1
|
Leithead AB, Tasker JG, Harony‐Nicolas H. The interplay between glutamatergic circuits and oxytocin neurons in the hypothalamus and its relevance to neurodevelopmental disorders. J Neuroendocrinol 2021; 33:e13061. [PMID: 34786775 PMCID: PMC8951898 DOI: 10.1111/jne.13061] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 10/14/2021] [Accepted: 10/30/2021] [Indexed: 11/27/2022]
Abstract
Oxytocin (OXT) neurons of the hypothalamus are at the center of several physiological functions, including milk ejection, uterus contraction, and maternal and social behavior. In lactating females, OXT neurons show a pattern of burst firing and inter-neuron synchronization during suckling that leads to pulsatile release of surges of OXT into the bloodstream to stimulate milk ejection. This pattern of firing and population synchronization may be facilitated in part by hypothalamic glutamatergic circuits, as has been observed in vitro using brain slices obtained from male rats and neonates. However, it remains unknown how hypothalamic glutamatergic circuits influence OXT cell activity outside the context of lactation. In this review, we summarize the in vivo and in vitro studies that describe the synchronized burst firing pattern of OXT neurons and the implication of hypothalamic glutamate in this pattern of firing. We also make note of the few studies that have traced glutamatergic afferents to the hypothalamic paraventricular and supraoptic nuclei. Finally, we discuss the genetic findings implicating several glutamatergic genes in neurodevelopmental disorders, including autism spectrum disorder, thus underscoring the need for future studies to investigate the impact of these mutations on hypothalamic glutamatergic circuits and the OXT system.
Collapse
Affiliation(s)
- Amanda B. Leithead
- Department of PsychiatryIcahn School of Medicine at Mount SinaiNew YorkNYUSA
- Seaver Autism Center for Research and TreatmentNew YorkNYUSA
- Department of NeuroscienceIcahn School of Medicine at Mount SinaiNew YorkNYUSA
- Friedman Brain Institute at the Icahn School of Medicine at Mount SinaiNew YorkNYUSA
| | - Jeffrey G. Tasker
- Neurobiology DivisionDepartment of Cell and Molecular BiologyTulane UniversityNew OrleansLAUSA
| | - Hala Harony‐Nicolas
- Department of PsychiatryIcahn School of Medicine at Mount SinaiNew YorkNYUSA
- Seaver Autism Center for Research and TreatmentNew YorkNYUSA
- Department of NeuroscienceIcahn School of Medicine at Mount SinaiNew YorkNYUSA
- Friedman Brain Institute at the Icahn School of Medicine at Mount SinaiNew YorkNYUSA
- Mindich Child Health and Development Institute at the Icahn School of Medicine at Mount SinaiNew YorkNYUSA
| |
Collapse
|
2
|
Kim YB, Kim WB, Jung WW, Jin X, Kim YS, Kim B, Han HC, Block GD, Colwell CS, Kim YI. Excitatory GABAergic Action and Increased Vasopressin Synthesis in Hypothalamic Magnocellular Neurosecretory Cells Underlie the High Plasma Level of Vasopressin in Diabetic Rats. Diabetes 2018; 67:486-495. [PMID: 29212780 DOI: 10.2337/db17-1042] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 11/20/2017] [Indexed: 11/13/2022]
Abstract
Diabetes mellitus (DM) is associated with increased plasma levels of arginine-vasopressin (AVP), which may aggravate hyperglycemia and nephropathy. However, the mechanisms by which DM may cause the increased AVP levels are not known. Electrophysiological recordings in supraoptic nucleus (SON) slices from streptozotocin (STZ)-induced DM rats and vehicle-treated control rats revealed that γ-aminobutyric acid (GABA) functions generally as an excitatory neurotransmitter in the AVP neurons of STZ rats, whereas it usually evokes inhibitory responses in the cells of control animals. Furthermore, Western blotting analyses of Cl- transporters in the SON tissues indicated that Na+-K+-2Cl- cotransporter isotype 1 (a Cl- importer) was upregulated and K+-Cl- cotransporter isotype 2 (KCC2; a Cl- extruder) was downregulated in STZ rats. Treatment with CLP290 (a KCC2 activator) significantly lowered blood AVP and glucose levels in STZ rats. Last, investigation that used rats expressing an AVP-enhanced green fluorescent protein fusion gene showed that AVP synthesis in AVP neurons was much more intense in STZ rats than in control rats. We conclude that altered Cl- homeostasis that makes GABA excitatory and enhanced AVP synthesis are important changes in AVP neurons that would increase AVP secretion in DM. Our data suggest that Cl- transporters in AVP neurons are potential targets of antidiabetes treatments.
Collapse
Affiliation(s)
- Young-Beom Kim
- Department of Physiology, Korea University College of Medicine, Seoul, Republic of Korea
- Neuroscience Research Institute, Korea University College of Medicine, Seoul, Republic of Korea
| | - Woong Bin Kim
- Department of Physiology, Korea University College of Medicine, Seoul, Republic of Korea
- Neuroscience Research Institute, Korea University College of Medicine, Seoul, Republic of Korea
| | - Won Woo Jung
- Department of Physiology, Korea University College of Medicine, Seoul, Republic of Korea
| | - Xiangyan Jin
- Department of Physiology, Korea University College of Medicine, Seoul, Republic of Korea
| | - Yoon Sik Kim
- Department of Physiology, Korea University College of Medicine, Seoul, Republic of Korea
- Department of Psychiatry & Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, CA
| | - Byoungjae Kim
- Department of Physiology, Korea University College of Medicine, Seoul, Republic of Korea
| | - Hee Chul Han
- Department of Physiology, Korea University College of Medicine, Seoul, Republic of Korea
- Neuroscience Research Institute, Korea University College of Medicine, Seoul, Republic of Korea
| | - Gene D Block
- Department of Psychiatry & Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, CA
| | - Christopher S Colwell
- Department of Psychiatry & Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, CA
| | - Yang In Kim
- Department of Physiology, Korea University College of Medicine, Seoul, Republic of Korea
- Neuroscience Research Institute, Korea University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
3
|
Abstract
Prolactin (PRL) released from lactotrophs of the anterior pituitary gland in response to the suckling by the offspring is the major hormonal signal responsible for stimulation of milk synthesis in the mammary glands. PRL secretion is under chronic inhibition exerted by dopamine (DA), which is released from neurons of the arcuate nucleus of the hypothalamus into the hypophyseal portal vasculature. Suckling by the young activates ascending systems that decrease the release of DA from this system, resulting in enhanced responsiveness to one or more PRL-releasing hormones, such as thyrotropin-releasing hormone. The neuropeptide oxytocin (OT), synthesized in magnocellular neurons of the hypothalamic supraoptic, paraventricular, and several accessory nuclei, is responsible for contracting the myoepithelial cells of the mammary gland to produce milk ejection. Electrophysiological recordings demonstrate that shortly before each milk ejection, the entire neurosecretory OT population fires a synchronized burst of action potentials (the milk ejection burst), resulting in release of OT from nerve terminals in the neurohypophysis. Both of these neuroendocrine systems undergo alterations in late gestation that prepare them for the secretory demands of lactation, and that reduce their responsiveness to stimuli other than suckling, especially physical stressors. The demands of milk synthesis and release produce a condition of negative energy balance in the suckled mother, and, in laboratory rodents, are accompanied by a dramatic hyperphagia. The reduction in secretion of the adipocyte hormone, leptin, a hallmark of negative energy balance, may be an important endocrine signal to hypothalamic systems that integrate lactation-associated food intake with neuroendocrine systems.
Collapse
Affiliation(s)
- William R Crowley
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Utah Health Sciences Center, Salt Lake City, Utah
| |
Collapse
|
4
|
Quinlan ME, Hirasawa M. Multivesicular release underlies short term synaptic potentiation independent of release probability change in the supraoptic nucleus. PLoS One 2013; 8:e77402. [PMID: 24086774 PMCID: PMC3782434 DOI: 10.1371/journal.pone.0077402] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Accepted: 09/03/2013] [Indexed: 11/19/2022] Open
Abstract
Magnocellular neurons of the supraoptic nucleus receive glutamatergic excitatory inputs that regulate the firing activity and hormone release from these neurons. A strong, brief activation of these excitatory inputs induces a lingering barrage of tetrodotoxin-resistant miniature EPSCs (mEPSCs) that lasts for tens of minutes. This is known to accompany an immediate increase in large amplitude mEPSCs. However, it remains unknown how long this amplitude increase can last and whether it is simply a byproduct of greater release probability. Using in vitro patch clamp recording on acute rat brain slices, we found that a brief, high frequency stimulation (HFS) of afferents induced a potentiation of mEPSC amplitude lasting up to 20 min. This amplitude potentiation did not correlate with changes in mEPSC frequency, suggesting that it does not reflect changes in presynaptic release probability. Nonetheless, neither postsynaptic calcium chelator nor the NMDA receptor antagonist blocked the potentiation. Together with the known calcium dependency of HFS-induced potentiation of mEPSCs, our results imply that mEPSC amplitude increase requires presynaptic calcium. Further analysis showed multimodal distribution of mEPSC amplitude, suggesting that large mEPSCs were due to multivesicular glutamate release, even at late post-HFS when the frequency is no longer elevated. In conclusion, high frequency activation of excitatory synapses induces lasting multivesicular release in the SON, which is independent of changes in release probability. This represents a novel form of synaptic plasticity that may contribute to prolonged excitatory tone necessary for generation of burst firing of magnocellular neurons.
Collapse
Affiliation(s)
- Michelle E. Quinlan
- Division of Biomedical Sciences, Faculty of Medicine, Memorial University, St. John’s, Newfoundland, Canada
| | - Michiru Hirasawa
- Division of Biomedical Sciences, Faculty of Medicine, Memorial University, St. John’s, Newfoundland, Canada
- * E-mail:
| |
Collapse
|
5
|
Wang YF, Negoro H, Higuchi T. Lesions of hypothalamic mammillary body desynchronise milk-ejection bursts of rat bilateral supraoptic oxytocin neurones. J Neuroendocrinol 2013; 25:67-75. [PMID: 22849304 DOI: 10.1111/j.1365-2826.2012.02368.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Revised: 06/17/2012] [Accepted: 07/27/2012] [Indexed: 11/30/2022]
Abstract
Successful milk ejection depends on a bolus release of oxytocin, which results from the synchronised burst firing of magnocellular oxytocin neurones in several hypothalamic nuclei. Despite extensive studies of the mechanism underlying the burst synchrony of oxytocin neurones in the same nucleus, brain regions controlling burst synchronisation among different nuclei remain elusive. We hypothesised that some structures in the ventroposterior hypothalamus may function as the major component of neural circuits controlling burst synchronisation of bilateral oxytocin neurones. To test this hypothesis, we recorded burst firing of bilateral oxytocin neurones in the two supraoptic nuclei after microsurgical disconnection of different hypothalamic regions in anaesthetised lactating rats. The results obtained showed that the interhemispheric section of the caudal part of the hypothalamus but not the rostral hypothalamus resulted in burst desynchronisation. The difference in burst onset time between paired bursts of bilateral oxytocin neurones was 129.2 ± 34.7 s, which is significantly (P < 0.01) longer than that of sham-lesioned controls (0.24 ± 0.02 s). Hypothalamic lesions leading to the desynchronisation involved the mammillary body, supramammillary nucleus and tuberomammillary nucleus in the ventroposterior hypothalamus. Consistently, electrolytic lesion of the median part of this mammillary body region also desynchronised the burst of bilateral oxytocin neurones and disrupted milk ejections. These results indicate that the mammillary body region is critically involved in the burst synchronisation of bilateral oxytocin neurones during suckling and possibly functions as the major component of a putative synchronisation centre.
Collapse
Affiliation(s)
- Y-F Wang
- Department of Cellular Biology and Anatomy, Louisiana State University Health Sciences Center, Shreveport, LA 71103-4228, USA.
| | | | | |
Collapse
|
6
|
Carrillo M, Ricci LA, Melloni RH. Glutamate-vasopressin interactions and the neurobiology of anabolic steroid-induced offensive aggression. Neuroscience 2011; 185:85-96. [PMID: 21459130 DOI: 10.1016/j.neuroscience.2011.03.056] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2010] [Revised: 02/16/2011] [Accepted: 03/24/2011] [Indexed: 01/10/2023]
Abstract
In the latero-anterior hypothalamus (LAH) increased glutamate and vasopressin (AVP) activity facilitate anabolic androgenic steroid (AAS)-induced offensive aggression. In addition, adolescent AAS treatment increases the strength of glutamate-mediated connections between the LAH and the brain nucleus of stria terminalis (BNST). The current set of studies used male Syrian hamsters exposed to AAS during adolescence to examine whether increased glutamate-mediated stimulation of the BNST is dependent on LAH-AVP signaling and whether this neural pathway modulates adolescent AAS-induced offensive aggression. In the first set of AAS-treated animals offensive aggression was measured following blockade of glutamate activity within the BNST using NBQX. Then, in a second group of AAS-treated animals aggression levels were examined following simultaneous blockade of LAH-AVP activity using Manning compound and stimulation of BNST glutamate using AMPA. Lastly, the number of AVP fibers in apposition to glutamate cells was examined in AAS and control animals, using double-label immunofluorescence. The results showed that administration of NBQX into the BNST dose-dependently reduced aggressive behavior in AAS-treated animals. Further, the current results replicated previous findings showing that blockade of LAH-AVP significantly reduces aggressive behavior in AAS-treated animals. In these animals stimulation of BNST-AMPA receptors had a linear effect on aggression, where the smallest dose exacerbated the inhibitory effect of the V1a antagonist, the medium dose had no effect and the highest dose recuperated aggression to control levels. Finally when compared with control animals, AAS treatment produced a significant increase in the number of AVP fibers in apposition to LAH-glutamate cells. Overall, these results identify the BNST as a key brain region involved in aggression control and provide strong evidence suggesting that AVPergic-mediated stimulation of BNST-glutamate is a possible mechanism that facilitates aggression expression in adolescent AAS-treated animals.
Collapse
Affiliation(s)
- M Carrillo
- Behavioral Neuroscience Program, Department of Psychology, 125 Nightingale Hall, Northeastern University, 360 Huntington Avenue, Boston, MA 02155, USA
| | | | | |
Collapse
|
7
|
Location of glutamatergic/aspartatergic neurons projecting to the hypothalamic ventromedial nucleus studied by autoradiography of retrogradely transported [³H]D-aspartate. Neuroscience 2010; 176:210-24. [PMID: 21195748 DOI: 10.1016/j.neuroscience.2010.12.047] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2010] [Revised: 12/07/2010] [Accepted: 12/24/2010] [Indexed: 11/23/2022]
Abstract
The hypothalamic ventromedial nucleus is a prominent cell group, which is involved in the control of feeding, sexual behavior and cardiovascular function as well as having other functions. The nucleus receives inputs from various forebrain structures and has a dense glutamatergic innervation. The aim of the present investigations was to reveal the location of glutamatergic neurons in the telencephalon and diencephalon projecting to this hypothalamic cell group. [(3)H]d-aspartate retrograde autoradiography was used injecting the tracer into the ventromedial nucleus. We detected radiolabeled neurons in telencephalic structures including the lateral septum, bed nucleus of the stria terminalis and the amygdala, and in various diencephalic regions, such as the medial preoptic area, hypothalamic paraventricular nucleus, periventricular nucleus, anterior hypothalamic area, ventral premamillary nucleus, thalamic paraventricular and parataenial nuclei and in the hypothalamic ventromedial nucleus itself. Our observations are the first data on the location of glutamatergic neurons terminating in the hypothalamic ventromedial nucleus. The findings indicate that glutamatergic innervation of the ventromedial nucleus is very complex.
Collapse
|
8
|
Abstract
Many neurons in the CNS display rhythmic patterns of activity to optimize excitation-secretion coupling. However, the mechanisms of rhythmogenesis are only partially understood. Magnocellular vasopressin (VP) neurons in the hypothalamus display a phasic activity that consists of alternative bursts of action potentials and silent periods. Previous observations from acute slices of adult hypothalamus suggested that VP cell rhythmicity depends on intrinsic membrane properties. However, such activity in vivo is nonregenerative. Here, we studied the mechanisms of VP neuron rhythmicity in organotypic slice cultures that, unlike acute slices, preserve functional synaptic connections. Comparative analysis of phasic firing of VP neurons in vivo, in acute slices, and in the cultures revealed that, in the latter, the activity was closely related to that observed in vivo. It was synaptically driven, essentially from glutamatergic inputs, and did not rely on intrinsic membrane properties. The glutamatergic synaptic activity was sensitive to osmotic challenges and kappa-opioid receptor activation, physiological stimuli known to affect phasic activity. Together, our data thus strongly suggest that phasic activity in magnocellular VP neurons is controlled by glutamatergic synaptic inputs rather than by intrinsic properties.
Collapse
|
9
|
Iremonger KJ, Benediktsson AM, Bains JS. Glutamatergic synaptic transmission in neuroendocrine cells: Basic principles and mechanisms of plasticity. Front Neuroendocrinol 2010; 31:296-306. [PMID: 20347860 DOI: 10.1016/j.yfrne.2010.03.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2009] [Revised: 03/21/2010] [Accepted: 03/23/2010] [Indexed: 11/27/2022]
Abstract
Glutamate synapses drive the output of neuroendocrine cells in the hypothalamus, but until recently, relatively little was known about the fundamental properties of transmission at these synapses. Here we review recent advances in the understanding of glutamate signals in magnocellular neurosecretory cells (MNCs) in the paraventricular (PVN) and supraoptic nuclei (SON) of the hypothalamus that serve as the last step in synaptic integration before neurohormone release. While these synapses exhibit many similarities with other glutamate synapses described throughout the brain, they also exhibit a number of unique properties that are particularly well suited to the physiology of this system and will be discussed here. In addition, a number of recent studies begin to provide insights into new forms of synaptic plasticity that may be common in other brain regions, but in these cells, may serve important adaptive roles.
Collapse
Affiliation(s)
- Karl J Iremonger
- Hotchkiss Brain Institute and Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, Canada T2N 4N1
| | | | | |
Collapse
|
10
|
Wynne PM, Puig SI, Martin GE, Treistman SN. Compartmentalized beta subunit distribution determines characteristics and ethanol sensitivity of somatic, dendritic, and terminal large-conductance calcium-activated potassium channels in the rat central nervous system. J Pharmacol Exp Ther 2009; 329:978-86. [PMID: 19321803 PMCID: PMC2683776 DOI: 10.1124/jpet.108.146175] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2008] [Accepted: 03/24/2009] [Indexed: 11/22/2022] Open
Abstract
Neurons are highly differentiated and polarized cells, whose various functions depend upon the compartmentalization of ion channels. The rat hypothalamic-neurohypophysial system (HNS), in which cell bodies and dendrites reside in the hypothalamus, physically separated from their nerve terminals in the neurohypophysis, provides a particularly powerful preparation in which to study the distribution and regional properties of ion channel proteins. Using electrophysiological and immunohistochemical techniques, we characterized the large-conductance calcium-activated potassium (BK) channel in each of the three primary compartments (soma, dendrite, and terminal) of HNS neurons. We found that dendritic BK channels, in common with somatic channels but in contrast to nerve terminal channels, are insensitive to iberiotoxin. Furthermore, analysis of dendritic BK channel gating kinetics indicates that they, like somatic channels, have fast activation kinetics, in contrast to the slow gating of terminal channels. Dendritic and somatic channels are also more sensitive to calcium and have a greater conductance than terminal channels. Finally, although terminal BK channels are highly potentiated by ethanol, somatic and dendritic channels are insensitive to the drug. The biophysical and pharmacological properties of somatic and dendritic versus nerve terminal channels are consistent with the characteristics of exogenously expressed alphabeta1 versus alphabeta4 channels, respectively. Therefore, one possible explanation for our findings is a selective distribution of auxiliary beta1 subunits to the somatic and dendritic compartments and beta4 to the terminal compartment. This hypothesis is supported immunohistochemically by the appearance of distinct punctate beta1 or beta4 channel clusters in the membrane of somatic and dendritic or nerve terminal compartments, respectively.
Collapse
Affiliation(s)
- P M Wynne
- Brudnick Neuropsychiatric Research Institute, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | | | | | | |
Collapse
|
11
|
Kiss J, Halász B, Csáki A, Liposits Z, Hrabovszky E. Vesicular glutamate transporter 2 protein and mRNA containing neurons in the hypothalamic suprachiasmatic nucleus of the rat. Brain Res Bull 2007; 74:397-405. [PMID: 17920448 DOI: 10.1016/j.brainresbull.2007.07.023] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2007] [Revised: 07/10/2007] [Accepted: 07/10/2007] [Indexed: 10/23/2022]
Abstract
The hypothalamic suprachiasmatic nucleus is the key structure of the control of circadian rhythms and has a rich glutamatergic innervation. Besides the presence of glutamatergic afferents, several findings also suggest the existence of glutamatergic efferents from the suprachiasmatic nucleus to its target neurons in various prominent hypothalamic cell groups. However, there is no direct neuromorphological evidence for the presence of glutamatergic neurons in the suprachiasmatic nucleus. Therefore, the purpose of the present investigations was to try to clarify this question. Immunocytochemistry was used at the light and electron microscopy level to identify vesicular glutamate transporter type 2 (VGluT2) immunopositive (presumed glutamatergic) neurons in the rat suprachiasmatic nucleus. In addition VGluT2 mRNA expression in neurons of the nucleus was also addressed with radioisotopic in situ hybridization. Both at the light and electron microscopy level we detected VGluT2 positive neurons, which did not contain GABA, vasoactive intestinal polypeptide or vasopressin. Further, we demonstrated the expression of VGluT2 mRNA in a few cells within the suprachiasmatic nucleus; these glutamatergic cells were distinct from somatostatin mRNA expressing neurons. As VGluT2 is a selective marker of glutamatergic neuronal elements, the present observations provide direct neuromorphological evidence for the presence of glutamatergic neurons in the cell group.
Collapse
Affiliation(s)
- József Kiss
- Neuromorphological and Neuroendocrine Research Laboratory, Hungarian Academy of Sciences and Semmelweis University, Hungary
| | | | | | | | | |
Collapse
|
12
|
Honda K, Higuchi T. Oxytocin neurons in the supraoptic nucleus receive excitatory inputs from the bilateral dorsomedial hypothalamic nuclei. Brain Res Bull 2007; 74:237-42. [PMID: 17720545 DOI: 10.1016/j.brainresbull.2007.06.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2007] [Revised: 05/29/2007] [Accepted: 06/01/2007] [Indexed: 10/23/2022]
Abstract
To examine whether inputs from the dorsomedial hypothalamic nucleus (DMH) alter the discharge of putative oxytocin (OT) neurons with hypothesis that excitation of DMH neurons would increase the activity of OT neurons, electrical stimulation was applied to the DMH in both sides of the hypothalamus while electrical activity of single OT neurons in the supraoptic nucleus (SON) was recorded in urethane-anesthetized lactating rats. About half of the OT neurons showed orthodromic excitation or inhibition followed by excitation in response to electrical stimulation of the DMH on both sides. Continuous electrical stimulation of the DMH both ipsi- and contralateral to the recording side at 10-50 Hz for 30-60 s increased firing rate in 58% of OT neurons tested. Continuous electrical stimulation of the DMH not only excited spiking activity of single OT neurons but also increased intramammary pressure. The results may suggest that some of the projections from the DMH to the SON are bilateral and possibly contribute to coordinated bilateral activation of OT neurons in the hypothalamus during the milk-ejection reflex.
Collapse
Affiliation(s)
- Kazumasa Honda
- Faculty of Nursing and Welfare Sciences, Fukui Prefectural University, Matsuoka-kenjojima, Eiheiji-cho, Fukui 910-1195, Japan.
| | | |
Collapse
|
13
|
Orlando GF, Langnaese K, Landgraf R, Spina MG, Wolf G, Engelmann M. Neural nitric oxide gene inactivation affects the release profile of oxytocin into the blood in response to forced swimming. Nitric Oxide 2007; 16:64-70. [PMID: 16769231 DOI: 10.1016/j.niox.2006.05.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2006] [Revised: 04/13/2006] [Accepted: 05/08/2006] [Indexed: 11/26/2022]
Abstract
This study was undertaken to examine the importance of nitric oxide (NO) generated by the neural isoform of the nitric oxide synthase (nNOS) on the activity of the hypothalamic neurohypophyseal system in neural nitric oxide synthase knock-out (KO) and wild-type (WT) mice under basal conditions and in response to forced swimming. The intensity of the hybridisation signal for vasopressin (AVP) in the hypothalamic supraoptic nucleus (SON) was significantly higher in KO mice when compared with WT, whereas oxytocin (OXT) basal mRNA levels were similar in both groups. Although the basal peripheral release of AVP and OXT was equivalent in both genotypes, we observed in KO mice a significant drop of AVP and OXT plasma values 15 min after stressor onset and a robust increase in the OXT plasma concentration at 60 min. These findings suggest that in the male mouse, NO inhibits AVP gene transcription in magnocellular neurones of the SON and collaborates in maintaining constant AVP and OXT plasma levels following acute stressor exposure, exerting a bimodal regulatory action on OXT secretion. We conclude that NO is involved in the regulation of magnocellular neurones of the SON, and it is preferentially implicated in the attenuation of the peripheral release of OXT induced by acute stressor exposure.
Collapse
Affiliation(s)
- G F Orlando
- Institute of Medical Neurobiology, Otto-von-Guericke University, Leipziger Str. 44, D-39120 Magdeburg, Germany.
| | | | | | | | | | | |
Collapse
|
14
|
Fischer SG, Ricci LA, Melloni RH. Repeated anabolic/androgenic steroid exposure during adolescence alters phosphate-activated glutaminase and glutamate receptor 1 (GluR1) subunit immunoreactivity in Hamster brain: correlation with offensive aggression. Behav Brain Res 2007; 180:77-85. [PMID: 17418431 PMCID: PMC2665926 DOI: 10.1016/j.bbr.2007.02.025] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2007] [Revised: 02/02/2007] [Accepted: 02/20/2007] [Indexed: 12/26/2022]
Abstract
Male Syrian hamsters (Mesocricetus auratus) treated with moderately high doses (5.0mg/kg/day) of anabolic/androgenic steroids (AAS) during adolescence (P27-P56) display highly escalated offensive aggression. The current study examined whether adolescent AAS-exposure influenced the immunohistochemical localization of phosphate-activated glutaminase (PAG), the rate-limiting enzyme in the synthesis of glutamate, a fast-acting neurotransmitter implicated in the modulation of aggression in various species and models of aggression, as well as glutamate receptor 1 subunit (GluR1). Hamsters were administered AAS during adolescence, scored for offensive aggression using the resident-intruder paradigm, and then examined for changes in PAG and GluR1 immunoreactivity in areas of the brain implicated in aggression control. When compared with sesame oil-treated control animals, aggressive AAS-treated hamsters displayed a significant increase in the number of PAG- and area density of GluR1-containing neurons in several notable aggression regions, although the differential pattern of expression did not appear to overlap across brain regions. Together, these results suggest that altered glutamate synthesis and GluR1 receptor expression in specific aggression areas may be involved in adolescent AAS-induced offensive aggression.
Collapse
Affiliation(s)
| | | | - Richard H. Melloni
- Φ Correspondence to: Richard H. Melloni, Jr., Ph.D., Program in Behavioral Neuroscience, Department of Psychology, 125 Nightingale Hall, Northeastern University, 360 Huntington Avenue, Boston, MA 02115, Tel. no. (617) 373-3043, FAX no. (617) 373-8714, E-mail:
| |
Collapse
|
15
|
Theodosis DT, Trailin A, Poulain DA. Remodeling of astrocytes, a prerequisite for synapse turnover in the adult brain? Insights from the oxytocin system of the hypothalamus. Am J Physiol Regul Integr Comp Physiol 2006; 290:R1175-82. [PMID: 16603657 DOI: 10.1152/ajpregu.00755.2005] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Neurons, including their synapses, are generally ensheathed by fine processes of astrocytes, but this glial coverage can be altered under different physiological conditions that modify neuronal activity. Changes in synaptic connectivity accompany astrocytic transformations so that an increased number of synapses are associated with reduced astrocytic coverage of postsynaptic elements, whereas synaptic numbers are reduced on reestablishment of glial coverage. A system that exemplifies activity-dependent structural synaptic plasticity in the adult brain is the hypothalamo-neurohypophysial system, and in particular, its oxytocin component. Under strong, prolonged activation (parturition, lactation, chronic dehydration), extensive portions of somatic and dendritic surfaces of magnocellular oxytocin neurons are freed of intervening astrocytic processes and become directly juxtaposed. Concurrently, they are contacted by an increased number of inhibitory and excitatory synapses. Once stimulation is over, astrocytic processes again cover oxytocinergic surfaces and synaptic numbers return to baseline levels. Such observations indicate that glial ensheathment of neurons is of consequence to neuronal function, not only directly, for example by modifying synaptic transmission, but indirectly as well, by preparing neuronal surfaces for synapse turnover.
Collapse
Affiliation(s)
- Dionysia T Theodosis
- Laboratory of Morphofunctional Neurobiology Institut National de la Santé et de la Recherche Médicale U 378; University Victor Segalen-Bordeaux, F33077, Bordeaux, France.
| | | | | |
Collapse
|
16
|
Allen TG, Abogadie FC, Brown DA. Simultaneous release of glutamate and acetylcholine from single magnocellular "cholinergic" basal forebrain neurons. J Neurosci 2006; 26:1588-95. [PMID: 16452682 PMCID: PMC6675485 DOI: 10.1523/jneurosci.3979-05.2006] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Basal forebrain (BF) neurons provide the principal cholinergic drive to the hippocampus and cortex. Their degeneration is associated with the cognitive defects of Alzheimer's disease. Immunohistochemical studies suggest that some of these neurons contain glutamate, so might also release it. To test this, we made microisland cultures of single BF neurons from 12- to 14-d-old rats. Over 1-8 weeks in culture, neuronal processes made autaptic connections onto the neuron. In 34 of 36 cells tested, a somatically generated action potential was followed by a short-latency EPSC that was blocked by 1 mM kynurenic acid, showing that they released glutamate. To test whether the same neuron also released acetylcholine, we placed a voltage-clamped rat myoball expressing nicotinic receptors in contact with a neurite. In six of six neurons tested, the glutamatergic EPSC was accompanied by a nicotinic (hexamethonium-sensitive) myoball current. Stimulation of the M2-muscarinic presynaptic receptors (characterized using tripitramine and pirenzepine) produced a parallel inhibition of autaptic glutamatergic and myoball nicotinic responses; metabotropic glutamate receptor stimulation produced similar but less consistent and weaker effects. Atropine enhanced the glutamatergic EPSCs during repetitive stimulation by 25 +/- 6%; the anti-cholinesterase neostigmine reduced the train EPSCs by 37 +/- 6%. Hence, synaptically released acetylcholine exerted a negative-feedback inhibition of coreleased glutamate. We conclude that most cholinergic basal forebrain neurons are capable of releasing glutamate as a cotransmitter and that the release of both transmitters is subject to simultaneous feedback inhibition by synaptically released acetylcholine. This has implications for BF neuron function and for the use of cholinesterase inhibitors in Alzheimer's disease.
Collapse
|
17
|
Panatier A, Gentles SJ, Bourque CW, Oliet SHR. Activity-dependent synaptic plasticity in the supraoptic nucleus of the rat hypothalamus. J Physiol 2006; 573:711-21. [PMID: 16613872 PMCID: PMC1779752 DOI: 10.1113/jphysiol.2006.109447] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Activity-dependent long-term synaptic changes were investigated at glutamatergic synapses in the supraoptic nucleus (SON) of the rat hypothalamus. In acute hypothalamic slices, high frequency stimulation (HFS) of afferent fibres caused long-term potentiation (LTP) of the amplitude of AMPA receptor-mediated excitatory postsynaptic currents (EPSCs) recorded with the whole-cell patch-clamp technique. LTP was also obtained in response to membrane depolarization paired with mild afferent stimulation. On the other hand, stimulating the inputs at 5 Hz for 3 min at resting membrane potential caused long-term depression (LTD) of excitatory transmission in the SON. These forms of synaptic plasticity required the activation of NMDA receptors since they were abolished in the presence of D-AP5 or ifenprodil, two selective blockers of these receptors. Analysis of paired-pulse facilitation and trial-to-trial variability indicated that LTP and LTD were not associated with changes in the probability of transmitter release, thereby suggesting that the locus of expression of these phenomena was postsynaptic. Using sharp microelectrode recordings in a hypothalamic explant preparation, we found that HFS also generates LTP at functionally defined glutamatergic synapses formed between the organum vasculosum lamina terminalis and SON neurons. Taken together, our findings indicate that glutamatergic synapses in the SON exhibit activity-dependent long-term synaptic changes similar to those prevailing in other brain areas. Such forms of plasticity could play an important role in the context of physiological responses, like dehydration or lactation, where the activity of presynaptic glutamatergic neurons is strongly increased.
Collapse
|
18
|
Ponzio TA, Ni Y, Montana V, Parpura V, Hatton GI. Vesicular glutamate transporter expression in supraoptic neurones suggests a glutamatergic phenotype. J Neuroendocrinol 2006; 18:253-65. [PMID: 16503920 PMCID: PMC1413582 DOI: 10.1111/j.1365-2826.2006.01410.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Magnocellular neuroendocrine cells of the supraoptic nucleus (SON) release the peptides oxytocin (OT) and vasopressin (VP) from their dendrites and terminals. In addition to peptide-containing large dense-core vesicles, axon terminals from these cells contain clear microvesicles that have been shown to contain glutamate. Using multilabelling confocal microscopy, we investigated the presence of vesicular glutamate transporters (VGLUTs) in astrocytes as well as VP and OT neurones of the SON. Simultaneous probing of the SON with antibodies against VGLUT isoforms 1-3, OT, VP and glial fibrillary acidic protein (GFAP) revealed the presence of VGLUT-2 in somata and dendrites of SON neurones. Immunoreactivity (-ir) for VGLUT-3 was also detected in both OT and VP neurones as well as in GFAP-ir astrocytes and other cells of the ventral glial lamina. Colocalisation of VGLUT-2 and VGLUT-3 in individual SON neurones was also examined and VGLUT-ir with both antibodies could be detected in both types of SON neurones. Although VGLUT-1-ir was strong lateral to the SON, only sparse labelling was apparent within the nucleus, and no colocalisation with either SON neurones or astrocytes was observed. The SON or the SON plus its surrounding perinuclear zone was probed using the reverse transcriptase-polymerase chain reaction and the presence of mRNA for all three VGLUT isoforms was detected. These results suggest that similar arrangements of transmitters exist in SON neuronal dendrites and their neurohypophysial terminals and that magnocellular neuroendocrine somata and dendrites may be capable of glutamatergic transmission.
Collapse
Affiliation(s)
- T A Ponzio
- Department of Cell Biology and Neuroscience, University of California, Riverside, CA, USA.
| | | | | | | | | |
Collapse
|
19
|
Hrabovszky E, Csapó AK, Kalló I, Wilheim T, Túri GF, Liposits Z. Localization and osmotic regulation of vesicular glutamate transporter-2 in magnocellular neurons of the rat hypothalamus. Neurochem Int 2006; 48:753-61. [PMID: 16481069 DOI: 10.1016/j.neuint.2005.12.013] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2005] [Accepted: 12/21/2005] [Indexed: 12/01/2022]
Abstract
In this report we present immunocytochemical and in situ hybridization evidence that magnocellular vasopressin and oxytocin neurons in the hypothalamic supraoptic and paraventricular nuclei express type-2 vesicular glutamate transporter, a marker for their glutamatergic neuronal phenotype. To address the issue of whether an increase in magnocellular neuron activity coincides with the altered synthesis of the endogenous glutamate marker, we have introduced a new dual-label in situ hybridization method which combines fluorescent and autoradiographic signal detection components for vasopressin and vesicular glutamate transporter-2 mRNAs, respectively. Application of this technique provided evidence that 2% sodium chloride in the drinking water for 7 days produced a robust and significant increase of vesicular glutamate transporter-2 mRNA in vasopressin neurons of the supraoptic nucleus. The immunocytochemical labeling of pituitary sections, followed by the densitometric analysis of vesicular glutamate transporter-2 immunoreactivity in the posterior pituitary, revealed a concomitant increase in vesicular glutamate transporter-2 protein levels at the major termination site of the magnocellular axons. These data demonstrate that magnocellular oxytocin as well as vasopressin cells contain the glutamatergic marker vesicular glutamate transporter-2, similarly to most of the parvicellular neurosecretory neurons examined so far. The robust increase in vesicular glutamate transporter-2 mRNA and immunoreactivity after salt loading suggests that the cellular levels of vesicular glutamate transporter-2 in vasopressin neurons are regulated by alterations in water-electrolyte balance. In addition to the known synaptic actions of excitatory amino acids in magnocellular nuclei, the new observations suggest novel mechanisms whereby glutamate of endogenous sources can regulate magnocellular neuronal functions.
Collapse
Affiliation(s)
- E Hrabovszky
- Laboratory of Endocrine Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Szigony u. 43, Budapest 1083, Hungary.
| | | | | | | | | | | |
Collapse
|
20
|
Brailoiu GC, Dun SL, Yin D, Yang J, Chang JK, Dun NJ. Insulin-like 6 immunoreactivity in the mouse brain and testis. Brain Res 2005; 1040:187-90. [PMID: 15804440 DOI: 10.1016/j.brainres.2005.01.077] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2004] [Revised: 01/18/2005] [Accepted: 01/21/2005] [Indexed: 12/22/2022]
Abstract
Insulin-like 6 immunoreactivity (irINSL6) was detected in Leydig cells of the mouse testis. In the brain, labeled somata were detected mainly in the caudal hypothalamus and midbrain. Double labeling the brainstem sections revealed that irINSL6 somata were 5-hydroxytryptamine (5-HT) positive. The presence of irINSL6 in discrete populations of hypothalamic and brainstem neurons and in Leydig cells of the testis suggests a diverse biological function of this novel peptide.
Collapse
Affiliation(s)
- G Cristina Brailoiu
- Department of Pharmacology, Temple University School of Medicine, 3420 N. Broad Street, Philadelphia, PA 19140, USA
| | | | | | | | | | | |
Collapse
|
21
|
Wu M, Hajszan T, Xu C, Leranth C, Alreja M. Group I Metabotropic Glutamate Receptor Activation Produces a Direct Excitation of Identified Septohippocampal Cholinergic Neurons. J Neurophysiol 2004; 92:1216-25. [PMID: 15044519 DOI: 10.1152/jn.00180.2004] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Septohippocampal cholinergic neurons innervate the hippocampus and provide it with almost its entire acetylcholine. Axon collaterals of these neurons also release acetylcholine within the septum and thereby maintain the firing activity of septohippocampal GABAergic neurons. A loss of septohippocampal cholinergic neurons occurs in various neurodegenerative disorders associated with cognitive dysfunctions. group I metabotropic glutamate receptors have been implicated in septohippocampal-dependent learning and memory tasks. In the present study, we examined the physiological and pharmacological effects of a potent and selective group I metabotropic glutamate receptor (mGluR) agonist S-3,5-dihydroxyphenylglycine (DHPG) on rat septohippocampal cholinergic neurons that were identified in brain slices using a selective fluorescent marker. In whole cell recordings, DHPG produced a reversible, reproducible and a direct postsynaptic and concentration-dependent excitation in 100% of septohippocampal cholinergic neurons tested with an EC50 of 2.1 μM. Pharmacologically, the effects of DHPG were partially/completely reduced by the mGluR1 antagonists, 7-hydrox-iminocyclopropan[b]chromen-1a-carboxylic acid ethyl ester and (+)-2-methyl-4-carboxyphenylglycine. Addition of the mGluR5 antagonist, 2-methyl-6-(phenylethnyl)pyridine hydrochloride, reduced the remaining response to DHPG, suggesting involvement of both receptor subtypes in a subpopulation of septohippocampal cholinergic neurons. In double-immunolabeling studies, 74% of septohippocampal cholinergic neurons co-localized mGluR1α-immunoreactivity and 35% co-localized mGluR5-immunoreactivity. Double-immunolabeling studies at the light and electron-microscopic levels showed that vesicular glutamate transporter 2 terminals make asymmetric synaptic contacts with septohippocampal cholinergic neurons. These findings may be of significance in treatment of cognitive deficits associated with neurodegenerative disorders as a group I mGluR-mediated activation of septohippocampal cholinergic neurons would enhance the release of acetylcholine both in the hippocampus and in the septum.
Collapse
Affiliation(s)
- Min Wu
- Dept. of Psychiatry, CMHC 335A, Yale University School of Medicine, 34 Park Street, New Haven, CT 06508
| | | | | | | | | |
Collapse
|
22
|
Abstract
Genes induced by estrogens in the mammalian forebrain influence a variety of neural functions. Among them, reproductive behavior mechanisms are very well understood. Their functional genomics provide a theoretical paradigm for linking genes to neural circuits to behavior. We propose that estrogen-induced genes are organized in modules: Growth of hypothalamic neurons; Amplification of the estrogen effect by progesterone; Preparative behaviors; Permissive actions on sex behavior circuitry; and Synchronization of mating behavior with ovulation. These modules may represent mechanistic routes for CNS management of successful reproduction. Moreover, new microarray results add estrogen-dependent genes, including some expressed in glia, suggesting possible hormone-dependent neuronal/glial coordination.
Collapse
Affiliation(s)
- J A Mong
- The Laboratory of Neurobiology and Behavior Rockefeller University, New York, NY 10021, USA
| | | |
Collapse
|
23
|
Yamaguchi K, Watanabe K. Pursuit of roles for metabotropic glutamate receptors in the anteroventral third ventricular region in regulating vasopressin secretion and cardiovascular function in conscious rats. Brain Res Bull 2004; 63:321-9. [PMID: 15196658 DOI: 10.1016/j.brainresbull.2004.04.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2004] [Revised: 03/31/2004] [Accepted: 04/01/2004] [Indexed: 11/22/2022]
Abstract
This study aimed to evaluate the roles of metabotropic glutamate receptors (mGluRs) in the anteroventral third ventricular region (AV3V; a pivotal area for osmotic responses and PGE2 actions) in regulating AVP secretion and cardiovascular function. In conscious and unrestrained rats, we examined the effects of AV3V infusion of t-ACPD (an agonist for mGluRs) and 8-bromo (Br)-cAMP (an agonist for cAMP associated with mGluR action) on plasma and cardiovascular variables, and the effects of MCPG (an antagonist for mGluRs) on the responses to t-ACPD, PGE2, and hyperosmolality. AV3V infusion of t-ACPD or 8-Br-cAMP produced dose-dependent rises in plasma AVP, arterial pressure and heart rate after 5 or 15 min, without altering plasma osmolality, sodium, potassium or chloride. t-ACPD administration into the cerebral ventricle had no effects on the variables. The plasma AVP and arterial pressure responses to AV3V t-ACPD infusion were blocked by preadministration of MCPG 15 min before the infusion. MCPG treatment was also potent at inhibiting the augmentation of plasma AVP elicited by AV3V infusion of PGE2, although its pressor and tachycardiac actions were not influenced. MCPG application, however, had no effect on either the increases in plasma AVP or arterial pressure in response to the enhanced plasma osmolality induced by i.v. infusion of hypertonic saline or their stable levels during isotonic saline infusion. Histological analysis showed that the AV3V drug infusion sites were located in structures such as the median or medial preoptic nucleus and periventricular nucleus. These results suggest that AV3V mGluRs may act to potentiate AVP release and cardiovascular function when stimulated in the basal state, and may participate in the hormone secretion prompted by AV3V PGE2, despite probable negligible contributions to the mechanisms responsible for the PGE2 cardiovascular effects or the phenomenon provoked by osmotic load.
Collapse
Affiliation(s)
- Ken'ichi Yamaguchi
- Department of Homeostatic Regulation and Development, Niigata University Graduate School of Medical and Dental Sciences, Asahimachi-Dori 1-757, Niigata City 951-8510, Japan.
| | | |
Collapse
|
24
|
Xu C, Datta S, Wu M, Alreja M. Hippocampal theta rhythm is reduced by suppression of the H-current in septohippocampal GABAergic neurons. Eur J Neurosci 2004; 19:2299-309. [PMID: 15090056 DOI: 10.1111/j.0953-816x.2004.03316.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Hippocampal learning and memory tasks are tightly coupled to the hippocampal theta rhythm, which is critically dependent on the medial septum/diagonal band of Broca (MSDB) although the underlying mechanisms remain unclear. The MSDB sends both cholinergic and GABAergic projections to the hippocampus. Here we show that: (i) septo-hippocampal GABAergic but not cholinergic neurons have a pacemaking current, the H-current, and that its selective blockade by ZD7288 reduces their spontaneous firing in rat brain slices; and (ii), local infusions of ZD7288 into the MSDB reduce exploration and sensory evoked hippocampal theta bursts in behaving rats. Thus, the H-current in septohippocampal GABAergic neurons modulates the hippocampal theta rhythm.
Collapse
Affiliation(s)
- Changqing Xu
- Department of Psychiatry, CMHC 335 A, Yale University School of Medicine, 34 Park Street, New Haven, CT 06508, USA
| | | | | | | |
Collapse
|
25
|
Bali B, Kovács KJ. GABAergic control of neuropeptide gene expression in parvocellular neurons of the hypothalamic paraventricular nucleus. Eur J Neurosci 2003; 18:1518-26. [PMID: 14511331 DOI: 10.1046/j.1460-9568.2003.02877.x] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
To assess the functional impact of local inhibitory gamma-aminobutyric acid (GABA)ergic interneuron population on the cellular and transcriptional activity of parvocellular neurosecretory neurons in the hypothalamic paraventricular nucleus (PVH), we followed the expression of corticotropin-releasing hormone (CRH) and arginine vasopressin (AVP) genes along with the activation marker c-fos in response to the blockade of GABA-A receptors. First, we analysed the effect of the GABA-A receptor antagonist bicuculline methiodide (BMI) in organotypic cultures of hypothalamic slices. These preparations preserve the cytoarchitecture of CRH-synthesizing cell populations and elements of local interneuronal networks, while remote connections originating from limbic- and brainstem areas are missing. In vitro, BMI resulted in a selective induction of c-Fos immunoreactivity that was localized exclusively to the PVH and upregulated both CRH mRNA and AVP hnRNA levels. Local microinjection of BMI into the paraventricular region of freely moving rats increased the adrenocorticotropin secretion and activated PVH neurons ipsilateral to the injection. c-Fos immunoreactivity was distributed within the PVH and in the perinuclear region, where it appeared in GABAergic and also in non-GABAergic profiles. This treatment induced AVP hnRNA expression in the parvocellular compartment without any reliable stimulation of CRH transcription in the parvocellular- and AVP hnRNA levels in the magnocellular neurons. These results reveal an intrinsic GABAergic mechanism in the PVH microenvironment that by itself, without limbic contribution, impinges a tonic inhibitory influence on the parvocellular CRH neurons in vitro. In vivo, remote inputs are superimposed on the local circuit, allowing differential transcriptional regulation of CRH and AVP genes in the hypophysiotropic neurons.
Collapse
Affiliation(s)
- Balázs Bali
- Laboratory of Molecular Neuroendocrinology, Institute of Experimental Medicine, P.O. Box 67, H-1450 Budapest, Hungary
| | | |
Collapse
|
26
|
Wu M, Hajszan T, Leranth C, Alreja M. Nicotine recruits a local glutamatergic circuit to excite septohippocampal GABAergic neurons. Eur J Neurosci 2003; 18:1155-68. [PMID: 12956714 DOI: 10.1046/j.1460-9568.2003.02847.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Tonic impulse flow in the septohippocampal GABAergic pathway is essential for normal cognitive functioning and is sustained, in part, by acetylcholine (ACh) that is released locally via axon collaterals of septohippocampal cholinergic neurons. Septohippocampal cholinergic neurons degenerate in Alzheimer's disease and other neurodegenerative disorders. While the importance of the muscarinic effects of ACh on septohippocampal GABAergic neurons is well recognized, the nicotinic effects of ACh remain unstudied despite the reported benefits of nicotine on cognitive functioning. In the present study, using electrophysiological recordings in a rat brain slice preparation, rapid applications of nicotine excited 90% of retrogradely labelled septohippocampal GABA-type neurons with an EC50 of 17 microm and increased the frequency of spontaneously occurring, impulse-dependent fast GABAergic and glutamatergic synaptic currents via the alpha4beta2-nicotinic receptor. Interestingly, tetrodotoxin blocked all effects of nicotine on septohippocampal GABAergic type neurons, suggesting involvement of indirect mechanisms. We demonstrate that the effects of nicotine on septohippocampal GABA-type neurons involve recruitment of a novel, local glutamatergic circuitry as (i). Group I metabotropic glutamatergic receptor antagonists reduced the effects of nicotine; (ii). the number of nicotine responsive neurons was significantly reduced in recordings from slices that had been trimmed so as to reduce the number of glutamate-containing neurons within the slice preparation; (iii). in light and ultrastructural double immunocytochemical labelling studies vesicular glutamate 2 transporter immunoreactive terminals made synaptic contacts with parvalbumin-immunoreactive septohippocampal GABAergic neurons. The discovery of a local glutamatergic circuit within the septum may provide another avenue for restoring septohippocampal GABAergic functions in neurodegenerative disorders associated with a loss of septohippocampal cholinergic neurons.
Collapse
Affiliation(s)
- Min Wu
- Department of Psychiatry, Yale University School of Medicine and the Ribicoff Research Facilities, Connecticut Mental Health Center, New Haven, CT 06508, USA
| | | | | | | |
Collapse
|