1
|
Somach RT, Lim MM, Cohen AS. Effects of Traumatic Brain Injury on the Orexin/Hypocretin System. Neurotrauma Rep 2025; 6:322-335. [PMID: 40309161 PMCID: PMC12040569 DOI: 10.1089/neur.2024.0111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2025] Open
Abstract
Traumatic Brain Injuries (TBIs) are known to cause a myriad of symptoms in patients. One common symptom after injury is sleep disruptions. One neuropeptide system has been studied repeatedly as a potential cause of sleep disruptions after TBI- the orexin/hypocretin system. Orexin promotes wakefulness and arousal while disrupting the orexin system causes increased sleepiness and narcolepsy. Studies of TBI in human and animal subjects have shown that TBI affects the orexin system. This review serves as an overview of how TBI affects the orexin/hypocretin system, including structural and functional changes to the neurons after injury. This review is the first to include studies that examine how TBI affects orexin/hypocretin receptors. This review also examines how sex is accounted for in the studies of the orexin system after TBI.
Collapse
Affiliation(s)
| | - Miranda M. Lim
- Oregon Health and Science University, Portland, Oregon, USA
- VA Portland Health Care System, Portland, Oregon, USA
| | - Akiva S. Cohen
- Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
2
|
Bjorness TE, Greene RW. Orexin-mediated motivated arousal and reward seeking. Peptides 2024; 180:171280. [PMID: 39159833 DOI: 10.1016/j.peptides.2024.171280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 08/03/2024] [Accepted: 08/05/2024] [Indexed: 08/21/2024]
Abstract
The neuromodulator orexin has been identified as a key factor for motivated arousal including recent evidence that sleep deprivation-induced enhancement of reward behavior is modulated by orexin. While orexin is not necessary for either reward or arousal behavior, orexin neurons' broad projections, ability to sense the internal state of the animal, and high plasticity of signaling in response to natural rewards and drugs of abuse may underlie heightened drug seeking, particularly in a subset of highly motivated reward seekers. As such, orexin receptor antagonists have gained deserved attention for putative use in addiction treatments. Ongoing and future clinical trials are expected to identify individuals most likely to benefit from orexin receptor antagonist treatment to promote abstinence, such as those with concurrent sleep disorders or high craving, while attention to methodological considerations will aid interpretation of the numerous preclinical studies investigating disparate aspects of the role of orexin in reward and arousal.
Collapse
Affiliation(s)
- Theresa E Bjorness
- Research Service, VA North Texas Health Care System, Dallas, TX 75126, USA; Departments of Psychiatry University of Texas Southwestern Medical Center, Dallas, TX 75390-9111, USA.
| | - Robert W Greene
- Departments of Psychiatry University of Texas Southwestern Medical Center, Dallas, TX 75390-9111, USA; Department of Neuroscience, Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390-9111, USA; International Institute for Integrative Sleep Medicine, University of Tsukuba, Tsukuba 305-8577, Japan
| |
Collapse
|
3
|
Kukkonen JP, Jacobson LH, Hoyer D, Rinne MK, Borgland SL. International Union of Basic and Clinical Pharmacology CXIV: Orexin Receptor Function, Nomenclature and Pharmacology. Pharmacol Rev 2024; 76:625-688. [PMID: 38902035 DOI: 10.1124/pharmrev.123.000953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 06/02/2024] [Accepted: 06/06/2024] [Indexed: 06/22/2024] Open
Abstract
The orexin system consists of the peptide transmitters orexin-A and -B and the G protein-coupled orexin receptors OX1 and OX2 Orexin receptors are capable of coupling to all four families of heterotrimeric G proteins, and there are also other complex features of the orexin receptor signaling. The system was discovered 25 years ago and was immediately identified as a central regulator of sleep and wakefulness; this is exemplified by the symptomatology of the disorder narcolepsy with cataplexy, in which orexinergic neurons degenerate. Subsequent translation of these findings into drug discovery and development has resulted to date in three clinically used orexin receptor antagonists to treat insomnia. In addition to sleep and wakefulness, the orexin system appears to be a central player at least in addiction and reward, and has a role in depression, anxiety and pain gating. Additional antagonists and agonists are in development to treat, for instance, insomnia, narcolepsy with or without cataplexy and other disorders with excessive daytime sleepiness, depression with insomnia, anxiety, schizophrenia, as well as eating and substance use disorders. The orexin system has thus proved an important regulator of numerous neural functions and a valuable drug target. Orexin prepro-peptide and orexin receptors are also expressed outside the central nervous system, but their potential physiological roles there remain unknown. SIGNIFICANCE STATEMENT: The orexin system was discovered 25 years ago and immediately emerged as an essential sleep-wakefulness regulator. This discovery has tremendously increased the understanding of these processes and has thus far resulted in the market approval of three orexin receptor antagonists, which promote more physiological aspects of sleep than previous hypnotics. Further, orexin receptor agonists and antagonists with different pharmacodynamic properties are in development since research has revealed additional potential therapeutic indications. Orexin receptor signaling is complex and may represent novel features.
Collapse
Affiliation(s)
- Jyrki P Kukkonen
- Department of Pharmacology, Medicum, University of Helsinki, Helsinki, Finland (J.P.K., M.K.R.); Department of Biochemistry and Pharmacology, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne (D.H., L.H.J.), The Florey (D.H., L.H.J.), Parkville, Victoria, Australia; Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California (D.H.); and Department of Physiology and Pharmacology, University of Calgary, Calgary Canada (S.L.B.)
| | - Laura H Jacobson
- Department of Pharmacology, Medicum, University of Helsinki, Helsinki, Finland (J.P.K., M.K.R.); Department of Biochemistry and Pharmacology, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne (D.H., L.H.J.), The Florey (D.H., L.H.J.), Parkville, Victoria, Australia; Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California (D.H.); and Department of Physiology and Pharmacology, University of Calgary, Calgary Canada (S.L.B.)
| | - Daniel Hoyer
- Department of Pharmacology, Medicum, University of Helsinki, Helsinki, Finland (J.P.K., M.K.R.); Department of Biochemistry and Pharmacology, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne (D.H., L.H.J.), The Florey (D.H., L.H.J.), Parkville, Victoria, Australia; Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California (D.H.); and Department of Physiology and Pharmacology, University of Calgary, Calgary Canada (S.L.B.)
| | - Maiju K Rinne
- Department of Pharmacology, Medicum, University of Helsinki, Helsinki, Finland (J.P.K., M.K.R.); Department of Biochemistry and Pharmacology, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne (D.H., L.H.J.), The Florey (D.H., L.H.J.), Parkville, Victoria, Australia; Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California (D.H.); and Department of Physiology and Pharmacology, University of Calgary, Calgary Canada (S.L.B.)
| | - Stephanie L Borgland
- Department of Pharmacology, Medicum, University of Helsinki, Helsinki, Finland (J.P.K., M.K.R.); Department of Biochemistry and Pharmacology, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne (D.H., L.H.J.), The Florey (D.H., L.H.J.), Parkville, Victoria, Australia; Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California (D.H.); and Department of Physiology and Pharmacology, University of Calgary, Calgary Canada (S.L.B.)
| |
Collapse
|
4
|
Braun A, Manavis J, Yamanaka A, Ootsuka Y, Blumbergs P, Bobrovskaya L. The role of orexin in Parkinson's disease. J Neurosci Res 2024; 102:e25322. [PMID: 38520160 DOI: 10.1002/jnr.25322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 02/28/2024] [Accepted: 03/09/2024] [Indexed: 03/25/2024]
Abstract
Emerging evidence has implicated the orexin system in non-motor pathogenesis of Parkinson's disease. It has also been suggested the orexin system is involved in the modulation of motor control, further implicating the orexin system in Parkinson's disease. Parkinson's disease is the second most common neurodegenerative disease with millions of people suffering worldwide with motor and non-motor symptoms, significantly affecting their quality of life. Treatments are based solely on symptomatic management and no cure currently exists. The orexin system has the potential to be a treatment target in Parkinson's disease, particularly in the non-motor stage. In this review, the most current evidence on the orexin system in Parkinson's disease and its potential role in motor and non-motor symptoms of the disease is summarized. This review begins with a brief overview of Parkinson's disease, animal models of the disease, and the orexin system. This leads into discussion of the possible roles of orexin neurons in Parkinson's disease and levels of orexin in the cerebral spinal fluid and plasma in Parkinson's disease and animal models of the disease. The role of orexin is then discussed in relation to symptoms of the disease including motor control, sleep, cognitive impairment, psychological behaviors, and the gastrointestinal system. The neuroprotective effects of orexin are also summarized in preclinical models of the disease.
Collapse
Affiliation(s)
- Alisha Braun
- Health and Biomedical Innovation, Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Jim Manavis
- Discipline of Anatomy and Pathology, Adelaide Medical School, University of Adelaide, Adelaide, South Australia, Australia
| | | | - Youichirou Ootsuka
- College of Medicine and Public Health, Flinders Medical and Health Research Institute, Flinders University, Adelaide, South Australia, Australia
| | - Peter Blumbergs
- Discipline of Anatomy and Pathology, Adelaide Medical School, University of Adelaide, Adelaide, South Australia, Australia
| | - Larisa Bobrovskaya
- Health and Biomedical Innovation, Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| |
Collapse
|
5
|
Somach RT, Jean ID, Farrugia AM, Cohen AS. Mild Traumatic Brain Injury Affects Orexin/Hypocretin Physiology Differently in Male and Female Mice. J Neurotrauma 2023; 40:2146-2163. [PMID: 37476962 PMCID: PMC10701510 DOI: 10.1089/neu.2023.0125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/22/2023] Open
Abstract
Traumatic brain injury (TBI) is known to affect the physiology of neural circuits in several brain regions, which can contribute to behavioral changes after injury. Disordered sleep is a behavior that is often seen after TBI, but there is little research into how injury affects the circuitry that contributes to disrupted sleep regulation. Orexin/hypocretin neurons (hereafter referred to as orexin neurons) located in the lateral hypothalamus normally stabilize wakefulness in healthy animals and have been suggested as a source of dysregulated sleep behavior. Despite this, few studies have examined how TBI affects orexin neuron circuitry. Further, almost no animal studies of orexin neurons after TBI have included female animals. Here, we address these gaps by studying changes to orexin physiology using ex vivo acute brain slices and whole-cell patch clamp recording. We hypothesized that orexin neurons would have reduced afferent excitatory activity after injury. Ultimately, this hypothesis was supported but there were additional physiological changes that occurred that we did not originally hypothesize. We studied physiological properties in orexin neurons approximately 1 week after mild traumatic brain injury (mTBI) in 6-8-week-old male and female mice. mTBI was performed with a lateral fluid percussion injury between 1.4 and 1.6 atmospheres. Mild TBI increased the size of action potential afterhyperpolarization in orexin neurons from female mice, but not male mice and reduced the action potential threshold in male mice, but not in female mice. Mild TBI reduced afferent excitatory activity and increased afferent inhibitory activity onto orexin neurons. Alterations in afferent excitatory activity occurred in different parameters in male and female animals. The increased afferent inhibitory activity after injury is more pronounced in recordings from female animals. Our results indicate that mTBI changes the physiology of orexin neuron circuitry and that these changes are not the same in male and female animals.
Collapse
Affiliation(s)
- Rebecca T. Somach
- Department of Anesthesiology and Critical Care Medicine, the Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Anesthesiology and Critical Care Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Neuroscience Graduate Group, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Ian D. Jean
- Department of Anesthesiology and Critical Care Medicine, the Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Anthony M. Farrugia
- Department of Anesthesiology and Critical Care Medicine, the Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Anesthesiology and Critical Care Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Akiva S. Cohen
- Department of Anesthesiology and Critical Care Medicine, the Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Anesthesiology and Critical Care Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Neuroscience Graduate Group, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
6
|
Yoshimura M, Flynn BP, Kershaw YM, Zhao Z, Ueta Y, Lightman SL, Conway-Campbell BL. Phase-shifting the circadian glucocorticoid profile induces disordered feeding behaviour by dysregulating hypothalamic neuropeptide gene expression. Commun Biol 2023; 6:998. [PMID: 37775688 PMCID: PMC10541449 DOI: 10.1038/s42003-023-05347-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 09/12/2023] [Indexed: 10/01/2023] Open
Abstract
Here we demonstrate, in rodents, how the timing of feeding behaviour becomes disordered when circulating glucocorticoid rhythms are dissociated from lighting cues; a phenomenon most commonly associated with shift-work and transmeridian travel 'jetlag'. Adrenalectomized rats are infused with physiological patterns of corticosterone modelled on the endogenous adrenal secretory profile, either in-phase or out-of-phase with lighting cues. For the in-phase group, food intake is significantly greater during the rats' active period compared to their inactive period; a feeding pattern similar to adrenal-intact control rats. In contrast, the feeding pattern of the out-of-phase group is significantly dysregulated. Consistent with a direct hypothalamic modulation of feeding behaviour, this altered timing is accompanied by dysregulated timing of anorexigenic and orexigenic neuropeptide gene expression. For Neuropeptide Y (Npy), we report a glucocorticoid-dependent direct transcriptional regulation mechanism mediated by the glucocorticoid receptor (GR). Taken together, our data highlight the adverse behavioural outcomes that can arise when two circadian systems have anti-phasic cues, in this case impacting on the glucocorticoid-regulation of a process as fundamental to health as feeding behaviour. Our findings further highlight the need for development of rational approaches in the prevention of metabolic dysfunction in circadian-disrupting activities such as transmeridian travel and shift-work.
Collapse
Affiliation(s)
- Mitsuhiro Yoshimura
- Translational Health Sciences, Bristol Medical School, University of Bristol Dorothy Hodgkin Building, Whitson Street, Bristol, BS1 3NY, UK
- Department of Physiology, University of Occupational and Environmental Health, Japan 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, 807-8555, Japan
| | - Benjamin P Flynn
- Translational Health Sciences, Bristol Medical School, University of Bristol Dorothy Hodgkin Building, Whitson Street, Bristol, BS1 3NY, UK
| | - Yvonne M Kershaw
- Translational Health Sciences, Bristol Medical School, University of Bristol Dorothy Hodgkin Building, Whitson Street, Bristol, BS1 3NY, UK
| | - Zidong Zhao
- Translational Health Sciences, Bristol Medical School, University of Bristol Dorothy Hodgkin Building, Whitson Street, Bristol, BS1 3NY, UK
| | - Yoichi Ueta
- Department of Physiology, University of Occupational and Environmental Health, Japan 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, 807-8555, Japan
| | - Stafford L Lightman
- Translational Health Sciences, Bristol Medical School, University of Bristol Dorothy Hodgkin Building, Whitson Street, Bristol, BS1 3NY, UK
| | - Becky L Conway-Campbell
- Translational Health Sciences, Bristol Medical School, University of Bristol Dorothy Hodgkin Building, Whitson Street, Bristol, BS1 3NY, UK.
| |
Collapse
|
7
|
Bouâouda H, Jha PK. Orexin and MCH neurons: regulators of sleep and metabolism. Front Neurosci 2023; 17:1230428. [PMID: 37674517 PMCID: PMC10478345 DOI: 10.3389/fnins.2023.1230428] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 08/07/2023] [Indexed: 09/08/2023] Open
Abstract
Sleep-wake and fasting-feeding are tightly coupled behavioral states that require coordination between several brain regions. The mammalian lateral hypothalamus (LH) is a functionally and anatomically complex brain region harboring heterogeneous cell populations that regulate sleep, feeding, and energy metabolism. Significant attempts were made to understand the cellular and circuit bases of LH actions. Rapid advancements in genetic and electrophysiological manipulation help to understand the role of discrete LH cell populations. The opposing action of LH orexin/hypocretin and melanin-concentrating hormone (MCH) neurons on metabolic sensing and sleep-wake regulation make them the candidate to explore in detail. This review surveys the molecular, genetic, and neuronal components of orexin and MCH signaling in the regulation of sleep and metabolism.
Collapse
Affiliation(s)
- Hanan Bouâouda
- Pharmacology Institute, Medical Faculty Heidelberg, Heidelberg University, Heidelberg, Germany
| | - Pawan Kumar Jha
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
8
|
Gangitano E, Martinez-Sanchez N, Bellini MI, Urciuoli I, Monterisi S, Mariani S, Ray D, Gnessi L. Weight Loss and Sleep, Current Evidence in Animal Models and Humans. Nutrients 2023; 15:3431. [PMID: 37571368 PMCID: PMC10420950 DOI: 10.3390/nu15153431] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/24/2023] [Accepted: 07/27/2023] [Indexed: 08/13/2023] Open
Abstract
Sleep is a vital process essential for survival. The trend of reduction in the time dedicated to sleep has increased in industrialized countries, together with the dramatic increase in the prevalence of obesity and diabetes. Short sleep may increase the risk of obesity, diabetes and cardiovascular disease, and on the other hand, obesity is associated with sleep disorders, such as obstructive apnea disease, insomnia and excessive daytime sleepiness. Sleep and metabolic disorders are linked; therefore, identifying the physiological and molecular pathways involved in sleep regulation and metabolic homeostasis can play a major role in ameliorating the metabolic health of the individual. Approaches aimed at reducing body weight could provide benefits for both cardiometabolic risk and sleep quality, which indirectly, in turn, may determine an amelioration of the cardiometabolic phenotype of individuals. We revised the literature on weight loss and sleep, focusing on the mechanisms and the molecules that may subtend this relationship in humans as in animal models.
Collapse
Affiliation(s)
- Elena Gangitano
- OCDEM Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford OX3 7LE, UK
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy
| | - Noelia Martinez-Sanchez
- OCDEM Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford OX3 7LE, UK
| | | | - Irene Urciuoli
- Department of Surgery, Sapienza University of Rome, 00161 Rome, Italy
| | - Stefania Monterisi
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, UK
| | - Stefania Mariani
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy
| | - David Ray
- OCDEM Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford OX3 7LE, UK
| | - Lucio Gnessi
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy
| |
Collapse
|
9
|
Li Y, Guo Z, Cai C, Liu D, Kang Y, Liu P. The orexinergic system mediates the excitatory effects of caffeine on the arousal and sympathetic activity. Heliyon 2023; 9:e14170. [PMID: 36923861 PMCID: PMC10009538 DOI: 10.1016/j.heliyon.2023.e14170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 02/17/2023] [Accepted: 02/23/2023] [Indexed: 03/04/2023] Open
Abstract
Objective Caffeine is a non-selective adenosine receptor antagonist with pro-arousal and pro-sympathetic nervous system excitatory effects, and these pharmacological effects fit well with the physiological functions of orexin. The purpose of this study was to investigate the role of the orexinergic nervous system in the pharmacological effects of caffeine. Methods An animal model of sleepiness caused by adenosine accumulation was established by sleep deprivation, and caffeine's effects on the spontaneous activity and sympathetic nervous system of the model animals were evaluated by using the open-field experiment and gastrointestinal peristaltic observation, respectively, and the intervention of orexin receptor antagonists on the pharmacological effects of caffeine was also observed. Results Mice with 8 h of sleep deprivation showed a significant decrease in spontaneous activity and a significant increase in gastrointestinal push distance. After caffeine intervention, the spontaneous activities of sleep-deprived mice significantly increased and gastrointestinal peristalsis significantly decreased dose-dependent, while orexin receptors antagonist blocked the pro-arousal and inhibitory gastrointestinal peristalsis effects of caffeine on sleep-deprived mice. Conclusions Orexinergic nervous system mediated caffeine's excitatory effects on the pro-arousal and pro-sympathetic nervous systems. Orexin is likely to be an important performer in the pharmacological effects of caffeine.
Collapse
Affiliation(s)
- Yan Li
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Medical College of Yangzhou University, Yangzhou, 225009, China.,Department of Traditional Chinese Medicine, Affiliated Hospital of Yangzhou University, Yangzhou, 225012, China
| | - Zhixuan Guo
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Medical College of Yangzhou University, Yangzhou, 225009, China
| | - Chenxi Cai
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Medical College of Yangzhou University, Yangzhou, 225009, China
| | - Danni Liu
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Medical College of Yangzhou University, Yangzhou, 225009, China
| | - Yin Kang
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Medical College of Yangzhou University, Yangzhou, 225009, China
| | - Pengfei Liu
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Medical College of Yangzhou University, Yangzhou, 225009, China
| |
Collapse
|
10
|
Hanke JM, Schindler KA, Seiler A. On the relationships between epilepsy, sleep, and Alzheimer's disease: A narrative review. Epilepsy Behav 2022; 129:108609. [PMID: 35176650 DOI: 10.1016/j.yebeh.2022.108609] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 02/01/2022] [Accepted: 02/01/2022] [Indexed: 12/21/2022]
Abstract
Epilepsy, sleep, and Alzheimer's disease (AD) are tightly and potentially causally interconnected. The aim of our review was to investigate current research directions on these relationships. Our hope is that they may indicate preventive measures and new treatment options for early neurodegeneration. We included articles that assessed all three topics and were published during the last ten years. We found that this literature corroborates connections on various pathophysiological levels, including sleep-stage-related epileptiform activity in AD, the negative consequences of different sleep disorders on epilepsy and cognition, common biochemical pathways as well as network dysfunctions. Here we provide a detailed overview of these topics and we discuss promising diagnostic and therapeutic consequences.
Collapse
Affiliation(s)
- Julie M Hanke
- Department of Neurology, Inselspital, Sleep-Wake-Epilepsy-Center, Bern University Hospital, University Bern, Bern, Switzerland
| | - Kaspar A Schindler
- Department of Neurology, Inselspital, Sleep-Wake-Epilepsy-Center, Bern University Hospital, University Bern, Bern, Switzerland
| | - Andrea Seiler
- Department of Neurology, Inselspital, Sleep-Wake-Epilepsy-Center, Bern University Hospital, University Bern, Bern, Switzerland.
| |
Collapse
|
11
|
The Bidirectional Link Between Sleep Disturbances and Traumatic Brain Injury Symptoms: A Role for Glymphatic Dysfunction? Biol Psychiatry 2022; 91:478-487. [PMID: 34481662 PMCID: PMC8758801 DOI: 10.1016/j.biopsych.2021.06.025] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 06/28/2021] [Accepted: 06/29/2021] [Indexed: 12/14/2022]
Abstract
Mild traumatic brain injury (mTBI), often referred to as concussion, is a major cause of morbidity and mortality worldwide. Sleep disturbances are common after mTBI. Moreover, subjects who develop subjective sleep complaints after mTBI also report more severe somatic, mental health, and cognitive impairment and take longer to recover from mTBI sequelae. Despite many previous studies addressing the role of sleep in post-mTBI morbidity, the mechanisms linking sleep to recovery after mTBI remain poorly understood. The glymphatic system is a brainwide network that supports fluid movement through the cerebral parenchyma and the clearance of interstitial solutes and wastes from the brain. Notably, the glymphatic system is active primarily during sleep. Clearance of cellular byproducts related to somatic, mental health, and neurodegenerative processes (e.g., amyloid-β and tau, among others) depends in part on intact glymphatic function, which becomes impaired after mTBI. In this viewpoint, we review the current knowledge regarding the association between sleep disturbances and post-mTBI symptoms. We also discuss the role of glymphatic dysfunction as a potential link between mTBI, sleep disruption, and posttraumatic morbidity. We outline a model where glymphatic dysfunction and sleep disruption caused by mTBI may have an additive effect on waste clearance, leading to cerebral dysfunction and impaired recovery. Finally, we review the novel techniques being developed to examine glymphatic function in humans and explore potential interventions to alter glymphatic exchange that may offer a novel therapeutic approach to those experiencing poor sleep and prolonged symptoms after mTBI.
Collapse
|
12
|
Gao F, Liu T, Tuo M, Chi S. The role of orexin in Alzheimer disease: From sleep-wake disturbance to therapeutic target. Neurosci Lett 2021; 765:136247. [PMID: 34530113 DOI: 10.1016/j.neulet.2021.136247] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 08/01/2021] [Accepted: 09/09/2021] [Indexed: 10/20/2022]
Abstract
Accumulating evidence has shown that sleep disturbance is a common symptom in Alzheimer's disease (AD), which is regarded as a modifiable risk factor for AD. Orexin is a key modulator of the sleep-wake cycle and has been found to be dysregulated in AD patients. The increased orexin in cerebrospinal fluid (CSF) is associated with decreased sleep efficiency and REM sleep, as well as cognitive impairment in AD patients. The orexin system has profuse projections to brain regions that are implicated in arousal and cognition and has been found to participate in the progression of AD pathology. Conversely the orexin receptor antagonists are able to consolidate sleep and reduce AD pathology. Therefore, improved understanding of the mechanisms linking orexin system, sleep disturbance and AD could make orexin receptor antagonists a promising target for the prevention or treatment of AD.
Collapse
Affiliation(s)
- Fan Gao
- Department of Neurology, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Tao Liu
- Department of Neurology, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Miao Tuo
- Department of Neurology, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Song Chi
- Department of Neurology, the Affiliated Hospital of Qingdao University, Qingdao, China.
| |
Collapse
|
13
|
Azeez IA, Igado OO, Olopade JO. An overview of the orexinergic system in different animal species. Metab Brain Dis 2021; 36:1419-1444. [PMID: 34224065 DOI: 10.1007/s11011-021-00761-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 06/06/2021] [Indexed: 01/13/2023]
Abstract
Orexin (hypocretin), is a neuropeptide produced by a subset of neurons in the lateral hypothalamus. From the lateral hypothalamus, the orexin-containing neurons project their fibres extensively to other brain structures, and the spinal cord constituting the central orexinergic system. Generally, the term ''orexinergic system'' usually refers to the orexin peptides and their receptors, as well as to the orexin neurons and their projections to different parts of the central nervous system. The extensive networks of orexin axonal fibres and their terminals allow these neuropeptidergic neurons to exert great influence on their target regions. The hypothalamic neurons containing the orexin neuropeptides have been implicated in diverse functions, especially related to the control of a variety of homeostatic functions including feeding behaviour, arousal, wakefulness stability and energy expenditure. The broad range of functions regulated by the orexinergic system has led to its description as ''physiological integrator''. In the last two decades, the orexinergic system has been a topic of great interest to the scientific community with many reports in the public domain. From the documentations, variations exist in the neuroanatomical profile of the orexinergic neuron soma, fibres and their receptors from animal to animal. Hence, this review highlights the distinct variabilities in the morphophysiological aspects of the orexinergic system in the vertebrate animals, mammals and non-mammals, its presence in other brain-related structures, including its involvement in ageing and neurodegenerative diseases. The presence of the neuropeptide in the cerebrospinal fluid and peripheral tissues, as well as its alteration in different animal models and conditions are also reviewed.
Collapse
Affiliation(s)
- Idris A Azeez
- Department of Veterinary Anatomy, University of Jos, Jos, Nigeria
| | - Olumayowa O Igado
- Department of Veterinary Anatomy, University of Ibadan, Ibadan, Nigeria
| | - James O Olopade
- Department of Veterinary Anatomy, University of Ibadan, Ibadan, Nigeria.
| |
Collapse
|
14
|
Kousi C, Lampri E, Voulgaris S, Vougiouklakis T, Galani V, Mitselou A. Expression of orexin-A (hypocretin-A) in the hypothalamus after traumatic brain injury: A postmortem evaluation. Forensic Sci Int 2021; 327:110961. [PMID: 34454377 DOI: 10.1016/j.forsciint.2021.110961] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 04/16/2021] [Accepted: 08/17/2021] [Indexed: 01/01/2023]
Abstract
Traumatic brain injury (TBI) is one of the leading causes of mortality and morbidity. The key component of TBI pathophysiology is traumatic axonal injury (TAI), commonly referred to as diffuse axonal injury (DAI). Coma is a serious complication which can occur following traumatic brain injury (TBI). Recently, studies have shown that the central orexinergic/ hypocretinergic system exhibit prominent arousal promoting actions. Therefore, the purpose of this study is to investigate by immunohistochemistry the expression of beta-amyloid precursor protein (β-APP) in white matter of parasagittal region, corpus callosum and brainstem and the expression of orexin-A (ORXA) in the hypothalamus after traumatic brain injury. RESULTS: DAI was found in 26 (53.06%) cases, assessed with β-APP immunohistochemical staining in parasagittal white matter, corpus callosum and brainstem. Orexin-A immunoreactivity in hypothalamus was completely absent in 5 (10.2%) of the cases; moderate reduction of ORXA was observed in 9 (18.4%) of the cases; and severe reduction was observed in 7 (14.3%) of the cases. A statistically significant correlation was found between β-APP immunostaining in white matter, corpus callosum and brainstem in relation to survival time (p < 0.002, p < 0.003 and p < 0.005 respectively). A statistically positive correlation was noted between ORX-A immunoreactivity in hypothalamus to survival time (p < 0.003). An inverse correlation was noted between the expression of β-APP in the regions of brain studied to the expression of ORX-A in the hypothalamus of the cases studied (p < 0.005). CONCLUSIONS: The present study demonstrated by immunohistochemistry that reduction of orexin-A neurons in the hypothalamus, involved in coma status and arousal, enhanced the immunoexpression of β-APP in parasagital white matter, corpus callosum and brainstem.
Collapse
Affiliation(s)
- Chrysavgi Kousi
- Department of Forensic Medicine and Toxicology Health Sciences, School of Medicine, University of Ioannina, Greece
| | - Evangeli Lampri
- Department of Pathology Health Sciences, School of Medicine, University of Ioannina, Greece
| | - Spyridon Voulgaris
- Department of Neurosurgery, Health Sciences, School of Medicine, University of Ioannina, Greece
| | - Theodoros Vougiouklakis
- Department of Forensic Medicine and Toxicology Health Sciences, School of Medicine, University of Ioannina, Greece
| | - Vassiliki Galani
- Department of Anatomy-Histology-Embryology, University of Ioannina, Greece.
| | - Antigony Mitselou
- Department of Forensic Medicine and Toxicology Health Sciences, School of Medicine, University of Ioannina, Greece
| |
Collapse
|
15
|
Abstract
Sleep and wakefulness are complex, tightly regulated behaviors that occur in virtually all animals. With recent exciting developments in neuroscience methodologies such as optogenetics, chemogenetics, and cell-specific calcium imaging technology, researchers can advance our understanding of how discrete neuronal groups precisely modulate states of sleep and wakefulness. In this chapter, we provide an overview of key neurotransmitter systems, neurons, and circuits that regulate states of sleep and wakefulness. We also describe long-standing models for the regulation of sleep/wake and non-rapid eye movement/rapid eye movement cycling. We contrast previous knowledge derived from classic approaches such as brain stimulation, lesions, cFos expression, and single-unit recordings, with emerging data using the newest technologies. Our understanding of neural circuits underlying the regulation of sleep and wakefulness is rapidly evolving, and this knowledge is critical for our field to elucidate the enigmatic function(s) of sleep.
Collapse
|
16
|
Greene ES, Zampiga M, Sirri F, Ohkubo T, Dridi S. Orexin system is expressed in avian liver and regulates hepatic lipogenesis via ERK1/2 activation. Sci Rep 2020; 10:19191. [PMID: 33154530 PMCID: PMC7645691 DOI: 10.1038/s41598-020-76329-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 10/22/2020] [Indexed: 12/01/2022] Open
Abstract
Orexins are originally characterized as orexigenic hypothalamic neuropeptides in mammals. Subsequent studies found orexin to be expressed and perform pleiotropic functions in multiple tissues in mammals. In avian (non-mammalian) species, however, orexin seemed to not affect feeding behavior and its physiological roles are poorly understood. Here, we provide evidence that orexin and its related receptors are expressed in chicken hepatocytes. Double immunofluorescence staining showed that orexin is localized in the ER, Golgi, and in the lysosomes in LMH cells. Brefeldin A treatment reduced orexin levels in the culture media, but increased it in the cell lysates. Administration of recombinant orexins upregulated the expression of orexin system in the liver of 9-day old chicks, but did not affect feed intake. Recombinant orexins increased fatty acid synthase (FASN) protein levels in chicken liver, activated acetyl-CoA carboxylase (ACCα), and increased FASN, ATP citrate lyase(ACLY), and malic enzyme (ME) protein expression in LMH cells. Blockade ERK1/2 activation by PD98059 attenuated these stimulating effects of orexin on lipogenic factors. Overexpression of ERK1/2 increased the expression of lipogenic genes, and orexin treatment induced the phosphorylated levels of ERK1/2Thr202/Tyr204, but not that of p38 Thr180/Tyr182 or JNK1/2 Thr183/Tyr185 in chicken liver and LMH cells. Taken together, this is the first report evidencing that orexin is expressed and secreted from chicken hepatocytes, and that orexin induced hepatic lipogenesis via activation of ERK1/2 signaling pathway.
Collapse
Affiliation(s)
- E S Greene
- Center of Excellence for Poultry Science, University of Arkansas, 1260 W. Maple Street, Fayetteville, AR, 72701, USA
| | - M Zampiga
- Dipartimento Di Scienze E Tecnologie Agro-Alimentari, Alma Mater Studiorum-Università Di Bologna, Bologna, Italy
| | - F Sirri
- Dipartimento Di Scienze E Tecnologie Agro-Alimentari, Alma Mater Studiorum-Università Di Bologna, Bologna, Italy
| | - T Ohkubo
- College of Agriculture, Ibaraki University, Ibaraki, 300-0393, Japan
| | - Sami Dridi
- Center of Excellence for Poultry Science, University of Arkansas, 1260 W. Maple Street, Fayetteville, AR, 72701, USA.
| |
Collapse
|
17
|
Ambati A, Luo G, Pradhan E, Louis J, Lin L, Leib RD, Ollila HM, Poiret T, Adams C, Mignot E. Mass Spectrometric Characterization of Narcolepsy-Associated Pandemic 2009 Influenza Vaccines. Vaccines (Basel) 2020; 8:vaccines8040630. [PMID: 33142956 PMCID: PMC7712488 DOI: 10.3390/vaccines8040630] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 10/21/2020] [Accepted: 10/23/2020] [Indexed: 11/16/2022] Open
Abstract
The onset of narcolepsy, an irreversible sleep disorder, has been associated with 2009 influenza pandemic (pH1N1) infections in China, and with ASO3-adjuvanted pH1N1 vaccinations using Pandemrix in Europe. Intriguingly, however, the increased incidence was only observed following vaccination with Pandemrix but not Arepanrix in Canada. In this study, the mutational burden of actual vaccine lots of Pandemrix (n = 6) and Arepanrix (n = 5) sourced from Canada, and Northern Europe were characterized by mass spectrometry. The four most abundant influenza proteins across both vaccines were nucleoprotein NP, hemagglutinin HA, matrix protein M1, with the exception that Pandemrix harbored a significantly increased proportion of neuraminidase NA (7.5%) as compared to Arepanrix (2.6%). Most significantly, 17 motifs in HA, NP, and M1 harbored mutations, which significantly differed in Pandemrix versus Arepanrix. Among these, a 6-fold higher deamidation of HA146 (p.Asn146Asp) in Arepanrix was found relative to Pandemrix, while NP257 (p.Thr257Ala) and NP424 (p.Thr424Ile) were increased in Pandemrix. DQ0602 binding and tetramer analysis with mutated epitopes were conducted in Pandemrix-vaccinated cases versus controls but were unremarkable. Pandemrix harbored lower mutational burden than Arepanrix, indicating higher similarity to wild-type 2009 pH1N1, which could explain differences in narcolepsy susceptibility amongst the vaccines.
Collapse
Affiliation(s)
- Aditya Ambati
- Stanford Center for Sleep Sciences and Medicine, Department of Psychiatry and Behavioral Sciences, Stanford University, 3165 Porter Drive, Stanford, CA 94304, USA; (A.A.); (G.L.); (E.P.); (J.L.); (L.L.); (H.M.O.)
| | - Guo Luo
- Stanford Center for Sleep Sciences and Medicine, Department of Psychiatry and Behavioral Sciences, Stanford University, 3165 Porter Drive, Stanford, CA 94304, USA; (A.A.); (G.L.); (E.P.); (J.L.); (L.L.); (H.M.O.)
| | - Elora Pradhan
- Stanford Center for Sleep Sciences and Medicine, Department of Psychiatry and Behavioral Sciences, Stanford University, 3165 Porter Drive, Stanford, CA 94304, USA; (A.A.); (G.L.); (E.P.); (J.L.); (L.L.); (H.M.O.)
| | - Jacob Louis
- Stanford Center for Sleep Sciences and Medicine, Department of Psychiatry and Behavioral Sciences, Stanford University, 3165 Porter Drive, Stanford, CA 94304, USA; (A.A.); (G.L.); (E.P.); (J.L.); (L.L.); (H.M.O.)
| | - Ling Lin
- Stanford Center for Sleep Sciences and Medicine, Department of Psychiatry and Behavioral Sciences, Stanford University, 3165 Porter Drive, Stanford, CA 94304, USA; (A.A.); (G.L.); (E.P.); (J.L.); (L.L.); (H.M.O.)
| | - Ryan D. Leib
- Stanford Mass Spectrometry Core, 333 Campus Drive, Mudd 175, Stanford University, Stanford, CA 94305, USA; (R.D.L.); (C.A.)
| | - Hanna Maria Ollila
- Stanford Center for Sleep Sciences and Medicine, Department of Psychiatry and Behavioral Sciences, Stanford University, 3165 Porter Drive, Stanford, CA 94304, USA; (A.A.); (G.L.); (E.P.); (J.L.); (L.L.); (H.M.O.)
| | - Thomas Poiret
- Department of Laboratory Medicine, Karolinska Institutet, 14152 Stockholm, Sweden;
| | - Christopher Adams
- Stanford Mass Spectrometry Core, 333 Campus Drive, Mudd 175, Stanford University, Stanford, CA 94305, USA; (R.D.L.); (C.A.)
| | - Emmanuel Mignot
- Stanford Center for Sleep Sciences and Medicine, Department of Psychiatry and Behavioral Sciences, Stanford University, 3165 Porter Drive, Stanford, CA 94304, USA; (A.A.); (G.L.); (E.P.); (J.L.); (L.L.); (H.M.O.)
- Correspondence:
| |
Collapse
|
18
|
Ahmadi-Soleimani SM, Mianbandi V, Azizi H, Azhdari-Zarmehri H, Ghaemi-Jandabi M, Abbasi-Mazar A, Mohajer Y, Darana SP. Coregulation of sleep-pain physiological interplay by orexin system: An unprecedented review. Behav Brain Res 2020; 391:112650. [DOI: 10.1016/j.bbr.2020.112650] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 02/28/2020] [Accepted: 04/08/2020] [Indexed: 12/14/2022]
|
19
|
Vanda D, Zajdel P, Soural M. Imidazopyridine-based selective and multifunctional ligands of biological targets associated with psychiatric and neurodegenerative diseases. Eur J Med Chem 2019; 181:111569. [DOI: 10.1016/j.ejmech.2019.111569] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 06/26/2019] [Accepted: 07/28/2019] [Indexed: 12/18/2022]
|
20
|
Hypothalamic orexin and mechanistic target of rapamycin activation mediate sleep dysfunction in a mouse model of tuberous sclerosis complex. Neurobiol Dis 2019; 134:104615. [PMID: 31605778 DOI: 10.1016/j.nbd.2019.104615] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 09/05/2019] [Accepted: 09/16/2019] [Indexed: 12/13/2022] Open
Abstract
Tuberous sclerosis complex (TSC) is a genetic disease related to hyperactivation of the mechanistic target of rapamycin (mTOR) pathway and manifested by neurological symptoms, such as epilepsy and sleep disorders. The pathophysiology of sleep dysfunction is poorly understood and is likely multifactorial, but may involve intrinsic biological regulators in the brain. Here, we characterized a mouse model of sleep disorders in TSC and investigated mechanisms of sleep dysfunction in this conditional knockout model involving inactivation of the Tsc1 gene in neurons and astrocytes (Tsc1GFAPCKO mice). Sleep studies utilizing EEG, EMG, and behavioral analysis found that Tsc1GFAPCKO mice have decreased REM sleep and impaired sleep-wake differentiation between light and dark phases. mTOR activity and orexin expression were increased in hypothalamic sections and cultured hypothalamic neurons from Tsc1GFAPCKO mice. Both the sleep abnormalities and increased orexin expression in Tsc1GFAPCKO mice were reversed by rapamycin treatment, indicating their dependence on mTOR activation. An orexin antagonist, suvorexant, also restored normal REM levels in Tsc1GFAPCKO mice. These results identify a novel mechanistic link between mTOR and orexin in the hypothalamus related to sleep dysfunction and suggest a targeted therapeutic approach to sleep disorders in TSC.
Collapse
|
21
|
Scariot PPM, Manchado-Gobatto FB, Prolla TA, Masselli Dos Reis IG, Gobatto CA. Housing conditions modulate spontaneous physical activity, feeding behavior, aerobic running capacity and adiposity in C57BL/6J mice. Horm Behav 2019; 115:104556. [PMID: 31310763 DOI: 10.1016/j.yhbeh.2019.07.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Revised: 07/11/2019] [Accepted: 07/12/2019] [Indexed: 11/19/2022]
Abstract
There is evidence of reduced adiposity in rodents living in a large cages (LC) as compared to animals housed in small cages (SC). Because spontaneous physical activity (SPA) provides an important portion of the total daily energy expenditure, an increase of SPA in rodents kept in LC could explain their reduced body fat accumulation. The relationship between SPA and components of physical fitness (i.e. aerobic and anaerobic fitness and body leanness) has not been previously determined. We examined the effects of eight weeks of LC exposure on SPA, body composition, feeding behavior, as well as aerobic and anaerobic running capacity in adult C57BL/6J mice. Male mice were housed in cages of two different sizes for 8 weeks: a small (SC, n = 10) and large (LC n = 10) cages with 1320 cm2 and 4800 cm2 floor space, respectively. SPA was measured gravimetrically, and food and water intake were recorded daily. Mice had critical velocity (CV) and anaerobic running capacity (ARC) evaluated at the beginning, middle course (4th week) and at the end of study (8th week). Despite non-significant differences in each week LC-mice were more active than SC-mice by considering all SPA values obtained in the entire period of 8 weeks. The difference in SPA over the whole day was mainly due to light phase activity, but also due to activity at dark period (from 6 pm to 9 pm and from 5 am to 6 am). LC-mice also exhibited higher food and water intake over the entire 8-wk period. LC-mice had lower content of fat mass (% of the eviscerated carcass) than SC-mice (SC: 8.4 ± 0.4 vs LC: 6.3 ± 0.3, p < 0.05). LC-mice also exhibited reduced epididymal fat pads (% of body mass) compared to SC-mice (SC: 1.3 ± 0.1 vs LC: 0.9 ± 0.1, p < 0.05) and retroperitoneal fat pads (SC: 0.4 ± 0.05 vs LC: 0.2 ± 0.02, p < 0.05). The LC-group showed significantly higher critical velocity than SC-group at the fourth week (SC: 14.9 ± 0.6 m·min-1 vs LC: 18.0 ± 0.3 m·min-1, p < 0.05) and eighth week (SC: 17.1 ± 0.5 m·min-1 vs LC: 18.8 ± 0.6 m·min-1, p < 0.05). Our findings demonstrate that eight weeks of LC housing increases SPA of C57BL/6J mice, and this may lead to reduced fat accumulation as well as higher aerobic fitness. Importantly, our study implies that SC limits SPA, possibly generating experimental artifacts in long-term rodent studies.
Collapse
Affiliation(s)
- Pedro Paulo Menezes Scariot
- School of Applied Sciences, University of Campinas, Laboratory of Applied Sport Physiology, Limeira, SP, Brazil
| | - Fúlvia B Manchado-Gobatto
- School of Applied Sciences, University of Campinas, Laboratory of Applied Sport Physiology, Limeira, SP, Brazil
| | - Tomas A Prolla
- Department of Genetics & Medical Genetics, University of Wisconsin-Madison, Madison, WI, USA
| | - Ivan G Masselli Dos Reis
- School of Applied Sciences, University of Campinas, Laboratory of Applied Sport Physiology, Limeira, SP, Brazil
| | - Claudio Alexandre Gobatto
- School of Applied Sciences, University of Campinas, Laboratory of Applied Sport Physiology, Limeira, SP, Brazil.
| |
Collapse
|
22
|
Kim DH, Choi JJ, Park BJ. Herbal medicine (Hepad) prevents dopaminergic neuronal death in the rat MPTP model of Parkinson's disease. Integr Med Res 2019; 8:202-208. [PMID: 31467840 PMCID: PMC6712963 DOI: 10.1016/j.imr.2019.07.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 07/29/2019] [Accepted: 07/30/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Parkinson's disease (PD) is a neurodegenerative disorder characterized by loss of dopaminergic neurons in the substantia nigra. The purpose of this study was to examine neuroprotective effects of Hepad S1, an herbal medicine used for the treatment of PD, in in vitro and in vivo models of PD. METHODS Differentiated neuronal PC12 cells underwent a cytotoxicity assay and oxidative stress analysis including DCF-DA staining, glutathione, and malondialdehyde, after exposure to 1-methyl-4-phenylpyridium (MPP+). Male Sprague-Dawley rats were used as 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD models. After 4-week oral administration of Hepad S1 (200, 300, 400, and 500 mg/kg/day), the levels of complex enzyme I activity and dopamine, and dopaminergic neuronal cell number in substantia nigra were measured by enzyme linked immune-sorbent assay (ELISA) and microscopic observation, respectively. Circulating serotonin and orexin A were also examined by ELISA. RESULTS Hepad S1 pretreatment prevented the ability of MPP+ challenge to decrease glutathione and increase lipid peroxidation in cells, indicating antioxidant activity. Hepad S1 recovered MPTP-induced decreases in complex I enzyme activity and enhanced dopamine availability in substantia nigra. Serum levels of serotonin and orexin A were increased by Hepad S1 treatment in model animals. Hepad S1 treatment was associated with the preservation of tyrosine hydroxylase-positive cells in the substantia nigra of MPTP-treated rats. CONCLUSIONS Hepad S1 exerts antioxidant and neuroprotective effects on neurons of the substantia nigra in a rodent model of PD.
Collapse
Affiliation(s)
- Dong Hee Kim
- Laboratory of Pathology, College of Korean Medicine, Daejeon University, Daejeon, Republic of Korea
| | - Jeong June Choi
- Laboratory of Molecular Medicine, College of Korean Medicine, Daejeon University, Daejeon, Republic of Korea
| | - Byung-Jun Park
- Young Jin Korean Medicine Clinic, Suncheon, Republic of Korea
| |
Collapse
|
23
|
Rowe RK, Harrison JL, Morrison HW, Subbian V, Murphy SM, Lifshitz J. Acute Post-Traumatic Sleep May Define Vulnerability to a Second Traumatic Brain Injury in Mice. J Neurotrauma 2019; 36:1318-1334. [PMID: 30398389 PMCID: PMC6479254 DOI: 10.1089/neu.2018.5980] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Chronic neurological impairments can manifest from repetitive traumatic brain injury (rTBI), particularly when subsequent injuries occur before the initial injury completely heals. Herein, we apply post-traumatic sleep as a physiological biomarker of vulnerability, hypothesizing that a second TBI during post-traumatic sleep worsens neurological and histological outcomes compared to one TBI or a second TBI after post-traumatic sleep subsides. Mice received sham or diffuse TBI by midline fluid percussion injury; brain-injured mice received one TBI or rTBIs at 3- or 9-h intervals. Over 40 h post-injury, injured mice slept more than shams. Functional assessments indicated lower latencies on rotarod and increased Neurological Severity Scores for mice with rTBIs within 3 h. Anxiety-like behaviors in the open field task were increased for mice with rTBIs at 3 h. Based on pixel density of silver accumulation, neuropathology was greater at 28 days post-injury (DPI) in rTBI groups than sham and single TBI. Cortical microglia morphology was quantified and mice receiving rTBI were de-ramified at 14 DPI compared to shams and mice receiving a single TBI, suggesting robust microglial response in rTBI groups. Orexin-A-positive cells were sustained in the lateral hypothalamus with no loss detected, indicating that loss of wake-promoting neurons did not contribute to post-traumatic sleep. Thus, duration of post-traumatic sleep is a period of vulnerability that results in exacerbated injury from rTBI. Monitoring individual post-traumatic sleep is a potential clinical tool for personalized TBI management, where regular sleep patterns may inform rehabilitative strategies and return-to-activity guidelines.
Collapse
Affiliation(s)
- Rachel K. Rowe
- BARROW Neurological Institute at Phoenix Children's Hospital, Phoenix, Arizona
- Department of Child Health, University of Arizona College of Medicine–Phoenix, Phoenix, Arizona
- Phoenix Veteran Affairs Health Care System, Phoenix, Arizona
| | - Jordan L. Harrison
- Department of Basic Medical Sciences, University of Arizona College of Medicine–Phoenix, Phoenix, Arizona
| | | | - Vignesh Subbian
- University of Arizona College of Engineering, Tucson, Arizona
| | - Sean M. Murphy
- Department of Forestry and Natural Resources, University of Kentucky, Lexington, Kentucky
| | - Jonathan Lifshitz
- BARROW Neurological Institute at Phoenix Children's Hospital, Phoenix, Arizona
- Department of Child Health, University of Arizona College of Medicine–Phoenix, Phoenix, Arizona
- Phoenix Veteran Affairs Health Care System, Phoenix, Arizona
| |
Collapse
|
24
|
Guo F, Gao S, Xu L, Sun X, Zhang N, Gong Y, Luan X. Arcuate Nucleus Orexin-A Signaling Alleviates Cisplatin-Induced Nausea and Vomiting Through the Paraventricular Nucleus of the Hypothalamus in Rats. Front Physiol 2018; 9:1811. [PMID: 30618823 PMCID: PMC6304364 DOI: 10.3389/fphys.2018.01811] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 12/04/2018] [Indexed: 01/06/2023] Open
Abstract
The most common side effects of cisplatin chemotherapy are nausea and vomiting, and the overwhelming majority of research studies on the mechanism of cisplatin-induced nausea have been focused on the “vomiting center.” As a modulatory center of gastric motility, the roles of the hypothalamus in nausea and vomiting remain unclear. In the present study, we investigated the effects of exogenous orexin-A injected into the arcuate nucleus (ARC) on cisplatin-induced nausea and vomiting, and the possible underlying mechanism. Kaolin intake was calculated daily in cisplatin-treated and saline-treated rats. Gastric motility recording, injections into the ARC, and lesions of the paraventricular nucleus (PVN) were used to study the effects of orexin-A and the hypothalamic nucleus on disorders of gastrointestinal function in cisplatin-treated rats. The pathway from the ARC to the PVN was observed through Fluoro-Gold retrograde tracing. Furthermore, an NPY Y1 receptor antagonist was administered to explore the possible mechanisms involved in the effects of orexin-A in the ARC. We illustrated that exogenous orexin-A injected into the ARC reduced kaolin intake and promoted gastric motility in cisplatin-treated rats, and these effects could have been blocked by an ipsilateral PVN lesion or co-injected antagonist of orexin-A-SB334867. Additional results showed that orexin-A-activated neurons in the ARC communicated directly with other neurons in the PVN that express neuropeptide Y (NPY). Furthermore, activation of the downstream NPY pathway was required for the observed effects of orexin in the ARC on cisplatin-induced nausea and vomiting. These findings reveal a novel neurobiological circuit from the ARC to the PVN that might provide a potential target for the prevention and treatment of cisplatin-induced nausea and vomiting.
Collapse
Affiliation(s)
- Feifei Guo
- Pathophysiology Department, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Shengli Gao
- Pathophysiology Department, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Luo Xu
- Pathophysiology Department, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Xiangrong Sun
- Pathophysiology Department, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Nana Zhang
- Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yanling Gong
- Department of Pharmacy, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, China
| | - Xiao Luan
- Pathophysiology Department, School of Basic Medicine, Qingdao University, Qingdao, China
| |
Collapse
|
25
|
Iyer M, Essner RA, Klingenberg B, Carter ME. Identification of discrete, intermingled hypocretin neuronal populations. J Comp Neurol 2018; 526:2937-2954. [PMID: 30019757 DOI: 10.1002/cne.24490] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Revised: 06/12/2018] [Accepted: 06/14/2018] [Indexed: 01/04/2023]
Abstract
Neurons in the lateral hypothalamic area that express hypocretin (Hcrt) neuropeptides help regulate many behaviors including wakefulness and reward seeking. These neurons project throughout the brain, including to neural populations that regulate wakefulness, such as the locus coeruleus (LC) and tuberomammilary nucleus (TMN), as well as to populations that regulate reward, such as the nucleus accumbens (NAc) and ventral tegmental area (VTA). To address the roles of Hcrt neurons in seemingly disparate behaviors, it has been proposed that Hcrt neurons can be anatomically subdivided into at least two distinct subpopulations: a "medial group" that projects to the LC and TMN, and a "lateral group" that projects to the NAc and VTA. Here, we use a dual retrograde tracer strategy to test the hypotheses that Hcrt neurons can be classified based on their downstream projections and medial/lateral location within the hypothalamus. We found that individual Hcrt neurons were significantly more likely to project to both the LC and TMN or to both the VTA and NAc than would be predicted by chance. In contrast, we found that Hcrt neurons that projected to the LC or TMN were mostly distinct from Hcrt neurons that projected to the VTA or NAc. Interestingly, these two populations of Hcrt neurons are intermingled within the hypothalamus and cannot be classified into medial or lateral groups. These results suggest that Hcrt neurons can be distinguished based on their downstream projections but are intermingled within the hypothalamus.
Collapse
Affiliation(s)
- Manasi Iyer
- Department of Biology, Williams College, Williamstown, Massachusetts.,Program in Neuroscience, Williams College, Williamstown, Massachusetts
| | - Rachel A Essner
- Department of Biology, Williams College, Williamstown, Massachusetts.,Program in Neuroscience, Williams College, Williamstown, Massachusetts
| | - Bernhard Klingenberg
- Department of Mathematics and Statistics, Williams College, Williamstown, Massachusetts
| | - Matthew E Carter
- Department of Biology, Williams College, Williamstown, Massachusetts.,Program in Neuroscience, Williams College, Williamstown, Massachusetts
| |
Collapse
|
26
|
Latifi B, Adamantidis A, Bassetti C, Schmidt MH. Sleep-Wake Cycling and Energy Conservation: Role of Hypocretin and the Lateral Hypothalamus in Dynamic State-Dependent Resource Optimization. Front Neurol 2018; 9:790. [PMID: 30344503 PMCID: PMC6183196 DOI: 10.3389/fneur.2018.00790] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 08/31/2018] [Indexed: 12/23/2022] Open
Abstract
The hypocretin (Hcrt) system has been implicated in a wide range of physiological functions from sleep-wake regulation to cardiovascular, behavioral, metabolic, and thermoregulagtory control. These wide-ranging physiological effects have challenged the identification of a parsimonious function for Hcrt. A compelling hypothesis suggests that Hcrt plays a role in the integration of sleep-wake neurophysiology with energy metabolism. For example, Hcrt neurons promote waking and feeding, but are also sensors of energy balance. Loss of Hcrt function leads to an increase in REM sleep propensity, but a potential role for Hcrt linking energy balance with REM sleep expression has not been addressed. Here we examine a potential role for Hcrt and the lateral hypothalamus (LH) in state-dependent resource allocation as a means of optimizing resource utilization and, as a result, energy conservation. We review the energy allocation hypothesis of sleep and how state-dependent metabolic partitioning may contribute toward energy conservation, but with additional examination of how the loss of thermoregulatory function during REM sleep may impact resource optimization. Optimization of energy expenditures at the whole organism level necessitates a top-down network responsible for coordinating metabolic operations in a state-dependent manner across organ systems. In this context, we then specifically examine the potential role of the LH in regulating this output control, including the contribution from both Hcrt and melanin concentrating hormone (MCH) neurons among a diverse LH cell population. We propose that this hypothalamic integration system is responsible for global shifts in state-dependent resource allocations, ultimately promoting resource optimization and an energy conservation function of sleep-wake cycling.
Collapse
Affiliation(s)
- Blerina Latifi
- Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Antoine Adamantidis
- Department of Neurology, Center for Experimental Neurology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland.,Department of Biomedical Research, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Claudio Bassetti
- Department of Neurology, Center for Experimental Neurology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Markus H Schmidt
- Department of Neurology, Center for Experimental Neurology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland.,Ohio Sleep Medicine Institute, Dublin, OH, United States
| |
Collapse
|
27
|
Azeez IA, Del Gallo F, Cristino L, Bentivoglio M. Daily Fluctuation of Orexin Neuron Activity and Wiring: The Challenge of "Chronoconnectivity". Front Pharmacol 2018; 9:1061. [PMID: 30319410 PMCID: PMC6167434 DOI: 10.3389/fphar.2018.01061] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 09/03/2018] [Indexed: 12/12/2022] Open
Abstract
In the heterogeneous hub represented by the lateral hypothalamus, neurons containing the orexin/hypocretin peptides play a key role in vigilance state transitions and wakefulness stability, energy homeostasis, and other functions relevant for motivated behaviors. Orexin neurons, which project widely to the neuraxis, are innervated by multiple extra- and intra-hypothalamic sources. A key property of the adaptive capacity of orexin neurons is represented by daily variations of activity, which is highest in the period of the animal’s activity and wakefulness. These sets of data are here reviewed. They concern the discharge profile during the sleep/wake cycle, spontaneous Fos induction, peptide synthesis and release reflected by immunostaining intensity and peptide levels in the cerebrospinal fluid as well as postsynaptic effects. At the synaptic level, adaptive capacity of orexin neurons subserved by remodeling of excitatory and inhibitory inputs has been shown in response to changes in the nutritional status and prolonged wakefulness. The present review wishes to highlight that synaptic plasticity in the wiring of orexin neurons also occurs in unperturbed conditions and could account for diurnal variations of orexin neuron activity. Data in zebrafish larvae have shown rhythmic changes in the density of inhibitory innervation of orexin dendrites in relation to vigilance states. Recent findings in mice have indicated a diurnal reorganization of the excitatory/inhibitory balance in the perisomatic innervation of orexin neurons. Taken together these sets of data point to “chronoconnectivity,” i.e., a synaptic rearrangement of inputs to orexin neurons over the course of the day in relation to sleep and wake states. This opens questions on the underlying circadian and homeostatic regulation and on the involved players at synaptic level, which could implicate dual transmitters, cytoskeletal rearrangements, hormonal regulation, as well as surrounding glial cells and extracellular matrix. Furthermore, the question arises of a “chronoconnectivity” in the wiring of other neuronal cell groups of the sleep-wake-regulatory network, many of which are characterized by variations of their firing rate during vigilance states.
Collapse
Affiliation(s)
- Idris A Azeez
- Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Federico Del Gallo
- Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | | | - Marina Bentivoglio
- Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, Italy.,National Institute of Neuroscience, Verona Unit, Verona, Italy
| |
Collapse
|
28
|
Ikeno T, Yan L. A comparison of the orexin receptor distribution in the brain between diurnal Nile grass rats (Arvicanthis niloticus) and nocturnal mice (Mus musculus). Brain Res 2018; 1690:89-95. [PMID: 29630859 PMCID: PMC5944353 DOI: 10.1016/j.brainres.2018.04.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 03/24/2018] [Accepted: 04/02/2018] [Indexed: 11/20/2022]
Abstract
The neuropeptide orexin/hypocretin regulates a wide range of behaviors and physiology through its receptors OX1R and OX2R, or HCRTR-1 and HCRTR-2. Although the distributions of these receptors have been established in nocturnal rodents, their distributions in the brain of diurnal species have not been studied. In the present study, we examined spatial patterns of OX1R and OX2R mRNA expression in diurnal Nile grass rats (Arvicanthis niloticus) by in situ hybridization and compared them with those in nocturnal mice (Mus musculus). Both receptors showed similar spatial patterns between species in most brain regions. However, species-specific expression was found in several regions that are mainly implicated in regulation of sleep/wakefulness, emotion and cognition. OX1R expression was detected in the caudate putamen and ventral tuberomammillary nucleus only in grass rats, while it was detected in the bed nucleus of the stria terminalis, medial division, posteromedial part only in mice. The distribution of OX2R mRNA was mostly consistent between the two species, although it was more widely expressed in the ventral tuberomammillary nucleus in grass rats compared to mice. These results suggest that neuronal pathways of the orexin system differ between chronotypes, and these differences could underlie the distinct profiles in behaviors and physiology between diurnal and nocturnal species.
Collapse
Affiliation(s)
- Tomoko Ikeno
- Department of Psychology, Michigan State University, East Lansing, MI 48824, USA.
| | - Lily Yan
- Department of Psychology, Michigan State University, East Lansing, MI 48824, USA; Neuroscience Program, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
29
|
Wang C, Wang Q, Ji B, Pan Y, Xu C, Cheng B, Bai B, Chen J. The Orexin/Receptor System: Molecular Mechanism and Therapeutic Potential for Neurological Diseases. Front Mol Neurosci 2018; 11:220. [PMID: 30002617 PMCID: PMC6031739 DOI: 10.3389/fnmol.2018.00220] [Citation(s) in RCA: 133] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 06/06/2018] [Indexed: 12/25/2022] Open
Abstract
Orexins, also known as hypocretins, are two neuropeptides secreted from orexin-containing neurons, mainly in the lateral hypothalamus (LH). Orexins orchestrate their effects by binding and activating two G-protein–coupled receptors (GPCRs), orexin receptor type 1 (OX1R) and type 2 (OX2R). Orexin/receptor pathways play vital regulatory roles in many physiological processes, especially feeding behavior, sleep–wake rhythm, reward and addiction and energy balance. Furthermore several reports showed that orexin/receptor pathways are involved in pathological processes of neurological diseases such as narcolepsy, depression, ischemic stroke, drug addiction and Alzheimer’s disease (AD). This review article summarizes the expression patterns, physiological functions and potential molecular mechanisms of the orexin/receptor system in neurological diseases, providing an overall framework for considering these pathways from the standpoints of basic research and clinical treatment of neurological diseases.
Collapse
Affiliation(s)
- Chunmei Wang
- Neurobiology Key Laboratory of Jining Medical University in Colleges of Shandong, Jining Medical University, Jining, China
| | - Qinqin Wang
- Neurobiology Key Laboratory of Jining Medical University in Colleges of Shandong, Jining Medical University, Jining, China
| | - Bingyuan Ji
- Neurobiology Key Laboratory of Jining Medical University in Colleges of Shandong, Jining Medical University, Jining, China
| | - Yanyou Pan
- Neurobiology Key Laboratory of Jining Medical University in Colleges of Shandong, Jining Medical University, Jining, China
| | - Chao Xu
- Neurobiology Key Laboratory of Jining Medical University in Colleges of Shandong, Jining Medical University, Jining, China
| | - Baohua Cheng
- Neurobiology Key Laboratory of Jining Medical University in Colleges of Shandong, Jining Medical University, Jining, China
| | - Bo Bai
- Neurobiology Key Laboratory of Jining Medical University in Colleges of Shandong, Jining Medical University, Jining, China
| | - Jing Chen
- Neurobiology Key Laboratory of Jining Medical University in Colleges of Shandong, Jining Medical University, Jining, China.,Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, United Kingdom
| |
Collapse
|
30
|
Ciccimarra R, Bussolati S, Grasselli F, Grolli S, Ragionieri L, Ravanetti F, Botti M, Gazza F, Cacchioli A, Di Lecce R, Cantoni AM, Basini G. Orexin system in swine ovarian follicles. Domest Anim Endocrinol 2018; 62:49-59. [PMID: 29053993 DOI: 10.1016/j.domaniend.2017.09.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 09/01/2017] [Accepted: 09/03/2017] [Indexed: 11/17/2022]
Abstract
Successful reproduction is strictly linked to metabolic cues. The orexins are a family of hypothalamic neurohormones, well known for their key role in the control of food intake and the involvement in several aspects of the reproductive process. The biological actions of both orexins are carried out through binding to the related Orexin 1 (OX1R) and Orexin 2 (OX2R) G-protein-coupled receptors. The purpose of this study was to investigate the presence of orexin system components in the porcine ovaries, to contribute to expand the knowledge about their pleiotropic role. First, we investigated the localization of orexin A (OXA) and its receptors by immunochemistry in different ovarian districts. Thereafter, we evaluated the expression of the prepro-orexin (PPO) gene and OXA effects on granulosa cell functions. Immunohistochemical study revealed the presence of orexinergic system components in porcine ovarian follicles. Moreover, our data show the expression of PPO messenger RNA in swine ovarian follicles >5 mm. In addition, OXA influences proliferation (P < 0.05), steroidogenic activity (P < 0.05), and redox status of granulosa cells (P < 0.05). Therefore, we hypothesize that OXA could exert a local physiological role in swine ovarian follicles even if further studies are required to deeply define the function of this pleiotropic system.
Collapse
Affiliation(s)
- R Ciccimarra
- Dipartimento di Scienze Medico-Veterinarie, Università di Parma, Via del Taglio 10, Parma 43126, Italy.
| | - S Bussolati
- Dipartimento di Scienze Medico-Veterinarie, Università di Parma, Via del Taglio 10, Parma 43126, Italy
| | - F Grasselli
- Dipartimento di Scienze Medico-Veterinarie, Università di Parma, Via del Taglio 10, Parma 43126, Italy
| | - S Grolli
- Dipartimento di Scienze Medico-Veterinarie, Università di Parma, Via del Taglio 10, Parma 43126, Italy
| | - L Ragionieri
- Dipartimento di Scienze Medico-Veterinarie, Università di Parma, Via del Taglio 10, Parma 43126, Italy
| | - F Ravanetti
- Dipartimento di Scienze Medico-Veterinarie, Università di Parma, Via del Taglio 10, Parma 43126, Italy
| | - M Botti
- Dipartimento di Scienze Medico-Veterinarie, Università di Parma, Via del Taglio 10, Parma 43126, Italy
| | - F Gazza
- Dipartimento di Scienze Medico-Veterinarie, Università di Parma, Via del Taglio 10, Parma 43126, Italy
| | - A Cacchioli
- Dipartimento di Scienze Medico-Veterinarie, Università di Parma, Via del Taglio 10, Parma 43126, Italy
| | - R Di Lecce
- Dipartimento di Scienze Medico-Veterinarie, Università di Parma, Via del Taglio 10, Parma 43126, Italy
| | - A M Cantoni
- Dipartimento di Scienze Medico-Veterinarie, Università di Parma, Via del Taglio 10, Parma 43126, Italy
| | - G Basini
- Dipartimento di Scienze Medico-Veterinarie, Università di Parma, Via del Taglio 10, Parma 43126, Italy
| |
Collapse
|
31
|
Rouault AA, Lee AA, Sebag JA. Regions of MRAP2 required for the inhibition of orexin and prokineticin receptor signaling. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2017; 1864:2322-2329. [DOI: 10.1016/j.bbamcr.2017.09.008] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 09/10/2017] [Accepted: 09/17/2017] [Indexed: 10/18/2022]
|
32
|
Coleman PJ, Gotter AL, Herring WJ, Winrow CJ, Renger JJ. The Discovery of Suvorexant, the First Orexin Receptor Drug for Insomnia. Annu Rev Pharmacol Toxicol 2017; 57:509-533. [PMID: 27860547 DOI: 10.1146/annurev-pharmtox-010716-104837] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Historically, pharmacological therapies have used mechanisms such as γ-aminobutyric acid A (GABAA) receptor potentiation to drive sleep through broad suppression of central nervous system activity. With the discovery of orexin signaling loss as the etiology underlying narcolepsy, a disorder associated with hypersomnolence, orexin antagonism emerged as an alternative approach to attenuate orexin-induced wakefulness more selectively. Dual orexin receptor antagonists (DORAs) block the activity of orexin 1 and 2 receptors to both reduce the threshold to transition into sleep and attenuate orexin-mediated arousal. Among DORAs evaluated clinically, suvorexant has pharmacokinetic properties engineered for a plasma half-life appropriate for rapid sleep onset and maintenance at low to moderate doses. Unlike GABAA receptor modulators, DORAs promote both non-rapid eye movement (NREM) and REM sleep, do not disrupt sleep stage-specific quantitative electroencephalogram spectral profiles, and allow somnolence indistinct from normal sleep. The preservation of cognitive performance and the ability to arouse to salient stimuli after DORA administration suggest further advantages over historical therapies.
Collapse
Affiliation(s)
- Paul J Coleman
- Department of Medicinal Chemistry, Merck Research Laboratories, West Point, Pennsylvania 19486;
| | - Anthony L Gotter
- Department of Neuroscience, Merck Research Laboratories, West Point, Pennsylvania 19486
| | - W Joseph Herring
- Department of Clinical Neuroscience, Merck Research Laboratories, West Point, Pennsylvania 19486
| | - Christopher J Winrow
- Department of Neuroscience, Merck Research Laboratories, West Point, Pennsylvania 19486
| | - John J Renger
- Department of Neuroscience, Merck Research Laboratories, West Point, Pennsylvania 19486
| |
Collapse
|
33
|
Shaw JK, Ferris MJ, Locke JL, Brodnik ZD, Jones SR, España RA. Hypocretin/orexin knock-out mice display disrupted behavioral and dopamine responses to cocaine. Addict Biol 2017; 22:1695-1705. [PMID: 27480648 DOI: 10.1111/adb.12432] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Revised: 05/18/2016] [Accepted: 06/26/2016] [Indexed: 02/03/2023]
Abstract
The hypocretin/orexin (HCRT) system is implicated in reward and reinforcement processes through actions on the mesolimbic dopamine (DA) system. Here we provide evidence for the relationship between HCRT and DA in vivo in anesthetized and freely moving mice. The ability of cocaine to elicit reward-related behaviors in mice lacking the HCRT prepro-peptide (HCRT knock-out; KO) and wild-type controls was determined using conditioned place preference. Using a combination of microdialysis and in vivo fast scan cyclic voltammetry in anesthetized and freely moving mice, we investigated the underlying role of HCRT in the regulation of DA release and uptake. We show that, unlike wild-type mice, HCRT KO mice fail to develop characteristic conditioned place preference for cocaine. These mice also demonstrated reduced DA release and uptake under baseline conditions in both anesthetized and freely moving experiments. Further, diminished DA signaling in HCRT KO mice persists following administration of cocaine. These findings indicate that HCRT is essential for the expression of behaviors associated with the rewarding effects of cocaine, and suggest that HCRT regulation of reward and reinforcement may be related to disruptions to DA neurotransmission.
Collapse
Affiliation(s)
- Jessica K. Shaw
- Department of Neurobiology and Anatomy; Drexel University College of Medicine; Philadelphia PA USA
| | - Mark J. Ferris
- Department of Physiology and Pharmacology; Wake Forest School of Medicine; Winston-Salem NC USA
| | - Jason L. Locke
- Department of Physiology and Pharmacology; Wake Forest School of Medicine; Winston-Salem NC USA
| | - Zachary D. Brodnik
- Department of Neurobiology and Anatomy; Drexel University College of Medicine; Philadelphia PA USA
| | - Sara R. Jones
- Department of Physiology and Pharmacology; Wake Forest School of Medicine; Winston-Salem NC USA
| | - Rodrigo A. España
- Department of Neurobiology and Anatomy; Drexel University College of Medicine; Philadelphia PA USA
| |
Collapse
|
34
|
DePorter DP, Coborn JE, Teske JA. Partial Sleep Deprivation Reduces the Efficacy of Orexin-A to Stimulate Physical Activity and Energy Expenditure. Obesity (Silver Spring) 2017; 25:1716-1722. [PMID: 28815952 DOI: 10.1002/oby.21944] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 06/25/2017] [Accepted: 06/29/2017] [Indexed: 01/08/2023]
Abstract
OBJECTIVE Sufficient sleep is required for weight maintenance. Sleep deprivation due to noise exposure stimulates weight gain by increasing hyperphagia and reducing energy expenditure (EE). Yet the mechanistic basis underlying the weight gain response is unclear. Orexin-A promotes arousal and negative energy balance, and orexin terminals project to the ventrolateral preoptic area (VLPO), which is involved in sleep-to-wake transitions. To determine whether sleep deprivation reduces orexin function in VLPO and to test the hypothesis that sleep deprivation would attenuate the orexin-A-stimulated increase in arousal, physical activity (PA), and EE. METHODS Electroencephalogram, electromyogram, distance traveled, and EE were determined in male Sprague-Dawley rats following orexin-A injections into VLPO both before and after acute (12-h) and chronic (8 h/d, 9 d) sleep deprivation by noise exposure. RESULTS Orexin-A in the VLPO significantly increased arousal, PA, total EE, and PA-related EE and reduced sleep and respiratory quotient before sleep deprivation. In contrast to after acute sleep deprivation in which orexin-A failed to stimulate EE during PA only, orexin-A failed to significantly increase arousal, PA, fat oxidation, total EE, and PA-related EE after chronic sleep deprivation. CONCLUSIONS Sleep deprivation may reduce sensitivity to endogenous stimuli that enhance EE due to PA and thus stimulate weight gain.
Collapse
Affiliation(s)
- Danielle P DePorter
- Department of Nutritional Sciences, University of Arizona, Tucson, Arizona, USA
| | - Jamie E Coborn
- Department of Nutritional Sciences, University of Arizona, Tucson, Arizona, USA
| | - Jennifer A Teske
- Department of Nutritional Sciences, University of Arizona, Tucson, Arizona, USA
- Minneapolis VA Health Care System, Minneapolis, Minnesota, USA
- Department of Food Science & Nutrition, University of Minnesota, Saint Paul, Minnesota, USA
- Minnesota Obesity Center, University of Minnesota, Saint Paul, Minnesota, USA
| |
Collapse
|
35
|
Optogenetic Investigation of Arousal Circuits. Int J Mol Sci 2017; 18:ijms18081773. [PMID: 28809797 PMCID: PMC5578162 DOI: 10.3390/ijms18081773] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2017] [Revised: 08/06/2017] [Accepted: 08/09/2017] [Indexed: 12/13/2022] Open
Abstract
Modulation between sleep and wake states is controlled by a number of heterogeneous neuron populations. Due to the topological proximity and genetic co-localization of the neurons underlying sleep-wake state modulation optogenetic methods offer a significant improvement in the ability to benefit from both the precision of genetic targeting and millisecond temporal control. Beginning with an overview of the neuron populations mediating arousal, this review outlines the progress that has been made in the investigation of arousal circuits since the incorporation of optogenetic techniques and the first in vivo application of optogenetic stimulation in hypocretin neurons in the lateral hypothalamus. This overview is followed by a discussion of the future progress that can be made by incorporating more recent technological developments into the research of neural circuits.
Collapse
|
36
|
Tyree SM, de Lecea L. Lateral Hypothalamic Control of the Ventral Tegmental Area: Reward Evaluation and the Driving of Motivated Behavior. Front Syst Neurosci 2017; 11:50. [PMID: 28729827 PMCID: PMC5498520 DOI: 10.3389/fnsys.2017.00050] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 06/22/2017] [Indexed: 12/25/2022] Open
Abstract
The lateral hypothalamus (LH) plays an important role in many motivated behaviors, sleep-wake states, food intake, drug-seeking, energy balance, etc. It is also home to a heterogeneous population of neurons that express and co-express multiple neuropeptides including hypocretin (Hcrt), melanin-concentrating hormone (MCH), cocaine- and amphetamine-regulated transcript (CART) and neurotensin (NT). These neurons project widely throughout the brain to areas such as the locus coeruleus, the bed nucleus of the stria terminalis, the amygdala and the ventral tegmental area (VTA). Lateral hypothalamic projections to the VTA are believed to be important for driving behavior due to the involvement of dopaminergic reward circuitry. The purpose of this article is to review current knowledge regarding the lateral hypothalamic connections to the VTA and the role they play in driving these behaviors.
Collapse
Affiliation(s)
- Susan M Tyree
- Department of Psychiatry and Behavioral Sciences, Stanford UniversityStanford, CA, United States
| | - Luis de Lecea
- Department of Psychiatry and Behavioral Sciences, Stanford UniversityStanford, CA, United States
| |
Collapse
|
37
|
Miyazaki S, Liu CY, Hayashi Y. Sleep in vertebrate and invertebrate animals, and insights into the function and evolution of sleep. Neurosci Res 2017; 118:3-12. [DOI: 10.1016/j.neures.2017.04.017] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2017] [Revised: 03/29/2017] [Accepted: 03/29/2017] [Indexed: 10/24/2022]
|
38
|
Sandsmark DK, Elliott JE, Lim MM. Sleep-Wake Disturbances After Traumatic Brain Injury: Synthesis of Human and Animal Studies. Sleep 2017; 40:3074241. [PMID: 28329120 PMCID: PMC6251652 DOI: 10.1093/sleep/zsx044] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/16/2017] [Indexed: 12/23/2022] Open
Abstract
Sleep-wake disturbances following traumatic brain injury (TBI) are increasingly recognized as a serious consequence following injury and as a barrier to recovery. Injury-induced sleep-wake disturbances can persist for years, often impairing quality of life. Recently, there has been a nearly exponential increase in the number of primary research articles published on the pathophysiology and mechanisms underlying sleep-wake disturbances after TBI, both in animal models and in humans, including in the pediatric population. In this review, we summarize over 200 articles on the topic, most of which were identified objectively using reproducible online search terms in PubMed. Although these studies differ in terms of methodology and detailed outcomes; overall, recent research describes a common phenotype of excessive daytime sleepiness, nighttime sleep fragmentation, insomnia, and electroencephalography spectral changes after TBI. Given the heterogeneity of the human disease phenotype, rigorous translation of animal models to the human condition is critical to our understanding of the mechanisms and of the temporal course of sleep-wake disturbances after injury. Arguably, this is most effectively accomplished when animal and human studies are performed by the same or collaborating research programs. Given the number of symptoms associated with TBI that are intimately related to, or directly stem from sleep dysfunction, sleep-wake disorders represent an important area in which mechanistic-based therapies may substantially impact recovery after TBI.
Collapse
Affiliation(s)
| | - Jonathan E Elliott
- VA Portland Health Care System, Portland, OR
- Department of Neurology, Oregon Health & Science University, Portland, OR
| | - Miranda M Lim
- VA Portland Health Care System, Portland, OR
- Department of Neurology, Oregon Health & Science University, Portland, OR
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Oregon Institute of Occupational Health Sciences, Oregon Health & Science University, Portland, OR; Department of Behavioral Neuroscience, Oregon Institute of Occupational Health Sciences, Oregon Health & Science University, Portland, OR
| |
Collapse
|
39
|
Coborn JE, DePorter DP, Mavanji V, Sinton CM, Kotz CM, Billington CJ, Teske JA. Role of orexin-A in the ventrolateral preoptic area on components of total energy expenditure. Int J Obes (Lond) 2017; 41:1256-1262. [PMID: 28392556 DOI: 10.1038/ijo.2017.92] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 03/20/2017] [Accepted: 03/26/2017] [Indexed: 12/23/2022]
Abstract
BACKGROUND Identifying whether components of total energy expenditure (EE) are affected by orexin receptor (OXR1 and OXR2) stimulation or antagonism with dual orexin receptor antagonists (DORAs) has relevance for obesity treatment. Orexin receptor stimulation reduces weight gain by increasing total EE and EE during spontaneous physical activity (SPA). OBJECTIVE The purpose of this study was to determine if a DORA (TCS-1102) in the ventrolateral preoptic area (VLPO) reduced orexin-A-induced arousal, SPA, total EE and EE during sleep, rest, wake and SPA and whether the DORA alone reduced total EE and its components. We hypothesized that: (1) a DORA would reduce orexin-A induced increases in arousal, SPA, components of total EE, reductions in sleep and the EE during sleep and (2) the DORA alone would reduce baseline (non-stimulated) SPA and total EE. SUBJECTS/METHODS Sleep, wakefulness, SPA and EE were determined after microinjection of the DORA (TCS-1102) and orexin-A in the VLPO of male Sprague-Dawley rats with a unilateral cannula targeted towards the VLPO. Individual components of total EE were determined based on time-stamped data. RESULTS The DORA reduced orexin-A-induced increases in arousal, SPA, total EE and EE during SPA, wake, rest and sleep 1 h post injection (P<0.05). Orexin-A significantly reduced sleep and significantly increased EE during sleep 1 h post injection (P<0.05). Furthermore, the DORA alone significantly reduced total EE, EE during sleep (NREM and REM) and resting EE 2 h post injection (P<0.05). CONCLUSIONS These data suggest that orexin-A reduces weight gain by stimulating total EE through increases in EE during SPA, rest and sleep. Residual effects of the DORA alone include decreases in total EE and EE during sleep and rest, which may promote weight gain.
Collapse
Affiliation(s)
- J E Coborn
- Department of Nutritional Sciences, University of Arizona, Tucson, AZ, USA
| | - D P DePorter
- Department of Nutritional Sciences, University of Arizona, Tucson, AZ, USA
| | - V Mavanji
- Minneapolis VA Health Care System, Minneapolis, MN, USA
| | - C M Sinton
- Arizona Respiratory Center, University of Arizona, Tucson, AZ, USA
| | - C M Kotz
- Minneapolis VA Health Care System, Minneapolis, MN, USA.,Geriatric Research Education and Clinical Center, Minneapolis, MN, USA.,Minnesota Obesity Center, Saint Paul, MN, USA.,Department of Food Science and Nutrition, University of Minnesota, Saint Paul, MN, USA
| | - C J Billington
- Minneapolis VA Health Care System, Minneapolis, MN, USA.,Minnesota Obesity Center, Saint Paul, MN, USA.,Department of Food Science and Nutrition, University of Minnesota, Saint Paul, MN, USA.,Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - J A Teske
- Department of Nutritional Sciences, University of Arizona, Tucson, AZ, USA.,Minneapolis VA Health Care System, Minneapolis, MN, USA.,Minnesota Obesity Center, Saint Paul, MN, USA.,Department of Food Science and Nutrition, University of Minnesota, Saint Paul, MN, USA
| |
Collapse
|
40
|
Joshi D, Singh SK. Localization, expression and role of Orexin A and its receptor in testes of neonatal mice. Gen Comp Endocrinol 2016; 239:62-70. [PMID: 26562300 DOI: 10.1016/j.ygcen.2015.11.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 11/02/2015] [Accepted: 11/08/2015] [Indexed: 11/26/2022]
Abstract
Orexin A (OXA), a hypothalamic neuropeptide, and its receptor (OX1R) are primarily expressed in lateral hypothalamus and are involved in the control of various biological functions. Expressions of OXA and OX1R have also been reported in peripheral organs like gastrointestinal and genital tracts. In the present study, expressions of OXA and OX1R have been observed in the testis of Parkes strain neonatal mice by semi-quantitative RT-PCR and western blot analyses. Immunohistochemical study also revealed their presence on spermatogonia, Sertoli cells and in the interstitium of the testis. In order to understand the role of OXA and OX1R in testicular development, an in vitro study was also performed. For this, binding of OXA to OX1R was blocked using OX1R specific antagonist, SB-334867. Eighteen mice were sacrificed and their testes were cultured in complete media containing vehicle and two doses (0.1 and 4.0μg/ml media) of SB-334867 for 72h in CO2 incubator at 37°C. At the end of culture period, testes were used for western blot and RT-PCR analyses to study the expression of various markers of gonadal development, such as steroidogenic factor 1 (SF-1), Wilms' tumor 1 (Wt1), Mullerian inhibiting substance (MIS) and stem cell factor (SCF). Further, expressions of OXA, OX1R and glucose transporter 3 (GLUT 3) were also studied. A marked increase in the expression of SF-1 and a decrease in the expression of Wt1 at both transcript and protein levels were noted, while there was a decrease in the expression of SCF and MIS at transcript level at both doses of the antagonist; this suggests that blockage of OXA binding to OX1R by SB-334867 affects testicular development. The decrease in expressions of OXA, OX1R and GLUT 3 in the test is in response to both doses of the antagonist points to their down-regulation causing inefficient uptake of glucose by the testicular cells, thereby affecting gonadal development. In conclusion, our results suggest that the binding of OXA to OX1R is important for the development of the testis.
Collapse
Affiliation(s)
- Deepanshu Joshi
- Department of Zoology, Banaras Hindu University, Varanasi 221005, India
| | - Shio Kumar Singh
- Department of Zoology, Banaras Hindu University, Varanasi 221005, India.
| |
Collapse
|
41
|
Hypocretin/Orexin Peptides Alter Spike Encoding by Serotonergic Dorsal Raphe Neurons through Two Distinct Mechanisms That Increase the Late Afterhyperpolarization. J Neurosci 2016; 36:10097-115. [PMID: 27683906 DOI: 10.1523/jneurosci.0635-16.2016] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 08/11/2016] [Indexed: 01/02/2023] Open
Abstract
UNLABELLED Orexins (hypocretins) are neuropeptides that regulate multiple homeostatic processes, including reward and arousal, in part by exciting serotonergic dorsal raphe neurons, the major source of forebrain serotonin. Here, using mouse brain slices, we found that, instead of simply depolarizing these neurons, orexin-A altered the spike encoding process by increasing the postspike afterhyperpolarization (AHP) via two distinct mechanisms. This orexin-enhanced AHP (oeAHP) was mediated by both OX1 and OX2 receptors, required Ca(2+) influx, reversed near EK, and decayed with two components, the faster of which resulted from enhanced SK channel activation, whereas the slower component decayed like a slow AHP (sAHP), but was not blocked by UCL2077, an antagonist of sAHPs in some neurons. Intracellular phospholipase C inhibition (U73122) blocked the entire oeAHP, but neither component was sensitive to PKC inhibition or altered PKA signaling, unlike classical sAHPs. The enhanced SK current did not depend on IP3-mediated Ca(2+) release but resulted from A-current inhibition and the resultant spike broadening, which increased Ca(2+) influx and Ca(2+)-induced-Ca(2+) release, whereas the slower component was insensitive to these factors. Functionally, the oeAHP slowed and stabilized orexin-induced firing compared with firing produced by a virtual orexin conductance lacking the oeAHP. The oeAHP also reduced steady-state firing rate and firing fidelity in response to stimulation, without affecting the initial rate or fidelity. Collectively, these findings reveal a new orexin action in serotonergic raphe neurons and suggest that, when orexin is released during arousal and reward, it enhances the spike encoding of phasic over tonic inputs, such as those related to sensory, motor, and reward events. SIGNIFICANCE STATEMENT Orexin peptides are known to excite neurons via slow postsynaptic depolarizations. Here we elucidate a significant new orexin action that increases and prolongs the postspike afterhyperpolarization (AHP) in 5-HT dorsal raphe neurons and other arousal-system neurons. Our mechanistic studies establish involvement of two distinct Ca(2+)-dependent AHP currents dependent on phospholipase C signaling but independent of IP3 or PKC. Our functional studies establish that this action preserves responsiveness to phasic inputs while attenuating responsiveness to tonic inputs. Thus, our findings bring new insight into the actions of an important neuropeptide and indicate that, in addition to producing excitation, orexins can tune postsynaptic excitability to better encode the phasic sensory, motor, and reward signals expected during aroused states.
Collapse
|
42
|
Tanaka Y, Aoki I, Ishine T, Renger JJ, Winrow CJ, Hisada S. [Preclinical and clinical results of dual orexin receptor antagonist, suvorexant (BELSOMRA(®)), a novel therapeutic agent for insomnia]. Nihon Yakurigaku Zasshi 2016; 148:46-56. [PMID: 27430679 DOI: 10.1254/fpj.148.46] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
|
43
|
Gotter AL, Forman MS, Harrell CM, Stevens J, Svetnik V, Yee KL, Li X, Roecker AJ, Fox SV, Tannenbaum PL, Garson SL, Lepeleire ID, Calder N, Rosen L, Struyk A, Coleman PJ, Herring WJ, Renger JJ, Winrow CJ. Orexin 2 Receptor Antagonism is Sufficient to Promote NREM and REM Sleep from Mouse to Man. Sci Rep 2016; 6:27147. [PMID: 27256922 PMCID: PMC4891657 DOI: 10.1038/srep27147] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 05/16/2016] [Indexed: 11/26/2022] Open
Abstract
Orexin neuropeptides regulate sleep/wake through orexin receptors (OX1R, OX2R); OX2R is the predominant mediator of arousal promotion. The potential for single OX2R antagonism to effectively promote sleep has yet to be demonstrated in humans. MK-1064 is an OX2R-single antagonist. Preclinically, MK-1064 promotes sleep and increases both rapid eye movement (REM) and non-REM (NREM) sleep in rats at OX2R occupancies higher than the range observed for dual orexin receptor antagonists. Similar to dual antagonists, MK-1064 increases NREM and REM sleep in dogs without inducing cataplexy. Two Phase I studies in healthy human subjects evaluated safety, tolerability, pharmacokinetics and sleep-promoting effects of MK-1064, and demonstrated dose-dependent increases in subjective somnolence (via Karolinska Sleepiness Scale and Visual Analogue Scale measures) and sleep (via polysomnography), including increased REM and NREM sleep. Thus, selective OX2R antagonism is sufficient to promote REM and NREM sleep across species, similarly to that seen with dual orexin receptor antagonism.
Collapse
Affiliation(s)
| | - Mark S. Forman
- Department of Translational Medicine, Merck & Co. Inc., Kenilworth, NJ, USA
| | | | - Joanne Stevens
- Department of in vivo Pharmacology, Merck & Co. Inc., Kenilworth, NJ, USA
| | - Vladimir Svetnik
- Department of Biostatistics and Research Decision Sciences, Merck & Co. Inc., Kenilworth, NJ, USA
| | - Ka Lai Yee
- Department of Pharmacokinetics Pharmacodynamics and Drug Metabolism, Merck & Co. Inc., Kenilworth, NJ, USA
| | - Xiaodong Li
- Department of Pharmacokinetics Pharmacodynamics and Drug Metabolism, Merck & Co. Inc., Kenilworth, NJ, USA
| | - Anthony J. Roecker
- Department of Medicinal Chemistry, Merck & Co. Inc., Kenilworth, NJ, USA
| | - Steven V. Fox
- Department of in vivo Pharmacology, Merck & Co. Inc., Kenilworth, NJ, USA
| | | | - Susan L. Garson
- Department of Neuroscience, Merck & Co. Inc., Kenilworth, NJ, USA
| | - Inge De Lepeleire
- Department of Translational Medicine, Merck & Co. Inc., Kenilworth, NJ, USA
| | - Nicole Calder
- Department of Clinical Neuroscience, Merck & Co. Inc., Kenilworth, NJ, USA
| | - Laura Rosen
- Department of Clinical Neuroscience, Merck & Co. Inc., Kenilworth, NJ, USA
| | - Arie Struyk
- Department of Translational Medicine, Merck & Co. Inc., Kenilworth, NJ, USA
| | - Paul J. Coleman
- Department of Medicinal Chemistry, Merck & Co. Inc., Kenilworth, NJ, USA
| | - W. Joseph Herring
- Department of Clinical Neuroscience, Merck & Co. Inc., Kenilworth, NJ, USA
| | - John J. Renger
- Department of Neuroscience, Merck & Co. Inc., Kenilworth, NJ, USA
| | | |
Collapse
|
44
|
Thomasy HE, Febinger HY, Ringgold KM, Gemma C, Opp MR. Hypocretinergic and cholinergic contributions to sleep-wake disturbances in a mouse model of traumatic brain injury. Neurobiol Sleep Circadian Rhythms 2016; 2:71-84. [PMID: 31236496 PMCID: PMC6575582 DOI: 10.1016/j.nbscr.2016.03.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 03/25/2016] [Accepted: 03/28/2016] [Indexed: 12/24/2022] Open
Abstract
Disorders of sleep and wakefulness occur in the majority of individuals who have experienced traumatic brain injury (TBI), with increased sleep need and excessive daytime sleepiness often reported. Behavioral and pharmacological therapies have limited efficacy, in part, because the etiology of post-TBI sleep disturbances is not well understood. Severity of injuries resulting from head trauma in humans is highly variable, and as a consequence so are their sequelae. Here, we use a controlled laboratory model to investigate the effects of TBI on sleep-wake behavior and on candidate neurotransmitter systems as potential mediators. We focus on hypocretin and melanin-concentrating hormone (MCH), hypothalamic neuropeptides important for regulating sleep and wakefulness, and two potential downstream effectors of hypocretin actions, histamine and acetylcholine. Adult male C57BL/6 mice (n=6-10/group) were implanted with EEG recording electrodes and baseline recordings were obtained. After baseline recordings, controlled cortical impact was used to induce mild or moderate TBI. EEG recordings were obtained from the same animals at 7 and 15 days post-surgery. Separate groups of animals (n=6-8/group) were used to determine effects of TBI on the numbers of hypocretin and MCH-producing neurons in the hypothalamus, histaminergic neurons in the tuberomammillary nucleus, and cholinergic neurons in the basal forebrain. At 15 days post-TBI, wakefulness was decreased and NREM sleep was increased during the dark period in moderately injured animals. There were no differences between groups in REM sleep time, nor were there differences between groups in sleep during the light period. TBI effects on hypocretin and cholinergic neurons were such that more severe injury resulted in fewer cells. Numbers of MCH neurons and histaminergic neurons were not altered under the conditions of this study. Thus, we conclude that moderate TBI in mice reduces wakefulness and increases NREM sleep during the dark period, effects that may be mediated by hypocretin-producing neurons and/or downstream cholinergic effectors in the basal forebrain.
Collapse
Affiliation(s)
- Hannah E Thomasy
- Graduate Program in Neuroscience, University of Washington, Seattle, WA, United States
| | - Heidi Y Febinger
- Department of Anesthesiology & Pain Medicine, University of Washington, Seattle, WA, United States
| | - Kristyn M Ringgold
- Department of Anesthesiology & Pain Medicine, University of Washington, Seattle, WA, United States
| | - Carmelina Gemma
- Department of Anesthesiology & Pain Medicine, University of Washington, Seattle, WA, United States
| | - Mark R Opp
- Graduate Program in Neuroscience, University of Washington, Seattle, WA, United States.,Department of Anesthesiology & Pain Medicine, University of Washington, Seattle, WA, United States
| |
Collapse
|
45
|
Kumar A, Chanana P, Choudhary S. Emerging role of orexin antagonists in insomnia therapeutics: An update on SORAs and DORAs. Pharmacol Rep 2016; 68:231-42. [DOI: 10.1016/j.pharep.2015.09.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 09/09/2015] [Accepted: 09/10/2015] [Indexed: 12/28/2022]
|
46
|
Locus Coeruleus and Tuberomammillary Nuclei Ablations Attenuate Hypocretin/Orexin Antagonist-Mediated REM Sleep. eNeuro 2016; 3:eN-NWR-0018-16. [PMID: 27022631 PMCID: PMC4801942 DOI: 10.1523/eneuro.0018-16.2016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 02/11/2016] [Accepted: 02/12/2016] [Indexed: 01/13/2023] Open
Abstract
Hypocretin 1 and 2 (Hcrts; also known as orexin A and B), excitatory neuropeptides synthesized in cells located in the tuberal hypothalamus, play a central role in the control of arousal. Hcrt inputs to the locus coeruleus norepinephrine (LC NE) system and the posterior hypothalamic histaminergic tuberomammillary nuclei (TMN HA) are important efferent pathways for Hcrt-induced wakefulness. The LC expresses Hcrt receptor 1 (HcrtR1), whereas HcrtR2 is found in the TMN. Although the dual Hcrt/orexin receptor antagonist almorexant (ALM) decreases wakefulness and increases NREM and REM sleep time, the neural circuitry that mediates these effects is currently unknown. To test the hypothesis that ALM induces sleep by selectively disfacilitating subcortical wake-promoting populations, we ablated LC NE neurons (LCx) or TMN HA neurons (TMNx) in rats using cell-type-specific saporin conjugates and evaluated sleep/wake following treatment with ALM and the GABAA receptor modulator zolpidem (ZOL). Both LCx and TMNx attenuated the promotion of REM sleep by ALM without affecting ALM-mediated increases in NREM sleep. Thus, eliminating either HcrtR1 signaling in the LC or HcrtR2 signaling in the TMN yields similar effects on ALM-induced REM sleep without affecting NREM sleep time. In contrast, neither lesion altered ZOL efficacy on any measure of sleep–wake regulation. These results contrast with those of a previous study in which ablation of basal forebrain cholinergic neurons attenuated ALM-induced increases in NREM sleep time without affecting REM sleep, indicating that Hcrt neurotransmission influences distinct aspects of NREM and REM sleep at different locations in the sleep–wake regulatory network.
Collapse
|
47
|
Russo F, Petrosino G, Vittoria A. Presence of orexin A and orexin 1 receptor in the buffalo prostate. ITALIAN JOURNAL OF ANIMAL SCIENCE 2016. [DOI: 10.4081/ijas.2007.s2.794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
48
|
Davoudi M, Azizi H, Mirnajafi-Zadeh J, Semnanian S. The blockade of GABAA receptors attenuates the inhibitory effect of orexin type 1 receptors antagonist on morphine withdrawal syndrome in rats. Neurosci Lett 2016; 617:201-6. [DOI: 10.1016/j.neulet.2016.02.022] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Revised: 02/09/2016] [Accepted: 02/10/2016] [Indexed: 11/25/2022]
|
49
|
Abstract
Cortical electroencephalographic activity arises from corticothalamocortical interactions, modulated by wake-promoting monoaminergic and cholinergic input. These wake-promoting systems are regulated by hypothalamic hypocretin/orexins, while GABAergic sleep-promoting nuclei are found in the preoptic area, brainstem and lateral hypothalamus. Although pontine acetylcholine is critical for REM sleep, hypothalamic melanin-concentrating hormone/GABAergic cells may "gate" REM sleep. Daily sleep-wake rhythms arise from interactions between a hypothalamic circadian pacemaker and a sleep homeostat whose anatomical locus has yet to be conclusively defined. Control of sleep and wakefulness involves multiple systems, each of which presents vulnerability to sleep/wake dysfunction that may predispose to physical and/or neuropsychiatric disorders.
Collapse
Affiliation(s)
- Michael D Schwartz
- Biosciences Division, Center for Neuroscience, SRI International, 333 Ravenswood Avenue, Menlo Park, CA 94025, USA
| | - Thomas S Kilduff
- Biosciences Division, Center for Neuroscience, SRI International, 333 Ravenswood Avenue, Menlo Park, CA 94025, USA.
| |
Collapse
|
50
|
Du MK, Hunt NJ, Waters KA, Machaalani R. Cumulative effects of repetitive intermittent hypercapnic hypoxia on orexin in the developing piglet hypothalamus. Int J Dev Neurosci 2015; 48:1-8. [PMID: 26548856 DOI: 10.1016/j.ijdevneu.2015.10.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Revised: 10/30/2015] [Accepted: 10/30/2015] [Indexed: 01/17/2023] Open
Abstract
Orexin neuropeptides (OxA and OxB) and their receptors (OX1R and OX2R) are involved in maintenance of sleep and wakefulness, and are regulated by various environmental stimuli. We studied piglets, in the early neonatal period, exposed to 48-min of intermittent hypercapnic hypoxia (IHH; 7% O2/8% CO2) alternating with air. Three groups of 13-14 day-old piglets with IHH exposure of 1-day (1D-IHH) (n=7), 2-days (2D-IHH) (n=7) and 4-days (4D-IHH) (n=8) were compared to controls (exposed only to air, n=8). Immunoreactivity of OxA and OxB was studied in the piglet hypothalamic regions of the dorsomedial hypothalamus (DMH), perifornical area (PeF) and lateral hypothalamic area (LH). Results showed that after 1D- and 2D-IHH, total OxA and OxB expression decreased by 20% (p ≤ 0.005) and 40% (p<0.001), respectively. After 4D-IHH, the decrease in OxA and OxB was 50% (p<0.001). These findings indicate that a chronic IHH exposure induces greater changes in orexin neuropeptide expression than an acute 1-day exposure in the hypothalamus. This may be causally related to the dysregulation of sleep.
Collapse
Affiliation(s)
- Man K Du
- Department of Pathology, University of Sydney, NSW 2006, Australia; The BOSCH Institute, University of Sydney, NSW 2006, Australia
| | - Nicholas J Hunt
- The BOSCH Institute, University of Sydney, NSW 2006, Australia; Department of Medicine, Blackburn Building, D06, University of Sydney, NSW 2006, Australia
| | - Karen A Waters
- Department of Medicine, Blackburn Building, D06, University of Sydney, NSW 2006, Australia; The Children's Hospital, Westmead Sydney, NSW 2145, Australia
| | - Rita Machaalani
- The BOSCH Institute, University of Sydney, NSW 2006, Australia; Department of Medicine, Blackburn Building, D06, University of Sydney, NSW 2006, Australia; The Children's Hospital, Westmead Sydney, NSW 2145, Australia.
| |
Collapse
|