1
|
McCauley MA, Milligan WR, Lin J, Penley MJ, Quinn LM, Morran LT. An empirical test of Baker's law: dispersal favors increased rates of self-fertilization. Evolution 2025; 79:432-441. [PMID: 39660484 DOI: 10.1093/evolut/qpae177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 11/15/2024] [Accepted: 12/09/2024] [Indexed: 12/12/2024]
Abstract
Baker's law is the observation that recently dispersed populations are more likely to be self-fertilizing than populations at the range core. The explanatory hypothesis is that dispersal favors self-fertilization due to reproductive assurance. Caenorhabditis elegans nematodes reproduce via either self-fertilization or outcrossing and frequently disperse in small numbers to new bacterial food sources. While C. elegans males facilitate outcrossing, males and outcrossing are rare in natural C. elegans populations. Here, we use experimental evolution to test if frequent dispersal selects for the invasion of self-fertilization into predominantly outcrossing populations. C. elegans dispersal often occurs in the dauer alternative life stage. Therefore, we tested the effects of dispersal on rates of self-fertilization in populations exposed to dauer-inducing conditions and populations maintained under standard lab conditions. Overall, we found that populations required to disperse to new food sources rapidly evolved substantially elevated rates of self-fertilization compared to populations that were not required to disperse in both dauer and non-dauer populations. Our results demonstrate that frequent dispersal can readily favor the evolution of increased selfing rates in C. elegans populations, regardless of life stage. These data provide a potential mechanism to explain the dearth of outcrossing in natural populations of C. elegans.
Collapse
Affiliation(s)
- Michelle A McCauley
- Population Biology, Ecology, and Evolution Graduate Program, Emory University, Atlanta, GA, United States
| | | | - Julie Lin
- Department of Biology, Emory University, Atlanta, GA, United States
| | - McKenna J Penley
- Department of Biology, Emory University, Atlanta, GA, United States
| | - Lilja M Quinn
- Department of Biology, Washington University, St. Louis, MO, United States
| | - Levi T Morran
- Department of Biology, Emory University, Atlanta, GA, United States
| |
Collapse
|
2
|
Takeda K, Sakai S. Idea paper: Extended benefits of pollinator‐mediated microbial dispersal among flowers. Ecol Res 2022. [DOI: 10.1111/1440-1703.12326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Kazuya Takeda
- Center for Ecological Research Kyoto University Otsu Shiga Japan
- Research Institute for Food and Agriculture Ryukoku University Shiga Japan
| | - Shoko Sakai
- Center for Ecological Research Kyoto University Otsu Shiga Japan
| |
Collapse
|
3
|
Zhang B, Lam KY, Ni WM, Signorelli R, Collins KM, Fu Z, Zhai L, Lou Y, DeAngelis DL, Hastings A. Directed movement changes coexistence outcomes in heterogeneous environments. Ecol Lett 2022; 25:366-377. [PMID: 34818698 PMCID: PMC8799502 DOI: 10.1111/ele.13925] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 10/11/2021] [Accepted: 10/27/2021] [Indexed: 02/03/2023]
Abstract
Understanding mechanisms of coexistence is a central topic in ecology. Mathematical analysis of models of competition between two identical species moving at different rates of symmetric diffusion in heterogeneous environments show that the slower mover excludes the faster one. The models have not been tested empirically and lack inclusions of a component of directed movement toward favourable areas. To address these gaps, we extended previous theory by explicitly including exploitable resource dynamics and directed movement. We tested the mathematical results experimentally using laboratory populations of the nematode worm, Caenorhabditis elegans. Our results not only support the previous theory that the species diffusing at a slower rate prevails in heterogeneous environments but also reveal that moderate levels of a directed movement component on top of the diffusive movement allow species to coexist. Our results broaden the theory of species coexistence in heterogeneous space and provide empirical confirmation of the mathematical predictions.
Collapse
Affiliation(s)
- Bo Zhang
- Department of Integrative Biology, Oklahoma State University, United States
| | - King-Yeung Lam
- Department of Mathematics, Ohio State University, United States
| | - Wei-Ming Ni
- Chinese University of Hong Kong – Shenzhen, China
| | | | | | - Zhiyuan Fu
- Co-Innovation Center for Sustainable Forestry in Southern China, Jiangsu Province Key Laboratory of Soil and Water Conservation and Ecological Restoration, Nanjing Forestry University, China
| | - Lu Zhai
- Department of Natural Ecology Resource and Management, Oklahoma State University, United States
| | - Yuan Lou
- Department of Mathematics, Ohio State University, United States
| | | | - Alan Hastings
- Department of Environmental Science and Policy, University of California, Davis, United States; Santa Fe Institute, United States
| |
Collapse
|
4
|
Mishra A, Tung S, Sruti VS, Shreenidhi P, Dey S. Desiccation stress acts as cause as well as cost of dispersal in Drosophila melanogaster. Am Nat 2021; 199:E111-E123. [DOI: 10.1086/718641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
5
|
Kuijper B, Johnstone RA. Evolution of epigenetic transmission when selection acts on fecundity versus viability. Philos Trans R Soc Lond B Biol Sci 2021; 376:20200128. [PMID: 33866808 DOI: 10.1098/rstb.2020.0128] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Existing theory on the evolution of parental effects and the inheritance of non-genetic factors has mostly focused on the role of environmental change. By contrast, how differences in population demography and life history affect parental effects is poorly understood. To fill this gap, we develop an analytical model to explore how parental effects evolve when selection acts on fecundity versus viability in spatio-temporally fluctuating environments. We find that regimes of viability selection, but not fecundity selection, are most likely to favour parental effects. In the case of viability selection, locally adapted phenotypes have a higher survival than maladapted phenotypes and hence become enriched in the local environment. Hence, simply by being alive, a parental phenotype becomes correlated to its environment (and hence informative to offspring) during its lifetime, favouring the evolution of parental effects. By contrast, in regimes of fecundity selection, correlations between phenotype and environment develop more slowly: this is because locally adapted and maladapted parents survive at equal rates (no survival selection), so that parental phenotypes, by themselves, are uninformative about the local environment. However, because locally adapted parents are more fecund, they contribute more offspring to the local patch than maladapted parents. In case these offspring are also likely to inherit the adapted parents' phenotypes (requiring pre-existing inheritance), locally adapted offspring become enriched in the local environment, resulting in a correlation between phenotype and environment, but only in the offspring's generation. Because of this slower build-up of a correlation between phenotype and environment essential to parental effects, fecundity selection is more sensitive to any distortions owing to environmental change than viability selection. Hence, we conclude that viability selection is most conducive to the evolution of parental effects. This article is part of the theme issue 'How does epigenetics influence the course of evolution?'
Collapse
Affiliation(s)
- Bram Kuijper
- Centre for Ecology and Conservation, College of Life and Environmental Sciences, University of Exeter, Penryn TR10 9FE, UK
| | - Rufus A Johnstone
- Behaviour and Evolution Group, Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK
| |
Collapse
|
6
|
Nørgaard LS, Zilio G, Saade C, Gougat‐Barbera C, Hall MD, Fronhofer EA, Kaltz O. An evolutionary trade‐off between parasite virulence and dispersal at experimental invasion fronts. Ecol Lett 2021; 24:739-750. [DOI: 10.1111/ele.13692] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 11/30/2020] [Accepted: 12/23/2020] [Indexed: 11/29/2022]
Affiliation(s)
- Louise S. Nørgaard
- School of Biological Sciences Centre for Geometric Biology Monash University Melbourne3800Australia
- ISEMUniversity of MontpellierCNRSIRDEPHE Montpellier France
| | - Giacomo Zilio
- ISEMUniversity of MontpellierCNRSIRDEPHE Montpellier France
| | - Camille Saade
- ISEMUniversity of MontpellierCNRSIRDEPHE Montpellier France
| | | | - Matthew D. Hall
- School of Biological Sciences Centre for Geometric Biology Monash University Melbourne3800Australia
| | | | - Oliver Kaltz
- ISEMUniversity of MontpellierCNRSIRDEPHE Montpellier France
| |
Collapse
|
7
|
Abs E, Leman H, Ferrière R. A multi-scale eco-evolutionary model of cooperation reveals how microbial adaptation influences soil decomposition. Commun Biol 2020; 3:520. [PMID: 32958833 PMCID: PMC7505970 DOI: 10.1038/s42003-020-01198-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 07/31/2020] [Indexed: 11/23/2022] Open
Abstract
The decomposition of soil organic matter (SOM) is a critical process in global terrestrial ecosystems. SOM decomposition is driven by micro-organisms that cooperate by secreting costly extracellular (exo-)enzymes. This raises a fundamental puzzle: the stability of microbial decomposition in spite of its evolutionary vulnerability to “cheaters”—mutant strains that reap the benefits of cooperation while paying a lower cost. Resolving this puzzle requires a multi-scale eco-evolutionary model that captures the spatio-temporal dynamics of molecule-molecule, molecule-cell, and cell-cell interactions. The analysis of such a model reveals local extinctions, microbial dispersal, and limited soil diffusivity as key factors of the evolutionary stability of microbial decomposition. At the scale of whole-ecosystem function, soil diffusivity influences the evolution of exo-enzyme production, which feeds back to the average SOM decomposition rate and stock. Microbial adaptive evolution may thus be an important factor in the response of soil carbon fluxes to global environmental change. Abs et al. develop a multi-scale model to explain the evolution of microbial cooperation driving the decomposition of soil organic matter. Their model shows that the evolutionary stability of decomposition depends on a combination of local extinctions, microbial dispersal, and limited soil diffusivity.
Collapse
Affiliation(s)
- Elsa Abs
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA, 92697, USA. .,Interdisciplinary Center for Interdisciplinary Global Environmental Studies (iGLOBES), CNRS, Ecole Normale Supérieure, Paris Sciences & Lettres University, University of Arizona, Tucson, AZ, 85721, USA.
| | - Hélène Leman
- Numed Inria team, UMPA UMR 5669, Ecole Normale Supérieure, Lyon, 69364, France. .,Centro de Investigación en Matemáticas, Guanajuato, 36240, Mexico.
| | - Régis Ferrière
- Interdisciplinary Center for Interdisciplinary Global Environmental Studies (iGLOBES), CNRS, Ecole Normale Supérieure, Paris Sciences & Lettres University, University of Arizona, Tucson, AZ, 85721, USA. .,Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, 85721, USA. .,Institut de Biologie (IBENS), Ecole Normale Supérieure, Paris Sciences & Lettres University, CNRS, INSERM, Paris, 75005, France.
| |
Collapse
|
8
|
Mishra A, Chakraborty PP, Dey S. Dispersal evolution diminishes the negative density dependence in dispersal. Evolution 2020; 74:2149-2157. [PMID: 32725620 DOI: 10.1111/evo.14070] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 07/15/2020] [Accepted: 07/26/2020] [Indexed: 12/17/2022]
Abstract
In many organisms, dispersal varies with the local population density. Such patterns of density-dependent dispersal (DDD) are expected to shape the dynamics, spatial spread, and invasiveness of populations. Despite their ecological importance, empirical evidence for the evolution of DDD patterns remains extremely scarce. This is especially relevant because rapid evolution of dispersal traits has now been empirically confirmed in several taxa. Changes in DDD of dispersing populations could help clarify not only the role of DDD in dispersal evolution, but also the possible pattern of subsequent range expansion. Here, we investigate the relationship between dispersal evolution and DDD using a long-term experimental evolution study on Drosophila melanogaster. We compared the DDD patterns of four dispersal-selected populations and their non-selected controls. The control populations showed negative DDD, which was stronger in females than in males. In contrast, the dispersal-selected populations showed DDD, where neither males nor females exhibited DDD. We compare our results with previous evolutionary predictions that focused largely on positive DDD, and highlight how the direction of evolutionary change depends on the initial DDD pattern of a population. Finally, we discuss the implications of DDD evolution for spatial ecology and evolution.
Collapse
Affiliation(s)
- Abhishek Mishra
- Population Biology Laboratory, Biology Division, Indian Institute of Science Education and Research, Pune, Pune, 411 008, India
| | - Partha Pratim Chakraborty
- Population Biology Laboratory, Biology Division, Indian Institute of Science Education and Research, Pune, Pune, 411 008, India.,Current Address: Department of Biology, University of Ottawa, Ottawa, ON, K1N 6N5, Canada
| | - Sutirth Dey
- Population Biology Laboratory, Biology Division, Indian Institute of Science Education and Research, Pune, Pune, 411 008, India
| |
Collapse
|
9
|
Mishra A, Tung S, Shree Sruti VR, Srivathsa S, Dey S. Mate-finding dispersal reduces local mate limitation and sex bias in dispersal. J Anim Ecol 2020; 89:2089-2098. [PMID: 32535925 DOI: 10.1111/1365-2656.13278] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 05/19/2020] [Indexed: 11/29/2022]
Abstract
Sex-biased dispersal (SBD) often skews the local sex ratio in a population. This can result in a shortage of mates for individuals of the less-dispersive sex. Such mate limitation can lead to Allee effects in populations that are small or undergoing range expansion, consequently affecting their survival, growth, stability and invasion speed. Theory predicts that mate shortage can lead to either an increase or a decrease in the dispersal of the less-dispersive sex. However, neither of these predictions have been empirically validated. To investigate how SBD-induced mate limitation affects dispersal of the less-dispersive sex, we used Drosophila melanogaster populations with varying dispersal propensities. To rule out any mate-independent density effects, we examined the behavioural plasticity of dispersal in the presence of mates as well as same-sex individuals with differential dispersal capabilities. In the presence of high-dispersive mates, the dispersal of both male and female individuals was significantly increased. However, the magnitude of this increase was much larger in males than in females, indicating that the former shows greater mate-finding dispersal. Moreover, the dispersal of either sex did not change when dispersing alongside high- or low-dispersive individuals of the same sex. This suggested that the observed plasticity in dispersal was indeed due to mate-finding dispersal, and not mate-independent density effects. Strong mate-finding dispersal can diminish the magnitude of sex bias in dispersal. This can modulate the evolutionary processes that shape range expansions and invasions, depending on the population size. In small populations, mate-finding dispersal can ameliorate Allee effects. However, in large populations, it can dilute the effects of spatial sorting.
Collapse
Affiliation(s)
- Abhishek Mishra
- Population Biology Laboratory, Biology Division, Indian Institute of Science Education and Research-Pune, Pune, Maharashtra, India
| | - Sudipta Tung
- Population Biology Laboratory, Biology Division, Indian Institute of Science Education and Research-Pune, Pune, Maharashtra, India
| | - V R Shree Sruti
- Population Biology Laboratory, Biology Division, Indian Institute of Science Education and Research-Pune, Pune, Maharashtra, India
| | - Sahana Srivathsa
- Population Biology Laboratory, Biology Division, Indian Institute of Science Education and Research-Pune, Pune, Maharashtra, India
| | - Sutirth Dey
- Population Biology Laboratory, Biology Division, Indian Institute of Science Education and Research-Pune, Pune, Maharashtra, India
| |
Collapse
|
10
|
Tsuboi J, Morita K, Koseki Y, Endo S, Sahashi G, Kishi D, Kikko T, Ishizaki D, Nunokawa M, Kanno Y. Spatial covariation of fish population vital rates in a stream network. OIKOS 2020. [DOI: 10.1111/oik.07169] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Jun‐ichi Tsuboi
- Research Center for Freshwater Fisheries, National Research Institute of Fisheries Science, Japan Fisheries Research and Education Agency JP‐321‐1661 Nikko Japan
| | - Kentaro Morita
- Hokkaido National Fisheries Research Institute, Japan Fisheries Research and Education Agency Sapporo Japan
| | - Yusuke Koseki
- Dept of Life Design, Faculty of Home Economics, Otsuma Women's Univ. Tokyo Japan
| | | | - Genki Sahashi
- Hokkaido National Fisheries Research Institute, Japan Fisheries Research and Education Agency Sapporo Japan
| | - Daisuke Kishi
- Gero Branch, Gifu Prefectural Research Inst. for Fisheries and Aquatic Environments Gero Japan
| | - Takeshi Kikko
- Shiga Prefectural Fisheries Experiment Station Hassaka, Hikone Shiga Japan
| | - Daisuke Ishizaki
- Shiga Prefectural Fisheries Experiment Station Hassaka, Hikone Shiga Japan
| | | | - Yoichiro Kanno
- Dept of Fish, Wildlife, and Conservation Biology, and Graduate Degree Program in Ecology, Colorado State Univ. Fort Collins CO USA
| |
Collapse
|
11
|
David O, van Frank G, Goldringer I, Rivière P, Turbet Delof M. Bayesian inference of natural selection from spatiotemporal phenotypic data. Theor Popul Biol 2019; 131:100-109. [PMID: 31812618 DOI: 10.1016/j.tpb.2019.11.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 10/04/2019] [Accepted: 11/20/2019] [Indexed: 10/25/2022]
Abstract
Spatiotemporal variations of natural selection may influence the evolution of various features of organisms such as local adaptation or specialisation. This article develops a method for inferring how selection varies between locations and between generations from phenotypic data. It is assumed that generations are non-overlapping and that individuals reproduce by selfing or asexually. A quantitative genetics model taking account of the effects of stabilising natural selection, the environment and mutation on phenotypic means and variances is developed. Explicit results on the evolution of populations are derived and used to develop a Bayesian inference method. The latter is applied to simulated data and to data from a wheat participatory plant breeding programme. It has some ability to infer evolutionary parameters, but estimates may be sensitive to prior distributions, for example when phenotypic time series are short and when environmental effects are large. In such cases, sensitivity to prior distributions may be reported or more data may be collected.
Collapse
Affiliation(s)
- Olivier David
- MaIAGE, INRA, Université Paris-Saclay, 78350, Jouy-en-Josas, France.
| | - Gaëlle van Frank
- Génétique Quantitative et Evolution - Le Moulon, INRA, Université Paris-Saclay, Université Paris-Sud, CNRS, AgroParisTech, 91190, Gif-sur-Yvette, France
| | - Isabelle Goldringer
- Génétique Quantitative et Evolution - Le Moulon, INRA, Université Paris-Saclay, Université Paris-Sud, CNRS, AgroParisTech, 91190, Gif-sur-Yvette, France
| | | | - Michel Turbet Delof
- Génétique Quantitative et Evolution - Le Moulon, INRA, Université Paris-Saclay, Université Paris-Sud, CNRS, AgroParisTech, 91190, Gif-sur-Yvette, France
| |
Collapse
|
12
|
Zwoinska MK, Larva T, Sekajova Z, Carlsson H, Meurling S, Maklakov AA. Artificial selection for increased dispersal results in lower fitness. J Evol Biol 2019; 33:217-224. [PMID: 31677316 DOI: 10.1111/jeb.13563] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 10/25/2019] [Accepted: 10/29/2019] [Indexed: 11/30/2022]
Abstract
Dispersal often covaries with other traits, and this covariation was shown to have a genetic basis. Here, we wanted to explore to what extent genetic constraints and correlational selection can explain patterns of covariation between dispersal and key life-history traits-lifespan and reproduction. A prediction from the fitness-associated dispersal hypothesis was that lower genetic quality is associated with higher dispersal propensity as driven by the benefits of genetic mixing. We wanted to contrast it with a prediction from a different model that individuals putting more emphasis on current rather than future reproduction disperse more, as they are expected to be more risk-prone and exploratory. However, if dispersal has inherent costs, this will also result in a negative genetic correlation between higher rates of dispersal and some aspects of performance. To explore this issue, we used the dioecious nematode Caenorhabditis remanei and selected for increased and decreased dispersal propensity for 10 generations, followed by five generations of relaxed selection. Dispersal propensity responded to selection, and females from high-dispersal lines dispersed more than females from low-dispersal lines. Females selected for increased dispersal propensity produced fewer offspring and were more likely to die from matricide, which is associated with a low physiological condition in Caenorhabditis nematodes. There was no evidence for differences in age-specific reproductive effort between high- and low-dispersal females. Rather, reproductive output of high-dispersal females was consistently reduced. We argue that our data provide support for the fitness-associated dispersal hypothesis.
Collapse
Affiliation(s)
- Martyna K Zwoinska
- Department of Animal Ecology, Uppsala University, Uppsala, Sweden.,Department of Zoology, Stockholm University, Stockholm, Sweden
| | - Tuuli Larva
- Department of Animal Ecology, Uppsala University, Uppsala, Sweden
| | - Zuzana Sekajova
- Department of Animal Ecology, Uppsala University, Uppsala, Sweden
| | - Hanne Carlsson
- Department of Animal Ecology, Uppsala University, Uppsala, Sweden.,School of Biological Sciences, University of East Anglia, Norwich, UK
| | - Sara Meurling
- Department of Animal Ecology, Uppsala University, Uppsala, Sweden
| | - Alexei A Maklakov
- Department of Animal Ecology, Uppsala University, Uppsala, Sweden.,School of Biological Sciences, University of East Anglia, Norwich, UK
| |
Collapse
|
13
|
Bailey LD, Ens BJ, Both C, Heg D, Oosterbeek K, van de Pol M. Habitat selection can reduce effects of extreme climatic events in a long-lived shorebird. J Anim Ecol 2019; 88:1474-1485. [PMID: 31175665 DOI: 10.1111/1365-2656.13041] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Accepted: 04/25/2019] [Indexed: 11/28/2022]
Abstract
Changes in the frequency of extreme climatic events (ECEs) can have profound impacts on individual fitness by degrading habitat quality. Organisms may respond to such changes through habitat selection, favouring those areas less affected by ECEs; however, documenting habitat selection in response to ECEs is difficult in the wild due to the rarity of such events and the long-term biological data required. Sea level rise and changing weather patterns over the past decades have led to an increase in the frequency of coastal flooding events, with serious consequences for ground nesting shorebirds. Shorebirds therefore present a useful natural study system to understand habitat selection as a response to ECEs. We used a 32-year study of the Eurasian oystercatcher (Haematopus ostralegus) to investigate whether habitat selection can lead to an increase in nest elevation and minimize the impacts of coastal flooding. The mean nest elevation of H. ostralegus has increased during the last three decades. We hypothesized that this change has been driven by changes in H. ostralegus territory settlement patterns over time. We compared various possible habitat selection cues to understand what information H. ostralegus might use to inform territory settlement. There was a clear relationship between elevation and territory settlement in H. ostralegus. In early years, settlements were more likely at low elevations but in more recent years the likelihood of settlement was similar between high and low elevation areas. Territory settlement was associated with conspecific fledgling output and conspecific density. Settlement was more likely in areas of high density and areas with high fledgling output. This study shows that habitat selection can minimize the effects of increasingly frequent ECEs. However, it seems unlikely that the changes we observe will fully alleviate the consequences of anthropogenic climate change. Rates of nest elevation increase were insufficient to track current increases in maximum high tide (0.5 vs. 0.8 cm/year). Furthermore, habitat selection cues that rely on information from previous breeding seasons (e.g. conspecific fledgling output) may become ineffective as ECEs become more frequent and environmental predictability is diminished.
Collapse
Affiliation(s)
- Liam D Bailey
- Evolution, Ecology & Genetics, Research School of Biology, Australian National University, Canberra, Australian Capital Territory, Australia.,Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands
| | - Bruno J Ens
- Sovon Dutch Centre for Field Ornithology, Nijmegen, The Netherlands
| | - Christiaan Both
- Conservation Ecology Group, University of Groningen, Groningen, The Netherlands
| | - Dik Heg
- Clinical Trials Unit, University of Bern, Bern, Switzerland
| | - Kees Oosterbeek
- Sovon Dutch Centre for Field Ornithology, Nijmegen, The Netherlands
| | - Martijn van de Pol
- Evolution, Ecology & Genetics, Research School of Biology, Australian National University, Canberra, Australian Capital Territory, Australia.,Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands
| |
Collapse
|
14
|
Henckel L, Meynard CN, Devictor V, Mouquet N, Bretagnolle V. On the relative importance of space and environment in farmland bird community assembly. PLoS One 2019; 14:e0213360. [PMID: 30856193 PMCID: PMC6411160 DOI: 10.1371/journal.pone.0213360] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 02/20/2019] [Indexed: 11/18/2022] Open
Abstract
The relative contribution of ecological processes in shaping metacommunity dynamics in heavily managed landscapes is still unclear. Here we used two complementary approaches to disentangle the role of environment and spatial effect in farmland bird community assembly in an intensive agro-ecosystem. We hypothesized that the interaction between habitat patches and dispersal should play a major role in such unstable and unpredictable environments. First, we used a metacommunity patterns analysis to characterize species co-occurrences and identify the main drivers of community assembly; secondly, variation partitioning was used to disentangle environmental and geographical factors (such as dispersal limitation) on community structure and composition. We used high spatial resolution data on bird community structure and composition distributed among 260 plots in an agricultural landscape. Species were partitioned into functional classes, and point count stations were classified according to landscape characteristics before applying metacommunity and partitioning analyses within each. Overall we could explain around 20% of the variance in species composition in our system, revealing that stochasticity remains very important at this scale. However, this proportion varies depending on the scale of analysis, and reveals potentially important contributions of environmental filtering and dispersal. These conclusions are further reinforced when the analysis was deconstructed by bird functional classes or by landscape habitat classes, underlining trait-related filters, thus reinforcing the idea that wooded areas in these agroecosystems may represent important sources for a specific group of bird species. Our analysis shows that deconstructing the species assemblages into separate functional groups and types of landscapes, along with a combination of analysis strategies, can help in understanding the mechanisms driving community assembly.
Collapse
Affiliation(s)
- Laura Henckel
- Centre d'Etudes Biologiques de Chizé (CEBC), UMR 7372 CNRS & Université de La Rochelle, Beauvoir sur Niort, France
| | - Christine N. Meynard
- CBGP, INRA, CIRAD, IRD, Montpellier SupAgro, Univ Montpellier, Montpellier, France
| | - Vincent Devictor
- Institut des Sciences de l'Evolution, Université de Montpellier, CNRS, IRD, EPHE, Place Eugène Bataillon, Montpellier Cedex 05, France
| | - Nicolas Mouquet
- MARBEC, Univ Montpellier, CNRS, Ifremer, IRD, Montpellier, France
| | - Vincent Bretagnolle
- Centre d'Etudes Biologiques de Chizé (CEBC), UMR 7372 CNRS & Université de La Rochelle, Beauvoir sur Niort, France
- LTSER “Zone Atelier Plaine & Val de Sèvre”, Beauvoir sur Niort, France
| |
Collapse
|
15
|
Baquero F. Causality in Biological Transmission: Forces and Energies. Microbiol Spectr 2018; 6:10.1128/microbiolspec.mtbp-0018-2016. [PMID: 30191806 PMCID: PMC11633629 DOI: 10.1128/microbiolspec.mtbp-0018-2016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Indexed: 11/20/2022] Open
Abstract
Transmission is a basic process in biology that can be analyzed in accordance with information theory. A sender or transmitter located in a particular patch of space is the source of the transmitted object, the message. A receiver patch interacts to receive the message. The "messages" that are transmitted between patches (eventually located in different hierarchical biological levels) are "meaningful" biological entities (biosemiotics). cis-acting transmission occurs when unenclosed patches acting as emitter and receiver entities of the same hierarchical level are linked (frequently by a vehicle) across an unfit space; trans-acting transmission occurs between biological individuals of different hierarchical levels, embedded within a close external common limit. To understand the causal frame of transmission events, we analyze the ultimate, but most importantly also the proximate, causes of transmission. These include the repelling, centrifugal "forces" influencing the transmission (emigration) and the attractive, centripetal "energies" involved in the reception (immigration). As transmission is a key process in evolution, creating both genetic-embedded complexity-diversity (trans-acting transmission, as introgression), and exposure to novel and alternative patches-environments (cis-acting transmission, as migration), the causal frame of transmission shows the cis-evolutionary and trans-evolutionary dimensions of evolution.
Collapse
Affiliation(s)
- Fernando Baquero
- Department of Microbiology, Hospital Universitario Ramón y Cajal (IRYCIS) and Centro de Investigacion Biomedica en Red (CIBERESP), Madrid, Spain
| |
Collapse
|
16
|
Tung S, Mishra A, Gogna N, Aamir Sadiq M, Shreenidhi PM, Shree Sruti VR, Dorai K, Dey S. Evolution of dispersal syndrome and its corresponding metabolomic changes. Evolution 2018; 72:1890-1903. [PMID: 30075053 DOI: 10.1111/evo.13560] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 07/10/2018] [Indexed: 12/29/2022]
Abstract
Dispersal is one of the strategies for organisms to deal with climate change and habitat degradation. Therefore, investigating the effects of dispersal evolution on natural populations is of considerable interest to ecologists and conservation biologists. Although it is known that dispersal itself can evolve due to selection, the behavioral, life-history and metabolic consequences of dispersal evolution are not well understood. Here, we explore these issues by subjecting four outbred laboratory populations of Drosophila melanogaster to selection for increased dispersal. The dispersal-selected populations had similar values of body size, fecundity, and longevity as the nonselected lines (controls), but evolved significantly greater locomotor activity, exploratory tendency, and aggression. Untargeted metabolomic fingerprinting through NMR spectroscopy suggested that the selected flies evolved elevated cellular respiration characterized by greater amounts of glucose, AMP, and NAD. Concurrent evolution of higher level of Octopamine and other neurotransmitters indicate a possible mechanism for the behavioral changes in the selected lines. We discuss the generalizability of our findings in the context of observations from natural populations. To the best of our knowledge, this is the first report of the evolution of metabolome due to selection for dispersal and its connection to dispersal syndrome evolution.
Collapse
Affiliation(s)
- Sudipta Tung
- Population Biology Laboratory, Biology Division, Indian Institute of Science Education and Research (IISER) Pune, Pune, Maharashtra, India
| | - Abhishek Mishra
- Population Biology Laboratory, Biology Division, Indian Institute of Science Education and Research (IISER) Pune, Pune, Maharashtra, India
| | - Navdeep Gogna
- Department of Physical Sciences, Indian Institute of Science Education and Research Mohali, Mohali, Punjab, India
| | - Mohammed Aamir Sadiq
- Population Biology Laboratory, Biology Division, Indian Institute of Science Education and Research (IISER) Pune, Pune, Maharashtra, India
| | - P M Shreenidhi
- Population Biology Laboratory, Biology Division, Indian Institute of Science Education and Research (IISER) Pune, Pune, Maharashtra, India
| | - V R Shree Sruti
- Population Biology Laboratory, Biology Division, Indian Institute of Science Education and Research (IISER) Pune, Pune, Maharashtra, India
| | - Kavita Dorai
- Department of Physical Sciences, Indian Institute of Science Education and Research Mohali, Mohali, Punjab, India
| | - Sutirth Dey
- Population Biology Laboratory, Biology Division, Indian Institute of Science Education and Research (IISER) Pune, Pune, Maharashtra, India
| |
Collapse
|
17
|
Lam AW, Gueuning M, Kindler C, Van Dam M, Alvarez N, Panjaitan R, Shaverdo H, White LT, Roderick GK, Balke M. Phylogeography and population genomics of a lotic water beetle across a complex tropical landscape. Mol Ecol 2018; 27:3346-3356. [PMID: 30010208 DOI: 10.1111/mec.14796] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 06/06/2018] [Accepted: 06/11/2018] [Indexed: 11/30/2022]
Abstract
The habitat template concept applied to a freshwater system indicates that lotic species, or those which occupy permanent habitats along stream courses, are less dispersive than lentic species, or those that occur in more ephemeral aquatic habitats. Thus, populations of lotic species will be more structured than those of lentic species. Stream courses include both flowing water and small, stagnant microhabitats that can provide refuge when streams are low. Many species occur in these microhabitats but remain poorly studied. Here, we present population genetic data for one such species, the tropical diving beetle Exocelina manokwariensis (Dytiscidae), sampled from six localities along a ~300 km transect across the Birds Head Peninsula of New Guinea. Molecular data from both mitochondrial (CO1 sequences) and nuclear (ddRAD loci) regions document fine-scale population structure across populations that are ~45 km apart. Our results are concordant with previous phylogenetic and macroecological studies that applied the habitat template concept to aquatic systems. This study also illustrates that these diverse but mostly overlooked microhabitats are promising study systems in freshwater ecology and evolutionary biology. With the advent of next-generation sequencing, fine-scale population genomic studies are feasible for small nonmodel organisms to help illuminate the effect of habitat stability on species' natural history, population structure and geographic distribution.
Collapse
Affiliation(s)
- Athena Wai Lam
- SNSB-Zoologische Staatssammlung München, Munich, Germany
- Department of Environmental Science, Policy and Management, University of California, Berkeley, California
- Institute for Biodiversity Science and Sustainability, California Academy of Sciences, San Francisco, California
| | - Morgan Gueuning
- Department of Ecology and Evolution, Biophore, University of Lausanne, Lausanne, Switzerland
- Competence Division for Research Technology and Knowledge Exchange, Method Development and Analytics, Agroscope, Wädenswil, Switzerland
- Institute of Biology, University of Neuchatel, Neuchatel, Switzerland
| | | | - Matthew Van Dam
- SNSB-Zoologische Staatssammlung München, Munich, Germany
- Department of Environmental Science, Policy and Management, University of California, Berkeley, California
- Institute for Biodiversity Science and Sustainability, California Academy of Sciences, San Francisco, California
| | - Nadir Alvarez
- Department of Ecology and Evolution, Biophore, University of Lausanne, Lausanne, Switzerland
| | - Rawati Panjaitan
- Department of Biology, Faculty of Sciences and Mathematics, State University of Papua (UNIPA), Manokwari, West Papua, Indonesia
| | | | - Lloyd T White
- School of Earth and Environmental Sciences, University of Wollongong, New South Wales, Australia
| | - George K Roderick
- Department of Environmental Science, Policy and Management, University of California, Berkeley, California
| | - Michael Balke
- SNSB-Zoologische Staatssammlung München, Munich, Germany
- GeoBioCenter, Ludwig-Maximilians-Universität München, Munich, Germany
| |
Collapse
|
18
|
Mishra A, Tung S, Sruti VRS, Sadiq MA, Srivathsa S, Dey S. Pre-dispersal context and presence of opposite sex modulate density dependence and sex bias of dispersal. OIKOS 2018. [DOI: 10.1111/oik.04902] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Abhishek Mishra
- Population Biology Laboratory, Biology Division; Indian Inst. of Science Education and Research-Pune; Dr. Homi Bhabha Road Pune IN-411008 Maharashtra India
| | - Sudipta Tung
- Population Biology Laboratory, Biology Division; Indian Inst. of Science Education and Research-Pune; Dr. Homi Bhabha Road Pune IN-411008 Maharashtra India
| | - V. R. Shree Sruti
- Population Biology Laboratory, Biology Division; Indian Inst. of Science Education and Research-Pune; Dr. Homi Bhabha Road Pune IN-411008 Maharashtra India
| | - Mohammed Aamir Sadiq
- Population Biology Laboratory, Biology Division; Indian Inst. of Science Education and Research-Pune; Dr. Homi Bhabha Road Pune IN-411008 Maharashtra India
| | - Sahana Srivathsa
- Population Biology Laboratory, Biology Division; Indian Inst. of Science Education and Research-Pune; Dr. Homi Bhabha Road Pune IN-411008 Maharashtra India
| | - Sutirth Dey
- Population Biology Laboratory, Biology Division; Indian Inst. of Science Education and Research-Pune; Dr. Homi Bhabha Road Pune IN-411008 Maharashtra India
| |
Collapse
|
19
|
Venkateswaran V, Shrivastava A, Kumble ALK, Borges RM. Life-history strategy, resource dispersion and phylogenetic associations shape dispersal of a fig wasp community. MOVEMENT ECOLOGY 2017; 5:25. [PMID: 29225885 PMCID: PMC5718022 DOI: 10.1186/s40462-017-0117-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 11/22/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND The combined influence of life-history strategy and resource dispersion on dispersal evolution of a biological community, and by extension, on community assemblage, has received sparse attention. Highly specialized fig wasp communities are ideal for addressing this question since the life-history strategies that affect their pace of life and the dispersion of their oviposition resources vary. We compared dispersal capacities of the wasp community of a widespread tropical fig, Ficus racemosa, by measuring flight durations, somatic lipid content and resting metabolic rates. RESULTS Wasp species exhibiting greater flight durations had higher energy reserves and resting metabolic rates. "Fast"-paced species showed higher dispersal capacities reflecting requirements for rapid resource location within short adult lifespans. Longer-lived "slow"-paced species exhibited lower dispersal capacities. Most dispersal traits were negatively related with resource dispersion while their variances were positively related with this variable, suggesting that resource dispersion selects for dispersal capacity. Dispersal traits exhibited a phylogenetic signal. CONCLUSIONS Using a combination of phylogeny, trait functionality and community features, we explain how dispersal traits may have co-evolved with life-history strategies in fig wasps and influenced a predisposition for dispersal. We speculate how processes influencing dispersal trait expression of community members may affect resource occupancy and community assemblage.
Collapse
Affiliation(s)
- Vignesh Venkateswaran
- Centre for Ecological Sciences, Indian Institute of Science, Bangalore, 560012 India
| | - Amitabh Shrivastava
- Centre for Ecological Sciences, Indian Institute of Science, Bangalore, 560012 India
| | - Anusha L. K. Kumble
- Centre for Ecological Sciences, Indian Institute of Science, Bangalore, 560012 India
| | - Renee M. Borges
- Centre for Ecological Sciences, Indian Institute of Science, Bangalore, 560012 India
| |
Collapse
|
20
|
Papadopoulou A, Knowles LL. Linking micro‐ and macroevolutionary perspectives to evaluate the role of Quaternary sea‐level oscillations in island diversification. Evolution 2017; 71:2901-2917. [DOI: 10.1111/evo.13384] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 09/19/2017] [Accepted: 10/16/2017] [Indexed: 01/03/2023]
Affiliation(s)
- Anna Papadopoulou
- Department of Integrative Ecology Estación Biológica de Doñana (EBD‐CSIC) Avda. Américo Vespucio s/n 41092 Seville Spain
- Department of Ecology and Evolutionary Biology, Museum of Zoology University of Michigan 1109 Geddes Avenue Ann Arbor MI 48109‐1079
| | - L. Lacey Knowles
- Department of Ecology and Evolutionary Biology, Museum of Zoology University of Michigan 1109 Geddes Avenue Ann Arbor MI 48109‐1079
| |
Collapse
|
21
|
Insights on dispersal and recruitment paradigms: sex- and age-dependent variations in a nomadic breeder. Oecologia 2017; 186:85-97. [PMID: 29063200 DOI: 10.1007/s00442-017-3972-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2016] [Accepted: 09/27/2017] [Indexed: 11/27/2022]
Abstract
Sex- and age-dependence in recruitment and dispersal are often explained by costs arising from competition for holding a breeding territory over the years-a typical feature of species living in stable habitats. For instance, long-lived birds with male territoriality often exhibit large variation in recruitment age and higher dispersal in females and young individuals. As a corollary, we expected that species with ephemeral habitat suitability, and hence nomadic breeding, would show weak age- and sex-dependence in dispersal and low variation in recruitment age, because territory ownership is not maintained over the years. In addition, the higher cost of reproduction in females might not be (over)compensated for by costs of territoriality in males. Accordingly, females would recruit later than males. We explored these variations using multievent capture-recapture models over 13 years, 3479 (2392 sexed) slender-billed gulls (Chroicocephalus genei) and 45 colony sites along the French Mediterranean coast. As expected, variability in recruitment age was low with males recruiting earlier than females. Nonetheless, dispersal in and out of the study area decreased with age and was slightly higher in males than in females. Decreased dispersal with age might result from foraging benefits associated with increased spatial familiarity. Higher dispersal in males might be explained by a male-biased sex ratio or higher philopatry benefits in females (arising from their higher cost of reproduction). Sex- and age-dependent dispersal and recruitment may thus occur in the absence of year-to-year breeding territory ownership, which stresses the importance of considering other processes in shaping recruitment and dispersal patterns.
Collapse
|
22
|
Hendrix R, Schmidt BR, Schaub M, Krause ET, Steinfartz S. Differentiation of movement behaviour in an adaptively diverging salamander population. Mol Ecol 2017; 26:6400-6413. [PMID: 28881403 DOI: 10.1111/mec.14345] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 08/17/2017] [Accepted: 08/24/2017] [Indexed: 01/16/2023]
Abstract
Dispersal is considered to be a species-specific trait, but intraspecific variation can be high. However, when and how this complex trait starts to differentiate during the divergence of species/lineages is unknown. Here, we studied the differentiation of movement behaviour in a large salamander population (Salamandra salamandra), in which individual adaptations to different habitat conditions drive the genetic divergence of this population into two subpopulations. In this system, salamanders have adapted to the deposition and development of their larvae in ephemeral ponds vs. small first-order streams. In general, the pond habitat is characterized as a spatially and temporally highly unpredictable habitat, while streams provide more stable and predictable conditions for the development of larvae. We analysed the fine-scale genetic distribution of larvae, and explored whether the adaptation to different larval habitat conditions has in turn also affected dispersal strategies and home range size of adult salamanders. Based on the genetic assignment of adult individuals to their respective larval habitat type, we show that pond-adapted salamanders occupied larger home ranges, displayed long-distance dispersal and had a higher variability of movement types than the stream-adapted individuals. We argue that the differentiation of phenotypically plastic traits such as dispersal and movement characteristics can be a crucial component in the course of adaptation to new habitat conditions, thereby promoting the genetic divergence of populations.
Collapse
Affiliation(s)
- Ralf Hendrix
- Zoological Institute, Technische Universität Braunschweig, Braunschweig, Germany.,Department of Animal Behavior, Bielefeld University, Bielefeld, Germany
| | - Benedikt R Schmidt
- Institute of Evolutionary Biology and Environmental Studies, University of Zürich, Zürich, Switzerland.,KARCH, Neuchâtel, Switzerland
| | | | - E Tobias Krause
- Friedrich-Loeffler-Institute, Institute of Animal Welfare and Animal Husbandry, Celle, Germany
| | - Sebastian Steinfartz
- Zoological Institute, Technische Universität Braunschweig, Braunschweig, Germany
| |
Collapse
|
23
|
Soghigian J, Livdahl T. Differential response to mosquito host sex and parasite dosage suggest mixed dispersal strategies in the parasite Ascogregarina taiwanensis. PLoS One 2017; 12:e0184573. [PMID: 28902912 PMCID: PMC5597222 DOI: 10.1371/journal.pone.0184573] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 08/25/2017] [Indexed: 11/23/2022] Open
Abstract
Mixed dispersal strategies are a form of bet hedging in which a species or population utilizes different dispersal strategies dependent upon biotic or abiotic conditions. Here we provide an example of a mixed dispersal strategy in the Aedes albopictus / Ascogregarina taiwanensis host/parasite system, wherein upon host emergence, the gregarine parasite is either carried with an adult mosquito leaving the larval habitat, or released back into the larval habitat. We show that the parasite invests a larger proportion of its dispersing (oocyst) life stage into adult female mosquitoes as opposed to adult male mosquitoes at low parasite exposure levels. However, as the exposure level of parasite increases, so does the parasite investment in adult males, whereas there is no change in the proportion of oocysts in the adult female, regardless of dose. Thus, A. taiwanensis is utilizing several dispersal strategies, depending upon host sex and intraspecific density. Furthermore, we demonstrate that this parasite reduces body size, increases time to emergence in females, and leads to a reduction in estimates of per capita growth rate of the host.
Collapse
Affiliation(s)
- John Soghigian
- Department of Biology, Clark University, Worcester, MA, United States of America
| | - Todd Livdahl
- Department of Biology, Clark University, Worcester, MA, United States of America
- * E-mail:
| |
Collapse
|
24
|
Saastamoinen M, Bocedi G, Cote J, Legrand D, Guillaume F, Wheat CW, Fronhofer EA, Garcia C, Henry R, Husby A, Baguette M, Bonte D, Coulon A, Kokko H, Matthysen E, Niitepõld K, Nonaka E, Stevens VM, Travis JMJ, Donohue K, Bullock JM, Del Mar Delgado M. Genetics of dispersal. Biol Rev Camb Philos Soc 2017; 93:574-599. [PMID: 28776950 PMCID: PMC5811798 DOI: 10.1111/brv.12356] [Citation(s) in RCA: 137] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 07/03/2017] [Accepted: 07/05/2017] [Indexed: 12/12/2022]
Abstract
Dispersal is a process of central importance for the ecological and evolutionary dynamics of populations and communities, because of its diverse consequences for gene flow and demography. It is subject to evolutionary change, which begs the question, what is the genetic basis of this potentially complex trait? To address this question, we (i) review the empirical literature on the genetic basis of dispersal, (ii) explore how theoretical investigations of the evolution of dispersal have represented the genetics of dispersal, and (iii) discuss how the genetic basis of dispersal influences theoretical predictions of the evolution of dispersal and potential consequences. Dispersal has a detectable genetic basis in many organisms, from bacteria to plants and animals. Generally, there is evidence for significant genetic variation for dispersal or dispersal‐related phenotypes or evidence for the micro‐evolution of dispersal in natural populations. Dispersal is typically the outcome of several interacting traits, and this complexity is reflected in its genetic architecture: while some genes of moderate to large effect can influence certain aspects of dispersal, dispersal traits are typically polygenic. Correlations among dispersal traits as well as between dispersal traits and other traits under selection are common, and the genetic basis of dispersal can be highly environment‐dependent. By contrast, models have historically considered a highly simplified genetic architecture of dispersal. It is only recently that models have started to consider multiple loci influencing dispersal, as well as non‐additive effects such as dominance and epistasis, showing that the genetic basis of dispersal can influence evolutionary rates and outcomes, especially under non‐equilibrium conditions. For example, the number of loci controlling dispersal can influence projected rates of dispersal evolution during range shifts and corresponding demographic impacts. Incorporating more realism in the genetic architecture of dispersal is thus necessary to enable models to move beyond the purely theoretical towards making more useful predictions of evolutionary and ecological dynamics under current and future environmental conditions. To inform these advances, empirical studies need to answer outstanding questions concerning whether specific genes underlie dispersal variation, the genetic architecture of context‐dependent dispersal phenotypes and behaviours, and correlations among dispersal and other traits.
Collapse
Affiliation(s)
- Marjo Saastamoinen
- Department of Biosciences, Metapopulation Research Centre, University of Helsinki, P.O. Box 65, 00014 Helsinki, Finland
| | - Greta Bocedi
- School of Biological Sciences, University of Aberdeen, Aberdeen AB24 2TZ, U.K
| | - Julien Cote
- Laboratoire Évolution & Diversité Biologique UMR5174, CNRS, Université Toulouse III Paul Sabatier, 31062 Toulouse, France
| | - Delphine Legrand
- Centre National de la Recherche Scientifique and Université Paul Sabatier Toulouse III, SETE Station d'Ecologie Théorique et Expérimentale, UMR 5321, 09200 Moulis, France
| | - Frédéric Guillaume
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, CH-8057 Zurich, Switzerland
| | - Christopher W Wheat
- Population Genetics, Department of Zoology, Stockholm University, S-10691 Stockholm, Sweden
| | - Emanuel A Fronhofer
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, CH-8057 Zurich, Switzerland.,Department of Aquatic Ecology, Eawag, Swiss Federal Institute of Aquatic Science and Technology, CH-8600 Dubendorf, Switzerland
| | - Cristina Garcia
- CIBIO-InBIO, Universidade do Porto, 4485-661 Vairão, Portugal
| | - Roslyn Henry
- School of Biological Sciences, University of Aberdeen, Aberdeen AB24 2TZ, U.K.,School of GeoSciences, University of Edinburgh, Edinburgh EH89XP, U.K
| | - Arild Husby
- Department of Biosciences, Metapopulation Research Centre, University of Helsinki, P.O. Box 65, 00014 Helsinki, Finland
| | - Michel Baguette
- Centre National de la Recherche Scientifique and Université Paul Sabatier Toulouse III, SETE Station d'Ecologie Théorique et Expérimentale, UMR 5321, 09200 Moulis, France.,Museum National d'Histoire Naturelle, Institut Systématique, Evolution, Biodiversité, UMR 7205, F-75005 Paris, France
| | - Dries Bonte
- Department of Biology, Ghent University, B-9000 Ghent, Belgium
| | - Aurélie Coulon
- PSL Research University, CEFE UMR 5175, CNRS, Université de Montpellier, Université Paul-Valéry Montpellier, EPHE, Biogéographie et Ecologie des Vertébrés, 34293 Montpellier, France.,CESCO UMR 7204, Bases écologiques de la conservation, Muséum national d'Histoire naturelle, 75005 Paris, France
| | - Hanna Kokko
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, CH-8057 Zurich, Switzerland
| | - Erik Matthysen
- Evolutionary Ecology Group, Department of Biology, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Kristjan Niitepõld
- Department of Biosciences, Metapopulation Research Centre, University of Helsinki, P.O. Box 65, 00014 Helsinki, Finland
| | - Etsuko Nonaka
- Department of Biosciences, Metapopulation Research Centre, University of Helsinki, P.O. Box 65, 00014 Helsinki, Finland
| | - Virginie M Stevens
- Centre National de la Recherche Scientifique and Université Paul Sabatier Toulouse III, SETE Station d'Ecologie Théorique et Expérimentale, UMR 5321, 09200 Moulis, France
| | - Justin M J Travis
- School of Biological Sciences, University of Aberdeen, Aberdeen AB24 2TZ, U.K
| | | | - James M Bullock
- NERC Centre for Ecology & Hydrology, Wallingford OX10 8BB, U.K
| | | |
Collapse
|
25
|
Tung S, Mishra A, Shreenidhi PM, Sadiq MA, Joshi S, Sruti VRS, Dey S. Simultaneous evolution of multiple dispersal components and kernel. OIKOS 2017. [DOI: 10.1111/oik.04618] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Sudipta Tung
- Population Biology Laboratory, Biology Division, Indian Inst. of Science Education and Research-Pune; Dr. Homi Bhabha Road Pune Maharashtra 411 0081 India
| | - Abhishek Mishra
- Population Biology Laboratory, Biology Division, Indian Inst. of Science Education and Research-Pune; Dr. Homi Bhabha Road Pune Maharashtra 411 0081 India
| | - P. M. Shreenidhi
- Population Biology Laboratory, Biology Division, Indian Inst. of Science Education and Research-Pune; Dr. Homi Bhabha Road Pune Maharashtra 411 0081 India
| | - Mohammed Aamir Sadiq
- Population Biology Laboratory, Biology Division, Indian Inst. of Science Education and Research-Pune; Dr. Homi Bhabha Road Pune Maharashtra 411 0081 India
| | - Sripad Joshi
- Population Biology Laboratory, Biology Division, Indian Inst. of Science Education and Research-Pune; Dr. Homi Bhabha Road Pune Maharashtra 411 0081 India
- Dept of Plant Science; McGill Univ.; Ste. Anne de Bellevue QC Canada
| | - V. R. Shree Sruti
- Population Biology Laboratory, Biology Division, Indian Inst. of Science Education and Research-Pune; Dr. Homi Bhabha Road Pune Maharashtra 411 0081 India
| | - Sutirth Dey
- Population Biology Laboratory, Biology Division, Indian Inst. of Science Education and Research-Pune; Dr. Homi Bhabha Road Pune Maharashtra 411 0081 India
| |
Collapse
|
26
|
Teotónio H, Estes S, Phillips PC, Baer CF. Experimental Evolution with Caenorhabditis Nematodes. Genetics 2017; 206:691-716. [PMID: 28592504 PMCID: PMC5499180 DOI: 10.1534/genetics.115.186288] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2016] [Accepted: 03/07/2017] [Indexed: 12/17/2022] Open
Abstract
The hermaphroditic nematode Caenorhabditis elegans has been one of the primary model systems in biology since the 1970s, but only within the last two decades has this nematode also become a useful model for experimental evolution. Here, we outline the goals and major foci of experimental evolution with C. elegans and related species, such as C. briggsae and C. remanei, by discussing the principles of experimental design, and highlighting the strengths and limitations of Caenorhabditis as model systems. We then review three exemplars of Caenorhabditis experimental evolution studies, underlining representative evolution experiments that have addressed the: (1) maintenance of genetic variation; (2) role of natural selection during transitions from outcrossing to selfing, as well as the maintenance of mixed breeding modes during evolution; and (3) evolution of phenotypic plasticity and its role in adaptation to variable environments, including host-pathogen coevolution. We conclude by suggesting some future directions for which experimental evolution with Caenorhabditis would be particularly informative.
Collapse
Affiliation(s)
- Henrique Teotónio
- Institut de Biologie de l´École Normale Supérieure (IBENS), Institut National de la Santé et de la Recherche Médicale U1024, Centre Nationnal de la Recherche Scientifique Unité Mixte de Recherche 8197, Paris Sciences et Lettres Research University, 75005 Paris, France
| | - Suzanne Estes
- Department of Biology, Portland State University, Oregon 97201
| | - Patrick C Phillips
- Institute of Ecology and Evolution, 5289 University of Oregon, Eugene, Oregon 97403, and
| | - Charles F Baer
- Department of Biology, and
- University of Florida Genetics Institute, University of Florida, Gainesville, Florida 32611
| |
Collapse
|
27
|
Dispersal-related traits of the snail Cornu aspersum along an urbanisation gradient: maintenance of mobility across life stages despite high costs. Urban Ecosyst 2016. [DOI: 10.1007/s11252-016-0564-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
28
|
Becker PJJ, Hegelbach J, Keller LF, Postma E. Phenotype-associated inbreeding biases estimates of inbreeding depression in a wild bird population. J Evol Biol 2015; 29:35-46. [PMID: 26362803 DOI: 10.1111/jeb.12759] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Revised: 09/04/2015] [Accepted: 09/07/2015] [Indexed: 02/05/2023]
Abstract
Inbreeding depression is usually quantified by regressing individual phenotypic values on inbreeding coefficients, implicitly assuming there is no correlation between an individual's phenotype and the kinship coefficient to its mate. If such an association between parental phenotype and parental kinship exists, and if the trait of interest is heritable, estimates of inbreeding depression can be biased. Here we first derive the expected bias as a function of the covariance between mean parental breeding value and parental kinship. Subsequently, we use simulated data to confirm the existence of this bias, and show that it can be accounted for in a quantitative genetic animal model. Finally, we use long-term individual-based data for white-throated dippers (Cinclus cinclus), a bird species in which inbreeding is relatively common, to obtain an empirical estimate of this bias. We show that during part of the study period, parents of inbred birds had shorter wings than those of outbred birds, and as wing length is heritable, inbred individuals were smaller, independent of any inbreeding effects. This resulted in the overestimation of inbreeding effects. Similarly, during a period when parents of inbred birds had longer wings, we found that inbreeding effects were underestimated. We discuss how such associations may have arisen in this system, and why they are likely to occur in others, too. Overall, we demonstrate how less biased estimates of inbreeding depression can be obtained within a quantitative genetic framework, and suggest that inbreeding and additive genetic effects should be accounted for simultaneously whenever possible.
Collapse
Affiliation(s)
- P J J Becker
- Institute of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| | - J Hegelbach
- Institute of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| | - L F Keller
- Institute of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| | - E Postma
- Institute of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| |
Collapse
|
29
|
Life History Consequences of the Facultative Expression of a Dispersal Life Stage in the Phoretic Bulb Mite (Rhizoglyphus robini). PLoS One 2015; 10:e0136872. [PMID: 26325395 PMCID: PMC4556651 DOI: 10.1371/journal.pone.0136872] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Accepted: 08/10/2015] [Indexed: 11/19/2022] Open
Abstract
Life history traits play an important role in population dynamics and correlate, both positively and negatively, with dispersal in a wide range of taxa. Most invertebrate studies on trade-offs between life history traits and dispersal have focused on dispersal via flight, yet much less is known about how life history trade-offs influence species that disperse by other means. In this study, we identify effects of investing in dispersal morphology (dispersal expression) on life history traits in the male dimorphic bulb mite (Rhizoglyphus robini). This species has a facultative juvenile life stage (deutonymph) during which individuals can disperse by phoresy. Further, adult males are either fighters (which kill other mites) or benign scramblers. Here, in an experiment, we investigate the effects of investing in dispersal on size at maturity, sex and male morph ratio, and female lifetime reproductive success. We show that life history traits correlate negatively with the expression of the dispersal stage. Remarkably, all males that expressed the dispersal life stage developed into competitive fighters and none into scramblers. This suggests that alternative, male reproductive strategies and dispersal should not be viewed in isolation but considered concurrently.
Collapse
|
30
|
De Roissart A, Wang S, Bonte D. Spatial and spatiotemporal variation in metapopulation structure affects population dynamics in a passively dispersing arthropod. J Anim Ecol 2015; 84:1565-74. [PMID: 25988264 DOI: 10.1111/1365-2656.12400] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Accepted: 05/06/2015] [Indexed: 12/27/2022]
Abstract
The spatial and temporal variation in the availability of suitable habitat within metapopulations determines colonization-extinction events, regulates local population sizes and eventually affects local population and metapopulation stability. Insights into the impact of such a spatiotemporal variation on the local population and metapopulation dynamics are principally derived from classical metapopulation theory and have not been experimentally validated. By manipulating spatial structure in artificial metapopulations of the spider mite Tetranychus urticae, we test to which degree spatial (mainland-island metapopulations) and spatiotemporal variation (classical metapopulations) in habitat availability affects the dynamics of the metapopulations relative to systems where habitat is constantly available in time and space (patchy metapopulations). Our experiment demonstrates that (i) spatial variation in habitat availability decreases variance in metapopulation size and decreases density-dependent dispersal at the metapopulation level, while (ii) spatiotemporal variation in habitat availability increases patch extinction rates, decreases local population and metapopulation sizes and decreases density dependence in population growth rates. We found dispersal to be negatively density dependent and overall low in the spatial variable mainland-island metapopulation. This demographic variation subsequently impacts local and regional population dynamics and determines patterns of metapopulation stability. Both local and metapopulation-level variabilities are minimized in mainland-island metapopulations relative to classical and patchy ones.
Collapse
Affiliation(s)
- Annelies De Roissart
- Terrestrial Ecology Unit, Department Biology, Ghent University, K.L. Ledeganckstraat 35, B-9000, Ghent, Belgium
| | - Shaopeng Wang
- Centre for Biodiversity Theory and Modelling, Station d'Ecologie Expérimentale du CNRS, 09200, Moulis, France
| | - Dries Bonte
- Terrestrial Ecology Unit, Department Biology, Ghent University, K.L. Ledeganckstraat 35, B-9000, Ghent, Belgium
| |
Collapse
|
31
|
Gauffre B, Mallez S, Chapuis MP, Leblois R, Litrico I, Delaunay S, Badenhausser I. Spatial heterogeneity in landscape structure influences dispersal and genetic structure: empirical evidence from a grasshopper in an agricultural landscape. Mol Ecol 2015; 24:1713-28. [PMID: 25773398 DOI: 10.1111/mec.13152] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Revised: 03/07/2015] [Accepted: 03/10/2015] [Indexed: 12/01/2022]
Abstract
Dispersal may be strongly influenced by landscape and habitat characteristics that could either enhance or restrict movements of organisms. Therefore, spatial heterogeneity in landscape structure could influence gene flow and the spatial structure of populations. In the past decades, agricultural intensification has led to the reduction in grassland surfaces, their fragmentation and intensification. As these changes are not homogeneously distributed in landscapes, they have resulted in spatial heterogeneity with generally less intensified hedged farmland areas remaining alongside streams and rivers. In this study, we assessed spatial pattern of abundance and population genetic structure of a flightless grasshopper species, Pezotettix giornae, based on the surveys of 363 grasslands in a 430-km² agricultural landscape of western France. Data were analysed using geostatistics and landscape genetics based on microsatellites markers and computer simulations. Results suggested that small-scale intense dispersal allows this species to survive in intensive agricultural landscapes. A complex spatial genetic structure related to landscape and habitat characteristics was also detected. Two P. giornae genetic clusters bisected by a linear hedged farmland were inferred from clustering analyses. This linear hedged farmland was characterized by high hedgerow and grassland density as well as higher grassland temporal stability that were suspected to slow down dispersal. Computer simulations demonstrated that a linear-shaped landscape feature limiting dispersal could be detected as a barrier to gene flow and generate the observed genetic pattern. This study illustrates the relevance of using computer simulations to test hypotheses in landscape genetics studies.
Collapse
Affiliation(s)
- Bertrand Gauffre
- INRA, USC1339 (CEBC-CNRS), Villiers en Bois, F-79360, France; CNRS, UMR 7372 CEBC - Université de La Rochelle, Villiers en Bois, F-79360, France; LTER, ZA Plaine & Val de Sèvre, CNRS-CEBC, Villiers en Bois, F-79360, France
| | | | | | | | | | | | | |
Collapse
|
32
|
Hand BK, Lowe WH, Kovach RP, Muhlfeld CC, Luikart G. Landscape community genomics: understanding eco-evolutionary processes in complex environments. Trends Ecol Evol 2015; 30:161-8. [DOI: 10.1016/j.tree.2015.01.005] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Revised: 01/06/2015] [Accepted: 01/07/2015] [Indexed: 10/24/2022]
|
33
|
Hovestadt T, Mitesser O, Poethke HJ. Gender-Specific Emigration Decisions Sensitive to Local Male and Female Density. Am Nat 2014; 184:38-51. [DOI: 10.1086/676524] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
34
|
Duputié A, Massol F. An empiricist's guide to theoretical predictions on the evolution of dispersal. Interface Focus 2014; 3:20130028. [PMID: 24516715 DOI: 10.1098/rsfs.2013.0028] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Dispersal, the tendency for organisms to reproduce away from their parents, influences many evolutionary and ecological processes, from speciation and extinction events, to the coexistence of genotypes within species or biological invasions. Understanding how dispersal evolves is crucial to predict how global changes might affect species persistence and geographical distribution. The factors driving the evolution of dispersal have been well characterized from a theoretical standpoint, and predictions have been made about their respective influence on, for example, dispersal polymorphism or the emergence of dispersal syndromes. However, the experimental tests of some theories remain scarce partly because a synthetic view of theoretical advances is still lacking. Here, we review the different ingredients of models of dispersal evolution, from selective pressures and types of predictions, through mathematical and ecological assumptions, to the methods used to obtain predictions. We provide perspectives as to which predictions are easiest to test, how theories could be better exploited to provide testable predictions, what theoretical developments are needed to tackle this topic, and we place the question of the evolution of dispersal within the larger interdisciplinary framework of eco-evolutionary dynamics.
Collapse
Affiliation(s)
- Anne Duputié
- UMR 5175 CEFE, Centre d'Ecologie Fonctionnelle et Evolutive (CNRS) , 1919 Route de Mende, Montpellier cedex 05 34293 , France
| | - François Massol
- UMR 5175 CEFE, Centre d'Ecologie Fonctionnelle et Evolutive (CNRS) , 1919 Route de Mende, Montpellier cedex 05 34293 , France
| |
Collapse
|
35
|
Henry RC, Bocedi G, Dytham C, Travis JMJ. Inter-annual variability influences the eco-evolutionary dynamics of range-shifting. PeerJ 2014; 2:e228. [PMID: 24498572 PMCID: PMC3912520 DOI: 10.7717/peerj.228] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Accepted: 11/30/2013] [Indexed: 11/20/2022] Open
Abstract
Understanding the eco-evolutionary dynamics of species under rapid climate change is vital for both accurate forecasting of biodiversity responses and for developing effective management strategies. Using an individual-based model we demonstrate that the presence and form (colour) of inter-annual variability in environmental conditions can impact the evolution of dispersal during range shifts. Under stable climate, temporal variability typically results in higher dispersal. However, at expanding margins, inter-annual variability actually inhibits the evolution of higher emigration propensities by disrupting the spatial sorting and natural selection processes. These results emphasize the need for future theoretical studies, as well as predictive modelling, to account for the potential impacts of inter-annual variability.
Collapse
Affiliation(s)
- Roslyn C Henry
- Institute of Biological Sciences, University of Aberdeen , Aberdeen , UK
| | - Greta Bocedi
- Institute of Biological Sciences, University of Aberdeen , Aberdeen , UK
| | - Calvin Dytham
- Department of Biology, University of York , Heslington, York , UK
| | - Justin M J Travis
- Institute of Biological Sciences, University of Aberdeen , Aberdeen , UK
| |
Collapse
|
36
|
Fronhofer EA, Stelz JM, Lutz E, Poethke HJ, Bonte D. SPATIALLY CORRELATED EXTINCTIONS SELECT FOR LESS EMIGRATION BUT LARGER DISPERSAL DISTANCES IN THE SPIDER MITETETRANYCHUS URTICAE. Evolution 2014; 68:1838-44. [DOI: 10.1111/evo.12339] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Accepted: 12/05/2013] [Indexed: 11/29/2022]
Affiliation(s)
- Emanuel A. Fronhofer
- Field Station Fabrikschleichach; University of Würzburg; Glashüttenstrasse 5 D-96181 Rauhenebrach Germany
- Department of Aquatic Ecology; Eawag: Swiss Federal Institute of Aquatic Science and Technology; Überlandstrasse 133 CH-8600 Dübendorf Switzerland
| | - Jonas M. Stelz
- Field Station Fabrikschleichach; University of Würzburg; Glashüttenstrasse 5 D-96181 Rauhenebrach Germany
| | - Eva Lutz
- Field Station Fabrikschleichach; University of Würzburg; Glashüttenstrasse 5 D-96181 Rauhenebrach Germany
| | - Hans Joachim Poethke
- Field Station Fabrikschleichach; University of Würzburg; Glashüttenstrasse 5 D-96181 Rauhenebrach Germany
| | - Dries Bonte
- Terrestrial Ecology Unit; Ghent University; K.L. Ledeganckstraat 35 BE-9000 Ghent Belgium
| |
Collapse
|
37
|
Gray JC, Cutter AD. Mainstreaming Caenorhabditis elegans in experimental evolution. Proc Biol Sci 2014; 281:20133055. [PMID: 24430852 DOI: 10.1098/rspb.2013.3055] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Experimental evolution provides a powerful manipulative tool for probing evolutionary process and mechanism. As this approach to hypothesis testing has taken purchase in biology, so too has the number of experimental systems that use it, each with its own unique strengths and weaknesses. The depth of biological knowledge about Caenorhabditis nematodes, combined with their laboratory tractability, positions them well for exploiting experimental evolution in animal systems to understand deep questions in evolution and ecology, as well as in molecular genetics and systems biology. To date, Caenorhabditis elegans and related species have proved themselves in experimental evolution studies of the process of mutation, host-pathogen coevolution, mating system evolution and life-history theory. Yet these organisms are not broadly recognized for their utility for evolution experiments and remain underexploited. Here, we outline this experimental evolution work undertaken so far in Caenorhabditis, detail simple methodological tricks that can be exploited and identify research areas that are ripe for future discovery.
Collapse
Affiliation(s)
- Jeremy C Gray
- Department of Ecology and Evolutionary Biology, University of Toronto, , 25 Willcocks Street, Toronto, Ontario, Canada , M5S 3B2
| | | |
Collapse
|
38
|
Calcagno V, Mailleret L, Wajnberg É, Grognard F. How optimal foragers should respond to habitat changes: a reanalysis of the Marginal Value Theorem. J Math Biol 2013; 69:1237-65. [PMID: 24158484 PMCID: PMC4194746 DOI: 10.1007/s00285-013-0734-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Revised: 10/07/2013] [Indexed: 12/01/2022]
Abstract
The Marginal Value Theorem (MVT) is a cornerstone of biological theory. It connects the quality and distribution of patches in a fragmented habitat to the optimal time an individual should spend exploiting them, and thus its optimal rate of movement. However, predictions regarding how habitat alterations should impact optimal strategies have remained elusive, with heavy reliance on graphical arguments. Here we derive the sensitivity of realized fitness and optimal residence times to general habitat attributes, for homogeneous and heterogeneous habitats, retaining the level of generality of the MVT. We provide new predictions on how altering travel times, patch qualities and/or relative abundances should affect optimal strategies, and study the consequences of habitat heterogeneity. We show that knowledge of average characteristics is in general not sufficient to predict the change in the average rate of movement. We apply our results to examine the conditions under which the optimal strategies are invariant to scaling. We prove a previously conjectured form of invariance in homogeneous habitats, but show that invariances to scaling are not generic in heterogeneous habitats. We also consider the relative exploitation of patches that differ in quality, clarifying the conditions under which it is adaptive to stay longer on poorer patches.
Collapse
Affiliation(s)
- Vincent Calcagno
- INRA, UMR 1355 Institut Sophia Agrobiotech, Sophia Antipolis, France,
| | | | | | | |
Collapse
|
39
|
Daoust SP, Fahrig L, Martin AE, Thomas F. From forest and agro-ecosystems to the microecosystems of the human body: what can landscape ecology tell us about tumor growth, metastasis, and treatment options? Evol Appl 2012; 6:82-91. [PMID: 23396712 PMCID: PMC3567473 DOI: 10.1111/eva.12031] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2012] [Accepted: 10/17/2012] [Indexed: 01/18/2023] Open
Abstract
Cancer is now understood to be a process that follows Darwinian evolution. Heterogeneous populations of cancerous cells that make up the tumor inhabit the tissue ‘microenvironment’, where ecological interactions analogous to predation and competition for resources drive the somatic evolution of cancer. The tumor microenvironment plays a crucial role in the tumor genesis, development, and metastasis processes, as it creates the microenvironmental selection forces that ultimately determine the cellular characteristics that result in the greatest fitness. Here, we explore and offer new insights into the spatial aspects of tumor–microenvironment interactions through the application of landscape ecology theory to tumor growth and metastasis within the tissue microhabitat. We argue that small tissue microhabitats in combination with the spatial distribution of resources within these habitats could be important selective forces driving tumor invasiveness. We also contend that the compositional and configurational heterogeneity of components in the tissue microhabitat do not only influence resource availability and functional connectivity but also play a crucial role in facilitating metastasis and may serve to explain, at least in part, tissue tropism in certain cancers. This novel work provides a compelling argument for the necessity of taking into account the structure of the tissue microhabitat when investigating tumor progression.
Collapse
Affiliation(s)
- Simon P Daoust
- M.I.V.E.G.E.C (Maladies Infectieuses et Vecteurs: Ecologie, Génétique, Evolution et Contrôle) UMR (IRD/CNRS/UM) 5290, Centre IRD- 911 Avenue Agropolis - B.P. 64501 Montpellier, France
| | | | | | | |
Collapse
|
40
|
Maes J, Van Damme R, Matthysen E. Individual and among-population variation in dispersal-related traits in Natterjack toads. Behav Ecol 2012. [DOI: 10.1093/beheco/ars193] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
41
|
Bocedi G, Heinonen J, Travis JMJ. Uncertainty and the Role of Information Acquisition in the Evolution of Context-Dependent Emigration. Am Nat 2012; 179:606-20. [DOI: 10.1086/665004] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
42
|
|
43
|
Pétillon J, Deruytter D, Decae A, Renault D, Bonte D. Habitat use, but not dispersal limitation, as the mechanism behind the aggregated population structure of the mygalomorph species Atypus affinis. ANIM BIOL 2012. [DOI: 10.1163/157075611x617094] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Dispersal and habitat selection are the main factors that affect the distribution of species in spatially structured habitat. Species typically occurring in an aggregated way are supposed to experience dispersal limitation or to be highly selective for specific habitat attributes in their environment. In order to understand the distribution pattern of a mygalomorph spider species, Atypus affinis, we conducted an intensive survey to detect correlations of spider densities with specific habitat variables and empirically tested the dispersal propensity of spiderlings. In the field, the spiders exhibited an aggregated distribution correlated with patches of heathlands (dominated by Calluna vulgaris). Contrary to our expectations, laboratory experiments revealed a very high dispersal propensity in juveniles (more than 80% of individuals dispersed at least once during two experiments). This dispersal was strongly context dependent with a pronounced negative effect of starvation and a positive effect of clutch size. Kin competition is hypothezised to be the driving force behind these high dispersal abilities. The aggregation of A. affinis is a likely result of habitat use rather than dispersal limitation.
Collapse
Affiliation(s)
- Julien Pétillon
- Evolutionary Ecology Group, Department of Biology, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerpen, Belgium
- Present address: URU 420 – Université de Rennes 1, UMR 7204 – Muséum National d’Histoire National, 263 Avenue du Général Leclerc, CS 74205, 35042 Rennes Cedex, France
| | - David Deruytter
- Terrestrial Ecology Unit, Department of Biology, Ghent University, K.L. Ledeganckstraat 35, 9000 Ghent, Belgium
| | - Arthur Decae
- Terrestrial Ecology Unit, Department of Biology, Ghent University, K.L. Ledeganckstraat 35, 9000 Ghent, Belgium
| | - David Renault
- UMR 6553 – Université de Rennes 1, 263 Avenue du Général Leclerc, CS 74205, 35042 Rennes Cedex, France
| | - Dries Bonte
- Terrestrial Ecology Unit, Department of Biology, Ghent University, K.L. Ledeganckstraat 35, 9000 Ghent, Belgium
| |
Collapse
|
44
|
Thaler AD, Zelnio K, Saleu W, Schultz TF, Carlsson J, Cunningham C, Vrijenhoek RC, Van Dover CL. The spatial scale of genetic subdivision in populations of Ifremeria nautilei, a hydrothermal-vent gastropod from the southwest Pacific. BMC Evol Biol 2011; 11:372. [PMID: 22192622 PMCID: PMC3265507 DOI: 10.1186/1471-2148-11-372] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Accepted: 12/22/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Deep-sea hydrothermal vents provide patchy, ephemeral habitats for specialized communities of animals that depend on chemoautotrophic primary production. Unlike eastern Pacific hydrothermal vents, where population structure has been studied at large (thousands of kilometres) and small (hundreds of meters) spatial scales, population structure of western Pacific vents has received limited attention. This study addresses the scale at which genetic differentiation occurs among populations of a western Pacific vent-restricted gastropod, Ifremeria nautilei. RESULTS We used mitochondrial and DNA microsatellite markers to infer patterns of gene flow and population subdivision. A nested sampling strategy was employed to compare genetic diversity in discrete patches of Ifremeria nautilei separated by a few meters within a single vent field to distances as great as several thousand kilometres between back-arc basins that encompass the known range of the species. No genetic subdivisions were detected among patches, mounds, or sites within Manus Basin. Although I. nautilei from Lau and North Fiji Basins (~1000 km apart) also exhibited no evidence for genetic subdivision, these populations were genetically distinct from the Manus Basin population. CONCLUSIONS An unknown process that restricts contemporary gene flow isolates the Manus Basin population of Ifremeria nautilei from widespread populations that occupy the North Fiji and Lau Basins. A robust understanding of the genetic structure of hydrothermal vent populations at multiple spatial scales defines natural conservation units and can help minimize loss of genetic diversity in situations where human activities are proposed and managed.
Collapse
Affiliation(s)
- Andrew D Thaler
- Marine Laboratory, Nicholas School of the Environment, Duke University, Beaufort, NC 28516, USA.
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Bonte D, Van Dyck H, Bullock JM, Coulon A, Delgado M, Gibbs M, Lehouck V, Matthysen E, Mustin K, Saastamoinen M, Schtickzelle N, Stevens VM, Vandewoestijne S, Baguette M, Barton K, Benton TG, Chaput-Bardy A, Clobert J, Dytham C, Hovestadt T, Meier CM, Palmer SCF, Turlure C, Travis JMJ. Costs of dispersal. Biol Rev Camb Philos Soc 2011; 87:290-312. [DOI: 10.1111/j.1469-185x.2011.00201.x] [Citation(s) in RCA: 840] [Impact Index Per Article: 60.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
46
|
Lowe WH, McPeek MA. Can natural selection maintain long-distance dispersal? Insight from a stream salamander system. Evol Ecol 2011. [DOI: 10.1007/s10682-011-9500-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
47
|
Poethke HJ, Dytham C, Hovestadt T. A Metapopulation Paradox: Partial Improvement of Habitat May Reduce Metapopulation Persistence. Am Nat 2011; 177:792-9. [DOI: 10.1086/659995] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
48
|
Payne JL, Mazzucco R, Dieckmann U. The evolution of conditional dispersal and reproductive isolation along environmental gradients. J Theor Biol 2011; 273:147-55. [PMID: 21194533 PMCID: PMC3136868 DOI: 10.1016/j.jtbi.2010.12.036] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2010] [Revised: 12/22/2010] [Accepted: 12/23/2010] [Indexed: 11/18/2022]
Abstract
Dispersal modulates gene flow throughout a population's spatial range. Gene flow affects adaptation at local spatial scales, and consequently impacts the evolution of reproductive isolation. A recent theoretical investigation has demonstrated that local adaptation along an environmental gradient, facilitated by the evolution of limited dispersal, can lead to parapatric speciation even in the absence of assortative mating. This and other studies assumed unconditional dispersal, so individuals start dispersing without regard to local environmental conditions. However, many species disperse conditionally; their propensity to disperse is contingent upon environmental cues, such as the degree of local crowding or the availability of suitable mates. Here, we use an individual-based model in continuous space to investigate by numerical simulation the relationship between the evolution of threshold-based conditional dispersal and parapatric speciation driven by frequency-dependent competition along environmental gradients. We find that, as with unconditional dispersal, parapatric speciation occurs under a broad range of conditions when reproduction is asexual, and under a more restricted range of conditions when reproduction is sexual. In both the asexual and sexual cases, the evolution of conditional dispersal is strongly influenced by the slope of the environmental gradient: shallow environmental gradients result in low dispersal thresholds and high dispersal distances, while steep environmental gradients result in high dispersal thresholds and low dispersal distances. The latter, however, remain higher than under unconditional dispersal, thus undermining isolation by distance, and hindering speciation in sexual populations. Consequently, the speciation of sexual populations under conditional dispersal is triggered by a steeper gradient than under unconditional dispersal. Enhancing the disruptiveness of frequency-dependent selection, more box-shaped competition kernels dramatically lower the speciation-enabling slope of the environmental gradient.
Collapse
Affiliation(s)
- Joshua L Payne
- Computational Genetics Laboratory, Dartmouth College, 707 Rubin Building, HB 7937, One Medical Center Drive, Dartmouth Hitchcock Medical Center, Lebanon, Hanover, NH 03755, USA.
| | | | | |
Collapse
|
49
|
North A, Cornell S, Ovaskainen O. EVOLUTIONARY RESPONSES OF DISPERSAL DISTANCE TO LANDSCAPE STRUCTURE AND HABITAT LOSS. Evolution 2011; 65:1739-51. [PMID: 21644960 DOI: 10.1111/j.1558-5646.2011.01254.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ace North
- Department of Biosciences, University of Helsinki, Finland Department of Zoology, University of Oxford, Oxford OX1 3PS, United Kingdom.
| | | | | |
Collapse
|
50
|
Schreiber SJ, Li CK. Evolution of unconditional dispersal in periodic environments. JOURNAL OF BIOLOGICAL DYNAMICS 2011; 5:120-134. [PMID: 22873435 DOI: 10.1080/17513758.2010.525667] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Organisms modulate their fitness in heterogeneous environments by dispersing. Prior work shows that there is selection against 'unconditional' dispersal in spatially heterogeneous environments. 'Unconditional' means individuals disperse at a rate independent of their location. We prove that if within-patch fitness varies spatially and between two values temporally, then there is selection for unconditional dispersal: any evolutionarily stable strategy (ESS) or evolutionarily stable coalition (ESC) includes a dispersive phenotype. Moreover, at this ESS or ESC, there is at least one sink patch (i.e. geometric mean of fitness less than one) and no sources patches (i.e. geometric mean of fitness greater than one). These results coupled with simulations suggest that spatial-temporal heterogeneity is due to abiotic forcing result in either an ESS with a dispersive phenotype or an ESC with sedentary and dispersive phenotypes. In contrast, the spatial-temporal heterogeneity due to biotic interactions can select for higher dispersal rates that ultimately spatially synchronize population dynamics.
Collapse
Affiliation(s)
- Sebastian J Schreiber
- Department of Evolution and Ecology, University of California, One Shields Avenue, Davis, CA 95616, USA.
| | | |
Collapse
|