders. Mechanisms of synaptic plasticity in these circuits are crucial in the development of addictive behaviour, and endocannabinoids, particularly anandamide and 2-arachidonyl-glycerol, participate in normal neuroplasticity. Substance use disorders are known to be associated with disruption of endocannabinoid-mediated synaptic plasticity, among other phenomena. Endocannabinoids mediate neuroplasticity in the short and the long term. In the short term, we may stress "inhibitory" phenomena, such as depolarisation-induced suppression of inhibition and depolarisation-induced suppression of excitation, and such "disinhibitory" phenomena as long-lasting disinhibition of neuronal activity, particularly in the striatum, and suppression of hippocampal GABA release. Drugs of abuse can also disrupt normal endocannabinoid-mediated long-term potentiation and long-term depression. Endocannabinoids are also involved in the development of drug-induced hypofrontality and sensitisation. In summary, substance abuse causes a disruption in the synaptic plasticity of the brain circuits involved in addiction, with the alteration of normal endocannabinoid activity playing a prominent role. This facilitates abnormal changes in the brain and the development of the addictive behaviours that characterise substance use disorders.
Collapse
|
11
|
Molecular Alterations of the Endocannabinoid System in Psychiatric Disorders. Int J Mol Sci 2022; 23:ijms23094764. [PMID: 35563156 PMCID: PMC9104141 DOI: 10.3390/ijms23094764] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/22/2022] [Accepted: 04/23/2022] [Indexed: 02/07/2023] Open
Abstract
The therapeutic benefits of the current medications for patients with psychiatric disorders contrast with a great variety of adverse effects. The endocannabinoid system (ECS) components have gained high interest as potential new targets for treating psychiatry diseases because of their neuromodulator role, which is essential to understanding the regulation of many brain functions. This article reviewed the molecular alterations in ECS occurring in different psychiatric conditions. The methods used to identify alterations in the ECS were also described. We used a translational approach. The animal models reproducing some behavioral and/or neurochemical aspects of psychiatric disorders and the molecular alterations in clinical studies in post-mortem brain tissue or peripheral tissues were analyzed. This article reviewed the most relevant ECS changes in prevalent psychiatric diseases such as mood disorders, schizophrenia, autism, attentional deficit, eating disorders (ED), and addiction. The review concludes that clinical research studies are urgently needed for two different purposes: (1) To identify alterations of the ECS components potentially useful as new biomarkers relating to a specific disease or condition, and (2) to design new therapeutic targets based on the specific alterations found to improve the pharmacological treatment in psychiatry.
Collapse
|
12
|
Asth L, Santos AC, Moreira FA. The endocannabinoid system and drug-associated contextual memories. Behav Pharmacol 2022; 33:90-104. [PMID: 33491992 DOI: 10.1097/fbp.0000000000000621] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Drug abuse and addiction can be initiated and reinstated by contextual stimuli previously paired with the drug use. The influence exerted by the context on drug-seeking behaviour can be modelled in experimental animals with place-conditioning protocols. Here, we review the effects of cannabinoids in place conditioning and the therapeutic potential of the endocannabinoid system for interfering with drug-related memories. The phytocannabinoid Δ9-tetrahydrocannabinol (THC) tends to induce conditioned place preference (CPP) at low doses and conditioned place aversion at high doses; cannabidiol is devoid of any effect, yet it inhibits CPP induced by some drugs. Synthetic CB1 receptor agonists tend to recapitulate the biphasic profile observed with THC, whereas selective antagonists/inverse agonists inhibit CPP induced by cocaine, nicotine, alcohol and opioids. However, their therapeutic use is limited by potential psychiatric side effects. The CB2 receptor has also attracted attention, because selective CB2 receptor agonists inhibit cocaine-induced CPP. Inhibitors of endocannabinoid membrane transport and hydrolysis yield mixed results. In targeting the endocannabinoid system for developing new treatments for drug addiction, future research should focus on 'neutral' CB1 receptor antagonists and CB2 receptor agonists. Such compounds may offer a well-tolerated pharmacological profile and curb addiction by preventing drug-seeking triggered by conditioned contextual cues.
Collapse
Affiliation(s)
- Laila Asth
- Department of Pharmacology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | | | | |
Collapse
|
13
|
Chang HA, Dai W, Hu SSJ. Sex differences in cocaine-associated memory: The interplay between CB 1, mGluR5, and estradiol. Psychoneuroendocrinology 2021; 133:105366. [PMID: 34419761 DOI: 10.1016/j.psyneuen.2021.105366] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 07/16/2021] [Accepted: 07/22/2021] [Indexed: 10/20/2022]
Abstract
We know surprisingly little about the sex differences in the neurobiology of cocaine addiction, except females are more susceptible to the rewarding effects of cocaine than their male counterparts. Only a handful of recent studies have examined the neurobiology of cocaine-induced conditioned place preference (CPP) memory among female rodents. We contribute to this emerging line of research by documenting sex differences in cocaine-associated memory and illustrating the underlying signaling pathways in five experiments. Rimonabant (Rim), a cannabinoid CB1 antagonist and inverse agonist, exerted a facilitating effect for low-dose cocaine and an impairing effect for high-dose cocaine CPP memory in male mice, as in our previous study, but not in female mice. Nor did we observe the effect exist among CB1 knockout male mice, which indicated that the CB1 receptors played a mediating role. We also found that the metabotropic glutamate receptor 5 (mGluR5) was located in the same signaling pathway as CB1 in male mice. To clarify the mechanisms behind the sex differences, we used ovariectomized (OVX) female mice with estradiol benzoate (EB) replacement. In the OVX female mice, we showed that Rim-alone and EB-alone, but not Rim-and-EB-combined, facilitated the low-dose cocaine CPP memory. Moreover, 4-hydroxytamoxifen (4-OHT), an estrogen receptor (ER) antagonist, blocked Rim's and EB's facilitating effect. Finally, 2-methyl-6-(phenylethynyl)pyridine (MPEP), an mGluR5 antagonist, partially blocked EB's facilitating effect. In sum, we identified sex-specific effects of Rim on cocaine-induced CPP memory and the respective signaling pathways: mGluR5-CB1 for male mice and ER-mGluR5-CB1 for female mice. These findings may have merits for the development of sex-specific treatment for cocaine addiction.
Collapse
Affiliation(s)
- Heng-Ai Chang
- Department of Psychology, National Cheng Kung University, Tainan 70101, Taiwan; Institute of Basic Medical Sciences, National Cheng Kung University, Tainan 70101, Taiwan
| | - Wen Dai
- Department of Psychology, National Cheng Kung University, Tainan 70101, Taiwan
| | - Sherry Shu-Jung Hu
- Department of Psychology, National Cheng Kung University, Tainan 70101, Taiwan.
| |
Collapse
|
14
|
Leyrer-Jackson JM, Hood LE, Olive MF. Drugs of Abuse Differentially Alter the Neuronal Excitability of Prefrontal Layer V Pyramidal Cell Subtypes. Front Cell Neurosci 2021; 15:703655. [PMID: 34421542 PMCID: PMC8374073 DOI: 10.3389/fncel.2021.703655] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 07/15/2021] [Indexed: 11/21/2022] Open
Abstract
The medial prefrontal cortex (mPFC) plays an important role in regulating executive functions including reward seeking, task flexibility, and compulsivity. Studies in humans have demonstrated that drugs of abuse, including heroin, cocaine, methamphetamine, and alcohol, alter prefrontal function resulting in the consequential loss of inhibitory control and increased compulsive behaviors, including drug seeking. Within the mPFC, layer V pyramidal cells, which are delineated into two major subtypes (type I and type II, which project to subcortical or commissurally to other cortical regions, respectively), serve as the major output cells which integrate information from other cortical and subcortical regions and mediate executive control. Preclinical studies examining changes in cellular physiology in the mPFC in response to drugs of abuse, especially in regard to layer V pyramidal subtypes, are relatively sparse. In the present study, we aimed to explore how heroin, cocaine, methamphetamine, ethanol, and 3,4-methylenedioxypyrovalerone (MDPV) alter the baseline cellular physiology and excitability properties of layer V pyramidal cell subtypes. Specifically, animals were exposed to experimenter delivered [intraperitoneal (i.p.)] heroin, cocaine, the cocaine-like synthetic cathinone MDPV, methamphetamine, ethanol, or saline as a control once daily for five consecutive days. On the fifth day, whole-cell physiology recordings were conducted from type I and type II layer V pyramidal cells in the mPFC. Changes in cellular excitability, including rheobase (i.e., the amount of injected current required to elicit action potentials), changes in input/output curves, as well as spiking characteristics induced by each substance, were assessed. We found that heroin, cocaine, methamphetamine, and MDPV decreased the excitability of type II cells, whereas ethanol increased the excitability of type I pyramidal cells. Together, these results suggest that heroin, cocaine, MDPV, and methamphetamine reduce mPFC commissural output by reducing type II excitability, while ethanol increases the excitability of type I cells targeting subcortical structures. Thus, separate classes of abused drugs differentially affect layer V pyramidal subtypes in the mPFC, which may ultimately give rise to compulsivity and inappropriate synaptic plasticity underlying substance use disorders.
Collapse
Affiliation(s)
| | - Lauren E Hood
- Department of Psychology, Arizona State University, Tempe, AZ, United States
| | - M Foster Olive
- Department of Psychology, Arizona State University, Tempe, AZ, United States
| |
Collapse
|
15
|
Wilkerson JL, Bilbrey JA, Felix JS, Makriyannis A, McMahon LR. Untapped endocannabinoid pharmacological targets: Pipe dream or pipeline? Pharmacol Biochem Behav 2021; 206:173192. [PMID: 33932409 DOI: 10.1016/j.pbb.2021.173192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 04/18/2021] [Accepted: 04/21/2021] [Indexed: 10/21/2022]
Abstract
It has been established that the endogenous cannabinoid (endocannabinoid) system plays key modulatory roles in a wide variety of pathological conditions. The endocannabinoid system comprises both cannabinoid receptors, their endogenous ligands including 2-arachidonoylglycerol (2-AG), N-arachidonylethanolamine (anandamide, AEA), and enzymes that regulate the synthesis and degradation of endogenous ligands which include diacylglycerol lipase alpha (DAGL-α), diacylglycerol lipase beta (DAGL-β), fatty acid amide hydrolase (FAAH), monoacylglycerol lipase (MAGL), α/β hydrolase domain 6 (ABHD6). As the endocannabinoid system exerts considerable involvement in the regulation of homeostasis and disease, much effort has been made towards understanding endocannabinoid-related mechanisms of action at cellular, physiological, and pathological levels as well as harnessing the various components of the endocannabinoid system to produce novel therapeutics. However, drug discovery efforts within the cannabinoid field have been slower than anticipated to reach satisfactory clinical endpoints and raises an important question into the validity of developing novel ligands that therapeutically target the endocannabinoid system. To answer this, we will first examine evidence that supports the existence of an endocannabinoid system role within inflammatory diseases, neurodegeneration, pain, substance use disorders, mood disorders, as well as metabolic diseases. Next, this review will discuss recent clinical studies, within the last 5 years, of cannabinoid compounds in context to these diseases. We will also address some of the challenges and considerations within the cannabinoid field that may be important in the advancement of therapeutics into the clinic.
Collapse
Affiliation(s)
- Jenny L Wilkerson
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL, USA.
| | - Joshua A Bilbrey
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL, USA
| | - Jasmine S Felix
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL, USA
| | - Alexandros Makriyannis
- Center for Drug Discovery and Department of Pharmaceutical Sciences, Northeastern University, Boston, MA 02115, USA; Departments of Chemistry and Chemical Biology, Northeastern University, Boston, MA 02115, USA
| | - Lance R McMahon
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
16
|
Zhang H, Lipinski AA, Liktor-Busa E, Smith AF, Moutal A, Khanna R, Langlais PR, Largent-Milnes TM, Vanderah TW. The Effects of Repeated Morphine Treatment on the Endogenous Cannabinoid System in the Ventral Tegmental Area. Front Pharmacol 2021; 12:632757. [PMID: 33953672 PMCID: PMC8090348 DOI: 10.3389/fphar.2021.632757] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 02/26/2021] [Indexed: 12/18/2022] Open
Abstract
The therapeutic utility of opioids is diminished by their ability to induce rewarding behaviors that may lead to opioid use disorder. Recently, the endogenous cannabinoid system has emerged as a hot topic in the study of opioid reward but relatively little is known about how repeated opioid exposure may affect the endogenous cannabinoid system in the mesolimbic reward circuitry. In the present study, we investigated how sustained morphine may modulate the endogenous cannabinoid system in the ventral tegmental area (VTA) of Sprague Dawley rats, a critical region in the mesolimbic reward circuitry. Studies here using proteomic analysis and quantitative real-time PCR (qRT-PCR) found that the VTA expresses 32 different proteins or genes related to the endogenous cannabinoid system; three of these proteins or genes (PLCγ2, ABHD6, and CB2R) were significantly affected after repeated morphine exposure (CB2R was only detected by qRT-PCR but not proteomics). We also identified that repeated morphine treatment does not alter either anandamide (AEA) or 2-arachidonoylglycerol (2-AG) levels in the VTA compared to saline treatment; however, there may be diminished levels of anandamide (AEA) production in the VTA 4 h after a single morphine injection in both chronic saline and morphine pretreated cohorts. Treating the animals with an inhibitor of 2-AG degradation significantly decreased repeated opioid rewarding behavior. Taken together, our studies reveal a potential influence of sustained opioids on the endocannabinoid system in the VTA, suggesting that the endogenous cannabinoid system may participate in the opioid-induced reward.
Collapse
Affiliation(s)
- Hong Zhang
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, United States
| | - Austin A. Lipinski
- Department of Medicine, Division of Endocrinology, College of Medicine, University of Arizona, Tucson, AZ, United States
| | - Erika Liktor-Busa
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, United States
| | - Angela F. Smith
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, United States
| | - Aubin Moutal
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, United States
| | - Rajesh Khanna
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, United States
| | - Paul R. Langlais
- Department of Medicine, Division of Endocrinology, College of Medicine, University of Arizona, Tucson, AZ, United States
| | - Tally M. Largent-Milnes
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, United States
| | - Todd W. Vanderah
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, United States
| |
Collapse
|
17
|
Liu SX, Gades MS, Swain Y, Ramakrishnan A, Harris AC, Tran PV, Gewirtz JC. Repeated morphine exposure activates synaptogenesis and other neuroplasticity-related gene networks in the dorsomedial prefrontal cortex of male and female rats. Drug Alcohol Depend 2021; 221:108598. [PMID: 33626484 PMCID: PMC8026706 DOI: 10.1016/j.drugalcdep.2021.108598] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 01/27/2021] [Accepted: 01/27/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND Opioid abuse is a chronic disorder likely involving stable neuroplastic modifications. While a number of molecules contributing to these changes have been identified, the broader spectrum of genes and gene networks that are affected by repeated opioid administration remain understudied. METHODS We employed Next-Generation RNA-sequencing (RNA-seq) followed by quantitative chromatin immunoprecipitation to investigate changes in gene expression and their regulation in adult male and female rats' dorsomedial prefrontal cortex (dmPFC) after a regimen of daily injection of morphine (5.0 mg/kg; 10 days). Ingenuity Pathway Analysis (IPA) was used to analyze affected molecular pathways, gene networks, and associated regulatory factors. A complementary behavioral study evaluated the effects of the same morphine injection regimen on locomotor activity, pain sensitivity, and somatic withdrawal signs. RESULTS Behaviorally, repeated morphine injection induced locomotor hyperactivity and hyperalgesia in both sexes. 90 % of differentially expressed genes (DEGs) in morphine-treated rats were upregulated in both males and females, with a 35 % overlap between sexes. A substantial number of DEGs play roles in synaptic signaling and neuroplasticity. Chromatin immunoprecipitation revealed enrichment of H3 acetylation, a transcriptionally activating chromatin mark. Although broadly similar, some differences were revealed in the gene ontology networks enriched in females and males. CONCLUSIONS Our results cohere with findings from previous studies based on a priori gene selection. Our results also reveal novel genes and molecular pathways that are upregulated by repeated morphine exposure, with some common to males and females and others that are sex-specific.
Collapse
Affiliation(s)
- Shirelle X Liu
- Department of Psychology, University of Minnesota, Minneapolis, MN, 55455, United States
| | - Mari S Gades
- Department of Psychology, University of Minnesota, Minneapolis, MN, 55455, United States
| | - Yayi Swain
- Department of Psychology, University of Minnesota, Minneapolis, MN, 55455, United States; Hennepin Healthcare Research Institute, Minneapolis, MN, 55404, United States
| | | | - Andrew C Harris
- Department of Psychology, University of Minnesota, Minneapolis, MN, 55455, United States; Department of Medicine, University of Minnesota, Minneapolis, MN, 55455, United States; Hennepin Healthcare Research Institute, Minneapolis, MN, 55404, United States
| | - Phu V Tran
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, 55455, United States
| | - Jonathan C Gewirtz
- Department of Psychology, University of Minnesota, Minneapolis, MN, 55455, United States.
| |
Collapse
|
18
|
Galaj E, Bi GH, Moore A, Chen K, He Y, Gardner E, Xi ZX. Beta-caryophyllene inhibits cocaine addiction-related behavior by activation of PPARα and PPARγ: repurposing a FDA-approved food additive for cocaine use disorder. Neuropsychopharmacology 2021; 46:860-870. [PMID: 33069159 PMCID: PMC8026612 DOI: 10.1038/s41386-020-00885-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 09/15/2020] [Accepted: 10/05/2020] [Indexed: 01/09/2023]
Abstract
Cocaine abuse continues to be a serious health problem worldwide. Despite intense research, there is still no FDA-approved medication to treat cocaine use disorder (CUD). In this report, we explored the potential utility of beta-caryophyllene (BCP), an FDA-approved food additive for the treatment of CUD. We found that BCP, when administered intraperitoneally or intragastrically, dose-dependently attenuated cocaine self-administration, cocaine-conditioned place preference, and cocaine-primed reinstatement of drug seeking in rats. In contrast, BCP failed to alter food self-administration or cocaine-induced hyperactivity. It also failed to maintain self-administration in a drug substitution test, suggesting that BCP has no abuse potential. BCP was previously reported to be a selective CB2 receptor agonist. Unexpectedly, pharmacological blockade or genetic deletion of CB1, CB2, or GPR55 receptors in gene-knockout mice failed to alter BCP's action against cocaine self-administration, suggesting the involvement of non-CB1, non-CB2, and non-GPR55 receptor mechanisms. Furthermore, pharmacological blockade of μ opioid receptor or Toll-like receptors complex failed to alter, while blockade of peroxisome proliferator-activated receptors (PPARα, PPARγ) reversed BCP-induced reduction in cocaine self-administration, suggesting the involvement of PPARα and PPARγ in BCP's action. Finally, we used electrical and optogenetic intracranial self-stimulation (eICSS, oICSS) paradigms to study the underlying neural substrate mechanisms. We found that BCP is more effective in attenuation of cocaine-enhanced oICSS than eICSS, the former driven by optical activation of midbrain dopamine neurons in DAT-cre mice. These findings indicate that BCP may be useful for the treatment of CUD, likely by stimulation of PPARα and PPARγ in the mesolimbic system.
Collapse
Affiliation(s)
- Ewa Galaj
- grid.420090.f0000 0004 0533 7147Addiction Biology Unit, Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD 21224 USA
| | - Guo-Hua Bi
- grid.420090.f0000 0004 0533 7147Addiction Biology Unit, Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD 21224 USA
| | - Allamar Moore
- grid.420090.f0000 0004 0533 7147Neuropychopharmacology Section, Molecular Targets and Medications Discovery Branch, Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD 21224 USA
| | - Kai Chen
- grid.420090.f0000 0004 0533 7147Addiction Biology Unit, Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD 21224 USA ,grid.413247.7Present Address: Department of Anesthesiology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071 China
| | - Yi He
- grid.420090.f0000 0004 0533 7147Addiction Biology Unit, Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD 21224 USA ,grid.21925.3d0000 0004 1936 9000Present Address: Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA 15260 USA
| | - Eliot Gardner
- grid.420090.f0000 0004 0533 7147Neuropychopharmacology Section, Molecular Targets and Medications Discovery Branch, Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD 21224 USA
| | - Zheng-Xiong Xi
- Addiction Biology Unit, Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD, 21224, USA.
| |
Collapse
|
19
|
Pirri F, Akbarabadi A, Sadat-Shirazi MS, Nouri Zadeh-Tehrani S, Mahboubi S, Karimi Goudarzi A, Zarrindast MR. Comparison and interaction of morphine and CB1 agonist conditioned place preference in the rat model of early life stress. Int J Dev Neurosci 2021; 81:238-248. [PMID: 33534920 DOI: 10.1002/jdn.10094] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 01/23/2021] [Accepted: 01/27/2021] [Indexed: 12/24/2022] Open
Abstract
Early life stress (ELS) disrupts brain development and subsequently affects physical and psychological health. ELS has been associated with an increased risk of relapse and inadequate treatment response in addicted patients. The current study was designed to find the effect of ELS on the rewarding effect of morphine and cannabinoid and their interaction. Pregnant female Wistar rats were used in this study. On postnatal day 2 (PND2), pups were separated from their mothers for 3 hr daily. This procedure was repeated every day at the same time until PND 14. The control group was kept in the standard nesting way with their mothers. The adult male offspring of maternal separated (MS) and standard nested (SN) rats were used. Using conditioned place preference task (CPP), the rewarding effect of morphine (0.75, 1.25, 2.5, and 5 mg/kg) was evaluated in both MS and SN groups. Besides, the rewarding effect of cannabinoids was investigated using the administration of CB1 receptor agonist (ACPA, 0.25, 0.5, 1 µg/rat) and inverse agonist (AM-251, 30, 60, and 90 ng/rat) in the nucleus accumbens (NAc). To evaluate the interaction between NAc cannabinoidergic system and morphine, the noneffective dose of ACPA and AM-251 were administered with a noneffective dose of morphine (0.75 mg/kg) on both MS and SN animals. Obtained results indicated that MS groups had a leftward shift in the rewarding effect of morphine and conditioned with low doses of morphine. However, they had a rightward shift in the rewarding effect of cannabinoids. In addition, coadministration of noneffective doses of morphine and ACPA potentiate conditioning in both MS and SN groups. Previous evidence shows that ELS induced changes in the brain, especially in the reward circuits. Here, we demonstrated that MS animals are more sensitive to the rewarding effect of morphine compared with SN animals. In addition, ELS disrupts the cannabinoid system and affect the rewarding effect of cannabinoids.
Collapse
Affiliation(s)
- Fardad Pirri
- Department of Basic Sciences, College of Veterinary Medicine, Islamic Azad University, Alborz, Iran.,Iranian National Center for Addiction Studies, Tehran University of Medical Sciences, Tehran, Iran
| | - Ardeshir Akbarabadi
- Iranian National Center for Addiction Studies, Tehran University of Medical Sciences, Tehran, Iran
| | | | | | - Sarah Mahboubi
- Iranian National Center for Addiction Studies, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Karimi Goudarzi
- Department of Basic Sciences, College of Veterinary Medicine, Islamic Azad University, Alborz, Iran
| | - Mohammad-Reza Zarrindast
- Iranian National Center for Addiction Studies, Tehran University of Medical Sciences, Tehran, Iran.,Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Endocrinology and Metabolism Research Institute, Tehran University of Medical Science, Tehran, Iran
| |
Collapse
|
20
|
Mohammadkhani A, Borgland SL. Cellular and behavioral basis of cannabinioid and opioid interactions: Implications for opioid dependence and withdrawal. J Neurosci Res 2020; 100:278-296. [PMID: 33352618 DOI: 10.1002/jnr.24770] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 11/25/2020] [Indexed: 01/22/2023]
Abstract
The brain's endogenous opioid and endocannabinoid systems are neuromodulatory of synaptic transmission, and play key roles in pain, memory, reward, and addiction. Recent clinical and pre-clinical evidence suggests that opioid use may be reduced with cannabinoid intake. This suggests the presence of a functional interaction between these two systems. Emerging research indicates that cannabinoids and opioids can functionally interact at different levels. At the cellular level, opioid and cannabinoids can have direct receptor associations, alterations in endogenous opioid peptide or cannabinoid release, or post-receptor activation interactions via shared signal transduction pathways. At the systems level, the nature of cannabinoid and opioid interaction might differ in brain circuits underlying different behavioral phenomenon, including reward-seeking or antinociception. Given the rising use of opioid and cannabinoid drugs, a better understanding of how these endogenous signaling systems interact in the brain is of significant interest. This review focuses on the potential relationship of these neural systems in addiction-related processes.
Collapse
Affiliation(s)
- Aida Mohammadkhani
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, The University of Calgary, Calgary, AB, Canada
| | - Stephanie L Borgland
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, The University of Calgary, Calgary, AB, Canada
| |
Collapse
|
21
|
The role of cannabinoid 1 receptor in the nucleus accumbens on tramadol induced conditioning and reinstatement. Life Sci 2020; 260:118430. [PMID: 32931800 DOI: 10.1016/j.lfs.2020.118430] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 08/27/2020] [Accepted: 09/08/2020] [Indexed: 12/21/2022]
Abstract
AIMS Previous investigations demonstrated that tramadol, as a painkiller, similar to morphine induces tolerance and dependence. Furthermore, the cannabinoid receptor 1 (CB1R) located in the nucleus accumbens (NAc) plays a critical role in morphine-induced conditioning. Therefore, the main objective of this study was to evaluate the role of NAc CB1R in tramadol induced conditioning and reinstatement. MAIN METHODS In the present experiment, the effect of NAc CB1 receptors on tramadol induced conditioning was tested by microinjecting of arachidonylcyclopropylamide (ACPA, CB1R agonist) and AM 251 (CB1R inverse agonist) in the NAc during tramadol-induced conditioning in the adult male Wistar rats. In addition, the role of NAc CB1R in the reinstatement was also evaluated by injecting ACPA and AM 251 after a 10-days extinction period. KEY FINDINGS The obtained data revealed that the administration of tramadol (1,2, and 4 mg/kg, ip) dose-dependently produced conditioned place preference (CPP). Moreover, intra-NAc administration of ACPA (0.25, 0.5, and 1 μg/rat) dose-dependently induced conditioning, while the administration of AM-251 (30, 60, and 120 ng/rat) induced a significant aversion. In addition, the administration of a non-effective dose of AM251 during tramadol conditioning inhibited conditioning induced by tramadol. On the other hand, the administration of ACPA after extinction induced a significant reinstatement. Notably, the locomotor activity did not change among groups. SIGNIFICANCE Previous studies have shown that tramadol-induced CPP occurs through μ-opioid receptors. The data obtained in the current study indicated that CB1R located in the NAc is involved in mediating conditioning induced by tramadol. Besides, CB1R also plays a vital role in the reinstatement of tramadol-conditioned animals. It might be due to the effect of opioids on enhancing the level of CB1R.
Collapse
|
22
|
Slivicki RA, Iyer V, Mali SS, Garai S, Thakur GA, Crystal JD, Hohmann AG. Positive Allosteric Modulation of CB 1 Cannabinoid Receptor Signaling Enhances Morphine Antinociception and Attenuates Morphine Tolerance Without Enhancing Morphine- Induced Dependence or Reward. Front Mol Neurosci 2020; 13:54. [PMID: 32410959 PMCID: PMC7199816 DOI: 10.3389/fnmol.2020.00054] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Accepted: 03/17/2020] [Indexed: 01/09/2023] Open
Abstract
Opioid analgesics represent a critical treatment for chronic pain in the analgesic ladder of the World Health Organization. However, their use can result in a number of unwanted side-effects including incomplete efficacy, constipation, physical dependence, and overdose liability. Cannabinoids enhance the pain-relieving effects of opioids in preclinical studies and dampen unwanted side-effects resulting from excessive opioid intake. We recently reported that a CB1 positive allosteric modulator (PAM) exhibits antinociceptive efficacy in models of pathological pain and lacks the adverse side effects of direct CB1 receptor activation. In the present study, we evaluated whether a CB1 PAM would enhance morphine’s therapeutic efficacy in an animal model of chemotherapy-induced neuropathic pain and characterized its impact on unwanted side-effects associated with chronic opioid administration. In paclitaxel-treated mice, both the CB1 PAM GAT211 and the opioid analgesic morphine reduced paclitaxel-induced behavioral hypersensitivities to mechanical and cold stimulation in a dose-dependent manner. Isobolographic analysis revealed that combinations of GAT211 and morphine resulted in anti-allodynic synergism. In paclitaxel-treated mice, a sub-threshold dose of GAT211 prevented the development of tolerance to the anti-allodynic effects of morphine over 20 days of once daily dosing. However, GAT211 did not reliably alter somatic withdrawal signs (i.e., jumps, paw tremors) in morphine-dependent neuropathic mice challenged with naloxone. In otherwise naïve mice, GAT211 also prolonged antinociceptive efficacy of morphine in the tail-flick test and reduced the overall right-ward shift in the ED50 for morphine to produce antinociception in the tail-flick test, consistent with attenuation of morphine tolerance. Pretreatment with GAT211 did not alter somatic signs of μ opioid receptor dependence in mice rendered dependent upon morphine via subcutaneous implantation of a morphine pellet. Moreover, GAT211 did not reliably alter μ-opioid receptor-mediated reward as measured by conditioned place preference to morphine. Our results suggest that a CB1 PAM may be beneficial in enhancing and prolonging the therapeutic properties of opioids while potentially sparing unwanted side-effects (e.g., tolerance) that occur with repeated opioid treatment.
Collapse
Affiliation(s)
- Richard A Slivicki
- Program in Neuroscience, Indiana University, Bloomington, IN, United States.,Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, United States
| | - Vishakh Iyer
- Program in Neuroscience, Indiana University, Bloomington, IN, United States.,Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, United States
| | - Sonali S Mali
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, United States
| | - Sumanta Garai
- Center for Drug Discovery, Bouve College of Health Sciences, Northeastern University, Boston, MA, United States
| | - Ganesh A Thakur
- Center for Drug Discovery, Bouve College of Health Sciences, Northeastern University, Boston, MA, United States
| | - Jonathon D Crystal
- Program in Neuroscience, Indiana University, Bloomington, IN, United States.,Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, United States
| | - Andrea G Hohmann
- Program in Neuroscience, Indiana University, Bloomington, IN, United States.,Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, United States.,Gill Center for Biomolecular Science, Indiana University, Bloomington, IN, United States
| |
Collapse
|
23
|
Lopes JB, Bastos JR, Costa RB, Aguiar DC, Moreira FA. The roles of cannabinoid CB1 and CB2 receptors in cocaine-induced behavioral sensitization and conditioned place preference in mice. Psychopharmacology (Berl) 2020; 237:385-394. [PMID: 31667531 DOI: 10.1007/s00213-019-05370-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Accepted: 09/30/2019] [Indexed: 11/30/2022]
Abstract
RATIONALE Cocaine is a psychostimulant drug that facilitates monoaminergic neurotransmission. The endocannabinoid system, comprising the cannabinoid receptors (CB1R and CB2R), the endocannabinoids, and their metabolizing-enzymes, modulates the mesolimbic dopaminergic pathway and represents a potential target for the treatment of addiction. OBJECTIVES Here, we tested the hypothesis that the cannabinoid receptors are implicated in cocaine-induced motor sensitization, conditioned place preference (CPP), and hippocampal activation. METHODS Male Swiss mice received injections of AM251 (CB1R antagonist; 0.3-10 mg/kg) or JWH133 (CB2R agonist; 1-10 mg/kg) before acquisition or expression of cocaine (20 mg/kg)-induced sensitization and CPP. After the CPP test, cFos-staining was employed as a marker of neuronal activation in the hippocampus. RESULTS AM251 inhibited the acquisition (0.3, 1, and 3 mg/kg) and expression (1 and 3 mg/kg) of sensitization, as well as the acquisition (10 mg/kg) of CPP. JWH133 inhibited the acquisition (0.3 and 1 mg/kg) and expression (1 and 3 mg/kg) of both sensitization and CPP. JWH133 effects were reversed by AM630 (CB2R antagonist; 5 mg/kg). AM251 and JWH133 also prevented neuronal activation (c-Fos expression) in the hippocampus of CPP-exposed animals. CONCLUSIONS CB1R and CB2R have opposite roles in modulating cocaine-induced sensitization and CPP, possibly by preventing neuronal activation in the hippocampus.
Collapse
MESH Headings
- Animals
- Cannabinoids/pharmacology
- Central Nervous System Stimulants/pharmacology
- Cocaine/pharmacology
- Conditioning, Classical/drug effects
- Conditioning, Classical/physiology
- Dose-Response Relationship, Drug
- Hippocampus/drug effects
- Hippocampus/physiology
- Male
- Mice
- Piperidines/pharmacology
- Pyrazoles/pharmacology
- Receptor, Cannabinoid, CB1/antagonists & inhibitors
- Receptor, Cannabinoid, CB1/physiology
- Receptor, Cannabinoid, CB2/agonists
- Receptor, Cannabinoid, CB2/physiology
Collapse
Affiliation(s)
- Jadna B Lopes
- Department of Pharmacology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Av. Pres. Antônio Carlos 6627, Belo Horizonte, MG, 31270-901, Brazil
| | - Juliana R Bastos
- Department of Pharmacology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Av. Pres. Antônio Carlos 6627, Belo Horizonte, MG, 31270-901, Brazil
| | - Rayssa B Costa
- Department of Pharmacology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Av. Pres. Antônio Carlos 6627, Belo Horizonte, MG, 31270-901, Brazil
| | - Daniele C Aguiar
- Department of Pharmacology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Av. Pres. Antônio Carlos 6627, Belo Horizonte, MG, 31270-901, Brazil
| | - Fabrício A Moreira
- Department of Pharmacology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Av. Pres. Antônio Carlos 6627, Belo Horizonte, MG, 31270-901, Brazil.
| |
Collapse
|
24
|
Schiavi S, Manduca A, Segatto M, Campolongo P, Pallottini V, Vanderschuren LJMJ, Trezza V. Unidirectional opioid-cannabinoid cross-tolerance in the modulation of social play behavior in rats. Psychopharmacology (Berl) 2019; 236:2557-2568. [PMID: 30903212 DOI: 10.1007/s00213-019-05226-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 03/10/2019] [Indexed: 01/04/2023]
Abstract
RATIONALE The endocannabinoid and the endogenous opioid systems interact in the modulation of social play behavior, a highly rewarding social activity abundantly expressed in young mammals. Prolonged exposure to opioid or cannabinoid receptor agonists induces cross-tolerance or cross-sensitization to their acute behavioral effects. OBJECTIVES AND METHODS Behavioral and biochemical experiments were performed to investigate whether cross-tolerance or cross-sensitization occurs to the play-enhancing effects of cannabinoid and opioid drugs on social play behavior, and the possible brain substrate involved. RESULTS The play-enhancing effects induced by systemic administration of JZL184, which inhibits the hydrolysis of the endocannabinoid 2-AG, were suppressed in animals repeatedly pretreated with the opioid receptor agonist morphine. Conversely, acute morphine administration increased social play in rats pretreated with vehicle or with either JZL184 or the cannabinoid agonist WIN55,212-2. Acute administration of JZL184 increased the activation of both CB1 receptors and their effector Akt in the nucleus accumbens and prefrontal cortex, brain regions important for the expression of social play. These effects were absent in animals pretreated with morphine. Furthermore, only animals repeatedly treated with morphine and acutely administered with JZL184 showed reduced activation of CB1 receptors and Akt in the amygdala. CONCLUSIONS The present study demonstrates a dynamic opioid-cannabinoid interaction in the modulation of social play behavior, occurring in limbic brain areas strongly implicated in social play behavior. A better understanding of opioid-cannabinoid interactions in social play contributes to clarify neurobiological aspects of social behavior at young age, which may provide new therapeutic targets for social dysfunctions.
Collapse
Affiliation(s)
- Sara Schiavi
- Department of Science, Section of Biomedical Sciences and Technologies, University "Roma Tre", Viale G. Marconi 446, 00146, Rome, Italy
| | - Antonia Manduca
- Department of Science, Section of Biomedical Sciences and Technologies, University "Roma Tre", Viale G. Marconi 446, 00146, Rome, Italy
| | - Marco Segatto
- Department of Science, Section of Biomedical Sciences and Technologies, University "Roma Tre", Viale G. Marconi 446, 00146, Rome, Italy
| | - Patrizia Campolongo
- Department of Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome, Rome, Italy
| | - Valentina Pallottini
- Department of Science, Section of Biomedical Sciences and Technologies, University "Roma Tre", Viale G. Marconi 446, 00146, Rome, Italy
| | - Louk J M J Vanderschuren
- Department of Animals in Science and Society, Division of Behavioural Neuroscience, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Viviana Trezza
- Department of Science, Section of Biomedical Sciences and Technologies, University "Roma Tre", Viale G. Marconi 446, 00146, Rome, Italy.
| |
Collapse
|
25
|
Martínez-Navarro M, Lara-Mayorga I, Negrete R, Bilecki W, Wawrzczak-Bargieła A, Gonçalves L, Dickenson A, Przewłocki R, Baños J, Maldonado R. Influence of behavioral traits in the inter-individual variability of nociceptive, emotional and cognitive manifestations of neuropathic pain. Neuropharmacology 2019; 148:291-304. [DOI: 10.1016/j.neuropharm.2019.01.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 01/10/2019] [Accepted: 01/11/2019] [Indexed: 12/20/2022]
|
26
|
Stampanoni Bassi M, Gilio L, Maffei P, Dolcetti E, Bruno A, Buttari F, Centonze D, Iezzi E. Exploiting the Multifaceted Effects of Cannabinoids on Mood to Boost Their Therapeutic Use Against Anxiety and Depression. Front Mol Neurosci 2018; 11:424. [PMID: 30515077 PMCID: PMC6256035 DOI: 10.3389/fnmol.2018.00424] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 10/31/2018] [Indexed: 12/27/2022] Open
Abstract
The endocannabinoid system (ECS) has been recently recognized as a prominent promoter of the emotional homeostasis, mediating the effects of different environmental signals including rewarding and stressing stimuli. The ECS modulates the rewarding effects of environmental stimuli, influencing synaptic transmission in the dopaminergic projections to the limbic system, and mediates the neurophysiological and behavioral consequences of stress. Notably, the individual psychosocial context is another key element modulating the activity of the ECS. Finally, inflammation represents an additional factor that could alter the cannabinoid signaling in the CNS inducing a "sickness behavior," characterized by anxiety, anhedonia, and depressive symptoms. The complex influences of the ECS on both the environmental and internal stimuli processing, make the cannabinoid-based drugs an appealing option to treat different psychiatric conditions. Although ample experimental evidence shows beneficial effects of ECS modulation on mood, scarce clinical indication limits the use of cannabis-based treatments. To better define the possible clinical indications of cannabinoid-based drugs in psychiatry, a number of issues should be better addressed, including genetic variability and psychosocial factors possibly affecting the individual response. In particular, better knowledge of the multifaceted effects of cannabinoids could help to understand how to boost their therapeutic use in anxiety and depression treatment.
Collapse
Affiliation(s)
| | - Luana Gilio
- Unit of Neurology and Neurorehabilitation, IRCCS Neuromed, Pozzilli, Italy.,Laboratory of Synaptic Immunopathology, Department of Systems Medicine, Tor Vergata University, Rome, Italy
| | - Pierpaolo Maffei
- Unit of Neurology and Neurorehabilitation, IRCCS Neuromed, Pozzilli, Italy
| | - Ettore Dolcetti
- Laboratory of Synaptic Immunopathology, Department of Systems Medicine, Tor Vergata University, Rome, Italy
| | - Antonio Bruno
- Laboratory of Synaptic Immunopathology, Department of Systems Medicine, Tor Vergata University, Rome, Italy
| | - Fabio Buttari
- Unit of Neurology and Neurorehabilitation, IRCCS Neuromed, Pozzilli, Italy
| | - Diego Centonze
- Unit of Neurology and Neurorehabilitation, IRCCS Neuromed, Pozzilli, Italy.,Laboratory of Synaptic Immunopathology, Department of Systems Medicine, Tor Vergata University, Rome, Italy
| | - Ennio Iezzi
- Unit of Neurology and Neurorehabilitation, IRCCS Neuromed, Pozzilli, Italy
| |
Collapse
|
27
|
De Luca MA, Buczynski MW, Di Chiara G. Loren Parsons' contribution to addiction neurobiology. Addict Biol 2018; 23:1207-1222. [PMID: 29949237 DOI: 10.1111/adb.12642] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 05/17/2018] [Indexed: 11/29/2022]
Abstract
Loren (Larry) H. Parsons passed away at the age of 51. In spite of his premature departure, Larry much contributed to the drug abuse field. Since his graduate studies for the Ph.D. in Chemistry in J.B. Justice lab, microdialysis is the tread that links Larry's research topics, namely, the role of dopamine (DA), serotonin (5-HT), gamma-aminobutyric acid (GABA), glutamate and endocannabinoids (eCBs) in drug reinforcement and dependence. Larry was the first to show that abstinence from chronic cocaine reduces extracellular DA in the NAc, consistent with the so called 'dopamine depletion hypothesis' of cocaine addiction. Another Larry's major contributions are the studies on 5-HT and 5-HT receptors' role in cocaine stimulant actions, which resulted in the identification of 5-HT1B receptors as a critical substrate of cocaine reinforcement. By applying mass spectrometry to eCBs analysis in brain dialysates, Larry's lab showed that ethanol, heroin, nicotine and cocaine differentially affect anandamide and 2-arachidonoylglicerol overflow in the NAc shell, a critical site of drugs of abuse DA stimulant actions. Larry also applied microdialysis to study GABA and glutamate's role in ethanol dependence and heroin reinforcement, providing in vivo evidence for a sensitization of corticotropin-releasing factor-dependent release of GABA in the central amygdala in withdrawal from chronic ethanol and for a reduction of GABA transmission in the ventral pallidum in heroin but not cocaine intravenous self-administration. Larry showed the wide possibilities of microdialysis as a general purpose methodology for monitoring neurotransmitters and neuromodulators in the brain extracellular compartment. From this viewpoint, he stands as the best advocate for microdialysis.
Collapse
Affiliation(s)
- Maria A. De Luca
- Department of Biomedical Sciences, Section of Neuropsychopharmacology; University of Cagliari; Cagliari Italy
- National Institute of Neuroscience (INN); University of Cagliari; Cagliari Italy
| | - Matthew W. Buczynski
- School of Neuroscience; Virginia Polytechnic Institute and State University; Blacksburg VA 24061 USA
| | - Gaetano Di Chiara
- Department of Biomedical Sciences, Section of Neuropsychopharmacology; University of Cagliari; Cagliari Italy
- National Institute of Neuroscience (INN); University of Cagliari; Cagliari Italy
- National Research Council of Italy; Institute of Neuroscience; Cagliari Italy
| |
Collapse
|
28
|
Role of the endocannabinoid system in drug addiction. Biochem Pharmacol 2018; 157:108-121. [PMID: 30217570 DOI: 10.1016/j.bcp.2018.09.013] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 09/10/2018] [Indexed: 12/20/2022]
Abstract
Drug addiction is a chronic relapsing disorder that produces a dramaticglobal health burden worldwide. Not effective treatment of drug addiction is currently available probably due to the difficulties to find an appropriate target to manage this complex disease raising the needs for further identification of novel therapeutic approaches. The endocannabinoid system has been found to play a crucial role in the neurobiological substrate underlying drug addiction. Endocannabinoids and cannabinoid receptors are widely expressed in the main areas of the mesocorticolimbic system that participate in the initiation and maintenance of drug consumption and in the development of compulsion and loss of behavioral control occurring during drug addiction. The identification of the important role played by CB1 cannabinoid receptors in drug addiction encouraged the possible used of an early commercialized CB1 receptor antagonist for treating drug addiction. However, the incidence of serious psychiatric adverse events leaded to the sudden withdrawal from the market of this CB1 antagonist and all the research programs developed by pharmaceutical companies to obtain new CB1 antagonists were stopped. Currently, new research strategies are under development to target the endocannabinoid system for drug addiction avoiding these side effects, which include allosteric negative modulators of CB1 receptors and compounds targeting CB2 receptors. Recent studies showing the potential role of CB2 receptors in the addictive properties of different drugs of abuse have open a promising research opportunity to develop novel possible therapeutic approaches.
Collapse
|
29
|
Abstract
Introduction: The opioid epidemic has become an immense problem in North America, and despite decades of research on the most effective means to treat opioid use disorder (OUD), overdose deaths are at an all-time high, and relapse remains pervasive. Discussion: Although there are a number of FDA-approved opioid replacement therapies and maintenance medications to help ease the severity of opioid withdrawal symptoms and aid in relapse prevention, these medications are not risk free nor are they successful for all patients. Furthermore, there are legal and logistical bottlenecks to obtaining traditional opioid replacement therapies such as methadone or buprenorphine, and the demand for these services far outweighs the supply and access. To fill the gap between efficacious OUD treatments and the widespread prevalence of misuse, relapse, and overdose, the development of novel, alternative, or adjunct OUD treatment therapies is highly warranted. In this article, we review emerging evidence that suggests that cannabis may play a role in ameliorating the impact of OUD. Herein, we highlight knowledge gaps and discuss cannabis' potential to prevent opioid misuse (as an analgesic alternative), alleviate opioid withdrawal symptoms, and decrease the likelihood of relapse. Conclusion: The compelling nature of these data and the relative safety profile of cannabis warrant further exploration of cannabis as an adjunct or alternative treatment for OUD.
Collapse
Affiliation(s)
- Beth Wiese
- Department of Psychology, University of Missouri–St. Louis, St. Louis, Missouri
- Department of Anesthesiology, Pain Center, Washington University School of Medicine, St. Louis, Missouri
| | - Adrianne R. Wilson-Poe
- Department of Anesthesiology, Pain Center, Washington University School of Medicine, St. Louis, Missouri
| |
Collapse
|
30
|
Bystrowska B, Frankowska M, Smaga I, Pomierny-Chamioło L, Filip M. Effects of Cocaine Self-Administration and Its Extinction on the Rat Brain Cannabinoid CB1 and CB2 Receptors. Neurotox Res 2018; 34:547-558. [PMID: 29754307 PMCID: PMC6154179 DOI: 10.1007/s12640-018-9910-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 04/23/2018] [Accepted: 05/01/2018] [Indexed: 12/18/2022]
Abstract
The aim of this study was to evaluate changes in the expression of cannabinoid type 1 (CB1) and 2 (CB2) receptor proteins in several brain regions in rats undergoing cocaine self-administration and extinction training. We used a triad-yoked procedure to distinguish between the motivational and pharmacological effects of cocaine. Using immunohistochemistry, we observed a significant decrease in CB1 receptor expression in the prefrontal cortex, dorsal striatum, and the basolateral and basomedial amygdala following cocaine (0.5 mg/kg/infusion) self-administration. Increased CB1 receptor expression in the ventral tegmental area in rats with previous cocaine exposure was also found. Following cocaine abstinence after 10 days of extinction training, we detected increases in the expression of CB1 receptors in the substantia nigra in both cocaine groups and in the subregions of the amygdala for only the yoked cocaine controls, while any method of cocaine exposure resulted in a decrease in CB2 receptor expression in the prefrontal cortex (p < 0.01), nucleus accumbens (p < 0.01), and medial globus pallidus (p < 0.01). Our findings further support the idea that the eCB system and CB1 receptors are involved in cocaine-reinforced behaviors. Moreover, we detected a cocaine-evoked adaptation in CB2 receptors in the amygdala, prefrontal cortex, and globus pallidus.
Collapse
Affiliation(s)
- Beata Bystrowska
- Department of Toxicology, Jagiellonian University Medical College, Medyczna 9, 30-688, Kraków, Poland.
| | - Małgorzata Frankowska
- Department of Drug Addiction Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343, Kraków, Poland
| | - Irena Smaga
- Department of Internal Medicine, Jagiellonian University Medical College, Skawińska 8, 31-066, Kraków, Poland
| | - Lucyna Pomierny-Chamioło
- Department of Toxicology, Jagiellonian University Medical College, Medyczna 9, 30-688, Kraków, Poland
| | - Małgorzata Filip
- Department of Drug Addiction Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343, Kraków, Poland
| |
Collapse
|
31
|
Epigenetic mechanisms associated with addiction-related behavioural effects of nicotine and/or cocaine: implication of the endocannabinoid system. Behav Pharmacol 2018; 28:493-511. [PMID: 28704272 DOI: 10.1097/fbp.0000000000000326] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The addictive use of nicotine (NC) and cocaine (COC) continues to be a major public health problem, and their combined use has been reported, particularly during adolescence. In neural plasticity, commonly induced by NC and COC, as well as behavioural plasticity related to the use of these two drugs, the involvement of epigenetic mechanisms, in which the reversible regulation of gene expression occurs independently of the DNA sequence, has recently been reported. Furthermore, on the basis of intense interactions with the target neurotransmitter systems, the endocannabinoid (ECB) system has been considered pivotal for eliciting the effects of NC or COC. The combined use of marijuana with NC and/or COC has also been reported. This article presents the addiction-related behavioural effects of NC and/or COC, based on the common behavioural/neural plasticity and combined use of NC/COC, and reviews the interacting role of the ECB system. The epigenetic processes inseparable from the effects of NC and/or COC (i.e. DNA methylation, histone modifications and alterations in microRNAs) and the putative therapeutic involvement of the ECB system at the epigenetic level are also discussed.
Collapse
|
32
|
Wenzel JM, Cheer JF. Endocannabinoid Regulation of Reward and Reinforcement through Interaction with Dopamine and Endogenous Opioid Signaling. Neuropsychopharmacology 2018; 43:103-115. [PMID: 28653666 PMCID: PMC5719091 DOI: 10.1038/npp.2017.126] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 06/01/2017] [Accepted: 06/08/2017] [Indexed: 12/11/2022]
Abstract
The endocannabinoid system (eCB) is implicated in the mediation of both reward and reinforcement. This is evidenced by the ability of exogenous cannabinoid drugs to produce hedonia and maintain self-administration in both human and animal subjects. eCBs similarly facilitate behaviors motivated by reward through interaction with the mesolimbic dopamine (DA) and endogenous opioid systems. Indeed, eCB signaling in the ventral tegmental area stimulates activation of midbrain DA cells and promotes DA release in terminal regions such as the nucleus accumbens (NAc). DA transmission mediates several aspects of reinforced behavior, such as motivation, incentive salience, and cost-benefit calculations. However, much research suggests that endogenous opioid signaling underlies the hedonic aspects of reward. eCBs and their receptors functionally interact with opioid systems within the NAc to support reward, most likely through augmenting DA release. This review explores the interaction of these systems as it relates to reward and reinforcement and examines current literature regarding their role in food reward.
Collapse
Affiliation(s)
- J M Wenzel
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - J F Cheer
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA,Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA,Program in Neuroscience, University of Maryland School of Medicine, Baltimore, MD, USA,Department of Anatomy and Neurobiology, Department of Psychiatry, Graduate Program in Neuroscience, University of Maryland School of Medicine, HSF I, Room 280J, 20 Penn Street, Baltimore, MD 21201, USA, Tel: +1 410 7060112, Fax: +1 410 7062512, E-mail:
| |
Collapse
|
33
|
Roeckel LA, Massotte D, Olmstead MC, Befort K. CB1 Agonism Alters Addiction-Related Behaviors in Mice Lacking Mu or Delta Opioid Receptors. Front Psychiatry 2018; 9:630. [PMID: 30542301 PMCID: PMC6277797 DOI: 10.3389/fpsyt.2018.00630] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 11/06/2018] [Indexed: 12/14/2022] Open
Abstract
Opioids are powerful analgesics but the clinical utility of these compounds is reduced by aversive outcomes, including the development of affective and substance use disorders. Opioid systems do not function in isolation so understanding how these interact with other neuropharmacological systems could lead to novel therapeutics that minimize withdrawal, tolerance, and emotional dysregulation. The cannabinoid system is an obvious candidate as anatomical, pharmacological, and behavioral studies point to opioid-cannabinoid interactions in the mediation of these processes. The aim of our study is to uncover the role of specific cannabinoid and opioid receptors in addiction-related behaviors, specifically nociception, withdrawal, anxiety, and depression. To do so, we tested the effects of a selective CB1 agonist, arachidonyl-2-chloroethylamide (ACEA), on mouse behavior in tail immersion, naloxone-precipitated withdrawal, light-dark, and splash tests. We examined cannabinoid-opioid interactions in these tests by comparing responses of wildtype (WT) mice to mutant lines lacking either Mu or Delta opioid receptors. ACEA, both acute or repeated injections, had no effect on nociceptive thresholds in WT or Mu knockout (KO) mice suggesting that analgesic properties of CB1 agonists may be restricted to chronic pain conditions. The opioid antagonist, naloxone, induced similar levels of withdrawal in all three genotypes following ACEA treatment, confirming an opioidergic contribution to cannabinoid withdrawal. Anxiety-like responses in the light-dark test were similar across WT and KO lines; neither acute nor repeated ACEA injections modified this behavior. Similarly, administration of the Delta opioid receptor antagonist, naltrindole, alone or in combination with ACEA, did not alter responses of WT mice in the light-dark test. Thus, there may be a dissociation in the effect of pharmacological blockade vs. genetic deletion of Delta opioid receptors on anxiety-like behavior in mice. Finally, our study revealed a biphasic effect of ACEA on depressive-like behavior in the splash test, with a prodepressive state induced by acute exposure, followed by a shift to an anti-depressive state with repeated injections. The initial pro-depressive effect of ACEA was absent in Mu KO mice. In sum, our findings confirm interactions between opioid and cannabinoid systems in withdrawal and reveal reduced depressive-like symptoms with repeated CB1 receptor activation.
Collapse
Affiliation(s)
- Laurie-Anne Roeckel
- Laboratoire de Neurosciences Cognitives et Adaptatives (LNCA), Centre de la Recherche Nationale Scientifique, Université de Strasbourg Faculté de Psychologie, Strasbourg, France
| | - Dominique Massotte
- Centre de la Recherche Nationale Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives (INCI), Strasbourg, France
| | - Mary C Olmstead
- Department of Psychology, Centre for Neuroscience Studies, Queen's University, Kingston, ON, Canada
| | - Katia Befort
- Laboratoire de Neurosciences Cognitives et Adaptatives (LNCA), Centre de la Recherche Nationale Scientifique, Université de Strasbourg Faculté de Psychologie, Strasbourg, France
| |
Collapse
|
34
|
Marcus DJ, Henderson-Redmond AN, Gonek M, Zee ML, Farnsworth JC, Amin RA, Andrews MJ, Davis BJ, Mackie K, Morgan DJ. Mice expressing a "hyper-sensitive" form of the CB1 cannabinoid receptor (CB1) show modestly enhanced alcohol preference and consumption. PLoS One 2017; 12:e0174826. [PMID: 28426670 PMCID: PMC5398885 DOI: 10.1371/journal.pone.0174826] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 03/15/2017] [Indexed: 11/17/2022] Open
Abstract
We recently characterized S426A/S430A mutant mice expressing a desensitization-resistant form of the CB1 receptor. These mice display an enhanced response to endocannabinoids and ∆9-THC. In this study, S426A/S430A mutants were used as a novel model to test whether ethanol consumption, morphine dependence, and reward for these drugs are potentiated in mice with a "hyper-sensitive" form of CB1. Using an unlimited-access, two-bottle choice, voluntary drinking paradigm, S426A/S430A mutants exhibit modestly increased intake and preference for low (6%) but not higher concentrations of ethanol. S426A/S430A mutants and wild-type mice show similar taste preference for sucrose and quinine, exhibit normal sensitivity to the hypothermic and ataxic effects of ethanol, and have normal blood ethanol concentrations following administration of ethanol. S426A/S430A mutants develop robust conditioned place preference for ethanol (2 g/kg), morphine (10 mg/kg), and cocaine (10 mg/kg), demonstrating that drug reward is not changed in S426A/S430A mutants. Precipitated morphine withdrawal is also unchanged in opioid-dependent S426A/S430A mutant mice. Although ethanol consumption is modestly changed by enhanced CB1 signaling, reward, tolerance, and acute sensitivity to ethanol and morphine are normal in this model.
Collapse
Affiliation(s)
- David J. Marcus
- Department of Psychological and Brain Sciences and The Linda and Jack Gill Center for Biomolecular Science, Indiana University, Bloomington, IN, United States of America
- Department of Anesthesiology, Penn State University College of Medicine, Hershey, PA, United States of America
| | - Angela N. Henderson-Redmond
- Department of Anesthesiology, Penn State University College of Medicine, Hershey, PA, United States of America
| | - Maciej Gonek
- Department of Psychological and Brain Sciences and The Linda and Jack Gill Center for Biomolecular Science, Indiana University, Bloomington, IN, United States of America
| | - Michael L. Zee
- Department of Psychological and Brain Sciences and The Linda and Jack Gill Center for Biomolecular Science, Indiana University, Bloomington, IN, United States of America
- Department of Anesthesiology, Penn State University College of Medicine, Hershey, PA, United States of America
| | - Jill C. Farnsworth
- Department of Psychological and Brain Sciences and The Linda and Jack Gill Center for Biomolecular Science, Indiana University, Bloomington, IN, United States of America
| | - Randa A. Amin
- Department of Psychological and Brain Sciences and The Linda and Jack Gill Center for Biomolecular Science, Indiana University, Bloomington, IN, United States of America
| | - Mary-Jeanette Andrews
- Department of Psychological and Brain Sciences and The Linda and Jack Gill Center for Biomolecular Science, Indiana University, Bloomington, IN, United States of America
| | - Brian J. Davis
- Department of Psychological and Brain Sciences and The Linda and Jack Gill Center for Biomolecular Science, Indiana University, Bloomington, IN, United States of America
| | - Ken Mackie
- Department of Psychological and Brain Sciences and The Linda and Jack Gill Center for Biomolecular Science, Indiana University, Bloomington, IN, United States of America
| | - Daniel J. Morgan
- Department of Psychological and Brain Sciences and The Linda and Jack Gill Center for Biomolecular Science, Indiana University, Bloomington, IN, United States of America
- Department of Anesthesiology, Penn State University College of Medicine, Hershey, PA, United States of America
| |
Collapse
|
35
|
Esteve-Arenys A, Gracia-Rubio I, Cantacorps L, Pozo OJ, Marcos J, Rodríguez-Árias M, Miñarro J, Valverde O. Binge ethanol drinking during adolescence modifies cocaine responses in mice. J Psychopharmacol 2017; 31:86-95. [PMID: 27940500 DOI: 10.1177/0269881116681457] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Binge ethanol drinking is an emerging pattern of excessive consumption among adolescents and young adults. Repeated ethanol intoxication has negative consequences during critical periods of brain development. Therefore, binge ethanol intake represents a vulnerability factor that promotes subsequent manifestations of neuropsychiatric disorders. In this study, we investigated the effects of oral binge ethanol intake during adolescence on the subsequent effects of cocaine in C57BL/6 mice. Firstly, we evaluated the oral ethanol intake of two binge ethanol procedures with different ethanol concentrations (20% v/v versus 30%, v/v). The highest ethanol intake was found in mice exposed to the lower ethanol concentration (20% v/v). In a second experiment, mice exposed to binge ethanol procedure were evaluated to study the effects of cocaine on locomotor activity, behavioural sensitization, and the reinforcing effects of cocaine in the self-administration paradigm. Mice exposed to ethanol binging showed discrete detrimental effects in responses to cocaine in the different experiments evaluated. Our findings revealed that the pattern of binge ethanol consumption in adolescent mice here evaluated produced a weak facilitation of cocaine responses. The present study highlights the importance of interventions to limit the deleterious effects of binge ethanol drinking during adolescence.
Collapse
Affiliation(s)
- Anna Esteve-Arenys
- 1 Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Barcelona, Spain
| | - Irene Gracia-Rubio
- 1 Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Barcelona, Spain
| | - Lídia Cantacorps
- 1 Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Barcelona, Spain
| | - Oscar J Pozo
- 2 Bioanalysis Research Group, IMIM-Hospital del Mar Medical Research Institute, Barcelona, Spain
| | - Josep Marcos
- 1 Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Barcelona, Spain.,2 Bioanalysis Research Group, IMIM-Hospital del Mar Medical Research Institute, Barcelona, Spain
| | | | - José Miñarro
- 3 Departamento de Psicobiología, Universidad de Valencia, Valencia, Spain
| | - Olga Valverde
- 1 Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Barcelona, Spain.,4 Neuroscience Research Programme, IMIM-Hospital del Mar Research Institute, Barcelona, Spain
| |
Collapse
|
36
|
Thompson Z, Argueta D, Garland T, DiPatrizio N. Circulating levels of endocannabinoids respond acutely to voluntary exercise, are altered in mice selectively bred for high voluntary wheel running, and differ between the sexes. Physiol Behav 2016; 170:141-150. [PMID: 28017680 DOI: 10.1016/j.physbeh.2016.11.041] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 11/07/2016] [Accepted: 11/22/2016] [Indexed: 11/25/2022]
Abstract
The endocannabinoid system serves many physiological roles, including in the regulation of energy balance, food reward, and voluntary locomotion. Signaling at the cannabinoid type 1 receptor has been specifically implicated in motivation for rodent voluntary exercise on wheels. We studied four replicate lines of high runner (HR) mice that have been selectively bred for 81 generations based on average number of wheel revolutions on days five and six of a six-day period of wheel access. Four additional replicate lines are bred without regard to wheel running, and serve as controls (C) for random genetic effects that may cause divergence among lines. On average, mice from HR lines voluntarily run on wheels three times more than C mice on a daily basis. We tested the general hypothesis that circulating levels of endocannabinoids (i.e., 2-arachidonoylglycerol [2-AG] and anandamide [AEA]) differ between HR and C mice in a sex-specific manner. Fifty male and 50 female mice were allowed access to wheels for six days, while another 50 males and 50 females were kept without access to wheels (half HR, half C for all groups). Blood was collected by cardiac puncture during the time of peak running on the sixth night of wheel access or no wheel access, and later analyzed for 2-AG and AEA content by ultra-performance liquid chromatography coupled to tandem mass spectrometry. We observed a significant three-way interaction among sex, linetype, and wheel access for 2-AG concentrations, with females generally having lower levels than males and wheel access lowering 2-AG levels in some but not all subgroups. The number of wheel revolutions in the minutes or hours immediately prior to sampling did not quantitatively predict plasma 2-AG levels within groups. We also observed a trend for a linetype-by-wheel access interaction for AEA levels, with wheel access lowering plasma concentrations of AEA in HR mice, while raising them in C mice. In addition, females tended to have higher AEA concentrations than males. For mice housed with wheels, the amount of running during the 30min before sampling was a significant positive predictor of plasma AEA within groups, and HR mice had significantly lower levels of AEA than C mice. Our results suggest that voluntary exercise alters circulating levels of endocannabinoids, and further demonstrate that selective breeding for voluntary exercise is associated with evolutionary changes in the endocannabinoid system.
Collapse
Affiliation(s)
- Zoe Thompson
- Neuroscience Graduate Program, University of California, Riverside, CA 92521, USA
| | - Donovan Argueta
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA 92521, USA
| | - Theodore Garland
- Department of Biology, University of California, Riverside, CA 92521, USA.
| | - Nicholas DiPatrizio
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA 92521, USA
| |
Collapse
|
37
|
Gracia-Rubio I, Martinez-Laorden E, Moscoso-Castro M, Milanés MV, Laorden ML, Valverde O. Maternal Separation Impairs Cocaine-Induced Behavioural Sensitization in Adolescent Mice. PLoS One 2016; 11:e0167483. [PMID: 27936186 PMCID: PMC5147915 DOI: 10.1371/journal.pone.0167483] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 11/15/2016] [Indexed: 12/30/2022] Open
Abstract
Adverse early-life conditions induce persistent disturbances that give rise to negative emotional states. Therefore, early life stress confers increased vulnerability to substance use disorders, mainly during adolescence as the brain is still developing. In this study, we investigated the consequences of maternal separation, a model of maternal neglect, on the psychotropic effects of cocaine and the neuroplasticity of the dopaminergic system. Our results show that mice exposed to maternal separation displayed attenuated behavioural sensitization, while no changes were found in the rewarding effects of cocaine in the conditioned place preference paradigm and in the reinforcing effects of cocaine in the self-administration paradigm. The evaluation of neuroplasticity in the striatal dopaminergic pathways revealed that mice exposed to maternal separation exhibited decreased protein expression levels of D2 receptors and increased levels of the transcriptional factor Nurr1. Furthermore, animals exposed to maternal separation and treated with cocaine exhibited increased DA turnover and protein expression levels of DAT and D2R, while decreased Nurr1 and Pitx3 protein expression levels were observed when compared with saline-treated mice. Taken together, our data demonstrate that maternal separation caused an impairment of cocaine-induced behavioural sensitization possibly due to a dysfunction of the dopaminergic system, a dysfunction that has been proposed as a factor of vulnerability for developing substance use disorders.
Collapse
Affiliation(s)
- Irene Gracia-Rubio
- Neurobiology of Behavior Research Group (GReNeC). Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Elena Martinez-Laorden
- Group of Cellular and Molecular Pharmacology, Faculty of Medicine, University of Murcia, Murcia, Spain
- Instituto Murciano de Investigación Biosanitaria (IMIB), Murcia, Spain
| | - Maria Moscoso-Castro
- Neurobiology of Behavior Research Group (GReNeC). Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - M. Victoria Milanés
- Group of Cellular and Molecular Pharmacology, Faculty of Medicine, University of Murcia, Murcia, Spain
- Instituto Murciano de Investigación Biosanitaria (IMIB), Murcia, Spain
| | - M. Luisa Laorden
- Group of Cellular and Molecular Pharmacology, Faculty of Medicine, University of Murcia, Murcia, Spain
- Instituto Murciano de Investigación Biosanitaria (IMIB), Murcia, Spain
| | - Olga Valverde
- Neurobiology of Behavior Research Group (GReNeC). Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
- Neuroscience Research Program. IMIM (Hospital del Mar Research Institute) Barcelona, Spain
- * E-mail:
| |
Collapse
|
38
|
Delis F, Polissidis A, Poulia N, Justinova Z, Nomikos GG, Goldberg SR, Antoniou K. Attenuation of Cocaine-Induced Conditioned Place Preference and Motor Activity via Cannabinoid CB2 Receptor Agonism and CB1 Receptor Antagonism in Rats. Int J Neuropsychopharmacol 2016; 20:269-278. [PMID: 27994006 PMCID: PMC5408977 DOI: 10.1093/ijnp/pyw102] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Accepted: 11/07/2016] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Studies have shown the involvement of cannabinoid (CB) receptors in the behavioral and neurobiological effects of psychostimulants. Most of these studies have focused on the role of CB1 receptors in the psychostimulant effects of cocaine, while very few have investigated the respective role of CB2 receptors. Further studies are warranted to elucidate the extent of CB receptor involvement in the expression of cocaine-induced effects. METHODS The role of CB1 and CB2 receptors in the rewarding and motor properties of cocaine was assessed in conditioned place preference, conditioned motor activity, and open field activity in rats. RESULTS The CB1 receptor antagonist rimonabant (3 mg/kg) decreased the acquisition and the expression of conditioned place preference induced by cocaine (20 mg/kg). Rimonabant inhibited cocaine-elicited conditioned motor activity when administered during the expression of cocaine-induced conditioned place preference. Rimonabant decreased ambulatory and vertical activity induced by cocaine. The CB2 receptor agonist JWH-133 (10 mg/kg) decreased the acquisition and the expression of cocaine-induced conditioned place preference. JWH-133 inhibited cocaine-elicited conditioned motor activity when administered during the acquisition and the expression of cocaine-induced conditioned place preference. JWH-133 decreased ambulatory activity and abolished vertical activity induced by cocaine. The effects of JWH-133 on cocaine conditioned and stimulated responses were abolished when the CB2 receptor antagonist/inverse agonist AM630 (5 mg/kg) was preadministered. CONCLUSIONS Cannabinoid CB1 and CB2 receptors modulate cocaine-induced rewarding behavior and appear to have opposite roles in the regulation of cocaine's reinforcing and psychomotor effects.
Collapse
Affiliation(s)
- Foteini Delis
- Department of Pharmacology, Faculty of Medicine, School of Health Sciences, University of Ioannina, Ioannina, Greece (Dr Delis, Dr Polissidis, Ms Poulia, and Dr Anoniou)
| | - Alexia Polissidis
- Department of Pharmacology, Faculty of Medicine, School of Health Sciences, University of Ioannina, Ioannina, Greece (Dr Delis, Dr Polissidis, Ms Poulia, and Dr Anoniou);,Laboratory of Neurodegenerative Diseases, Center for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation Academy of Athens, Athens, Greece (Dr Polissidis)
| | - Nafsika Poulia
- Department of Pharmacology, Faculty of Medicine, School of Health Sciences, University of Ioannina, Ioannina, Greece (Dr Delis, Dr Polissidis, Ms Poulia, and Dr Anoniou)
| | - Zuzana Justinova
- Preclinical Pharmacology Section, Behavioral Neuroscience Research Branch, Intramural Research Program, National Institute on Drug Abuse, NIH, DHHS, Baltimore, MD (Drs Justinova and Goldberg)
| | - George G. Nomikos
- Global Clinical Science, Takeda Development Center Americas, Inc, Deerfield, IL (Dr Nomikos)
| | - Steven R. Goldberg
- Preclinical Pharmacology Section, Behavioral Neuroscience Research Branch, Intramural Research Program, National Institute on Drug Abuse, NIH, DHHS, Baltimore, MD (Drs Justinova and Goldberg)
| | - Katerina Antoniou
- Department of Pharmacology, Faculty of Medicine, School of Health Sciences, University of Ioannina, Ioannina, Greece (Dr Delis, Dr Polissidis, Ms Poulia, and Dr Anoniou)
| |
Collapse
|
39
|
Guegan T, Cebrià JP, Maldonado R, Martin M. Morphine-induced locomotor sensitization produces structural plasticity in the mesocorticolimbic system dependent on CB1-R activity. Addict Biol 2016; 21:1113-1126. [PMID: 26179931 DOI: 10.1111/adb.12281] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Changes in structural plasticity produced by the chronic exposure to drugs of abuse, such as alterations in dendritic spine densities, participate in the development of maladaptive learning processes leading to drug addiction. Understanding the neurobiological mechanisms involved in these aberrant changes is crucial to clarify the neurobiological substrate of addiction. Drug-induced locomotor sensitization has been widely accepted as a useful animal model to study these mechanisms related to drug addiction. We have evaluated the changes in structural plasticity in the mesocorticolimbic system involved in morphine-induced locomotor sensitization. The role of the cannabinoid receptor type 1 (CB1-R) in these neuroplastic alterations has also been studied using CB1-R-deficient (CB1-R KO) mice. Structural plasticity changes promoted by morphine are a highly dynamic phenomenon that evolves during the entire time course of the behavioral sensitization in wild-type (WT) animals. The different phases of the sensitization process were related to specific changes in connectivity between neurons revealed by modifications in dendritic spines in specific areas of the mesocorticolimbic system. Moreover, the lack of morphine-induced locomotor sensitization in CB1-R KO mice was accompanied by abnormal alterations in structural plasticity in the same mesocorticolimbic areas. These specific structural plasticity changes mediated by CB1-R activity seem necessary for the normal progression of morphine-induced locomotor sensitization and could play a critical role in the addictive process.
Collapse
Affiliation(s)
- Thomas Guegan
- Laboratory of Neuropharmacology; Parc de Recerca Biomèdica de Barcelona/Universitat Pompeu Fabra; Spain
| | - Joan Pau Cebrià
- Laboratory of Neuropharmacology; Parc de Recerca Biomèdica de Barcelona/Universitat Pompeu Fabra; Spain
| | - Rafael Maldonado
- Laboratory of Neuropharmacology; Parc de Recerca Biomèdica de Barcelona/Universitat Pompeu Fabra; Spain
| | - Miquel Martin
- Laboratory of Neuropharmacology; Parc de Recerca Biomèdica de Barcelona/Universitat Pompeu Fabra; Spain
| |
Collapse
|
40
|
Martín-García E, Bourgoin L, Cathala A, Kasanetz F, Mondesir M, Gutiérrez-Rodriguez A, Reguero L, Fiancette JF, Grandes P, Spampinato U, Maldonado R, Piazza PV, Marsicano G, Deroche-Gamonet V. Differential Control of Cocaine Self-Administration by GABAergic and Glutamatergic CB1 Cannabinoid Receptors. Neuropsychopharmacology 2016; 41:2192-205. [PMID: 26612422 PMCID: PMC4946049 DOI: 10.1038/npp.2015.351] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Revised: 11/13/2015] [Accepted: 11/19/2015] [Indexed: 01/19/2023]
Abstract
The type 1 cannabinoid receptor (CB1) modulates numerous neurobehavioral processes and is therefore explored as a target for the treatment of several mental and neurological diseases. However, previous studies have investigated CB1 by targeting it globally, regardless of its two main neuronal localizations on glutamatergic and GABAergic neurons. In the context of cocaine addiction this lack of selectivity is critical since glutamatergic and GABAergic neuronal transmission is involved in different aspects of the disease. To determine whether CB1 exerts different control on cocaine seeking according to its two main neuronal localizations, we used mutant mice with deleted CB1 in cortical glutamatergic neurons (Glu-CB1) or in forebrain GABAergic neurons (GABA-CB1). In Glu-CB1, gene deletion concerns the dorsal telencephalon, including neocortex, paleocortex, archicortex, hippocampal formation and the cortical portions of the amygdala. In GABA-CB1, it concerns several cortical and non-cortical areas including the dorsal striatum, nucleus accumbens, thalamic, and hypothalamic nuclei. We tested complementary components of cocaine self-administration, separating the influence of primary and conditioned effects. Mechanisms underlying each phenotype were explored using in vivo microdialysis and ex vivo electrophysiology. We show that CB1 expression in forebrain GABAergic neurons controls mouse sensitivity to cocaine, while CB1 expression in cortical glutamatergic neurons controls associative learning processes. In accordance, in the nucleus accumbens, GABA-CB1 receptors control cocaine-induced dopamine release and Glu-CB1 receptors control AMPAR/NMDAR ratio; a marker of synaptic plasticity. Our findings demonstrate a critical distinction of the altered balance of Glu-CB1 and GABA-CB1 activity that could participate in the vulnerability to cocaine abuse and addiction. Moreover, these novel insights advance our understanding of CB1 neuropathophysiology.
Collapse
Affiliation(s)
- Elena Martín-García
- INSERM U862, Pathophysiology of Addiction, NeuroCentre Magendie, Bordeaux, France,University of Bordeaux, Bordeaux, France,Departament de Ciencies Experimentals i de la Salut, Universitat Pompeu Fabra, PRBB, Barcelona, Spain
| | - Lucie Bourgoin
- INSERM U862, Pathophysiology of Addiction, NeuroCentre Magendie, Bordeaux, France,University of Bordeaux, Bordeaux, France
| | - Adeline Cathala
- INSERM U862, Pathophysiology of Addiction, NeuroCentre Magendie, Bordeaux, France,University of Bordeaux, Bordeaux, France
| | - Fernando Kasanetz
- INSERM U862, Pathophysiology of Addiction, NeuroCentre Magendie, Bordeaux, France,University of Bordeaux, Bordeaux, France
| | - Miguel Mondesir
- INSERM U862, Pathophysiology of Addiction, NeuroCentre Magendie, Bordeaux, France,University of Bordeaux, Bordeaux, France
| | - Ana Gutiérrez-Rodriguez
- Department of Neurosciences, Faculty of Medicine and Dentistry, University of the Basque Country UPV/EHU, Leioa, Spain,Achucarro Basque Center for Neuroscience, Bizkaia Science and Technology Park, Zamudio, Spain
| | - Leire Reguero
- Department of Neurosciences, Faculty of Medicine and Dentistry, University of the Basque Country UPV/EHU, Leioa, Spain,Achucarro Basque Center for Neuroscience, Bizkaia Science and Technology Park, Zamudio, Spain
| | - Jean- François Fiancette
- INSERM U862, Pathophysiology of Addiction, NeuroCentre Magendie, Bordeaux, France,University of Bordeaux, Bordeaux, France
| | - Pedro Grandes
- Department of Neurosciences, Faculty of Medicine and Dentistry, University of the Basque Country UPV/EHU, Leioa, Spain,Achucarro Basque Center for Neuroscience, Bizkaia Science and Technology Park, Zamudio, Spain
| | - Umberto Spampinato
- INSERM U862, Pathophysiology of Addiction, NeuroCentre Magendie, Bordeaux, France,University of Bordeaux, Bordeaux, France
| | - Rafael Maldonado
- Departament de Ciencies Experimentals i de la Salut, Universitat Pompeu Fabra, PRBB, Barcelona, Spain
| | - Pier Vincenzo Piazza
- INSERM U862, Pathophysiology of Addiction, NeuroCentre Magendie, Bordeaux, France,University of Bordeaux, Bordeaux, France
| | - Giovanni Marsicano
- University of Bordeaux, Bordeaux, France,INSERM U862, Endocannabinoids and Neuroadaptation, NeuroCentre Magendie, Bordeaux, France
| | - Véronique Deroche-Gamonet
- INSERM U862, Pathophysiology of Addiction, NeuroCentre Magendie, Bordeaux, France,University of Bordeaux, Bordeaux, France,CRI U862, Pathophysiology of Addiction, Neurocentre Magendie, 146 rue Léo Saignat, Bordeaux 33077, France, Tel: +33 5 57 57 36 80, Fax: +33 5 57 57 36 69, E-mail:
| |
Collapse
|
41
|
Tung LW, Lu GL, Lee YH, Yu L, Lee HJ, Leishman E, Bradshaw H, Hwang LL, Hung MS, Mackie K, Zimmer A, Chiou LC. Orexins contribute to restraint stress-induced cocaine relapse by endocannabinoid-mediated disinhibition of dopaminergic neurons. Nat Commun 2016; 7:12199. [PMID: 27448020 PMCID: PMC4961842 DOI: 10.1038/ncomms12199] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 06/10/2016] [Indexed: 12/31/2022] Open
Abstract
Orexins are associated with drug relapse in rodents. Here, we show that acute restraint stress in mice activates lateral hypothalamic (LH) orexin neurons, increases levels of orexin A and 2-arachidonoylglycerol (2-AG) in the ventral tegmental area (VTA), and reinstates extinguished cocaine-conditioned place preference (CPP). This stress-induced reinstatement of cocaine CPP depends on type 1 orexin receptors (OX1Rs), type 1 cannabinoid receptors (CB1Rs) and diacylglycerol lipase (DAGL) in the VTA. In dopaminergic neurons of VTA slices, orexin A presynaptically inhibits GABAergic transmission. This effect is prevented by internal GDP-β-S or inhibiting OX1Rs, CB1Rs, phospholipase C or DAGL, and potentiated by inhibiting 2-AG degradation. These results suggest that restraint stress activates LH orexin neurons, releasing orexins into the VTA to activate postsynaptic OX1Rs of dopaminergic neurons and generate 2-AG through a Gq-protein-phospholipase C-DAGL cascade. 2-AG retrogradely inhibits GABA release through presynaptic CB1Rs, leading to VTA dopaminergic disinhibition and reinstatement of cocaine CPP. Stress is a major cause of relapse to cocaine seeking behaviour. Tung et al. show that orexin mediates stress-induced reinstatement of cocaine seeking behaviour in mice by endocannabinoid-dependent disinhibition in the ventral tegmental area.
Collapse
Affiliation(s)
- Li-Wei Tung
- Graduate Institute of Pharmacology, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Guan-Ling Lu
- Graduate Institute of Pharmacology, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Yen-Hsien Lee
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, No. 250 Wuxing Street, Taipei 11031, Taiwan
| | - Lung Yu
- Institute of Behavioral Medicine, College of Medicine, National Cheng Kung University, No.1, University Road, Tainan City 70101, Taiwan
| | - Hsin-Jung Lee
- Department of Pharmacology, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Emma Leishman
- Gill Center and the Department of Psychological and Brain Sciences, Indiana University, Bloomington, Indiana 47405, USA
| | - Heather Bradshaw
- Gill Center and the Department of Psychological and Brain Sciences, Indiana University, Bloomington, Indiana 47405, USA
| | - Ling-Ling Hwang
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, No. 250 Wuxing Street, Taipei 11031, Taiwan.,Department of Physiology, College of Medicine, Taipei Medical University, No. 250 Wuxing Street, Taipei 11031, Taiwan
| | - Ming-Shiu Hung
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Zhunan, Miaoli County 35053, Taiwan
| | - Ken Mackie
- Gill Center and the Department of Psychological and Brain Sciences, Indiana University, Bloomington, Indiana 47405, USA
| | - Andreas Zimmer
- Institute for Molecular Psychiatry, Medical Faculty, University of Bonn, 53127 Bonn, Germany
| | - Lih-Chu Chiou
- Graduate Institute of Pharmacology, College of Medicine, National Taiwan University, Taipei 100, Taiwan.,Department of Pharmacology, College of Medicine, National Taiwan University, Taipei 100, Taiwan.,Graduate Institute of Brain and Mind Sciences, College of Medicine, National Taiwan University, Taipei 100, Taiwan.,Research Center for Chinese Medicine &Acupuncture, China Medical University, Taichung 40447, Taiwan
| |
Collapse
|
42
|
Wills KL, Parker LA. Effect of Pharmacological Modulation of the Endocannabinoid System on Opiate Withdrawal: A Review of the Preclinical Animal Literature. Front Pharmacol 2016; 7:187. [PMID: 27445822 PMCID: PMC4923145 DOI: 10.3389/fphar.2016.00187] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 06/13/2016] [Indexed: 01/20/2023] Open
Abstract
Over the years, animal studies have revealed a role for the endocannabinoid system in the regulation of multiple aspects of opiate addiction. The current review provides an overview of this literature in regards to opiate withdrawal. The opiate withdrawal syndrome, hypothesized to act as a negative reinforcer in mediating continued drug use, can be characterized by the emergence of spontaneous or precipitated aversive somatic and affective states following the termination of drug use. The behaviors measured to quantify somatic opiate withdrawal and the paradigms employed to assess affective opiate withdrawal (e.g., conditioned place aversion) in both acutely and chronically dependent animals are discussed in relation to the ability of the endocannabinoid system to modulate these behaviors. Additionally, the brain regions mediating somatic and affective opiate withdrawal are elucidated with respect to their modulation by the endocannabinoid system. Ultimately, a review of these findings reveals dissociations between the brain regions mediating somatic and affective opiate withdrawal, and the ability of cannabinoid type 1 (CB1) receptor agonism/antagonism to interfere with opiate withdrawal within different brain sub regions.
Collapse
Affiliation(s)
- Kiri L Wills
- Department of Psychology and Collaborative Neuroscience Program, University of Guelph, Guelph ON, Canada
| | - Linda A Parker
- Department of Psychology and Collaborative Neuroscience Program, University of Guelph, Guelph ON, Canada
| |
Collapse
|
43
|
Blanco E, Galeano P, Palomino A, Pavón FJ, Rivera P, Serrano A, Alen F, Rubio L, Vargas A, Castilla-Ortega E, Decara J, Bilbao A, de Fonseca FR, Suárez J. Cocaine-induced behavioral sensitization decreases the expression of endocannabinoid signaling-related proteins in the mouse hippocampus. Eur Neuropsychopharmacol 2016; 26:477-92. [PMID: 26811312 DOI: 10.1016/j.euroneuro.2015.12.040] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2015] [Revised: 12/15/2015] [Accepted: 12/29/2015] [Indexed: 02/02/2023]
Abstract
In the reward mesocorticolimbic circuits, the glutamatergic and endocannabinoid systems are implicated in neurobiological mechanisms underlying cocaine addiction. However, the involvement of both systems in the hippocampus, a critical region to process relational information relevant for encoding drug-associated memories, in cocaine-related behaviors remains unknown. In the present work, we studied whether the hippocampal gene/protein expression of relevant glutamate signaling components, including glutamate-synthesizing enzymes and metabotropic and ionotropic receptors, and the hippocampal gene/protein expression of cannabinoid type 1 (CB1) receptor and endocannabinoid metabolic enzymes were altered following acute and/or repeated cocaine administration resulting in conditioned locomotion and locomotor sensitization. Results showed that acute cocaine administration induced an overall down-regulation of glutamate-related gene expression and, specifically, a low phosphorylation level of GluA1. In contrast, locomotor sensitization to cocaine produced an up-regulation of several glutamate receptor-related genes and, specifically, an increased protein expression of the GluN1 receptor subunit. Regarding the endocannabinoid system, acute and repeated cocaine administration were associated with an increased gene/protein expression of CB1 receptors and a decreased gene/protein expression of the endocannabinoid-synthesis enzymes N-acyl phosphatidylethanolamine D (NAPE-PLD) and diacylglycerol lipase alpha (DAGLα). These changes resulted in an overall decrease in endocannabinoid synthesis/degradation ratios, especially NAPE-PLD/fatty acid amide hydrolase and DAGLα/monoacylglycerol lipase, suggesting a reduced endocannabinoid production associated with a compensatory up-regulation of CB1 receptor. Overall, these findings suggest that repeated cocaine administration resulting in locomotor sensitization induces a down-regulation of the endocannabinoid signaling that could contribute to the specifically increased GluN1 expression observed in the hippocampus of cocaine-sensitized mice.
Collapse
Affiliation(s)
- Eduardo Blanco
- Unidad de Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga, Hospital Regional Universitario de Málaga, Universidad de Málaga, Avda. Carlos Haya 82, 29010, Málaga, Spain; Departament de Pedagogia i Psicologia, Facultat d׳Educació, Psicologia i Treball Social, Universitat de Lleida, Avda. de l'Estudi General 4, 25001, Lleida, Spain.
| | - Pablo Galeano
- Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA-CONICET), Fundación Instituto Leloir, Avda. Patricias Argentinas 435, C1405BWE Ciudad Autónoma de Buenos Aires, Argentina.
| | - Ana Palomino
- Unidad de Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga, Hospital Regional Universitario de Málaga, Universidad de Málaga, Avda. Carlos Haya 82, 29010, Málaga, Spain.
| | - Francisco J Pavón
- Unidad de Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga, Hospital Regional Universitario de Málaga, Universidad de Málaga, Avda. Carlos Haya 82, 29010, Málaga, Spain.
| | - Patricia Rivera
- Unidad de Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga, Hospital Regional Universitario de Málaga, Universidad de Málaga, Avda. Carlos Haya 82, 29010, Málaga, Spain.
| | - Antonia Serrano
- Unidad de Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga, Hospital Regional Universitario de Málaga, Universidad de Málaga, Avda. Carlos Haya 82, 29010, Málaga, Spain.
| | - Francisco Alen
- Unidad de Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga, Hospital Regional Universitario de Málaga, Universidad de Málaga, Avda. Carlos Haya 82, 29010, Málaga, Spain.
| | - Leticia Rubio
- Departamento de Anatomía y Medicina Legal, Universidad de Málaga, Campus de Teatinos s/n, 29071 Málaga, Spain.
| | - Antonio Vargas
- Unidad de Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga, Hospital Regional Universitario de Málaga, Universidad de Málaga, Avda. Carlos Haya 82, 29010, Málaga, Spain.
| | - Estela Castilla-Ortega
- Unidad de Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga, Hospital Regional Universitario de Málaga, Universidad de Málaga, Avda. Carlos Haya 82, 29010, Málaga, Spain.
| | - Juan Decara
- Unidad de Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga, Hospital Regional Universitario de Málaga, Universidad de Málaga, Avda. Carlos Haya 82, 29010, Málaga, Spain.
| | - Ainhoa Bilbao
- Institute of Psychopharmacology, Central Institute of Mental Health, Faculty of Medicine Mannheim, University of Heidelberg, J5, 68159 Mannheim, Heidelberg, Germany.
| | - Fernando Rodríguez de Fonseca
- Unidad de Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga, Hospital Regional Universitario de Málaga, Universidad de Málaga, Avda. Carlos Haya 82, 29010, Málaga, Spain.
| | - Juan Suárez
- Unidad de Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga, Hospital Regional Universitario de Málaga, Universidad de Málaga, Avda. Carlos Haya 82, 29010, Málaga, Spain.
| |
Collapse
|
44
|
CB1 Cannabinoid Agonist (WIN55,212-2) Within the Basolateral Amygdala Induced Sensitization to Morphine and Increased the Level of μ-Opioid Receptor and c-fos in the Nucleus Accumbens. J Mol Neurosci 2016; 58:446-55. [DOI: 10.1007/s12031-016-0716-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 01/12/2016] [Indexed: 12/17/2022]
|
45
|
Pitman KA, Borgland SL. Changes in mu-opioid receptor expression and function in the mesolimbic system after long-term access to a palatable diet. Pharmacol Ther 2015. [DOI: 10.1016/j.pharmthera.2015.07.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
46
|
Kitanaka J, Kitanaka N, Hall FS, Fujii M, Goto A, Kanda Y, Koizumi A, Kuroiwa H, Mibayashi S, Muranishi Y, Otaki S, Sumikawa M, Tanaka KI, Nishiyama N, Uhl GR, Takemura M. Memory impairment and reduced exploratory behavior in mice after administration of systemic morphine. J Exp Neurosci 2015; 9:27-35. [PMID: 25987850 PMCID: PMC4428380 DOI: 10.4137/jen.s25057] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Revised: 03/16/2015] [Accepted: 03/19/2015] [Indexed: 01/28/2023] Open
Abstract
In the present study, the effects of morphine were examined on tests of spatial memory, object exploration, locomotion, and anxiety in male ICR mice. Administration of morphine (15 or 30 mg/kg, intraperitoneally (i.p.)) induced a significant decrease in Y-maze alternations compared to saline vehicle-treated mice. The reduced Y-maze alternations induced by morphine were completely blocked by naloxone (15 mg/kg) or β-funaltrexamine (5 mg/kg) but not by norbinaltorphimine (5 mg/kg) or naltrindole (5 mg/kg), suggesting that the morphine-induced spatial memory impairment was mediated predominantly by μ-opioid receptors (MOPs). Significant spatial memory retrieval impairments were observed in the Morris water maze (MWM) in mice treated with morphine (15 mg/kg) or scopolamine (1 mg/kg), but not with naloxone or morphine plus naloxone. Reduced exploratory time was observed in mice after administration of morphine (15 mg/kg), in a novel-object exploration test, without any changes in locomotor activity. No anxiolytic-like behavior was observed in morphine-treated mice in the elevated plus maze. A significant reduction in buried marbles was observed in morphine-treated mice measured in the marble-burying test, which was blocked by naloxone. These observations suggest that morphine induces impairments in spatial short-term memory and retrieval, and reduces exploratory behavior, but that these effects are not because of overall changes in locomotion or anxiety.
Collapse
Affiliation(s)
- Junichi Kitanaka
- Department of Pharmacology, Hyogo College of Medicine, Hyogo, Japan
| | - Nobue Kitanaka
- Department of Pharmacology, Hyogo College of Medicine, Hyogo, Japan
| | - F Scott Hall
- Department of Pharmacology, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH, USA
| | - Mei Fujii
- Department of Pharmacology, Hyogo College of Medicine, Hyogo, Japan
| | - Akiko Goto
- Department of Pharmacology, Hyogo College of Medicine, Hyogo, Japan
| | - Yusuke Kanda
- Department of Pharmacology, Hyogo College of Medicine, Hyogo, Japan
| | - Akira Koizumi
- Department of Pharmacology, Hyogo College of Medicine, Hyogo, Japan
| | | | - Satoko Mibayashi
- Department of Pharmacology, Hyogo College of Medicine, Hyogo, Japan
| | - Yumi Muranishi
- Department of Pharmacology, Hyogo College of Medicine, Hyogo, Japan
| | - Soichiro Otaki
- Department of Pharmacology, Hyogo College of Medicine, Hyogo, Japan
| | - Minako Sumikawa
- Department of Pharmacology, Hyogo College of Medicine, Hyogo, Japan
| | - Koh-Ichi Tanaka
- Division of Pharmacology, Department of Pharmacy, School of Pharmacy, Hyogo University of Health Sciences, Hyogo, Japan
| | - Nobuyoshi Nishiyama
- Division of Pharmacology, Department of Pharmacy, School of Pharmacy, Hyogo University of Health Sciences, Hyogo, Japan. ; The Office of the Dean, School of Pharmacy, Hyogo University of Health Sciences, Hyogo, Japan
| | - George R Uhl
- Molecular Neurobiology Branch, National Institute on Drug Abuse-Intramural Research Program, Baltimore, MD, USA
| | | |
Collapse
|
47
|
BDNF interacts with endocannabinoids to regulate cocaine-induced synaptic plasticity in mouse midbrain dopamine neurons. J Neurosci 2015; 35:4469-81. [PMID: 25762688 DOI: 10.1523/jneurosci.2924-14.2015] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Brain-derived neurotrophic factor (BDNF) and endocannabinoids (eCBs) have been individually implicated in behavioral effects of cocaine. The present study examined how BDNF-eCB interaction regulates cocaine-induced synaptic plasticity in the ventral tegmental area and behavioral effects. We report that BDNF and selective tyrosine kinase receptor B (TrkB) agonist 7,8-dihydroxyflavone (DHF) activated the TrkB receptor to facilitate two forms of eCB-mediated synaptic depression, depolarization-induced suppression of inhibition (DSI), and long-term depression (I-LTD) of IPSCs in ventral tegmental area dopamine neurons in mouse midbrain slices. The facilitation appears to be mediated by an increase in eCB production via phospholipase Cγ pathway, but not by an increase in CB1 receptor responsiveness or a decrease in eCB hydrolysis. Using Cre-loxP technology to specifically delete BDNF in dopamine neurons, we showed that eCB-mediated I-LTD, cocaine-induced reduction of GABAergic inhibition, and potentiation of glutamatergic excitation remained intact in wild-type control mice, but were impaired in BDNF conditional knock-out mice. We also showed that cocaine-induced conditioned place preference was attenuated in BDNF conditional knock-out mice, in vivo pretreatments with DHF before place conditioning restored cocaine conditioned place preference in these mice, and the behavioral effect of DHF was blocked by a CB₁ receptor antagonist. Together, these results suggest that BDNF in dopamine neurons regulates eCB responses, cocaine-induced synaptic plasticity, and associative learning.
Collapse
|
48
|
Fatahi Z, Assar N, Mahmoudi D, Pahlevani P, Moradi M, Haghparast A. Functional interaction between the orexin-1 and CB1 receptors within the nucleus accumbens in the conditioned place preference induced by the lateral hypothalamus stimulation. Pharmacol Biochem Behav 2015; 132:42-48. [DOI: 10.1016/j.pbb.2015.02.023] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Revised: 02/17/2015] [Accepted: 02/21/2015] [Indexed: 10/23/2022]
|
49
|
Hu SSJ, Liu YW, Yu L. Medial prefrontal cannabinoid CB1 receptors modulate consolidation and extinction of cocaine-associated memory in mice. Psychopharmacology (Berl) 2015; 232:1803-15. [PMID: 25420608 DOI: 10.1007/s00213-014-3812-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Accepted: 11/10/2014] [Indexed: 01/06/2023]
Abstract
RATIONALE Cannabinoid CB1 receptors are implicated in various forms of learning and memory, including acquisition and reinstatement of cocaine-associated memory. However, roles of CB1 receptors in consolidation and extinction processes of cocaine-associated memory and the brain areas potentially involved remain unknown. OBJECTIVE This study examined the effect of rimonabant, a CB1 receptor antagonist, administered systemically or directly into the medial prefrontal cortex (mPFC) on memory consolidation and extinction of cocaine-induced conditioned place preference (CPP). MATERIALS AND METHODS Male C57BL/6J mice were trained to acquire cocaine-induced CPP. Rimonabant (0.1-3 mg/kg, i.p. or 1.5 μg bilaterally in the mPFC) or vehicle was administered either immediately after each CPP training (consolidation) or forced extinction (extinction) trial. Cocaine-induced CPP was tested after training, extinction, or cocaine priming. RESULTS Systemic or intra-mPFC administration of rimonabant impaired consolidation of CPP induced by a high dose (20 or 40 mg/kg) of cocaine but facilitated that induced by a low dose (2.5, 5, or 10 mg/kg). Moreover, systemic or intra-mPFC administration of rimonabant enhanced extinction of CPP memory induced by a high-dose (20 mg/kg) cocaine. CONCLUSION Our results suggest that antagonism of CB1 receptors in the mPFC bidirectionally modulates consolidation but facilitates extinction of cocaine-induced CPP memory. Therefore, CB1 receptor blockade with the concomitant extinction behavioral procedure may hint important therapeutic intervention strategies for the heavy cocaine addicts in a clinical setting.
Collapse
Affiliation(s)
- Sherry Shu-Jung Hu
- Cannabinoid Signaling Laboratory, Department of Psychology, National Cheng Kung University, 1 University Rd., Tainan, 70101, Taiwan,
| | | | | |
Collapse
|
50
|
Befort K. Interactions of the opioid and cannabinoid systems in reward: Insights from knockout studies. Front Pharmacol 2015; 6:6. [PMID: 25698968 PMCID: PMC4318341 DOI: 10.3389/fphar.2015.00006] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Accepted: 01/08/2015] [Indexed: 12/14/2022] Open
Abstract
The opioid system consists of three receptors, mu, delta, and kappa, which are activated by endogenous opioid peptides (enkephalins, endorphins, and dynorphins). The endogenous cannabinoid system comprises lipid neuromodulators (endocannabinoids), enzymes for their synthesis and their degradation and two well-characterized receptors, cannabinoid receptors CB1 and CB2. These systems play a major role in the control of pain as well as in mood regulation, reward processing and the development of addiction. Both opioid and cannabinoid receptors are coupled to G proteins and are expressed throughout the brain reinforcement circuitry. Extending classical pharmacology, research using genetically modified mice has provided important progress in the identification of the specific contribution of each component of these endogenous systems in vivo on reward process. This review will summarize available genetic tools and our present knowledge on the consequences of gene knockout on reinforced behaviors in both systems, with a focus on their potential interactions. A better understanding of opioid-cannabinoid interactions may provide novel strategies for therapies in addicted individuals.
Collapse
Affiliation(s)
- Katia Befort
- CNRS, Laboratoire de Neurosciences Cognitives et Adaptatives - UMR7364, Faculté de Psychologie, Neuropôle de Strasbourg - Université de Strasbourg, Strasbourg France
| |
Collapse
|