1
|
Sharafi Monfared M, Nazmi S, Parhizkar F, Jafari D. Soluble B7 and TNF family in colorectal cancer: Serum level, prognostic and treatment value. Hum Immunol 2025; 86:111232. [PMID: 39793378 DOI: 10.1016/j.humimm.2025.111232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 12/25/2024] [Accepted: 01/02/2025] [Indexed: 01/13/2025]
Abstract
Soluble immune checkpoints (sIC) are crucial factors in the immune system. They regulate immune responses by transforming intercellular signals via binding to their membrane-bound receptor or ligand. Moreover, soluble ICs are vital in immune regulation, cancer development, and prognosis. They can be identified and measured in various tumor microenvironments. Recently, sICs have become increasingly important in clinically assessing malignancies like colorectal cancer (CRC) patients. This review explores the evolving role of the soluble B7 family and soluble tumor necrosis factor (TNF) superfamily members in predicting disease progression, treatment response, and overall patient outcomes in CRC. We comprehensively analyze the diagnostic and prognostic potential of soluble immune checkpoints in CRC. Understanding the role of these soluble immune checkpoints in CRC management and their potential as targets for precision medicine approaches can be critical for improving outcomes for patients with colorectal cancer.
Collapse
Affiliation(s)
- Mohanna Sharafi Monfared
- Student's Research Committee, Zanjan University of Medical Sciences, Zanjan, Iran; School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Sina Nazmi
- Student's Research Committee, Zanjan University of Medical Sciences, Zanjan, Iran; School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Forough Parhizkar
- Department of Immunology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Davood Jafari
- Department of Immunology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran.
| |
Collapse
|
2
|
Yi L, Yan J, Wei P, Long S, Wang X, Gu M, Yang B, Chen Y, Ma S, Wang C, Zheng M, Sun Q, Shi Y, Wang G. The levels of soluble CD137 are increased in tuberculosis patients and associated with disease severity and prognosis. Eur J Immunol 2024; 54:e2350796. [PMID: 38922884 DOI: 10.1002/eji.202350796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 04/18/2024] [Accepted: 04/18/2024] [Indexed: 06/28/2024]
Abstract
Tuberculosis (TB) was the leading cause of death from a single infectious agent before the coronavirus pandemic. Therefore, it is important to search for severity biomarkers and devise appropriate therapies. A total of 139 pulmonary TB (PTB) patients and 80 healthy controls (HCs) were recruited for plasma soluble CD137 (sCD137) detection through ELISA. Moreover, pleural effusion sCD137 levels were measured in 85 TB patients and 36 untreated lung cancer patients. The plasma cytokine levels in 64 patients with PTB and blood immune cell subpopulations in 68 patients with PTB were analysed via flow cytometry. Blood sCD137 levels were higher in PTB patients (p = 0.012) and correlated with disease severity (p = 0.0056). The level of sCD137 in tuberculous pleurisy effusion (TPE) was markedly higher than that in malignant pleurisy effusion (p = 0.018). Several blood cytokines, such as IL-6 (p = 0.0147), IL-8 (p = 0.0477), IP-10 (p ≤ 0.0001) and MCP-1 (p = 0.0057), and some laboratory indices were significantly elevated in severe PTB (SE) patients, but the percentages of total lymphocytes (p = 0.002) and cytotoxic T cells (p = 0.036) were significantly lower in SE patients than in non-SE patients. In addition, the sCD137 level was negatively correlated with the percentage of total lymphocytes (p = 0.0008) and cytotoxic T cells (p = 0.0021), and PTB patients with higher plasma sCD137 levels had significantly shorter survival times (p = 0.0041). An increase in sCD137 is a potential biomarker for severe TB and indicates a poor prognosis.
Collapse
Affiliation(s)
- Ling Yi
- Department of Central Laboratory, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Jun Yan
- Department of Clinical Laboratory, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Panjian Wei
- Department of Central Laboratory, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Sibo Long
- Department of Clinical Laboratory, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Xiaojue Wang
- Department of Central Laboratory, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Meng Gu
- Department of Central Laboratory, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Bin Yang
- Department of Clinical Laboratory, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Yan Chen
- Department of Clinical Laboratory, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Shang Ma
- Department of Clinical Laboratory, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Chaohong Wang
- Department of Clinical Laboratory, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Maike Zheng
- Department of Clinical Laboratory, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Qing Sun
- National Clinical Laboratory on Tuberculosis, Beijing Key Laboratory for Drug Resistant Tuberculosis Research, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Institute, Beijing, China
| | - Yiheng Shi
- Department of Clinical Laboratory, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Guirong Wang
- Department of Clinical Laboratory, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
3
|
Yuan L, Wang Y, Shen X, Ma F, Wang J, Yan F. Soluble form of immune checkpoints in autoimmune diseases. J Autoimmun 2024; 147:103278. [PMID: 38943864 DOI: 10.1016/j.jaut.2024.103278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 05/03/2024] [Accepted: 06/19/2024] [Indexed: 07/01/2024]
Abstract
Immune checkpoints are essential regulators of immune responses, either by activating or suppressing them. Consequently, they are regarded as pivotal elements in the management of infections, cancer, and autoimmune disorders. In recent years, researchers have identified numerous soluble immune checkpoints that are produced through various mechanisms and demonstrated biological activity. These soluble immune checkpoints can be produced and distributed in the bloodstream and various tissues, with their roles in immune response dysregulation and autoimmunity extensively documented. This review aims to provide a thorough overview of the generation of various soluble immune checkpoints, such as sPD-1, sCTLA-4, sTim-3, s4-1BB, sBTLA, sLAG-3, sCD200, and the B7 family, and their importance as indicators for the diagnosis and prediction of autoimmune conditions. Furthermore, the review will investigate the potential pathological mechanisms of soluble immune checkpoints in autoimmune diseases, emphasizing their association with autoimmune diseases development, prognosis, and treatment.
Collapse
Affiliation(s)
- Li Yuan
- Geriatric Diseases Institute of Chengdu, Department of Clinical Laboratory, Chengdu Fifth People's Hospital, Chengdu, Sichuan Province, China
| | - Yuxia Wang
- Geriatric Intensive Care Unit, Sichuan Geriatric Medical Center, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan Province, China
| | - Xuxia Shen
- Geriatric Diseases Institute of Chengdu, Department of Clinical Laboratory, Chengdu Fifth People's Hospital, Chengdu, Sichuan Province, China
| | - Fujun Ma
- Department of Training, Chengdu Fifth People's Hospital, Chengdu, Sichuan Province, China
| | - Jun Wang
- Department of Respiratory and Critical Care Medicine, Chengdu Fifth People's Hospital, Chengdu, Sichuan Province, China.
| | - Fang Yan
- Geriatric Diseases Institute of Chengdu, Department of Geriatrics, Chengdu Fifth People's Hospital, Chengdu, Sichuan Province, China; Geriatric Diseases Institute of Chengdu, Department of Intensive Care Medicine, Chengdu Fifth People's Hospital, Chengdu, Sichuan Province, China; Center for Medicine Research and Translation, Chengdu Fifth People's Hospital, Chengdu, Sichuan Province, China.
| |
Collapse
|
4
|
Gaetani L, Bellomo G, Di Sabatino E, Sperandei S, Mancini A, Blennow K, Zetterberg H, Parnetti L, Di Filippo M. The Immune Signature of CSF in Multiple Sclerosis with and without Oligoclonal Bands: A Machine Learning Approach to Proximity Extension Assay Analysis. Int J Mol Sci 2023; 25:139. [PMID: 38203309 PMCID: PMC10778830 DOI: 10.3390/ijms25010139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/04/2023] [Accepted: 12/08/2023] [Indexed: 01/12/2024] Open
Abstract
Early diagnosis of multiple sclerosis (MS) relies on clinical evaluation, magnetic resonance imaging (MRI), and cerebrospinal fluid (CSF) analysis. Reliable biomarkers are needed to differentiate MS from other neurological conditions and to define the underlying pathogenesis. This study aimed to comprehensively profile immune activation biomarkers in the CSF of individuals with MS and explore distinct signatures between MS with and without oligoclonal bands (OCB). A total of 118 subjects, including relapsing-remitting MS with OCB (MS OCB+) (n = 58), without OCB (MS OCB-) (n = 24), and controls with other neurological diseases (OND) (n = 36), were included. CSF samples were analyzed by means of proximity extension assay (PEA) for quantifying 92 immune-related proteins. Neurofilament light chain (NfL), a marker of axonal damage, was also measured. Machine learning techniques were employed to identify biomarker panels differentiating MS with and without OCB from controls. Analyses were performed by splitting the cohort into a training and a validation set. CSF CD5 and IL-12B exhibited the highest discriminatory power in differentiating MS from controls. CSF MIP-1-alpha, CD5, CXCL10, CCL23 and CXCL9 were positively correlated with NfL. Multivariate models were developed to distinguish MS OCB+ and MS OCB- from controls. The model for MS OCB+ included IL-12B, CD5, CX3CL1, FGF-19, CST5, MCP-1 (91% sensitivity and 94% specificity in the training set, 81% sensitivity, and 94% specificity in the validation set). The model for MS OCB- included CX3CL1, CD5, NfL, CCL4 and OPG (87% sensitivity and 80% specificity in the training set, 56% sensitivity and 48% specificity in the validation set). Comprehensive immune profiling of CSF biomarkers in MS revealed distinct pathophysiological signatures associated with OCB status. The identified biomarker panels, enriched in T cell activation markers and immune mediators, hold promise for improved diagnostic accuracy and insights into MS pathogenesis.
Collapse
Affiliation(s)
- Lorenzo Gaetani
- Section of Neurology, Department of Medicine and Surgery, University of Perugia, 06132 Perugia, Italy; (L.G.)
| | - Giovanni Bellomo
- Section of Neurology, Department of Medicine and Surgery, University of Perugia, 06132 Perugia, Italy; (L.G.)
| | - Elena Di Sabatino
- Section of Neurology, Department of Medicine and Surgery, University of Perugia, 06132 Perugia, Italy; (L.G.)
| | - Silvia Sperandei
- Section of Neurology, Department of Medicine and Surgery, University of Perugia, 06132 Perugia, Italy; (L.G.)
| | - Andrea Mancini
- Section of Neurology, Department of Medicine and Surgery, University of Perugia, 06132 Perugia, Italy; (L.G.)
| | - Kaj Blennow
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy at the University of Gothenburg, 431 41 Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, 431 41 Mölndal, Sweden
| | - Henrik Zetterberg
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy at the University of Gothenburg, 431 41 Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, 431 41 Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
- UK Dementia Research Institute at UCL, London WC1E 6BT, UK
- Hong Kong Center for Neurodegenerative Diseases, Clear Water Bay, Hong Kong 518172, China
- Wisconsin Alzheimer’s Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53792, USA
| | - Lucilla Parnetti
- Section of Neurology, Department of Medicine and Surgery, University of Perugia, 06132 Perugia, Italy; (L.G.)
| | - Massimiliano Di Filippo
- Section of Neurology, Department of Medicine and Surgery, University of Perugia, 06132 Perugia, Italy; (L.G.)
| |
Collapse
|
5
|
Daei Sorkhabi A, Komijani E, Sarkesh A, Ghaderi Shadbad P, Aghebati-Maleki A, Aghebati-Maleki L. Advances in immune checkpoint-based immunotherapies for multiple sclerosis: rationale and practice. Cell Commun Signal 2023; 21:321. [PMID: 37946301 PMCID: PMC10634124 DOI: 10.1186/s12964-023-01289-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 08/19/2023] [Indexed: 11/12/2023] Open
Abstract
Beyond the encouraging results and broad clinical applicability of immune checkpoint (ICP) inhibitors in cancer therapy, ICP-based immunotherapies in the context of autoimmune disease, particularly multiple sclerosis (MS), have garnered considerable attention and hold great potential for developing effective therapeutic strategies. Given the well-established immunoregulatory role of ICPs in maintaining a balance between stimulatory and inhibitory signaling pathways to promote immune tolerance to self-antigens, a dysregulated expression pattern of ICPs has been observed in a significant proportion of patients with MS and its animal model called experimental autoimmune encephalomyelitis (EAE), which is associated with autoreactivity towards myelin and neurodegeneration. Consequently, there is a rationale for developing immunotherapeutic strategies to induce inhibitory ICPs while suppressing stimulatory ICPs, including engineering immune cells to overexpress ligands for inhibitory ICP receptors, such as program death-1 (PD-1), or designing fusion proteins, namely abatacept, to bind and inhibit the co-stimulatory pathways involved in overactivated T-cell mediated autoimmunity, and other strategies that will be discussed in-depth in the current review. Video Abstract.
Collapse
Affiliation(s)
- Amin Daei Sorkhabi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Erfan Komijani
- Department of Veterinary, Medicine, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| | - Aila Sarkesh
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Pedram Ghaderi Shadbad
- Department of Veterinary, Medicine, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| | - Ali Aghebati-Maleki
- Stem Cell Research Center, Tabriz University of Medical Science, Tabriz, Iran
| | - Leili Aghebati-Maleki
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
6
|
Zhan MR, Gao XZ, Wang C, Peng F, Wang XM, Xu HQ, Niu JQ. Elevated soluble 4-1BB is associated with serum markers of hepatitis B virus in patients with chronic hepatitis B. World J Clin Cases 2021; 9:1619-1630. [PMID: 33728305 PMCID: PMC7942032 DOI: 10.12998/wjcc.v9.i7.1619] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 12/13/2020] [Accepted: 12/23/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Previous studies have suggested that the costimulatory molecule 4-1BB plays pivotal roles in regulating immunity during chronic viral infection. However, up to now, there are few studies about 4-1BB in chronic hepatitis B (CHB).
AIM To clarify this issue, we report our comprehensive study results on the expression levels of 4-1BB in patients with CHB.
METHODS From September 2018 to June 2019, a total of 64 patients with CHB were recruited from the Department of Hepatology, The First Hospital of Jilin University. Peripheral blood samples were collected from 52 treatment-naïve and 12 entecavir-treated patients with CHB as well as 37 healthy donors (including 24 healthy adults and 13 healthy children). The levels of soluble 4-1BB (s4-1BB) in plasma were measured by ELISA. 4-1BB mRNA expression in peripheral blood mononuclear cells was detected by real-time quantitative PCR.
RESULTS The s4-1BB levels in the plasma of patients with CHB were significantly higher than those in healthy adults (94.390 ± 7.393 ng/mL vs 8.875 ± 0.914 ng/mL, P < 0.001). In addition, the s4-1BB level in plasma was significantly increased in patients with a higher viral load and a disease flare up. However, there were no significant differences between treatment-naïve and entecavir-treated patients. Interestingly, among treatment-naïve patients with CHB, the levels of s4-1BB in plasma had a significant positive correlation with hepatitis B surface antigen, hepatitis B virus DNA, hepatitis B e antigen, and triglyceride levels (r = 0.748, P < 0.001; r = 0.406, P = 0.004; r = 0.356, P = 0.019 and r = -0.469, P = 0.007, respectively). The 4-1BB mRNA expression was higher in the peripheral blood mononuclear cells of patients with CHB than in the peripheral blood mononuclear cells of healthy adults, but the difference was not statistically significant.
CONCLUSION These results suggest that the levels of s4-1BB may be associated with pathogenesis of hepatitis B virus and therefore may be a promising biomarker for disease progression.
Collapse
Affiliation(s)
- Meng-Ru Zhan
- Department of Hepatology, The First Hospital of Jilin University, Changchun 130021, Jilin Province, China
| | - Xiu-Zhu Gao
- Department of Hepatology, The First Hospital of Jilin University, Changchun 130021, Jilin Province, China
- Phase I Clinical Research Center, The First Hospital of Jilin University, Changchun 130021, Jilin Province, China
| | - Chang Wang
- Department of Hepatology, The First Hospital of Jilin University, Changchun 130021, Jilin Province, China
| | - Fei Peng
- Department of Hepatology, The First Hospital of Jilin University, Changchun 130021, Jilin Province, China
| | - Xiao-Mei Wang
- Department of Hepatology, The First Hospital of Jilin University, Changchun 130021, Jilin Province, China
| | - Hong-Qin Xu
- Department of Hepatology, The First Hospital of Jilin University, Changchun 130021, Jilin Province, China
| | - Jun-Qi Niu
- Department of Hepatology, The First Hospital of Jilin University, Changchun 130021, Jilin Province, China
| |
Collapse
|
7
|
Wong HY, Prasad A, Gan SU, Chua JJE, Schwarz H. Identification of CD137-Expressing B Cells in Multiple Sclerosis Which Secrete IL-6 Upon Engagement by CD137 Ligand. Front Immunol 2020; 11:571964. [PMID: 33240262 PMCID: PMC7677239 DOI: 10.3389/fimmu.2020.571964] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 10/12/2020] [Indexed: 12/21/2022] Open
Abstract
The potent costimulatory effect of CD137 has been implicated in several murine autoimmune disease models. CD137 costimulates and polarizes antigen-specific T cells toward a potent Th1/Tc1 response, and is essential for the development of experimental autoimmune encephalomyelitis (EAE), a murine model of Multiple Sclerosis (MS). This study aimed to investigate a role of CD137 in MS. Immunohistochemical and immunofluorescence staining of MS brain tissues was used to identify expression of CD137. CD137+ cells were identified in MS brain samples, with active lesions having the highest frequency of CD137+ cells. CD137 expression was found on several leukocyte subsets, including T cells, B cells and endothelial cells. In particular, CD137+ B cells were found in meningeal infiltrates. In vitro experiments showed that CD137 engagement on activated B cells increased early TNF and persistent IL-6 secretion with increased cell proliferation. These CD137+ B cells could interact with CD137L-expressing cells, secrete pro-inflammatory cytokines and accumulate in the meningeal infiltrate. This study demonstrates CD137 expression by activated B cells, enhancement of the inflammatory activity of B cells upon CD137 engagement, and provides evidence for a pathogenic role of CD137+ B cells in MS.
Collapse
Affiliation(s)
- Hiu Yi Wong
- Department of Physiology, National University of Singapore, Singapore, Singapore
- Immunology Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Ankshita Prasad
- Institute for Health Innovation and Technology, National University of Singapore, Singapore, Singapore
| | - Shu Uin Gan
- Department of Surgery, National University of Singapore, Singapore, Singapore
| | - John Jia En Chua
- Department of Physiology, National University of Singapore, Singapore, Singapore
- Institute for Health Innovation and Technology, National University of Singapore, Singapore, Singapore
- LSI Neurobiology Programme, National University of Singapore, Singapore, Singapore
| | - Herbert Schwarz
- Department of Physiology, National University of Singapore, Singapore, Singapore
- Immunology Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
8
|
Wong HY, Schwarz H. CD137 / CD137 ligand signalling regulates the immune balance: A potential target for novel immunotherapy of autoimmune diseases. J Autoimmun 2020; 112:102499. [PMID: 32505443 DOI: 10.1016/j.jaut.2020.102499] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 05/24/2020] [Accepted: 05/25/2020] [Indexed: 02/08/2023]
Abstract
CD137 (TNFRSF9, 4-1BB) is a potent co-stimulatory molecule of the tumour necrosis factor receptor superfamily (TNFRSF) that is expressed by activated T cells. CD137/CD137 ligand (CD137L) signalling primarily induces a potent cell-mediated immune response, while signalling of cell surface-expressed CD137L into antigen presenting cells enhances their activation, differentiation and migratory capacity. Studies have shown that bidirectional CD137/CD137L signalling plays an important role in the pathogenesis of autoimmune diseases. This review discusses the mechanisms how CD137/CD137L signalling contributes to immune deviation of helper T cell pathways in various murine models, and the potential of developing immunotherapies targeting CD137/CD137L signalling for the treatment of autoimmune diseases.
Collapse
Affiliation(s)
- Hiu Yi Wong
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, 117593, Singapore; Immunology Programme, Life Sciences Institute, National University of Singapore, 117456, Singapore
| | - Herbert Schwarz
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, 117593, Singapore; Immunology Programme, Life Sciences Institute, National University of Singapore, 117456, Singapore.
| |
Collapse
|
9
|
Luu K, Shao Z, Schwarz H. The relevance of soluble CD137 in the regulation of immune responses and for immunotherapeutic intervention. J Leukoc Biol 2020; 107:731-738. [PMID: 32052477 DOI: 10.1002/jlb.2mr1119-224r] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 11/10/2019] [Accepted: 12/05/2019] [Indexed: 12/13/2022] Open
Abstract
CD137 is a potent costimulatory receptor. Several agonistic anti-CD137 antibodies are currently in clinical trials for tumor immunotherapy. Soluble forms of CD137 (sCD137) are generated by differential splicing and antagonize the activities of membrane-bound CD137 (mCD137) and of therapeutic CD137 agonists. sCD137 is found in sera of patients suffering from autoimmune diseases where it is a natural regulator of immune responses, and which has therapeutic potential for immune-mediated diseases. This review summarizes the current knowledge on sCD137, highlights its potential role in immunotherapy against cancer and in autoimmune diseases, and presents important issues to be addressed by future research.
Collapse
Affiliation(s)
- Khang Luu
- Department of Physiology, and Immunology Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Graduate School for Integrative Sciences & Engineering, National University of Singapore, Singapore, Singapore
| | - Zhe Shao
- Department of Physiology, and Immunology Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Herbert Schwarz
- Department of Physiology, and Immunology Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Graduate School for Integrative Sciences & Engineering, National University of Singapore, Singapore, Singapore
| |
Collapse
|
10
|
Xu MM, Ménoret A, Nicholas SAE, Günther S, Sundberg EJ, Zhou B, Rodriguez A, Murphy PA, Vella AT. Direct CD137 costimulation of CD8 T cells promotes retention and innate-like function within nascent atherogenic foci. Am J Physiol Heart Circ Physiol 2019; 316:H1480-H1494. [PMID: 30978132 PMCID: PMC6620679 DOI: 10.1152/ajpheart.00088.2019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 03/20/2019] [Accepted: 04/05/2019] [Indexed: 01/10/2023]
Abstract
Effector CD8 T cells infiltrate atherosclerotic lesions and are correlated with cardiovascular events, but the mechanisms regulating their recruitment and retention are not well understood. CD137 (4-1BB) is a costimulatory receptor induced on immune cells and expressed at sites of human atherosclerotic plaque. Genetic variants associated with decreased CD137 expression correlate with carotid-intimal thickness and its deficiency in animal models attenuates atherosclerosis. These effects have been attributed in part to endothelial responses to low and disturbed flow (LDF), but CD137 also generates robust effector CD8 T cells as a costimulatory signal. Thus, we asked whether CD8 T cell-specific CD137 stimulation contributes to their infiltration, retention, and IFNγ production in early atherogenesis. We tested this through adoptive transfer of CD8 T cells into recipient C57BL/6J mice that were then antigen primed and CD137 costimulated. We analyzed atherogenic LDF vessels in normolipidemic and PCSK9-mediated hyperlipidemic models and utilized a digestion protocol that allowed for lesional T-cell characterization via flow cytometry and in vitro stimulation. We found that CD137 activation, specifically of effector CD8 T cells, triggers their intimal infiltration into LDF vessels and promotes a persistent innate-like proinflammatory program. Residence of CD137+ effector CD8 T cells further promoted infiltration of endogenous CD8 T cells with IFNγ-producing potential, whereas CD137-deficient CD8 T cells exhibited impaired vessel infiltration, minimal IFNγ production, and reduced infiltration of endogenous CD8 T cells. Our studies thus provide novel insight into how CD137 costimulation of effector T cells, independent of plaque-antigen recognition, instigates their retention and promotes innate-like responses from immune infiltrates within atherogenic foci. NEW & NOTEWORTHY Our studies identify CD137 costimulation as a stimulus for effector CD8 T-cell infiltration and persistence within atherogenic foci, regardless of atherosclerotic-antigen recognition. These costimulated effector cells, which are generated in pathological states such as viral infection and autoimmunity, have innate-like proinflammatory programs in circulation and within the atherosclerotic microenvironment, providing mechanistic context for clinical correlations of cardiovascular morbidity with increased CD8 T-cell infiltration and markers of activation in the absence of established antigen specificity.
Collapse
MESH Headings
- Adoptive Transfer
- Animals
- Aorta, Abdominal/immunology
- Aorta, Abdominal/metabolism
- Aorta, Abdominal/pathology
- Atherosclerosis/immunology
- Atherosclerosis/metabolism
- Atherosclerosis/pathology
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/metabolism
- Carotid Arteries/immunology
- Carotid Arteries/metabolism
- Carotid Arteries/pathology
- Cells, Cultured
- Diet, High-Fat
- Disease Models, Animal
- Gene Transfer Techniques
- Hyperlipidemias/complications
- Immunity, Innate
- Interferon-gamma/metabolism
- Lymphocyte Activation
- Male
- Mice, Inbred C57BL
- Mice, Knockout
- Phenotype
- Plaque, Atherosclerotic
- Proprotein Convertase 9/genetics
- Proprotein Convertase 9/metabolism
- Signal Transduction
- Tumor Necrosis Factor Receptor Superfamily, Member 9/deficiency
- Tumor Necrosis Factor Receptor Superfamily, Member 9/genetics
- Tumor Necrosis Factor Receptor Superfamily, Member 9/immunology
- Tumor Necrosis Factor Receptor Superfamily, Member 9/metabolism
Collapse
Affiliation(s)
- Maria M Xu
- Department of Immunology, University of Connecticut Health School of Medicine , Farmington, Connecticut
| | - Antoine Ménoret
- Department of Immunology, University of Connecticut Health School of Medicine , Farmington, Connecticut
- Institute for Systems Genomics, University of Connecticut Health School of Medicine , Farmington, Connecticut
| | - Sarah-Anne E Nicholas
- Center for Vascular Biology, University of Connecticut Health School of Medicine , Farmington, Connecticut
| | - Sebastian Günther
- Institute of Human Virology, University of Maryland School of Medicine , Baltimore, Maryland
| | - Eric J Sundberg
- Institute of Human Virology, University of Maryland School of Medicine , Baltimore, Maryland
- Department of Medicine, University of Maryland School of Medicine , Baltimore, Maryland
- Department of Microbiology and Immunology, University of Maryland School of Medicine , Baltimore, Maryland
| | - Beiyan Zhou
- Department of Immunology, University of Connecticut Health School of Medicine , Farmington, Connecticut
| | - Annabelle Rodriguez
- Center for Vascular Biology, University of Connecticut Health School of Medicine , Farmington, Connecticut
| | - Patrick A Murphy
- Center for Vascular Biology, University of Connecticut Health School of Medicine , Farmington, Connecticut
| | - Anthony T Vella
- Department of Immunology, University of Connecticut Health School of Medicine , Farmington, Connecticut
| |
Collapse
|
11
|
Gu D, Ao X, Yang Y, Chen Z, Xu X. Soluble immune checkpoints in cancer: production, function and biological significance. J Immunother Cancer 2018; 6:132. [PMID: 30482248 PMCID: PMC6260693 DOI: 10.1186/s40425-018-0449-0] [Citation(s) in RCA: 191] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 11/12/2018] [Indexed: 02/06/2023] Open
Abstract
Immune checkpoints play important roles in immune regulation, and blocking immune checkpoints on the cell membrane is a promising strategy in the treatment of cancer. Based on this, monoclonal antibodies are having much rapid development, such as those against CTLA-4 (cytotoxic T lymphocyte antigen 4) and PD-1 (programmed cell death protein 1).But the cost of preparation of monoclonal antibodies is too high and the therapeutic effect is still under restrictions. Recently, a series of soluble immune checkpoints have been found such as sCTLA-4 (soluble CTLA-4) and sPD-1 (soluble PD-1). They are functional parts of membrane immune checkpoints produced in different ways and can be secreted by immune cells. Moreover, these soluble checkpoints can diffuse in the serum. Much evidence has demonstrated that these soluble checkpoints are involved in positive or negative immune regulation and that changes in their plasma levels affect the development, prognosis and treatment of cancer. Since they are endogenous molecules, they will not induce immunological rejection in human beings, which might make up for the deficiencies of monoclonal antibodies and enhance the utility value of these molecules. Therefore, there is an increasing need for investigating novel soluble checkpoints and their functions, and it is promising to develop relevant therapies in the future. In this review, we describe the production mechanisms and functions of various soluble immune checkpoint receptors and ligands and discuss their biological significance in regard to biomarkers, potential candidate drugs, therapeutic targets, and other topics.
Collapse
Affiliation(s)
- Daqian Gu
- Department of Stem Cell & Regenerative Medicine, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital and Research Institute of Surgery, Third Military Medical University, Chongqing, 400042 People’s Republic of China
- First Department, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital and Research Institute of Surgery, Third Military Medical University, Chongqing, People’s Republic of China
| | - Xiang Ao
- Department of Stem Cell & Regenerative Medicine, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital and Research Institute of Surgery, Third Military Medical University, Chongqing, 400042 People’s Republic of China
- First Department, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital and Research Institute of Surgery, Third Military Medical University, Chongqing, People’s Republic of China
| | - Yu Yang
- Department of Stem Cell & Regenerative Medicine, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital and Research Institute of Surgery, Third Military Medical University, Chongqing, 400042 People’s Republic of China
- First Department, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital and Research Institute of Surgery, Third Military Medical University, Chongqing, People’s Republic of China
| | - Zhuo Chen
- Department of Stem Cell & Regenerative Medicine, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital and Research Institute of Surgery, Third Military Medical University, Chongqing, 400042 People’s Republic of China
- First Department, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital and Research Institute of Surgery, Third Military Medical University, Chongqing, People’s Republic of China
| | - Xiang Xu
- Department of Stem Cell & Regenerative Medicine, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital and Research Institute of Surgery, Third Military Medical University, Chongqing, 400042 People’s Republic of China
- First Department, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital and Research Institute of Surgery, Third Military Medical University, Chongqing, People’s Republic of China
| |
Collapse
|
12
|
Abstract
INTRODUCTION 4-1BB (CD137) is an important T-cell stimulating molecule. The 4-1BB mAb or its variants have shown remarkable therapeutic activity against autoimmunity, viral infections, and cancer. Antibodies to 4-1BB have recently entered clinical trials for the treatment of cancer with favorable toxicity profile. In this article, we present a review documenting the efficacy and pitfalls of 4-1BB therapy. AREAS COVERED An extensive literature search has been made on 4-1BB, spanning two decades, and a comprehensive report is presented here highlighting the origins, biological effects, therapeutic potential, and mechanistic basis of targeting 4-1BB as well as the side effects associated with such therapy. EXPERT OPINION Research so far indicates that 4-1BB is highly protective against various pathological conditions including cancer. However, a few important side effects of 4-1BB therapy such as liver toxicity, thrombocytopenia, anemia, and suppressive effects on certain immune competent cells should be taken into consideration before it is used for human therapy.
Collapse
Affiliation(s)
- Dass S Vinay
- a 1 Tulane University, Section of Clinical Immunology, Allergy and Rheumatology, Department of Medicine , New Orleans, LA 70112, USA
| | - Byoung S Kwon
- a 1 Tulane University, Section of Clinical Immunology, Allergy and Rheumatology, Department of Medicine , New Orleans, LA 70112, USA.,b 2 Cell and Immunobiology, and R & D Center for Cancer Therapeutics, National Cancer Center , Goyang 410-769, Korea ;
| |
Collapse
|
13
|
Kachapati K, Bednar KJ, Adams DE, Wu Y, Mittler RS, Jordan MB, Hinerman JM, Herr AB, Ridgway WM. Recombinant soluble CD137 prevents type one diabetes in nonobese diabetic mice. J Autoimmun 2013; 47:94-103. [DOI: 10.1016/j.jaut.2013.09.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Revised: 09/26/2013] [Accepted: 09/28/2013] [Indexed: 11/28/2022]
|
14
|
Development of experimental autoimmune encephalomyelitis critically depends on CD137 ligand signaling. J Neurosci 2013; 32:18246-52. [PMID: 23238738 DOI: 10.1523/jneurosci.2473-12.2012] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Multiple sclerosis (MS) is a degenerative autoimmune disease of the CNS. Experimental autoimmune encephalomyelitis (EAE) is a commonly used murine model for MS. Here we report that CD137 ligand (CD137L, 4-1BB ligand, TNFS9), a member of the TNF superfamily, is critical for the development of EAE. EAE symptoms were significantly ameliorated in CD137L(-/-) mice. In the absence of CD137L, myelin oligodendrocyte glycoprotein (MOG)-specific T-cells secreted lower levels of T(h)1/T(h)17 cell-associated cytokines. MOG-specific T-cells also trafficked less efficiently to the CNS in CD137L(-/-) mice, possibly as a consequence of reduced expression of vascular cell adhesion molecule-1 (VCAM-1), which regulates leukocyte extravasation. Thus, CD137L regulates many functions of MOG-specific T-cells that contribute to EAE and may represent a novel therapeutic target for the treatment of MS.
Collapse
|
15
|
Kachapati K, Adams DE, Wu Y, Steward CA, Rainbow DB, Wicker LS, Mittler RS, Ridgway WM. The B10 Idd9.3 locus mediates accumulation of functionally superior CD137(+) regulatory T cells in the nonobese diabetic type 1 diabetes model. THE JOURNAL OF IMMUNOLOGY 2012; 189:5001-15. [PMID: 23066155 DOI: 10.4049/jimmunol.1101013] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
CD137 is a T cell costimulatory molecule encoded by the prime candidate gene (designated Tnfrsf9) in NOD.B10 Idd9.3 congenic mice protected from type 1 diabetes (T1D). NOD T cells show decreased CD137-mediated T cell signaling compared with NOD.B10 Idd9.3 T cells, but it has been unclear how this decreased CD137 T cell signaling could mediate susceptibility to T1D. We and others have shown that a subset of regulatory T cells (Tregs) constitutively expresses CD137 (whereas effector T cells do not, and only express CD137 briefly after activation). In this study, we show that the B10 Idd9.3 region intrinsically contributes to accumulation of CD137(+) Tregs with age. NOD.B10 Idd9.3 mice showed significantly increased percentages and numbers of CD137(+) peripheral Tregs compared with NOD mice. Moreover, Tregs expressing the B10 Idd9.3 region preferentially accumulated in mixed bone marrow chimeric mice reconstituted with allotypically marked NOD and NOD.B10 Idd9.3 bone marrow. We demonstrate a possible significance of increased numbers of CD137(+) Tregs by showing functional superiority of FACS-purified CD137(+) Tregs in vitro compared with CD137(-) Tregs in T cell-suppression assays. Increased functional suppression was also associated with increased production of the alternatively spliced CD137 isoform, soluble CD137, which has been shown to suppress T cell proliferation. We show for the first time, to our knowledge, that CD137(+) Tregs are the primary cellular source of soluble CD137. NOD.B10 Idd9.3 mice showed significantly increased serum soluble CD137 compared with NOD mice with age, consistent with their increased numbers of CD137(+) Tregs with age. These studies demonstrate the importance of CD137(+) Tregs in T1D and offer a new hypothesis for how the NOD Idd9.3 region could act to increase T1D susceptibility.
Collapse
Affiliation(s)
- Kritika Kachapati
- Division of Immunology, Allergy and Rheumatology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Abstract
During the last decade, several defects in self-tolerance have been identified in multiple sclerosis. Dysfunction in central tolerance leads to the thymic output of antigen-specific T cells with T cell receptor alterations favouring autoimmune reactions. In addition, premature thymic involution results in a reduced export of naïve regulatory T cells, the fully suppressive clone. Alterations in peripheral tolerance concern costimulatory molecules as well as transcriptional and epigenetic mechanisms. Recent data underline the key role of regulatory T cells that suppress Th1 and Th17 effector cell responses and whose immunosuppressive activity is impaired in patients with multiple sclerosis. Those recent observations suggest that a defect in self-tolerance homeostasis might be the primary mover of multiple sclerosis leading to subsequent immune attacks, inflammation and neurodegeneration. The concept of multiple sclerosis as a consequence of the failure of central and peripheral tolerance mechanisms to maintain a self-tolerance state, particularly of regulatory T cells, may have therapeutic implications. Restoring normal thymic output and suppressive functions of regulatory T cells appears an appealing approach. Regulatory T cells suppress the general local immune response via bystander effects rather than through individual antigen-specific responses. Interestingly, the beneficial effects of currently approved immunomodulators (interferons β and glatiramer acetate) are associated with a restored regulatory T cell homeostasis. However, the feedback regulation between Th1 and Th17 effector cells and regulatory T cells is not so simple and tolerogenic mechanisms also involve other regulatory cells such as B cells, dendritic cells and CD56(bright) natural killer cells.
Collapse
Affiliation(s)
- R E Gonsette
- Fondation-Charcot-Stichting, Avenue Huart Hamoir 48, 1030 Brussels, Belgium.
| |
Collapse
|
17
|
Admission levels of soluble CD137 are increased in patients with acute pancreatitis and are associated with subsequent complications. Exp Mol Pathol 2011; 92:1-6. [PMID: 21963611 DOI: 10.1016/j.yexmp.2011.09.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2011] [Accepted: 09/13/2011] [Indexed: 12/15/2022]
Abstract
The progression of acute pancreatitis to necrotizing pancreatitis which often results in high morbidity and mortality is difficult to predict. Here we report that serum concentrations of sCD137 are increased in patients with acute pancreatitis. Admission levels and 10-day median sCD137 levels positively correlate with markers of biliary pancreatitis and the 10-day sCD137 median is significantly higher in metabolic than in alcoholic pancreatitis. Serum concentrations of sCD137 at time of admission and the 10-day median of sCD137 correlate with the Ranson and APACHE II disease scores but not with the radiological Balthazar and Schroeder scores that reflect pancreatic and peripancreatic necrosis. Further, sCD137 levels correlate with the probability of complications and lethality. The association of sCD137, a product of activated T cells, with the severity of acute pancreatitis suggests that T cells contribute to the pathogenesis of acute pancreatitis.
Collapse
|
18
|
Vinay DS, Kwon BS. The tumour necrosis factor/TNF receptor superfamily: therapeutic targets in autoimmune diseases. Clin Exp Immunol 2011; 164:145-57. [PMID: 21401577 DOI: 10.1111/j.1365-2249.2011.04375.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Autoimmune diseases are characterized by the body's ability to mount immune attacks on self. This results from recognition of self-proteins and leads to organ damage due to increased production of pathogenic inflammatory molecules and autoantibodies. Over the years, several new potential therapeutic targets have been identified in autoimmune diseases, notable among which are members of the tumour necrosis factor (TNF) superfamily. Here, we review the evidence that certain key members of this superfamily can augment/suppress autoimmune diseases.
Collapse
Affiliation(s)
- D S Vinay
- Section of Clinical Immunology, Allergy, and Rheumatology, Department of Medicine, Tulane University Health Sciences Center, New Orleans, LA, USA
| | | |
Collapse
|
19
|
Hamaguchi Y, Hasegawa M, Matsushita T, Komura K, Takehara K, Fujimoto M. Clinical association of serum CD137 (4-1BB) levels in patients with systemic sclerosis. J Dermatol Sci 2008; 53:159-61. [PMID: 18838252 DOI: 10.1016/j.jdermsci.2008.08.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2008] [Revised: 08/14/2008] [Accepted: 08/26/2008] [Indexed: 01/15/2023]
|
20
|
Liu GZ, Gomes AC, Fang LB, Gao XG, Hjelmstrom P. Decreased 4-1BB expression on CD4+CD25 high regulatory T cells in peripheral blood of patients with multiple sclerosis. Clin Exp Immunol 2008; 154:22-9. [PMID: 18727631 DOI: 10.1111/j.1365-2249.2008.03730.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
As a tumour necrosis factor receptor superfamily member, 4-1BB (CD137) is preferentially expressed in CD4+CD25+ regulatory T cells (Tregs) and has been suggested to play an important role in regulating the generation or function of Tregs. Recent studies of human Tregs have shown that blood CD4+CD25(high) T cells were much closer to Tregs in terms of their functionality. Furthermore, CD4+CD25(high) Tregs have been found to have a decreased effector function in patients with multiple sclerosis (MS). In this study, we examined the expression of 4-1BB and soluble 4-1BB (s4-1BB) protein levels in the peripheral blood of MS patients. Compared with healthy controls, MS patients had decreased 4-1BB expression in their CD4+C25(high) Tregs and increased plasma s4-1BB protein levels. Moreover, the plasma s4-1BB levels of MS patients were shown to be inversely correlated with the 4-1BB surface expression of CD4+CD25(high) Tregs. The down-regulated 4-1BB expression on CD4+CD25(high) Tregs of MS patients may be involved in the impaired immunoactivity of these Tregs. The elevated s4-1BB levels may, at least in part, function as a self-regulatory attempt to inhibit antigen-driven proliferation of Tregs or their immunosuppressive activity.
Collapse
Affiliation(s)
- G-Z Liu
- Department of Neurology, Peking University People's Hospital, Beijing, China.
| | | | | | | | | |
Collapse
|
21
|
Shao Z, Sun F, Koh DR, Schwarz H. Characterisation of soluble murine CD137 and its association with systemic lupus. Mol Immunol 2008; 45:3990-9. [PMID: 18640726 DOI: 10.1016/j.molimm.2008.05.028] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2008] [Revised: 05/21/2008] [Accepted: 05/25/2008] [Indexed: 12/20/2022]
Abstract
CD137 is a member of the tumor necrosis factor receptor family, and is involved in the regulation of activation, proliferation, differentiation and apoptosis of T cells, B cells, monocytes, dendritic cells, natural killer cells and granulocytes. Here report that soluble forms of murine CD137 (sCD137) are generated by differential splicing and are released by activated T cells. Levels of sCD137 correlate with cell activation and the extent of cell death but not with cellular proliferation. While CD8+ T cells express significantly more cell surface CD137 than CD4+ T cells, both T cell subsets express similar levels of sCD137, resulting a twofold increased ratio of soluble to cell surface CD137 for CD4+ T cells. sCD137 exists as a trimer and a higher order multimer, can bind to CD137 ligand, and inhibits secretion of IL-10 and IL-12. sCD137 is present in sera of mice with autoimmune disease but is undetectable in sera of healthy mice.
Collapse
Affiliation(s)
- Zhe Shao
- Department of Physiology, and Immunology Programme, Yong Loo Lin School of Medicine, Centre for Life Sciences, National University of Singapore, Singapore 117456, Singapore
| | | | | | | |
Collapse
|
22
|
Fainardi E, Rizzo R, Melchiorri L, Stignani M, Castellazzi M, Tamborino C, Paolino E, Tola MR, Granieri E, Baricordi OR. CSF levels of soluble HLA-G and Fas molecules are inversely associated to MRI evidence of disease activity in patients with relapsing-remitting multiple sclerosis. Mult Scler 2008; 14:446-54. [PMID: 18208868 DOI: 10.1177/1352458507085137] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Cerebrospinal fluid (CSF) concentrations of soluble human leukocyte antigen class I (HLA-I) (sHLA-I), HLA-G (sHLA-G) and anti-apoptotic Fas (sFas) molecules were measured by enzyme linked immunosorbent assay technique in 65 relapsing-remitting (RR) MS patients classified according to clinical and magnetic resonance imaging (MRI) evidence of disease activity. Sixty-four patients with other inflammatory neurological disorders (OIND) and 64 subjects with noninflammatory neurological disorders (NIND) served as controls. CSF concentrations were higher in RRMS and in OIND than in NIND patients for sHLA-I (P < 0.02), greater in RRMS than in OIND and in NIND for sHLA-G (P < 0.001 and P < 0.01, respectively) and lower in RRMS than in OIND and in NIND for sFas (P < 0.001 and P < 0.02, respectively). An increase in CSF levels was identified in MRI active RRMS for sHLA-I (P < 0.01) and in MRI stable RRMS for sHLA-G (P < 0.01), whereas CSF values of sFas were decreased in RRMS without Gd-enhancing lesions (P < 0.02). In MS patients with no evidence of MRI disease activity, a trend towards an inverse correlation was found between CSF concentrations of sHLA-G and sHLA-I and between CSF levels of sHLA-G and sFas. Our results indicate that enhanced CSF levels of sHLA-I antigens most likely represent an indirect manifestation of intrathecal immune activation taking place in neuroinflammation. Conversely, reciprocal fluctuations in CSF sHLA-G and sFas levels observed when MRI disease activity resolved suggest that sHLA-G could play an immunomodulatory role in MS through Fas/FasL-mediated mechanisms.
Collapse
Affiliation(s)
- E Fainardi
- Multiple Sclerosis Center, Section of Neurology, University of Ferrara, Arcispedale S. Anna, Corso della Giovecca 203, Ferrara I-44100, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
McCandless EE, Klein RS. Molecular targets for disrupting leukocyte trafficking during multiple sclerosis. Expert Rev Mol Med 2007; 9:1-19. [PMID: 17637110 DOI: 10.1017/s1462399407000397] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
AbstractAutoimmune diseases of the central nervous system (CNS) involve the migration of abnormal numbers of self-directed leukocytes across the blood–brain barrier that normally separates the CNS from the immune system. The cardinal lesion associated with neuroinflammatory diseases is the perivascular infiltrate, which comprises leukocytes that have traversed the endothelium and have congregated in a subendothelial space between the endothelial-cell basement membrane and the glial limitans. The exit of mononuclear cells from this space can be beneficial, as when virus-specific lymphocytes enter the CNS for pathogen clearance, or might induce CNS damage, such as in the autoimmune disease multiple sclerosis when myelin-specific lymphocytes invade and induce demyelinating lesions. The molecular mechanisms involved in the movement of lymphocytes through these compartments involve multiple signalling pathways between these cells and the microvasculature. In this review, we discuss adhesion, costimulatory, cytokine, chemokine and signalling molecules involved in the dialogue between lymphocytes and endothelial cells that leads to inflammatory infiltrates within the CNS, and the targeting of these molecules as therapies for the treatment of multiple sclerosis.
Collapse
Affiliation(s)
- Erin E McCandless
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO 63110, USA
| | | |
Collapse
|
24
|
Vignatelli L, Billiard M, Clarenbach P, Garcia-Borreguero D, Kaynak D, Liesiene V, Trenkwalder C, Montagna P. EFNS guidelines on management of restless legs syndrome and periodic limb movement disorder in sleep. Eur J Neurol 2006; 13:1049-65. [PMID: 16987157 DOI: 10.1111/j.1468-1331.2006.01410.x] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
In 2003, the EFNS Task Force was set up for putting forth guidelines for the management of the Restless Legs Syndrome (RLS) and the Periodic Limb Movement Disorder (PLMD). After determining the objectives for management and the search strategy for primary and secondary RLS and for PLMD, a review of the scientific literature up to 2004 was performed for the drug classes and interventions employed in treatment (drugs acting on the adrenoreceptor, antiepileptic drugs, benzodiazepines/hypnotics, dopaminergic agents, opioids, other treatments). Previous guidelines were consulted. All trials were analysed according to class of evidence, and recommendations formed according to the 2004 EFNS criteria for rating. Dopaminergic agents came out as having the best evidence for efficacy in primary RLS. Reported adverse events were usually mild and reversible; augmentation was a feature with dopaminergic agents. No controlled trials were available for RLS in children and for RLS during pregnancy. The following level A recommendations can be offered: for primary RLS, cabergoline, gabapentin, pergolide, ropinirole, levodopa and rotigotine by transdermal delivery (the latter two for short-term use) are effective in relieving the symptoms. Transdermal oestradiol is ineffective for PLMD.
Collapse
Affiliation(s)
- L Vignatelli
- Department of Neurological Sciences, University of Bologna Medical School, Bologna, Italy
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Liu GZ, Gomes AC, Putheti P, Karrenbauer V, Kostulas K, Press R, Hillert J, Hjelmström P, Gao XG. Increased Soluble 4-1BB Ligand (4-1BBL) Levels in Peripheral Blood of Patients with Multiple Sclerosis. Scand J Immunol 2006; 64:412-9. [PMID: 16970683 DOI: 10.1111/j.1365-3083.2006.01796.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
4-1BB ligand (4-1BBL; CD137L) is a member of the tumour necrosis factor superfamily expressed primarily on antigen presenting cells such as B cells, macrophages and dendritic cells. Its engagement with the receptor 4-1BB (CD137) has been shown to promote T-cell activation and regulate proliferation and survival of T cells. The role of the costimulatory molecule in multiple sclerosis (MS) remains unclear. In this study, the expression of 4-1BBL and soluble 4-1BBL (s4-1BBL) protein levels were analysed in peripheral blood of MS patients. Compared with healthy controls, MS patients had an increase in both plasma s4-1BBL protein levels and expression of 4-1BBL in CD14(+) monocytes. In contrast, myelin basic protein-reactive T-cell proliferation was not found to be inhibited by the use of an anti-4-1BBL antibody. The elevated s4-1BBL protein levels in the MS patients may function as a self-regulatory mechanism of 4-1BB/4-1BBL interaction and costimulation.
Collapse
Affiliation(s)
- G-Z Liu
- Department of Neurology, Peking University People's Hospital, Beijing, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Furtner M, Straub RH, Krüger S, Schwarz H. Levels of soluble CD137 are enhanced in sera of leukemia and lymphoma patients and are strongly associated with chronic lymphocytic leukemia. Leukemia 2005; 19:883-885. [PMID: 15744355 DOI: 10.1038/sj.leu.2403675] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2004] [Accepted: 01/06/2005] [Indexed: 11/08/2022]
|
27
|
Curto M, Reali C, Palmieri G, Scintu F, Schivo ML, Sogos V, Marcialis MA, Ennas MG, Schwarz H, Pozzi G, Gremo F. Inhibition of cytokines expression in human microglia infected by virulent and non-virulent mycobacteria. Neurochem Int 2004; 44:381-92. [PMID: 14687603 DOI: 10.1016/j.neuint.2003.08.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The pathogenesis of tuberculosis (TBC) meningitis is still unknown. As shown by previous studies, human microglia can be the target of mycobacteria, but no data are available about their cellular response to infection. Consequently, we studied the expression of tumor necrosis factor-alpha (TNF-alpha), interleukin-1 (IL-1) and IL-10 in human microglia pure cultures infected with the two variants of Mycobacterium avium (domed-opaque (SmD) and transparent (SmT)) and with Mycobacterium tuberculosis. Results showed that microglia was productively infected by mycobacteria which could grow inside the cells. Mycobacteria internalization was more rapid for M. avium, but M. tuberculosis infection turned out to be more efficient due to the incorporation of densely packed bacteria. TNF-alpha expression was not affected by M. avium, whereas an increase followed by a decrease was observed in M. tuberculosis. Both IL-1 and IL-10 cytokine expression was rapidly inhibited by infection with the more virulent bacteria, whereas the non-pathogenic one had almost no effect. Also, the expression of the co-stimulatory molecule CD137, a member of tumor necrosis factor receptor family, was affected by infection with virulent mycobacteria. Our results show that microglia response to mycobacterial infection is modulated in correlation with virulence, mainly toward inhibition of inflammatory response. This observation might be one of the mechanisms by which non-pathogenic mycobacteria are quickly eliminated, explaining one of the bases of virulence.
Collapse
Affiliation(s)
- Monica Curto
- Department of Cytomorphology, School of Medicine, SS 554, Bivio Sestu, 09042 Monserrato (CA), Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Baraczka K, Pozsonyi T, Szüts I, Ormos G, Nékám K. Increased levels of tumor necrosis alpha and soluble vascular endothelial adhesion molecule-1 in the cerebrospinal fluid of patients with connective tissue diseases and multiple sclerosis. Acta Microbiol Immunol Hung 2004; 50:339-48. [PMID: 14750436 DOI: 10.1556/amicr.50.2003.4.3] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The aim of the present study was to investigate the serum and cerebrospinal fluid (CSF) concentrations of tumor necrosis factor alpha (TNF-alpha) and soluble vascular cell adhesion molecule-1 (sVCAM-1) in patients with primary progressive form of multiple sclerosis (MS) and in patients with connective tissue diseases (CTDs) complicated with central nervous system (CNS) involvement. Stimulation of sVCAM-1 release by TNF-alpha was demonstrated on endothelial cells of brain vessels. We intended to present the TNF-alpha stimulated elevation of sVCAM-1 in the serum and CSF in any cases of CNS lesion. Fifty patients with several CTDs complicated with neuropsychiatric symptoms and 25 MS patients with primary chronic progressive form of the disease were selected. Determinations of TNF-alpha and sVCAM-1 were performed using ELISA methods. TNF-alpha and sVCAM-1 concentrations were elevated in the CSF of all patients, intrathecal synthesis of sVCAM-1 was demonstrated in MS patients. The changes in the TNF-alpha and sVCAM-1 concentrations were independent from the clinical manifestations, immunoserological changes and quality of neuropsychiatric symptoms of the CTDs. The stimulatory effect of TNF-alpha was more pronounced in the CSF of MS patients.
Collapse
Affiliation(s)
- Krisztina Baraczka
- Department of Neuroimmunology, National Institute of Rheumatology and Physiotherapy, P.O. Box 54, H-1525 Budapest 114, Hungary.
| | | | | | | | | |
Collapse
|
29
|
Wan YL, Zheng SS, Zhao ZC, Li MW, Jia CK, Zhang H. Expression of co-stimulator 4-1BB molecule in hepatocellular carcinoma and adjacent non-tumor liver tissue, and its possible role in tumor immunity. World J Gastroenterol 2004; 10:195-9. [PMID: 14716821 PMCID: PMC4717002 DOI: 10.3748/wjg.v10.i2.195] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
AIM: To investigate the expression of 4-1BB molecule in hepatocellular carcinoma (HCC) and its adjacent tissues.
METHODS: Reverse transcription–polymerase chain reaction (RT-PCR) was used to determine the gene expression of 4-1BB in hepatocarcinoma and its adjacent tissues, and peripheral blood mononuclear cells (PBMCs) from both HCC and health control groups. Flow cytometry was used to analyse the phenotypes of T cell subsets from the blood of HCC patients and healthy volunteers, and further to determine whether 4-1BB molecules were also expressed on the surface of CD4+ and CD8+ T cells. The localization of 4-1BB proteins on tumor infiltrating T cells was determined by direct immunofluorescence cytochemical staining and detected by confocal microscopy.
RESULTS: 4-1BB mRNA, which was not detectable in normal liver, was found in 19 liver tissues adjacent to tumor edge (< 1.0 cm). Low expression of 4-1BB mRNA was shown in 8 tumor tissues and 6 liver tissues located within 1 to 5 cm away from tumor edge. In PBMCs, 4-1BB mRNA was almost not detected. Percentage of CD4+, CD8+ and CD3+/CD25+ T cells, as well as ratio of CD4 to CD8 revealed no difference between groups (P > 0.05, respectively), while a significant lower percentage of CD3+ T cell was found in HCC group as compared to healthy control group (P < 0.05). However, 4-1BB molecules were almost not found on the surface of CD4+ and CD8+ T cells in HCC and healthy control group. Double-staining of 4-1BB+/CD4+ and 4-1BB+/CD8+ immunofluorescence on tumor infiltrating T cells was detected in 13 liver tissues adjacent to tumor edge (< 1.0 cm) by confocal microscopy.
CONCLUSION: Although HCC may escape from immune attack by weak immunogenicity or downregulated expression of MHC-1 molecules on the tumor cell surface, tumor infiltrating T cells can be activated via other costimulatory signal pathways to exert a limited antitumor effect on local microenvironment. The present study also implicates that modulating 4-1BB/4-1BBL costimulatory pathway may be an effective immunotherapy strateg to augment the host response.
Collapse
MESH Headings
- Adult
- Aged
- Antigens, CD
- CD4-Positive T-Lymphocytes/physiology
- CD8-Positive T-Lymphocytes/physiology
- Carcinoma, Hepatocellular/immunology
- Carcinoma, Hepatocellular/physiopathology
- Female
- Gene Expression Regulation, Neoplastic/immunology
- Humans
- Liver Neoplasms/immunology
- Liver Neoplasms/physiopathology
- Male
- Middle Aged
- Phenotype
- RNA, Messenger/analysis
- Receptors, Nerve Growth Factor/genetics
- Receptors, Nerve Growth Factor/immunology
- Receptors, Tumor Necrosis Factor/genetics
- Receptors, Tumor Necrosis Factor/immunology
- Tumor Necrosis Factor Receptor Superfamily, Member 9
Collapse
Affiliation(s)
- Yun-Le Wan
- Department of Hepatobiliary and Pancreatic Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310000, Zhejiang Province, China.
| | | | | | | | | | | |
Collapse
|