1
|
Kalloniatis M, Loh CS, Acosta ML, Tomisich G, Zhu Y, Nivison‐smith L, Fletcher EL, Chua J, Sun D, Arunthavasothy N. Retinal amino acid neurochemistry in health and disease. Clin Exp Optom 2021; 96:310-32. [DOI: 10.1111/cxo.12015] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2012] [Revised: 07/01/2012] [Accepted: 07/17/2012] [Indexed: 12/25/2022] Open
Affiliation(s)
- Michael Kalloniatis
- Centre for Eye Health, University of New South Wales, Sydney, New South Wales, Australia,
- School of Optometry and Vision Science, University of New South Wales, Sydney, New South Wales, Australia,
- Department of Anatomy and Neuroscience, The University of Melbourne, Parkville, Victoria, Australia,
- Department of Optometry and Vision Sciences, New Zealand National Eye Centre, University of Auckland, Auckland, New Zealand,
| | - Chee Seang Loh
- Department of Optometry and Vision Sciences, New Zealand National Eye Centre, University of Auckland, Auckland, New Zealand,
| | - Monica L Acosta
- Department of Optometry and Vision Sciences, New Zealand National Eye Centre, University of Auckland, Auckland, New Zealand,
| | - Guido Tomisich
- Department of Optometry and Vision Science, The University of Melbourne, Parkville, Victoria, Australia,
| | - Yuan Zhu
- School of Optometry and Vision Science, University of New South Wales, Sydney, New South Wales, Australia,
| | - Lisa Nivison‐smith
- School of Optometry and Vision Science, University of New South Wales, Sydney, New South Wales, Australia,
| | - Erica L Fletcher
- Department of Anatomy and Neuroscience, The University of Melbourne, Parkville, Victoria, Australia,
| | - Jacqueline Chua
- Department of Optometry and Vision Sciences, New Zealand National Eye Centre, University of Auckland, Auckland, New Zealand,
| | - Daniel Sun
- Department of Optometry and Vision Sciences, New Zealand National Eye Centre, University of Auckland, Auckland, New Zealand,
| | - Niru Arunthavasothy
- Department of Optometry and Vision Sciences, New Zealand National Eye Centre, University of Auckland, Auckland, New Zealand,
| |
Collapse
|
2
|
Abo-Ahmed AI, Emam MA. Expression of vesicular glutamate transporter 2 and 3 and glutamate receptor 1 and 2 mRNAs in the retina of adult laughing doves (Streptopelia senegalensis): An in situ hybridization study. Acta Histochem 2020; 122:151597. [PMID: 32778249 DOI: 10.1016/j.acthis.2020.151597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 07/12/2020] [Accepted: 07/13/2020] [Indexed: 10/23/2022]
Abstract
The retina possesses few types of neurons so; it is considered an excellent model for understanding the neural mechanisms underlying basic neural information processing in the brain. Glutamate is the major excitatory neurotransmitter in the vertebrate central nervous system and retina. The present study was carried out to characterize the expression pattern of vesicular glutamate transporter 2 (Vglut2) and 3 (Vglut3) and glutamate receptor 1 (GluR1) and 2 (GluR2) mRNAs in the retina of adult laughing dove (Streptopelia senegalensis) by RT-PCR and in situ hybridization histochemistry. The cerebellum of adult laughing dove was used as a positive control in this study. Vglut2 mRNA was highly expressed only in the granular layer of the cerebellum while Vglut3 mRNA was weakly expressed only in the Purkinje cells layer. In the retina, Vglut2 mRNA was highly expressed in the ganglion cell layer and moderately expressed in the inner nuclear layer while Vglut3 mRNA was moderately expressed only in the inner nuclear layer. GluR1 mRNA was intensely expressed in the Purkinje cells layer while GluR2 mRNA signals were highly detectable in both granular and Purkinje cells layers of the cerebellum. In the retina, moderate expression of GluR1 and intense expression of GluR2 was found in both ganglion cell layer and the internal half of inner nuclear layer mostly amacrine cells. These results suggest that some retinal neuronal cells in the adult laughing dove are glutamatergic. Therefore, GluR1 and 2 are suggested as useful markers for glutamatergic retinal neuronal cells in the adult laughing doves.
Collapse
|
3
|
Edwards D, Sommerhage F, Berry B, Nummer H, Raquet M, Clymer B, Stancescu M, Hickman JJ. Comparison of NMDA and AMPA Channel Expression and Function between Embryonic and Adult Neurons Utilizing Microelectrode Array Systems. ACS Biomater Sci Eng 2017; 3:3525-3533. [PMID: 29250595 PMCID: PMC5728088 DOI: 10.1021/acsbiomaterials.7b00596] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 11/13/2017] [Indexed: 12/27/2022]
Abstract
![]()
Microelectrode
arrays (MEAs) are innovative tools used to perform
electrophysiological experiments for the study of electrical activity
and connectivity in populations of neurons from dissociated cultures.
Reliance upon neurons derived from embryonic tissue is a common limitation
of neuronal/MEA hybrid systems and perhaps of neuroscience research
in general, and the use of adult neurons could model fully functional
in vivo parameters more closely. Spontaneous network activity was
concurrently recorded from both embryonic and adult rat neurons cultured
on MEAs for up to 10 weeks in vitro to characterize the synaptic connections
between cell types. The cultures were exposed to synaptic transmission
antagonists against NMDA and AMPA channels, which revealed significantly
different receptor profiles of adult and embryonic networks in vitro.
In addition, both embryonic and adult neurons were evaluated for NMDA
and AMPA channel subunit expression over five weeks in vitro. The
results established that neurons derived from embryonic tissue did
not express mature synaptic channels for several weeks in vitro under
defined conditions. Consequently, the embryonic response to synaptic
antagonists was significantly different than that of neurons derived
from adult tissue sources. These results are especially significant
because most studies reported with embryonic hippocampal neurons do
not begin at two to four weeks in culture. In addition, the utilization
of MEAs in lieu of patch-clamp electrophysiology avoided a large-scale,
labor-intensive study. These results establish the utility of this
unique hybrid system derived from adult hippocampal tissue in combination
with MEAs and offer a more appropriate representation of in vivo function
for drug discovery. It has application for neuronal development and
regeneration as well as for investigations into neurodegenerative
disease, traumatic brain injury, and stroke.
Collapse
Affiliation(s)
- Darin Edwards
- NanoScience Technology Center, University of Central Florida, 12424 Research Parkway, Orlando, Florida 32826, United States.,The Burnett School of Biomedical Sciences, University of Central Florida, UCF College of Medicine, 6850 Lake Nona Blvd, Orlando, Florida 32827, United States
| | - Frank Sommerhage
- NanoScience Technology Center, University of Central Florida, 12424 Research Parkway, Orlando, Florida 32826, United States
| | - Bonnie Berry
- NanoScience Technology Center, University of Central Florida, 12424 Research Parkway, Orlando, Florida 32826, United States.,The Burnett School of Biomedical Sciences, University of Central Florida, UCF College of Medicine, 6850 Lake Nona Blvd, Orlando, Florida 32827, United States
| | - Hanna Nummer
- NanoScience Technology Center, University of Central Florida, 12424 Research Parkway, Orlando, Florida 32826, United States
| | - Martina Raquet
- NanoScience Technology Center, University of Central Florida, 12424 Research Parkway, Orlando, Florida 32826, United States
| | - Brad Clymer
- NanoScience Technology Center, University of Central Florida, 12424 Research Parkway, Orlando, Florida 32826, United States
| | - Maria Stancescu
- NanoScience Technology Center, University of Central Florida, 12424 Research Parkway, Orlando, Florida 32826, United States
| | - James J Hickman
- NanoScience Technology Center, University of Central Florida, 12424 Research Parkway, Orlando, Florida 32826, United States.,The Burnett School of Biomedical Sciences, University of Central Florida, UCF College of Medicine, 6850 Lake Nona Blvd, Orlando, Florida 32827, United States
| |
Collapse
|
4
|
Choi HJ, Sun D, Jakobs TC. Isolation of intact astrocytes from the optic nerve head of adult mice. Exp Eye Res 2015; 137:103-10. [PMID: 26093274 DOI: 10.1016/j.exer.2015.06.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Revised: 06/04/2015] [Accepted: 06/16/2015] [Indexed: 01/30/2023]
Abstract
The astrocytes of the optic nerve head are a specialized subtype of white matter astrocytes that form the direct cellular environment of the unmyelinated ganglion cell axons. Due to their potential involvement in glaucoma, these astrocytes have become a target of research. Due to the heterogeneity of the optic nerve tissue, which also contains other cell types, in some cases it may be desirable to conduct gene expression studies on small numbers of well-characterized astrocytes or even individual cells. Here, we describe a simple method to isolate individual astrocytes. This method permits obtaining astrocytes with intact morphology from the adult mouse optic nerve and reduces contamination of the isolated astrocytes by other cell types. Individual astrocytes can be recognized by their morphology and collected under microscopic control. The whole procedure can be completed in 2-3 h. We also discuss downstream applications like multiplex single-cell PCR and quantitative PCR (qPCR).
Collapse
Affiliation(s)
- Hee Joo Choi
- Department of Ophthalmology, Harvard Medical School, Massachusetts Eye and Ear Infirmary, Boston, United States
| | - Daniel Sun
- Department of Ophthalmology, Harvard Medical School, Massachusetts Eye and Ear Infirmary, Boston, United States
| | - Tatjana C Jakobs
- Department of Ophthalmology, Harvard Medical School, Massachusetts Eye and Ear Infirmary, Boston, United States.
| |
Collapse
|
5
|
Popova E. ON-OFF Interactions in the Retina: Role of Glycine and GABA. Curr Neuropharmacol 2014; 12:509-26. [PMID: 25977678 PMCID: PMC4428025 DOI: 10.2174/1570159x13999150122165018] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Revised: 12/19/2014] [Accepted: 12/22/2014] [Indexed: 01/03/2023] Open
Abstract
In the vertebrate retina, visual signals are segregated into parallel ON and OFF pathways, which provide information for light increments and decrements. The segregation is first evident at the level of the ON and OFF bipolar cells and it apparently remains as signals propagate to higher brain visual centers. A fundamental question in visual neuroscience is how these two parallel pathways function: are they independent from each other or do they interact somehow? In the latter case, what kinds of mechanisms are involved and what are the consequences from this cross-talk? This review summarizes current knowledge about the types of interactions between the ON and OFF channels in nonmammalian and mammalian retina. Data concerning the ON-OFF interactions in distal retina revealed by recording of single bipolar cell activity and electroretinographic ON (b-wave) and OFF (d-wave) responses are presented. Special emphasis is put on the ON-OFF interactions in proximal retina and their dependence on the state of light adaptation in mammalian retina. The involvement of the GABAergic and glycinergic systems in the ON-OFF crosstalk is also discussed.
Collapse
Affiliation(s)
- Elka Popova
- Department of Physiology, Medical Phaculty, Medical University, 1431 Sofia, Country Bulgaria
| |
Collapse
|
6
|
Chua J, Fletcher EL, Kalloniatis M. Functional remodeling of glutamate receptors by inner retinal neurons occurs from an early stage of retinal degeneration. J Comp Neurol 2009; 514:473-91. [PMID: 19350664 DOI: 10.1002/cne.22029] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Retinitis pigmentosa reflects a family of diseases that result in retinal photoreceptor death and functional blindness. The natural course of retinal changes secondary to photoreceptor degeneration involves anatomical remodeling (cell process alterations and soma displacement) and neurochemical remodeling. Anatomical remodeling predominantly occurs late in the disease process and cannot explain the significant visual deficits that occur very early in the disease process. Neurochemical remodeling includes modified glutamate receptor disposition and altered responses secondary to functional activation of glutamate receptors. We investigated the neurochemical remodeling of retinal neurons in the rd/rd (rd1) mouse retina by tracking the functional activation of glutamate receptors with a cation probe, agmatine. We provide evidence that bipolar cells and amacrine cells undergo selective remodeling of glutamate receptors during the early phases of retinal degeneration. These early neurochemical changes in the rd/rd mouse retina include the expression of aberrant functional ionotropic glutamate receptors on the cone ON bipolar cells from postnatal day 15 (P15), poor functional activation of metabotropic glutamate receptors on both rod and cone ON bipolar cells throughout development/degeneration, and poor functional activation of N-methyl-D-aspartate receptors on amacrine cells from P15. Our results suggest that major neurochemical remodeling occurs prior to anatomical remodeling, and likely accounts for the early visual deficits in the rd/rd mouse retina.
Collapse
Affiliation(s)
- Jacqueline Chua
- Department of Optometry and Vision Science, University of Auckland, Private Bag 92010, Auckland, New Zealand
| | | | | |
Collapse
|
7
|
Hasegawa J, Obara T, Tanaka K, Tachibana M. High-Density Presynaptic Transporters Are Required for Glutamate Removal from the First Visual Synapse. Neuron 2006; 50:63-74. [PMID: 16600856 DOI: 10.1016/j.neuron.2006.02.022] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2005] [Revised: 01/24/2006] [Accepted: 02/17/2006] [Indexed: 10/24/2022]
Abstract
Reliable synaptic transmission depends not only on the release machinery and the postsynaptic response mechanism but also on removal or degradation of transmitter from the synaptic cleft. Accumulating evidence indicates that postsynaptic and glial excitatory amino acid transporters (EAATs) contribute to glutamate removal. However, the role of presynaptic EAATs is unclear. Here, we show in the mouse retina that glutamate is removed from the synaptic cleft at the rod to rod bipolar cell (RBC) synapse by presynaptic EAATs rather than by postsynaptic or glial EAATs. The RBC currents evoked by electrical stimulation of rods decayed slowly after pharmacological blockade of EAATs. Recordings of the evoked RBC currents from EAAT subtype-deficient mice and the EAAT-coupled anion current reveal that functional EAATs are localized to rod terminals. Model simulations suggest that rod EAATs are densely packed near the release site and that rods are equipped with an almost self-sufficient glutamate recollecting system.
Collapse
Affiliation(s)
- Jun Hasegawa
- Department of Psychology, Graduate School of Humanities and Sociology, The University of Tokyo, Tokyo 113-0033, Japan
| | | | | | | |
Collapse
|
8
|
Namba H, Nagano T, Iwakura Y, Xiong H, Jourdi H, Takei N, Nawa H. Transforming growth factor alpha attenuates the functional expression of AMPA receptors in cortical GABAergic neurons. Mol Cell Neurosci 2006; 31:628-41. [PMID: 16443372 PMCID: PMC3683556 DOI: 10.1016/j.mcn.2005.12.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2005] [Revised: 11/05/2005] [Accepted: 12/08/2005] [Indexed: 02/04/2023] Open
Abstract
In the developing neocortex, brain-derived neurotrophic factor (BDNF) exerts a trophic activity to increase the expression and channel activity of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)-type glutamate receptor subunits. Here, we demonstrate that the epidermal growth factor (EGF) receptor (ErbB1) ligands exert the opposite biological activity in cultured neocortical neurons. Subchronic stimulation of ErbB1 with transforming growth factor alpha (TGFalpha), EGF, or heparin-binding EGF (HB-EGF) down-regulated protein expression of the GluR1 AMPA receptor subunit in cultured neocortical neurons. In agreement, TGFalpha treatment decreased the Bmax of [3H] AMPA binding and GluR1 mRNA levels. Immunocytochemistry revealed that the decrease in GluR1 was most pronounced in multipolar GABAergic neurons. To examine the physiological consequences, we recorded AMPA-evoked currents as well as miniature excitatory postsynaptic currents in morphologically identified putative GABAergic neurons in culture. Subchronic TGFalpha treatment decreased AMPA-triggered currents as well as the amplitude and frequency of miniature excitatory postsynaptic currents. An ErbB1 tyrosine kinase inhibitor, PD153035, inhibited the TGFalpha effect. Moreover, TGFalpha counteracted the neurotrophic activity of BDNF on AMPA receptor expression. Co-application of TGFalpha with BDNF blocked the BDNF-triggered up-regulation of AMPA receptor expression and currents. These observations reveal a negative regulatory activity of the ErbB1 ligand, TGFalpha, which reduces the input sensitivity of cortical GABAergic neurons to attenuate their inhibitory function.
Collapse
Affiliation(s)
- Hisaaki Namba
- Department of Molecular Neurobiology, Brain Research Institute, Niigata University, 1-757 Asahimachi, Niigata 951-8585, Japan
| | | | | | | | | | | | | |
Collapse
|
9
|
Calkins DJ. Localization of ionotropic glutamate receptors to invaginating dendrites at the cone synapse in primate retina. Vis Neurosci 2006; 22:469-77. [PMID: 16212704 DOI: 10.1017/s0952523805224082] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2005] [Accepted: 02/28/2005] [Indexed: 11/05/2022]
Abstract
The separation of OFF pathways that signal light decrements from ON pathways that signal light increments occurs at the first retinal synapse. The dendrites of OFF bipolar cells abut the cone pedicle at basal positions distal to the site of glutamate release and express ligand-gated or ionotropic glutamate receptors (GluR). The dendrites of ON bipolar cells penetrate narrow invaginations of the cone pedicle proximal to the site of release and express the G-protein-coupled, metabotropic glutamate receptor, mGluR6. However, recent studies demonstrating the expression of GluR subunits in the rodent rod bipolar cell, known to yield an ON response to light, call this basic segregation of receptors into question. The light-microscopic distribution of many glutamate receptors in the primate retina is now well established. We reexamined their ultrastructural localization in the outer retina of Macaca fascicularis to test systematically whether invaginating dendrites at the cone synapse, presumably from ON bipolar cells, also express one or more ionotropic subunits. Using preembedding immunocytochemistry for electron microscopy, we quantified the distribution of the AMPA-sensitive subunits GluR2/3 and GluR4 and of the kainate-sensitive subunits GluR6/7 across 207 labeled dendrites occupying specific morphological loci at the cone pedicle. We report, in agreement with published investigations, that the majority of labeled processes for GluR2/3 (70%) and GluR4 (67%) either occupy basal positions or arise from horizontal cells. For GluR6/7, we find a significantly lower fraction of labeled processes at these positions (47%). We also find a considerable number of labeled dendrites for GluR2/3 (10%), GluR4 (21%), and GluR6/7 (18%) at invaginating positions. Surprisingly, for each subunit, the remainder of labeled processes corresponds to "fingers" of presynaptic cytoplasm within the cone invagination.
Collapse
Affiliation(s)
- David J Calkins
- Department of Ophthalmology and Visual Sciences, The Vanderbilt Eye Institute and Vanderbilt Vision Research Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA.
| |
Collapse
|
10
|
Berntson A, Smith RG, Taylor WR. Postsynaptic calcium feedback between rods and rod bipolar cells in the mouse retina. Vis Neurosci 2005; 21:913-24. [PMID: 15733346 DOI: 10.1017/s095252380421611x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2004] [Indexed: 11/07/2022]
Abstract
Light-evoked currents were recorded from rod bipolar cells in a dark-adapted mouse retinal slice preparation. Low-intensity light steps evoked a sustained inward current. Saturating light steps evoked an inward current with an initial peak that inactivated, with a time constant of about 60-70 ms, to a steady plateau level that was maintained for the duration of the step. The inactivation was strongest at hyperpolarized potentials, and absent at positive potentials. Inactivation was mediated by an increase in the intracellular calcium concentration, as it was abolished in cells dialyzed with 10 mM BAPTA, but was present in cells dialyzed with 1 mM EGTA. Moreover, responses to brief flashes of light were broader in the presence of intracellular BAPTA indicating that the calcium feedback actively shapes the time course of the light responses. Recovery from inactivation observed for paired-pulse stimuli occurred with a time constant of about 375 ms. Calcium feedback could act to increase the dynamic range of the bipolar cells, and to reduce variability in the amplitude and duration of the single-photon signal. This may be important for nonlinear processing at downstream sites of convergence from rod bipolar cells to AII amacrine cells. A model in which intracellular calcium rapidly binds to the light-gated channel and reduces the conductance can account for the results.
Collapse
Affiliation(s)
- Amy Berntson
- John Curtin School of Medical Research and Centre for Visual Sciences, Australian National University, Canberra, Australia
| | | | | |
Collapse
|
11
|
Frech MJ, Backus KH. Characterization of inhibitory postsynaptic currents in rod bipolar cells of the mouse retina. Vis Neurosci 2005; 21:645-52. [PMID: 15579227 DOI: 10.1017/s0952523804214134] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2003] [Indexed: 11/07/2022]
Abstract
The synaptic terminals of mammalian rod bipolar cells are the targets of multiple presynaptic inhibitory inputs arriving from glycinergic and GABAergic amacrine cells. To investigate the contribution of these different inhibitory receptor types, we have applied the patch-clamp technique in acutely isolated slices of the adult mouse retina. By using the whole-cell configuration, we measured and analyzed the spontaneous postsynaptic currents (PSCs) in rod bipolar cells. The spontaneous synaptic activity of rod bipolar cells was very low. However, when amacrine cells were depolarized by AMPA or kainate, the PSC frequency in rod bipolar cells increased significantly. These PSCs comprised several types that could be distinguished by pharmacological and kinetic criteria. Strychnine-sensitive, glycinergic PSCs were characterized by a mean peak amplitude of -43.5 pA and a weighted decay time constant (tauw) of 10.9 ms. PSCs that persisted in the presence of strychnine, but were completely inhibited by bicuculline, were mediated by GABAARs. They had a mean peak amplitude of -20.0 pA and a significantly faster tauw of 5.8 ms. Few PSCs remained in the presence of strychnine and bicuculline, suggesting that they were mediated by GABACRs. These PSCs were characterized by much smaller amplitudes (-6.2 pA) and a significantly slower decay kinetics (tauw=51.0 ms). We conclude that rod bipolar cells express at least three types of functionally different inhibitory receptors, namely GABAARs, GABACRs, and GlyRs that may ultimately regulate the Ca2+ influx into rod bipolar cell terminals, thereby modulating their glutamate release.
Collapse
Affiliation(s)
- Moritz J Frech
- Max-Planck-Institut für Hirnforschung, Neuroanatomical Department, Frankfurt am Main, Germany
| | | |
Collapse
|
12
|
Dijk F, van Leeuwen S, Kamphuis W. Differential effects of ischemia/reperfusion on amacrine cell subtype-specific transcript levels in the rat retina. Brain Res 2005; 1026:194-204. [PMID: 15488481 DOI: 10.1016/j.brainres.2004.08.034] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/15/2004] [Indexed: 10/26/2022]
Abstract
Transient retinal ischemia induces loss of retinal ganglion cells, supporting the hypothesis that ischemic conditions contribute to the induction and progression of glaucoma. However, after 60 min of ischemia, also amacrine cells are lost from the inner nuclear layer. The main goal was to determine the relative vulnerability of various amacrine subpopulations by measuring the levels of transcripts that are known to be specifically expressed by different amacrine subpopulations. A 60-min ischemic period was administered to the rat eye by raising the intraocular pressure, followed by a reperfusion period lasting between 2 h and 4 weeks. Total RNA was isolated from the whole retina and expression levels were assessed by real-time quantitative polymerase chain reaction (qPCR). Retinal ischemia/reperfusion has differential effects on the levels of the various transcripts. Three main patterns of changes were identified. (i) A gradual decrease of transcript level without recovery was observed for parvalbumin; this transcript is expressed by the glycinergic AII cells. (ii) A gradual reduction to different levels at 72 h of reperfusion followed by a partial or complete recovery (glycine transporter 1, glutamate decarboxylase, calretinin, and several other transcripts). The glycinergic amacrine cell markers recovered to 65-75% of the control level, while the main GABAergic markers had completely recovered at 4 weeks. (iii) No significant changes of transcript levels were found for markers of several smaller GABAergic subpopulations [including substance P (Tac1), somatostatin, and others]. Expression levels of photoreceptor-, horizontal cell-, and bipolar cell-specific transcripts were not altered. These patterns were confirmed by a cluster analysis of the data. Based on gene expression levels, it may be concluded that amacrine cells are vulnerable to ischemic insults and that the glycinergic amacrine cells are relatively more sensitive to ischemia than the GABAergic population. In particular, the extensive loss of the parvalbumin-containing AII amacrine cells, which serve in the rod pathway, may have functional implications for vision under scotopic conditions. In the accompanying paper [F. Dijk and W. Kamphuis, An immunocytochemical study on specific amacrine subpopulations in the rat retina after ischemia, Brain Res. (2004).], the results are evaluated at the protein level by immunostaining for a selection of the amacrine cell markers.
Collapse
Affiliation(s)
- Frederike Dijk
- Netherlands Ophthalmic Research Institute KNAW, Glaucoma Research Group, Research Unit Molecular Ophthalmogenetics, Graduate School for the Neurosciences Amsterdam, Meibergdreef 47, Amsterdam 1105 BA, The Netherlands
| | | | | |
Collapse
|
13
|
Sun D, Kalloniatis M. Mapping glutamate responses in immunocytochemically identified neurons of the mouse retina. J Comp Neurol 2005; 494:686-703. [PMID: 16374798 DOI: 10.1002/cne.20813] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The mammalian retina contains as many as 50-60 unique cell types, many of which have been identified using various neurochemical markers. Retinal neurons express N-methyl-D-aspartate (NMDA), alpha-amino-3-hydroxyl-5-methylisoxazole-4-propionic acid (AMPA), and kainic acid (KA) receptor subunits in various mixtures, densities, and spatial distributions. Ionotropic glutamatergic drive in retinal neurons can be mapped using a cation channel permeant guanidinium analog called agmatine (1-amino-4-guanidobutane; AGB). This alternative approach to physiologically characterize neurons in the retina was introduced by Marc (1999, J Comp Neurol 407:47-64, 407:65-76), and allows the simultaneous mapping of responses of glutamate receptor-gated channels from an entire population of neurons. Unlike previous AGB studies, we colocalized AGB with various macromolecular markers using direct and indirect immunofluorescence to characterize the glutamate agonist sensitivities of specific cell types. Activation with NMDA, AMPA, and KA resulted in AGB entry into neurons in a dose-dependent manner and was consistent with previous receptor subunit localization studies. Consistent with the various morphological phenotypes encompassed by the calbindin and calretinin immunoreactive cells, we observed various functional phenotypes revealed by AGB labeling. Not all calbindin or calretinin immunoreactive cells showed ligand-evoked AGB permeation. A small proportion either did not possess functional glutamate receptors, required higher activation thresholds, or express functional channels impermeable to AGB. AMPA and KA activation of bipolar cells resulted in AGB permeation into the hyperpolarizing variety only. We also studied the glutamate ligand-gating properties of 3[alpha1-3]-fucosyl-N-acetyl-lactosamine (CD15) immunoreactive cells and show functional responses consistent with receptor subunit gene expression patterns. CD15-immunoreactive bipolar cells only responded to AMPA but not KA. The CD15 immunoreactive amacrine cells demonstrated an identical selectivity to AMPA activation, but were also responsive to NMDA. Finally, localization of AGB secondary to glutamate receptor activation was visualized with a permanent reaction product.
Collapse
Affiliation(s)
- Daniel Sun
- Department of Optometry and Vision Science, University of Auckland, Auckland 1020, New Zealand
| | | |
Collapse
|