1
|
Perotto S, Balestrini R. At the core of the endomycorrhizal symbioses: intracellular fungal structures in orchid and arbuscular mycorrhiza. THE NEW PHYTOLOGIST 2024; 242:1408-1416. [PMID: 37884478 DOI: 10.1111/nph.19338] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 09/27/2023] [Indexed: 10/28/2023]
Abstract
Arbuscular (AM) and orchid (OrM) mycorrhiza are the most widespread mycorrhizal symbioses among flowering plants, formed by distinct fungal and plant species. They are both endosymbioses because the fungal hyphae can enter inside the plant cell to develop intracellular fungal structures that are surrounded by the plant membrane. The symbiotic plant-fungus interface is considered to be the major site of nutrient transfer to the host plant. We summarize recent data on nutrient transfer in OrM and compare the development and function of the arbuscules formed in AM and the pelotons formed in OrM in order to outline differences and conserved traits. We further describe the unexpected similarities in the form and function of the intracellular mycorrhizal fungal structures observed in orchids and in the roots of mycoheterotrophic plants forming AM. We speculate that these similarities may be the result of convergent evolution of mycorrhizal types in mycoheterotrophic plants and highlight knowledge gaps and new research directions to explore this scenario.
Collapse
Affiliation(s)
- Silvia Perotto
- Dipartimento di Scienze della Vita e Biologia dei Sistemi, Università degli Studi di Torino, Viale Mattioli 25, Torino, 10125, Italy
| | - Raffaella Balestrini
- Consiglio Nazionale delle Ricerche-Istituto per la Protezione Sostenibile delle Piante (IPSP), Strada delle Cacce 73, 10135, Torino, Italy
| |
Collapse
|
2
|
Hui J, An X, Li Z, Neuhäuser B, Ludewig U, Wu X, Schulze WX, Chen F, Feng G, Lambers H, Zhang F, Yuan L. The mycorrhiza-specific ammonium transporter ZmAMT3;1 mediates mycorrhiza-dependent nitrogen uptake in maize roots. THE PLANT CELL 2022; 34:4066-4087. [PMID: 35880836 PMCID: PMC9516061 DOI: 10.1093/plcell/koac225] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 06/18/2022] [Indexed: 06/15/2023]
Abstract
Most plant species can form symbioses with arbuscular mycorrhizal fungi (AMFs), which may enhance the host plant's acquisition of soil nutrients. In contrast to phosphorus nutrition, the molecular mechanism of mycorrhizal nitrogen (N) uptake remains largely unknown, and its physiological relevance is unclear. Here, we identified a gene encoding an AMF-inducible ammonium transporter, ZmAMT3;1, in maize (Zea mays) roots. ZmAMT3;1 was specifically expressed in arbuscule-containing cortical cells and the encoded protein was localized at the peri-arbuscular membrane. Functional analysis in yeast and Xenopus oocytes indicated that ZmAMT3;1 mediated high-affinity ammonium transport, with the substrate NH4+ being accessed, but likely translocating uncharged NH3. Phosphorylation of ZmAMT3;1 at the C-terminus suppressed transport activity. Using ZmAMT3;1-RNAi transgenic maize lines grown in compartmented pot experiments, we demonstrated that substantial quantities of N were transferred from AMF to plants, and 68%-74% of this capacity was conferred by ZmAMT3;1. Under field conditions, the ZmAMT3;1-dependent mycorrhizal N pathway contributed >30% of postsilking N uptake. Furthermore, AMFs downregulated ZmAMT1;1a and ZmAMT1;3 protein abundance and transport activities expressed in the root epidermis, suggesting a trade-off between mycorrhizal and direct root N-uptake pathways. Taken together, our results provide a comprehensive understanding of mycorrhiza-dependent N uptake in maize and present a promising approach to improve N-acquisition efficiency via plant-microbe interactions.
Collapse
Affiliation(s)
- Jing Hui
- College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions, MOE, China Agricultural University, Beijing, 100193, China
| | - Xia An
- College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions, MOE, China Agricultural University, Beijing, 100193, China
| | - Zhibo Li
- College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions, MOE, China Agricultural University, Beijing, 100193, China
| | - Benjamin Neuhäuser
- Department of Nutritional Crop Physiology, Institute of Crop Science, University of Hohenheim, Stuttgart, 70593, Germany
| | - Uwe Ludewig
- Department of Nutritional Crop Physiology, Institute of Crop Science, University of Hohenheim, Stuttgart, 70593, Germany
| | - Xuna Wu
- Department of Plant Systems Biology, Institute for Physiology and Biotechnology of Plants, University of Hohenheim, Stuttgart, 70593, Germany
| | - Waltraud X Schulze
- Department of Plant Systems Biology, Institute for Physiology and Biotechnology of Plants, University of Hohenheim, Stuttgart, 70593, Germany
| | - Fanjun Chen
- College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions, MOE, China Agricultural University, Beijing, 100193, China
| | - Gu Feng
- College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions, MOE, China Agricultural University, Beijing, 100193, China
| | - Hans Lambers
- School of Biological Science and Institute of Agriculture, University of Western Australia, Perth, WA6009, Australia
| | - Fusuo Zhang
- College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions, MOE, China Agricultural University, Beijing, 100193, China
| | | |
Collapse
|
3
|
Azizi S, Tabari M, Abad ARFN, Ammer C, Guidi L, Bader MKF. Soil Inoculation With Beneficial Microbes Buffers Negative Drought Effects on Biomass, Nutrients, and Water Relations of Common Myrtle. FRONTIERS IN PLANT SCIENCE 2022; 13:892826. [PMID: 35712598 PMCID: PMC9196245 DOI: 10.3389/fpls.2022.892826] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 04/22/2022] [Indexed: 06/15/2023]
Abstract
Common myrtle (Myrtus communis L.) occurs in (semi-)arid areas of the Palearctic region where climate change, over-exploitation, and habitat destruction imperil its existence. The evergreen shrub is of great economic and ecological importance due to its pharmaceutical value, ornamental use, and its role in urban greening and habitat restoration initiatives. Under greenhouse conditions, we investigated the effect of soil inoculation with arbuscular mycorrhizal fungi (AMF) and plant growth-promoting rhizobacteria (PGPR) on biomass allocation, water relations, and nutritional status of drought-stressed myrtle seedlings. Single and dual AMF (Funneliformis mosseae and Rhizophagus irregularis) and PGPR (Pseudomonas fluorescens and P. putida) soil inoculations were applied to myrtle seedlings growing under different soil water regimes (100, 60, and 30% of field capacity) for 6 months using a full factorial, completely randomized design. AMF and PGPR treatments, especially dual inoculations, alleviated negative drought effects on biomass and morpho-physiological traits, except for water-use efficiency, which peaked under severe drought conditions. Under the greatest soil water deficit, dual inoculations promoted leaf biomass (104%-108%), root biomass (56%-73%), mesophyll conductance (58%), and relative water content (1.4-fold) compared to non-inoculated controls. Particularly, dual AMF and PGPR inoculations stimulated nutrient dynamics in roots (N: 138%-151%, P: 176%-181%, K: 112%-114%, Ca: 124%-136%, and Mg: 130%-140%) and leaves (N: 101%-107%, P: 143%-149%, K: 83%-84%, Ca: 98%-107%, and Mg: 102%-106%). Our findings highlight soil inoculations with beneficial microbes as a cost-effective way to produce highly drought resistant seedling stock which is vital for restoring natural myrtle habitats and for future-proofing myrtle crop systems.
Collapse
Affiliation(s)
- Soghra Azizi
- Faculty of Natural Resources, Tarbiat Modares University, Tehran, Iran
- Department of Forestry, Faculty of Natural Resources and Marine Sciences, Tarbiat Modares University, Tehran, Iran
| | - Masoud Tabari
- Faculty of Natural Resources, Tarbiat Modares University, Tehran, Iran
| | - Ali Reza Fallah Nosrat Abad
- Soil and Water Research Institute, Agricultural Research Education and Extension Organization (AREEO), Karaj, Iran
| | - Christian Ammer
- Silviculture and Forest Ecology of the Temperate Zones, Georg-August-Universität Göttingen, Göttingen, Germany
| | - Lucia Guidi
- Department of Agriculture, Food and Environment, University of Pisa, Pisa, Italy
| | - Martin K.-F. Bader
- Department of Forestry and Wood Technology, Linnaeus University, Växjö, Sweden
| |
Collapse
|
4
|
Zhou X, Li J, Tang N, Xie H, Fan X, Chen H, Tang M, Xie X. Genome-Wide Analysis of Nutrient Signaling Pathways Conserved in Arbuscular Mycorrhizal Fungi. Microorganisms 2021; 9:1557. [PMID: 34442636 PMCID: PMC8401276 DOI: 10.3390/microorganisms9081557] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/13/2021] [Accepted: 07/16/2021] [Indexed: 01/03/2023] Open
Abstract
Arbuscular mycorrhizal (AM) fungi form a mutualistic symbiosis with a majority of terrestrial vascular plants. To achieve an efficient nutrient trade with their hosts, AM fungi sense external and internal nutrients, and integrate different hierarchic regulations to optimize nutrient acquisition and homeostasis during mycorrhization. However, the underlying molecular networks in AM fungi orchestrating the nutrient sensing and signaling remain elusive. Based on homology search, we here found that at least 72 gene components involved in four nutrient sensing and signaling pathways, including cAMP-dependent protein kinase A (cAMP-PKA), sucrose non-fermenting 1 (SNF1) protein kinase, target of rapamycin kinase (TOR) and phosphate (PHO) signaling cascades, are well conserved in AM fungi. Based on the knowledge known in model yeast and filamentous fungi, we outlined the possible gene networks functioning in AM fungi. These pathways may regulate the expression of downstream genes involved in nutrient transport, lipid metabolism, trehalase activity, stress resistance and autophagy. The RNA-seq analysis and qRT-PCR results of some core genes further indicate that these pathways may play important roles in spore germination, appressorium formation, arbuscule longevity and sporulation of AM fungi. We hope to inspire further studies on the roles of these candidate genes involved in these nutrient sensing and signaling pathways in AM fungi and AM symbiosis.
Collapse
Affiliation(s)
- Xiaoqin Zhou
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Lingnan Guangdong Laboratory of Modern Agriculture, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China; (X.Z.); (H.X.); (X.F.); (H.C.)
| | - Jiangyong Li
- Institute for Environmental and Climate Research, Jinan University, Guangzhou 511443, China;
| | - Nianwu Tang
- UMR Interactions Arbres/Microorganismes, Centre INRA-Grand Est-Nancy, 54280 Champenoux, France;
| | - Hongyun Xie
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Lingnan Guangdong Laboratory of Modern Agriculture, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China; (X.Z.); (H.X.); (X.F.); (H.C.)
| | - Xiaoning Fan
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Lingnan Guangdong Laboratory of Modern Agriculture, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China; (X.Z.); (H.X.); (X.F.); (H.C.)
| | - Hui Chen
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Lingnan Guangdong Laboratory of Modern Agriculture, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China; (X.Z.); (H.X.); (X.F.); (H.C.)
| | - Ming Tang
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Lingnan Guangdong Laboratory of Modern Agriculture, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China; (X.Z.); (H.X.); (X.F.); (H.C.)
| | - Xianan Xie
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Lingnan Guangdong Laboratory of Modern Agriculture, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China; (X.Z.); (H.X.); (X.F.); (H.C.)
| |
Collapse
|
5
|
Quiroga G, Erice G, Aroca R, Delgado-Huertas A, Ruiz-Lozano JM. Elucidating the Possible Involvement of Maize Aquaporins and Arbuscular Mycorrhizal Symbiosis in the Plant Ammonium and Urea Transport under Drought Stress Conditions. PLANTS (BASEL, SWITZERLAND) 2020; 9:E148. [PMID: 31979273 PMCID: PMC7076390 DOI: 10.3390/plants9020148] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 01/16/2020] [Accepted: 01/21/2020] [Indexed: 12/18/2022]
Abstract
This study investigates the possible involvement of maize aquaporins which are regulated by arbuscular mycorrhizae (AM) in the transport in planta of ammonium and/or urea under well-watered and drought stress conditions. The study also aims to better understand the implication of the AM symbiosis in the uptake of urea and ammonium and its effect on plant physiology and performance under drought stress conditions. AM and non-AM maize plants were cultivated under three levels of urea or ammonium fertilization (0, 3 µM or 10 mM) and subjected or not to drought stress. Plant aquaporins and physiological responses to these treatments were analyzed. AM increased plant biomass in absence of N fertilization or under low urea/ ammonium fertilization, but no effect of the AM symbiosis was observed under high N supply. This effect was associated with reduced oxidative damage to lipids and increased N accumulation in plant tissues. High N fertilization with either ammonium or urea enhanced net photosynthesis (AN) and stomatal conductance (gs) in plants maintained under well-watered conditions, but 14 days after drought stress imposition these parameters declined in AM plants fertilized with high N doses. The aquaporin ZmTIP1;1 was up-regulated by both urea and ammonium and could be transporting these two N forms in planta. The differential regulation of ZmTIP4;1 and ZmPIP2;4 with urea fertilization and of ZmPIP2;4 with NH4+ supply suggests that these two aquaporins may also play a role in N mobilization in planta. At the same time, these aquaporins were also differentially regulated by the AM symbiosis, suggesting a possible role in the AM-mediated plant N homeostasis that deserves future studies.
Collapse
Affiliation(s)
- Gabriela Quiroga
- Departamento de Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín (CSIC), Profesor Albareda nº 1, 18008 Granada, Spain
| | - Gorka Erice
- Departamento de Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín (CSIC), Profesor Albareda nº 1, 18008 Granada, Spain
| | - Ricardo Aroca
- Departamento de Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín (CSIC), Profesor Albareda nº 1, 18008 Granada, Spain
| | | | - Juan Manuel Ruiz-Lozano
- Departamento de Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín (CSIC), Profesor Albareda nº 1, 18008 Granada, Spain
| |
Collapse
|
6
|
Salloum MS, Insani M, Monteoliva MI, Menduni MF, Silvente S, Carrari F, Luna C. Metabolic responses to arbuscular mycorrhizal fungi are shifted in roots of contrasting soybean genotypes. MYCORRHIZA 2019; 29:459-473. [PMID: 31410554 DOI: 10.1007/s00572-019-00909-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 07/29/2019] [Indexed: 06/10/2023]
Abstract
Modern breeding programs have reduced genetic variability and might have caused a reduction in plant colonization by arbuscular mycorrhizal fungi (AM). In our previous studies, mycorrhizal colonization was affected in improved soybean genotypes, mainly arbuscule formation. Despite substantial knowledge of the symbiosis-related changes of the transcriptome and proteome, only sparse clues regarding metabolite alterations are available. Here, we evaluated metabolite changes between improved (I-1) and unimproved (UI-4) soybean genotypes and also compare their metabolic responses after AM root colonization. Soybean genotypes inoculated or not with AM were grown in a chamber under controlled light and temperature conditions. At 20 days after inoculation, we evaluated soluble metabolites of each genotype and treatment measured by GC-MS. In this analysis, when comparing non-AM roots between genotypes, I-1 had a lower amount of 31 and higher amount of only 4 metabolites than the UI-4 genotype. When comparing AM roots, I-1 had a lower amount of 36 and higher amount of 4 metabolites than UI-4 (different to those found altered in non-AM treated plants). Lastly, comparing the AM vs non-AM treatments, I-1 had increased levels of three and reduced levels of 24 metabolites, while UI-4 only had levels of 12 metabolites reduced by the effect of mycorrhizas. We found the major changes in sugars, polyols, amino acids, and carboxylic acids. In a targeted analysis, we found lower levels of isoflavonoids and alpha-tocopherol and higher levels of malondialdehyde in the I-1 genotype that can affect soybean-AM symbiosis. Our studies have the potential to support improving soybean with a greater capacity to be colonized and responsive to AM interaction.
Collapse
Affiliation(s)
- María Soraya Salloum
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Fisiología y Recursos Genéticos Vegetales (IFRGV), Centro de Investigación Agropecuaria (CIAP),, Instituto Nacional de Tecnología Agropecuaria (INTA), Camino 60 Cuadras km. 5.5, CP 5119, Córdoba, Argentina.
| | - Marina Insani
- Instituto de Biotecnología, CICVyA, Instituto Nacional de Tecnología Agropecuaria (INTA), Nicolás Repetto y de los Reseros s/n, 1686, Hurlingham, Buenos Aires, Argentina
| | - Mariela Inés Monteoliva
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Fisiología y Recursos Genéticos Vegetales (IFRGV), Centro de Investigación Agropecuaria (CIAP),, Instituto Nacional de Tecnología Agropecuaria (INTA), Camino 60 Cuadras km. 5.5, CP 5119, Córdoba, Argentina
| | - María Florencia Menduni
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Fondo para la Investigación Científica y Tecnológica (FONCyT), Instituto de Fisiología y Recursos Genéticos Vegetales (IFRGV), Centro de Investigación Agropecuaria (CIAP),, Instituto Nacional de Tecnología Agropecuaria (INTA),, Camino 60 Cuadras km. 5.5, CP 5119, Córdoba, Argentina
| | - Sonia Silvente
- Instituto de Ambiente de Montaña y Regiones Áridas (IAMRA), Universidad Nacional de Chilecito (UNdeC), Av Los Peregrinos s/n, Chilecito, F5360CKB, La Rioja, Argentina
| | - Fernando Carrari
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE-UBA-CONICET) Ciudad Universitaria, C1428EHA, Buenos Aires, Argentina
- Facultad de Agronomía, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Celina Luna
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Fisiología y Recursos Genéticos Vegetales (IFRGV), Centro de Investigación Agropecuaria (CIAP),, Instituto Nacional de Tecnología Agropecuaria (INTA), Camino 60 Cuadras km. 5.5, CP 5119, Córdoba, Argentina
| |
Collapse
|
7
|
Nehls U, Plassard C. Nitrogen and phosphate metabolism in ectomycorrhizas. THE NEW PHYTOLOGIST 2018; 220:1047-1058. [PMID: 29888395 DOI: 10.1111/nph.15257] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 05/01/2018] [Indexed: 05/23/2023]
Abstract
1047 I. Introduction 1047 II. Mobilization of soil N/P by ECM fungi 1048 III. N/P uptake 1048 IV. N/P assimilation 1049 V. N/P storage and remobilization 1049 VI. Hyphal N/P efflux at the plant-fungus interface 1052 VII. Conclusion and research needs 1054 Acknowledgements 1055 References 1055 SUMMARY: Nutrient homeostasis is essential for fungal cells and thus tightly adapted to the local demand in a mycelium with hyphal specialization. Based on selected ectomycorrhizal (ECM) fungal models, we outlined current concepts of nitrogen and phosphate nutrition and their limitations, and included knowledge from Baker's yeast when major gaps had to be filled. We covered the entire pathway from nutrient mobilization, import and local storage, distribution within the mycelium and export at the plant-fungus interface. Even when nutrient import and assimilation were broad issues for ECM fungi, we focused mainly on nitrate and organic phosphorus uptake, as other nitrogen/phosphorus (N/P) sources have been covered by recent reviews. Vacuolar N/P storage and mobilization represented another focus point of this review. Vacuoles are integrated into cellular homeostasis and central for an ECM mycelium at two locations: soil-growing hyphae and hyphae of the plant-fungus interface. Vacuoles are also involved in long-distance transport. We further discussed potential mechanisms of bidirectional long-distance nutrient transport (distances from millimetres to metres). A final focus of the review was N/P export at the plant-fungus interface, where we compared potential efflux mechanisms and pathways, and discussed their prerequisites.
Collapse
Affiliation(s)
- Uwe Nehls
- Botany, University of Bremen, Bremen, 28359, Germany
| | - Claude Plassard
- Eco & Sols, Université de Montpellier, INRA, CIRAD, IRD, Montpellier SupAgro, Montpellier, 34060, France
| |
Collapse
|
8
|
Santander C, Aroca R, Ruiz-Lozano JM, Olave J, Cartes P, Borie F, Cornejo P. Arbuscular mycorrhiza effects on plant performance under osmotic stress. MYCORRHIZA 2017; 27:639-657. [PMID: 28647757 DOI: 10.1007/s00572-017-0784-x] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 06/05/2017] [Indexed: 05/27/2023]
Abstract
At present, drought and soil salinity are among the most severe environmental stresses that affect the growth of plants through marked reduction of water uptake which lowers water potential, leading to osmotic stress. In general, osmotic stress causes a series of morphological, physiological, biochemical, and molecular changes that affect plant performance. Several studies have found that diverse types of soil microorganisms improve plant growth, especially when plants are under stressful conditions. Most important are the arbuscular mycorrhizal fungi (AMF) which form arbuscular mycorrhizas (AM) with approximately 80% of plant species and are present in almost all terrestrial ecosystems. Beyond the well-known role of AM in improving plant nutrient uptake, the contributions of AM to plants coping with osmotic stress merit analysis. With this review, we describe the principal direct and indirect mechanisms by which AM modify plant responses to osmotic stress, highlighting the role of AM in photosynthetic activity, water use efficiency, osmoprotectant production, antioxidant activities, and gene expression. We also discuss the potential for using AMF to improve plant performance under osmotic stress conditions and the lines of research needed to optimize AM use in plant production.
Collapse
Affiliation(s)
- Christian Santander
- Departamento de Ciencias Químicas y Recursos Naturales, Scientific and Technological Bioresource Nucleus BIOREN-UFRO, Programa de Doctorado en Ciencias de Recursos Naturales, Universidad de La Frontera, P.O. Box 54-D, Temuco, Chile
- Centro de Investigación y Desarrollo en Recursos Hídricos (CIDERH), Universidad Arturo Prat, Vivar 493, 3er piso, Iquique, Chile
| | - Ricardo Aroca
- Departamento de Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín, CSIC, Profesor Albareda 1, 18008, Granada, Spain
| | - Juan Manuel Ruiz-Lozano
- Departamento de Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín, CSIC, Profesor Albareda 1, 18008, Granada, Spain
| | - Jorge Olave
- Centro de Investigación y Desarrollo en Recursos Hídricos (CIDERH), Universidad Arturo Prat, Vivar 493, 3er piso, Iquique, Chile
| | - Paula Cartes
- Departamento de Ciencias Químicas y Recursos Naturales, Scientific and Technological Bioresource Nucleus BIOREN-UFRO, Programa de Doctorado en Ciencias de Recursos Naturales, Universidad de La Frontera, P.O. Box 54-D, Temuco, Chile
| | - Fernando Borie
- Departamento de Ciencias Químicas y Recursos Naturales, Scientific and Technological Bioresource Nucleus BIOREN-UFRO, Programa de Doctorado en Ciencias de Recursos Naturales, Universidad de La Frontera, P.O. Box 54-D, Temuco, Chile
| | - Pablo Cornejo
- Departamento de Ciencias Químicas y Recursos Naturales, Scientific and Technological Bioresource Nucleus BIOREN-UFRO, Programa de Doctorado en Ciencias de Recursos Naturales, Universidad de La Frontera, P.O. Box 54-D, Temuco, Chile.
| |
Collapse
|
9
|
Fochi V, Chitarra W, Kohler A, Voyron S, Singan VR, Lindquist EA, Barry KW, Girlanda M, Grigoriev IV, Martin F, Balestrini R, Perotto S. Fungal and plant gene expression in the Tulasnella calospora-Serapias vomeracea symbiosis provides clues about nitrogen pathways in orchid mycorrhizas. THE NEW PHYTOLOGIST 2017; 213:365-379. [PMID: 27859287 DOI: 10.1111/nph.14279] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 09/19/2016] [Indexed: 05/03/2023]
Abstract
Orchids are highly dependent on their mycorrhizal fungal partners for nutrient supply, especially during early developmental stages. In addition to organic carbon, nitrogen (N) is probably a major nutrient transferred to the plant because orchid tissues are highly N-enriched. We know almost nothing about the N form preferentially transferred to the plant or about the key molecular determinants required for N uptake and transfer. We identified, in the genome of the orchid mycorrhizal fungus Tulasnella calospora, two functional ammonium transporters and several amino acid transporters but found no evidence of a nitrate assimilation system, in agreement with the N preference of the free-living mycelium grown on different N sources. Differential expression in symbiosis of a repertoire of fungal and plant genes involved in the transport and metabolism of N compounds suggested that organic N may be the main form transferred to the orchid host and that ammonium is taken up by the intracellular fungus from the apoplatic symbiotic interface. This is the first study addressing the genetic determinants of N uptake and transport in orchid mycorrhizas, and provides a model for nutrient exchanges at the symbiotic interface, which may guide future experiments.
Collapse
Affiliation(s)
- Valeria Fochi
- Department of Life Sciences and Systems Biology, University of Turin, 10125, Turin, Italy
- Institute for Sustainable Plant Protection (IPSP)-CNR, 10125, Turin, Italy
| | - Walter Chitarra
- Institute for Sustainable Plant Protection (IPSP)-CNR, 10125, Turin, Italy
| | - Annegret Kohler
- Lab of Excellence ARBRE, INRA-Nancy and Lorraine University, Unité Mixte de Recherche 1136, 54280, Champenoux, France
| | - Samuele Voyron
- Department of Life Sciences and Systems Biology, University of Turin, 10125, Turin, Italy
| | - Vasanth R Singan
- US Department of Energy, Joint Genome Institute, Walnut Creek, CA, 94598, USA
| | - Erika A Lindquist
- US Department of Energy, Joint Genome Institute, Walnut Creek, CA, 94598, USA
| | - Kerrie W Barry
- US Department of Energy, Joint Genome Institute, Walnut Creek, CA, 94598, USA
| | - Mariangela Girlanda
- Department of Life Sciences and Systems Biology, University of Turin, 10125, Turin, Italy
- Institute for Sustainable Plant Protection (IPSP)-CNR, 10125, Turin, Italy
| | - Igor V Grigoriev
- US Department of Energy, Joint Genome Institute, Walnut Creek, CA, 94598, USA
| | - Francis Martin
- Lab of Excellence ARBRE, INRA-Nancy and Lorraine University, Unité Mixte de Recherche 1136, 54280, Champenoux, France
| | | | - Silvia Perotto
- Department of Life Sciences and Systems Biology, University of Turin, 10125, Turin, Italy
- Institute for Sustainable Plant Protection (IPSP)-CNR, 10125, Turin, Italy
| |
Collapse
|
10
|
Calabrese S, Pérez-Tienda J, Ellerbeck M, Arnould C, Chatagnier O, Boller T, Schüßler A, Brachmann A, Wipf D, Ferrol N, Courty PE. GintAMT3 - a Low-Affinity Ammonium Transporter of the Arbuscular Mycorrhizal Rhizophagus irregularis. FRONTIERS IN PLANT SCIENCE 2016; 7:679. [PMID: 27252708 PMCID: PMC4879785 DOI: 10.3389/fpls.2016.00679] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 05/02/2016] [Indexed: 05/05/2023]
Abstract
Nutrient acquisition and transfer are essential steps in the arbuscular mycorrhizal (AM) symbiosis, which is formed by the majority of land plants. Mineral nutrients are taken up by AM fungi from the soil and transferred to the plant partner. Within the cortical plant root cells the fungal hyphae form tree-like structures (arbuscules) where the nutrients are released to the plant-fungal interface, i.e., to the periarbuscular space, before being taken up by the plant. In exchange, the AM fungi receive carbohydrates from the plant host. Besides the well-studied uptake of phosphorus (P), the uptake and transfer of nitrogen (N) plays a crucial role in this mutualistic interaction. In the AM fungus Rhizophagus irregularis (formerly called Glomus intraradices), two ammonium transporters (AMT) were previously described, namely GintAMT1 and GintAMT2. Here, we report the identification and characterization of a newly identified R. irregularis AMT, GintAMT3. Phylogenetic analyses revealed high sequence similarity to previously identified AM fungal AMTs and a clear separation from other fungal AMTs. Topological analysis indicated GintAMT3 to be a membrane bound pore forming protein, and GFP tagging showed it to be highly expressed in the intraradical mycelium of a fully established AM symbiosis. Expression of GintAMT3 in yeast successfully complemented the yeast AMT triple deletion mutant (MATa ura3 mep1Δ mep2Δ::LEU2 mep3Δ::KanMX2). GintAMT3 is characterized as a low affinity transport system with an apparent Km of 1.8 mM and a V max of 240 nmol(-1) min(-1) 10(8) cells(-1), which is regulated by substrate concentration and carbon supply.
Collapse
Affiliation(s)
- Silvia Calabrese
- Department of Environmental Sciences, Botany, Zurich-Basel Plant Science Center, University of BaselBasel, Switzerland
| | - Jacob Pérez-Tienda
- Departamento de Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín, Consejo Superior de Investigaciones CientíficasGranada, Spain
| | - Matthias Ellerbeck
- Faculty of Biology, Genetics, Ludwig-Maximilians-University MunichPlanegg-Martinsried, Germany
| | - Christine Arnould
- Agroécologie, AgroSup Dijon, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Université Bourgogne Franche-ComtéDijon, France
| | - Odile Chatagnier
- Agroécologie, AgroSup Dijon, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Université Bourgogne Franche-ComtéDijon, France
| | - Thomas Boller
- Department of Environmental Sciences, Botany, Zurich-Basel Plant Science Center, University of BaselBasel, Switzerland
| | - Arthur Schüßler
- Faculty of Biology, Genetics, Ludwig-Maximilians-University MunichPlanegg-Martinsried, Germany
| | - Andreas Brachmann
- Faculty of Biology, Genetics, Ludwig-Maximilians-University MunichPlanegg-Martinsried, Germany
| | - Daniel Wipf
- Agroécologie, AgroSup Dijon, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Université Bourgogne Franche-ComtéDijon, France
| | - Nuria Ferrol
- Departamento de Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín, Consejo Superior de Investigaciones CientíficasGranada, Spain
| | - Pierre-Emmanuel Courty
- Department of Environmental Sciences, Botany, Zurich-Basel Plant Science Center, University of BaselBasel, Switzerland
| |
Collapse
|
11
|
Corrêa A, Cruz C, Ferrol N. Nitrogen and carbon/nitrogen dynamics in arbuscular mycorrhiza: the great unknown. MYCORRHIZA 2015; 25:499-515. [PMID: 25681010 DOI: 10.1007/s00572-015-0627-6] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Accepted: 01/15/2015] [Indexed: 05/23/2023]
Abstract
Many studies have established that arbuscular mycorrhizal fungi transfer N to the host plant. However, the role and importance of arbuscular mycorrhiza (AM) in plant N nutrition is still uncertain, as are the C/N interactions within the symbiosis. Published reports provide differing, and often contradictory, results that are difficult to combine in a coherent framework. This review explores questions such as: What makes the difference between a positive and a negative effect of AM on plant N nutrition? Is the mycorrhizal N response (MNR) correlated to the mycorrhizal growth response (MGR), and how or under which conditions? Is the MNR effect on plant growth C mediated? Is plant C investment on fungal growth related to N needs or N benefit? How is the N for C trade between symbionts regulated? The patternless nature of current knowledge is made evident, and possible reasons for this are discussed.
Collapse
Affiliation(s)
- A Corrêa
- Departamento de Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín, CSIC, Granada, Spain.
- Center for Ecology, Evolution and Environmental Changes, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal.
| | - C Cruz
- Center for Ecology, Evolution and Environmental Changes, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
| | - N Ferrol
- Departamento de Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín, CSIC, Granada, Spain
| |
Collapse
|
12
|
Kikuchi Y, Hijikata N, Yokoyama K, Ohtomo R, Handa Y, Kawaguchi M, Saito K, Ezawa T. Polyphosphate accumulation is driven by transcriptome alterations that lead to near-synchronous and near-equivalent uptake of inorganic cations in an arbuscular mycorrhizal fungus. THE NEW PHYTOLOGIST 2014; 204:638-649. [PMID: 25039900 DOI: 10.1111/nph.12937] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Accepted: 06/11/2014] [Indexed: 05/09/2023]
Abstract
Arbuscular mycorrhizal (AM) fungi accumulate a massive amount of phosphate as polyphosphate to deliver to the host, but the underlying physiological and molecular mechanisms have yet to be elucidated. In the present study, the dynamics of cationic components during polyphosphate accumulation were investigated in conjunction with transcriptome analysis. Rhizophagus sp. HR1 was grown with Lotus japonicus under phosphorus-deficient conditions, and extraradical mycelia were harvested after phosphate application at prescribed intervals. Levels of polyphosphate, inorganic cations and amino acids were measured, and RNA-Seq was performed on the Illumina platform. Phosphate application triggered not only polyphosphate accumulation but also near-synchronous and near-equivalent uptake of Na(+) , K(+) , Ca(2+) and Mg(2+) , whereas no distinct changes in the levels of amino acids were observed. During polyphosphate accumulation, the genes responsible for mineral uptake, phosphate and nitrogen metabolism and the maintenance of cellular homeostasis were up-regulated. The results suggest that inorganic cations play a major role in neutralizing the negative charge of polyphosphate, and these processes are achieved by the orchestrated regulation of gene expression. Our findings provide, for the first time, a global picture of the cellular response to increased phosphate availability, which is the initial process of nutrient delivery in the associations.
Collapse
Affiliation(s)
- Yusuke Kikuchi
- Graduate School of Agriculture, Hokkaido University, Sapporo, 060-8589, Japan
| | - Nowaki Hijikata
- Graduate School of Agriculture, Hokkaido University, Sapporo, 060-8589, Japan
| | - Kaede Yokoyama
- Graduate School of Agriculture, Hokkaido University, Sapporo, 060-8589, Japan
| | - Ryo Ohtomo
- National Agriculture and Food Research Organization, Hokkaido Agricultural Research Center, Sapporo, 062-8555, Japan
| | - Yoshihiro Handa
- Division of Symbiotic Systems, National Institute for Basic Biology, Okazaki, 444-8585, Japan
| | - Masayoshi Kawaguchi
- Division of Symbiotic Systems, National Institute for Basic Biology, Okazaki, 444-8585, Japan
| | - Katsuharu Saito
- Faculty of Agriculture, Shinshu University, Minamiminowa, 399-4598, Japan
| | - Tatsuhiro Ezawa
- Graduate School of Agriculture, Hokkaido University, Sapporo, 060-8589, Japan
| |
Collapse
|
13
|
Nehls U, Dietz S. Fungal aquaporins: cellular functions and ecophysiological perspectives. Appl Microbiol Biotechnol 2014; 98:8835-51. [PMID: 25213914 DOI: 10.1007/s00253-014-6049-0] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Revised: 08/13/2014] [Accepted: 08/15/2014] [Indexed: 12/21/2022]
Abstract
Three aspects have to be taken into consideration when discussing cellular water and solute permeability of fungal cells: cell wall properties, membrane permeability, and transport through proteinaceous pores (the main focus of this review). Yet, characterized major intrinsic proteins (MIPs) can be grouped into three functional categories: (mainly) water transporting aquaporins, aquaglyceroporins that confer preferentially solute permeability (e.g., glycerol and ammonia), and bifunctional aquaglyceroporins that can facilitate efficient water and solute transfer. Two ancestor proteins, a water (orthodox aquaporin) and a solute facilitator (aquaglyceroporin), are supposed to give rise to today's MIPs. Based on primary sequences of fungal MIPs, orthodox aquaporins/X-intrinsic proteins (XIPs) and FPS1-like/Yfl054-like/other aquaglyceroporins are supposed to be respective sister groups. However, at least within the fungal kingdom, no easy functional conclusion can be drawn from the phylogenetic position of a given protein within the MIP pedigree. In consequence, ecophysiological prediction of MIP relevance is not feasible without detailed functional analysis of the respective protein and expression studies. To illuminate the diverse MIP implications in fungal lifestyle, our current knowledge about protein function in two organisms, baker's yeast and the Basidiomycotic Laccaria bicolor, an ectomycorrhizal model fungus, was exemplarily summarized in this review. MIP function has been investigated in such a depth in Saccharomyces cerevisiae that a system-wide view is possible. Yeast lifestyle, however, is special in many circumstances. Therefore, L. bicolor as filamentous Basidiomycete was added and allows insight into a very different way of life. Special emphasis was laid in this review onto ecophysiological interpretation of MIP function.
Collapse
Affiliation(s)
- Uwe Nehls
- Botany, University of Bremen, Leobenerstr. 2, 28359, Bremen, Germany,
| | | |
Collapse
|
14
|
Shah F, Rineau F, Canbäck B, Johansson T, Tunlid A. The molecular components of the extracellular protein-degradation pathways of the ectomycorrhizal fungus Paxillus involutus. THE NEW PHYTOLOGIST 2013; 200:875-887. [PMID: 23902518 PMCID: PMC4282482 DOI: 10.1111/nph.12425] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Accepted: 06/25/2013] [Indexed: 05/20/2023]
Abstract
Proteins contribute to a major part of the organic nitrogen (N) in forest soils. This N is mobilized and becomes available to trees as a result of the depolymerizing activities of symbiotic ectomycorrhizal fungi. The mechanisms by which these fungi depolymerize proteins and assimilate the released N are poorly characterized. Biochemical analysis and transcriptome profiling were performed to examine the proteolytic machinery and the uptake system of the ectomycorrhizal basidiomycete Paxillus involutus during the assimilation of organic N from various protein sources and extracts of organic matter. All substrates induced secretion of peptidase activity with an acidic pH optimum, mostly contributed by aspartic peptidases. The peptidase activity was transiently repressed by ammonium. Transcriptional analysis revealed a large number of extracellular endo- and exopeptidases. The expression levels of these peptidases were regulated in parallel with transporters and enzymes involved in the assimilation and metabolism of the released peptides and amino acids. For the first time the molecular components of the protein degradation pathways of an ectomycorrhizal fungus are described. The data suggest that the transcripts encoding these components are regulated in response to the chemical properties and the availability of the protein substrates.
Collapse
Affiliation(s)
- Firoz Shah
- Department of Biology, Microbial Ecology Group, Lund UniversityEcology Building, SE-223 62, Lund, Sweden
| | - Francois Rineau
- Department of Biology, Microbial Ecology Group, Lund UniversityEcology Building, SE-223 62, Lund, Sweden
| | - Björn Canbäck
- Department of Biology, Microbial Ecology Group, Lund UniversityEcology Building, SE-223 62, Lund, Sweden
| | - Tomas Johansson
- Department of Biology, Microbial Ecology Group, Lund UniversityEcology Building, SE-223 62, Lund, Sweden
| | - Anders Tunlid
- Department of Biology, Microbial Ecology Group, Lund UniversityEcology Building, SE-223 62, Lund, Sweden
| |
Collapse
|
15
|
Ellerbeck M, Schüßler A, Brucker D, Dafinger C, Loos F, Brachmann A. Characterization of three ammonium transporters of the glomeromycotan fungus Geosiphon pyriformis. EUKARYOTIC CELL 2013; 12:1554-62. [PMID: 24058172 PMCID: PMC3837933 DOI: 10.1128/ec.00139-13] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Accepted: 09/15/2013] [Indexed: 11/20/2022]
Abstract
Members of the Glomeromycota form the arbuscular mycorrhiza (AM) symbiosis. They supply plants with inorganic nutrients, including nitrogen, from the soil. To gain insight into transporters potentially facilitating nitrogen transport processes, ammonium transporters (AMTs) of Geosiphon pyriformis, a glomeromycotan fungus forming a symbiosis with cyanobacteria, were studied. Three AMT genes were identified, and all three were expressed in the symbiotic stage. The localization and functional characterization of the proteins in a heterologous yeast system revealed distinct characteristics for each of them. AMT1 of G. pyriformis (GpAMT1) and GpAMT2 were both plasma membrane localized, but only GpAMT1 transported ammonium. Neither protein transported the ammonium analogue methylammonium. Unexpectedly, GpAMT3 was localized in the vacuolar membrane, and it has as-yet-unknown transport characteristics. An unusual cysteine residue in the AMT signature of GpAMT2 and GpAMT3 was identified, and the corresponding residue was demonstrated to play an important role in ammonium transport. Surprisingly, each of the three AMTs of G. pyriformis had very distinct features. The localization of an AMT in the yeast vacuolar membrane is novel, as is the described amino acid residue that clearly influences ammonium transport. The AMT characteristics might reflect adaptations to the lifestyle of glomeromycotan fungi.
Collapse
|
16
|
Ngwene B, Gabriel E, George E. Influence of different mineral nitrogen sources (NO3(-)-N vs. NH4(+)-N) on arbuscular mycorrhiza development and N transfer in a Glomus intraradices-cowpea symbiosis. MYCORRHIZA 2013; 23:107-17. [PMID: 22810583 PMCID: PMC3555231 DOI: 10.1007/s00572-012-0453-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Accepted: 06/21/2012] [Indexed: 05/21/2023]
Abstract
Labeled nitrogen ((15)N) was applied to a soil-based substrate in order to study the uptake of N by Glomus intraradices extraradical mycelium (ERM) from different mineral N (NO(3)(-) vs. NH(4)(+)) sources and the subsequent transfer to cowpea plants. Fungal compartments (FCs) were placed within the plant growth substrate to simulate soil patches containing root-inaccessible, but mycorrhiza-accessible, N. The fungus was able to take up both N-forms, NO(3)(-) and NH(4)(+). However, the amount of N transferred from the FC to the plant was higher when NO(3)(-) was applied to the FC. In contrast, analysis of ERM harvested from the FC showed a higher (15)N enrichment when the FC was supplied with (15)NH(4)(+) compared with (15)NO(3)(-). The (15)N shoot/root ratio of plants supplied with (15)NO(3)(-) was much higher than that of plants supplied with (15)NH(4)(+), indicative of a faster transfer of (15)NO(3)(-) from the root to the shoot and a higher accumulation of (15)NH (4)(+) in the root and/or intraradical mycelium. It is concluded that hyphae of the arbuscular mycorrhizal fungus may absorb NH(4)(+) preferentially over NO(3)(-) but that export of N from the hyphae to the root and shoot may be greater following NO(3)(-) uptake. The need for NH(4)(+) to be assimilated into organically bound N prior to transport into the plant is discussed.
Collapse
Affiliation(s)
- Benard Ngwene
- Leibniz-Institute of Vegetable and Ornamental Crops Grossbeeren and Erfurt e.V., Theodor-Echtermeyer-Weg 1, 14979 Grossbeeren, Germany.
| | | | | |
Collapse
|
17
|
Cruz C, Fegghi Z, Martins-Loução MA, Varma A. Plant Nitrogen Use Efficiency May Be Improved Through Symbiosis with Piriformospora indica. SOIL BIOLOGY 2013. [DOI: 10.1007/978-3-642-33802-1_17] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
18
|
Rasmussen S, Parsons AJ, Jones CS. Metabolomics of forage plants: a review. ANNALS OF BOTANY 2012; 110:1281-90. [PMID: 22351485 PMCID: PMC3478039 DOI: 10.1093/aob/mcs023] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Accepted: 01/12/2012] [Indexed: 05/06/2023]
Abstract
BACKGROUND Forage plant breeding is under increasing pressure to deliver new cultivars with improved yield, quality and persistence to the pastoral industry. New innovations in DNA sequencing technologies mean that quantitative trait loci analysis and marker-assisted selection approaches are becoming faster and cheaper, and are increasingly used in the breeding process with the aim to speed it up and improve its precision. High-throughput phenotyping is currently a major bottle neck and emerging technologies such as metabolomics are being developed to bridge the gap between genotype and phenotype; metabolomics studies on forages are reviewed in this article. SCOPE Major challenges for pasture production arise from the reduced availability of resources, mainly water, nitrogen and phosphorus, and metabolomics studies on metabolic responses to these abiotic stresses in Lolium perenne and Lotus species will be discussed here. Many forage plants can be associated with symbiotic microorganisms such as legumes with nitrogen fixing rhizobia, grasses and legumes with phosphorus-solubilizing arbuscular mycorrhizal fungi, and cool temperate grasses with fungal anti-herbivorous alkaloid-producing Neotyphodium endophytes and metabolomics studies have shown that these associations can significantly affect the metabolic composition of forage plants. The combination of genetics and metabolomics, also known as genetical metabolomics can be a powerful tool to identify genetic regions related to specific metabolites or metabolic profiles, but this approach has not been widely adopted for forages yet, and we argue here that more studies are needed to improve our chances of success in forage breeding. CONCLUSIONS Metabolomics combined with other '-omics' technologies and genome sequencing can be invaluable tools for large-scale geno- and phenotyping of breeding populations, although the implementation of these approaches in forage breeding programmes still lags behind. The majority of studies using metabolomics approaches have been performed with model species or cereals and findings from these studies are not easily translated to forage species. To be most effective these approaches should be accompanied by whole-plant physiology and proof of concept (modelling) studies. Wider considerations of possible consequences of novel traits on the fitness of new cultivars and symbiotic associations need also to be taken into account.
Collapse
Affiliation(s)
- Susanne Rasmussen
- AgResearch Limited, Grasslands Research Centre, Tennent Drive, Palmerston North 4442, New Zealand.
| | | | | |
Collapse
|
19
|
Hobbie EA, Högberg P. Nitrogen isotopes link mycorrhizal fungi and plants to nitrogen dynamics. NEW PHYTOLOGIST 2012; 196:367-382. [PMID: 22963677 DOI: 10.1111/j.1469-8137.2012.04300.x] [Citation(s) in RCA: 181] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2012] [Accepted: 07/13/2012] [Indexed: 05/23/2023]
Affiliation(s)
- Erik A. Hobbie
- Earth Systems Research Center University of New Hampshire Durham NH 03824 USA
| | - Peter Högberg
- Department of Forest Ecology and Management Swedish University of Agricultural Sciences (SLU) SE‐901 83 Umeå Sweden
| |
Collapse
|
20
|
Jin H, Liu J, Liu J, Huang X. Forms of nitrogen uptake, translocation, and transfer via arbuscular mycorrhizal fungi: a review. SCIENCE CHINA-LIFE SCIENCES 2012; 55:474-82. [PMID: 22744177 DOI: 10.1007/s11427-012-4330-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2012] [Accepted: 04/06/2012] [Indexed: 11/24/2022]
Abstract
Arbuscular mycorrhizal (AM) fungi are obligate symbionts that colonize the roots of more than 80% of land plants. Experiments on the relationship between the host plant and AM in soil or in sterile root-organ culture have provided clear evidence that the extraradical mycelia of AM fungi uptake various forms of nitrogen (N) and transport the assimilated N to the roots of the host plant. However, the uptake mechanisms of various forms of N and its translocation and transfer from the fungus to the host are virtually unknown. Therefore, there is a dearth of integrated models describing the movement of N through the AM fungal hyphae. Recent studies examined Ri T-DNA-transformed carrot roots colonized with AM fungi in (15)N tracer experiments. In these experiments, the activities of key enzymes were determined, and expressions of genes related to N assimilation and translocation pathways were quantified. This review summarizes and discusses the results of recent research on the forms of N uptake, transport, degradation, and transfer to the roots of the host plant and the underlying mechanisms, as well as research on the forms of N and carbon used by germinating spores and their effects on amino acid metabolism. Finally, a pathway model summarizing the entire mechanism of N metabolism in AM fungi is outlined.
Collapse
Affiliation(s)
- Hairu Jin
- College of Chemistry and Life Science, Zhejiang Normal University, Jinhua 321004, China.
| | | | | | | |
Collapse
|
21
|
Hernández-Ortega HA, Alarcón A, Ferrera-Cerrato R, Zavaleta-Mancera HA, López-Delgado HA, Mendoza-López MR. Arbuscular mycorrhizal fungi on growth, nutrient status, and total antioxidant activity of Melilotus albus during phytoremediation of a diesel-contaminated substrate. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2012; 95 Suppl:S319-24. [PMID: 21420227 DOI: 10.1016/j.jenvman.2011.02.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2009] [Revised: 01/31/2011] [Accepted: 02/23/2011] [Indexed: 05/06/2023]
Abstract
This research evaluated the effects of arbuscular mycorrhizal fungi (AMF) on growth, nutritional status, total antioxidant activity (AOX), total soluble phenolics content (TPC), and total nitrate reductase activity (NRA) of leaves and roots of Melilotus albus Medik planted in diesel-contaminated sand (7500 mg kg(-1)). Seedlings of Melilotus either Non inoculated (Non-AMF) or pre-inoculated plants (AMF) with the AMF-inoculum Glomus Zac-19 were transplanted to non-contaminated or contaminated sand. After 60 days, diesel significantly reduced plant growth. AMF- plants had no significant greater (64% and 89%, respectively) shoot and leaf dry weight than Non-AMF plants, but AMF plants had lower specific leaf area. AMF-plants had significantly greater content of microelements than non-AMF plants. Regardless diesel contamination, the total AOX and TPC were significantly higher in leaves when compared to roots; in contrast, NRA was higher in roots than leaves. Diesel increased total AOX of leaves, but AMF-plants had significantly lower AOX than non-AMF plants. In contrast, roots of AMF-plants had significantly higher AOX but lower NRA than non-AMF plants. AMF-colonization in roots detected via the fungal alkaline phosphatase activity was significantly reduced by the presence of diesel. AMF-inoculation alleviated diesel toxicity on M. albus by enhancing plant biomass, nutrient content, and AOX activity. In addition, AMF-plants significantly contributed in higher degradation of total petroleum hydrocarbons when compared to non-AMF-plants.
Collapse
Affiliation(s)
- Herminia Alejandra Hernández-Ortega
- Área de Microbiología, Postgrado de Edafología, Colegio de Postgraduados, Carretera México-Texcoco Km 36.5, Montecillo 56230, Estado de México, Mexico
| | | | | | | | | | | |
Collapse
|
22
|
Fellbaum CR, Gachomo EW, Beesetty Y, Choudhari S, Strahan GD, Pfeffer PE, Kiers ET, Bücking H. Carbon availability triggers fungal nitrogen uptake and transport in arbuscular mycorrhizal symbiosis. Proc Natl Acad Sci U S A 2012; 109:2666-71. [PMID: 22308426 PMCID: PMC3289346 DOI: 10.1073/pnas.1118650109] [Citation(s) in RCA: 218] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The arbuscular mycorrhizal (AM) symbiosis, formed between the majority of land plants and ubiquitous soil fungi of the phylum Glomeromycota, is responsible for massive nutrient transfer and global carbon sequestration. AM fungi take up nutrients from the soil and exchange them against photosynthetically fixed carbon (C) from the host. Recent studies have demonstrated that reciprocal reward strategies by plant and fungal partners guarantee a "fair trade" of phosphorus against C between partners [Kiers ET, et al. (2011) Science 333:880-882], but whether a similar reward mechanism also controls nitrogen (N) flux in the AM symbiosis is not known. Using mycorrhizal root organ cultures, we manipulated the C supply to the host and fungus and followed the uptake and transport of N sources in the AM symbiosis, the enzymatic activities of arginase and urease, and fungal gene expression in the extraradical and intraradical mycelium. We found that the C supply of the host plant triggers the uptake and transport of N in the symbiosis, and that the increase in N transport is orchestrated by changes in fungal gene expression. N transport in the symbiosis is stimulated only when the C is delivered by the host across the mycorrhizal interface, not when C is supplied directly to the fungal extraradical mycelium in the form of acetate. These findings support the importance of C flux from the root to the fungus as a key trigger for N uptake and transport and provide insight into the N transport regulation in the AM symbiosis.
Collapse
Affiliation(s)
- Carl R. Fellbaum
- Biology and Microbiology Department, South Dakota State University, Brookings, SD 57007
| | - Emma W. Gachomo
- Biology and Microbiology Department, South Dakota State University, Brookings, SD 57007
- Biology Department, Rutgers, State University of New Jersey, Camden, NJ 08102
| | - Yugandhar Beesetty
- Biology Department, Rutgers, State University of New Jersey, Camden, NJ 08102
| | - Sulbha Choudhari
- Biology Department, Rutgers, State University of New Jersey, Camden, NJ 08102
| | - Gary D. Strahan
- Agricultural Research Service, Eastern Regional Research Center, US Department of Agriculture, Wyndmoor, PA 19038; and
| | - Philip E. Pfeffer
- Agricultural Research Service, Eastern Regional Research Center, US Department of Agriculture, Wyndmoor, PA 19038; and
| | - E. Toby Kiers
- Department of Ecological Science, Vrije Universiteit, 1081 HV Amsterdam, The Netherlands
| | - Heike Bücking
- Biology and Microbiology Department, South Dakota State University, Brookings, SD 57007
- Biology Department, Rutgers, State University of New Jersey, Camden, NJ 08102
| |
Collapse
|
23
|
Dietz S, von Bülow J, Beitz E, Nehls U. The aquaporin gene family of the ectomycorrhizal fungus Laccaria bicolor: lessons for symbiotic functions. THE NEW PHYTOLOGIST 2011; 190:927-940. [PMID: 21352231 DOI: 10.1111/j.1469-8137.2011.03651.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Soil humidity and bulk water transport are essential for nutrient mobilization. Ectomycorrhizal fungi, bridging soil and fine roots of woody plants, are capable of modulating both by being integrated into water movement driven by plant transpiration and the nocturnal hydraulic lift. Aquaporins are integral membrane proteins that function as gradient-driven water and/or solute channels. Seven aquaporins were identified in the genome of the ectomycorrhizal basidiomycete Laccaria bicolor and their role in fungal transfer processes was analyzed. Heterologous expression in Xenopus laevis oocytes revealed relevant water permeabilities for three aquaporins. In fungal mycelia, expression of the corresponding genes was high compared with other members of the gene family, indicating the significance of the respective proteins for plasma membrane water permeability. As growth temperature and ectomycorrhiza formation modified gene expression profiles of these water-conducting aquaporins, specific roles in those aspects of fungal physiology are suggested. Two aquaporins, which were highly expressed in ectomycorrhizas, conferred plasma membrane ammonia permeability in yeast. This indicates that these proteins are an integral part of ectomycorrhizal fungus-based plant nitrogen nutrition in symbiosis.
Collapse
Affiliation(s)
- Sandra Dietz
- Interfaculty Institute of Microbiology and Infection Medicine, Physiological Ecology of Plants, University of Tübingen, Tübingen, Germany
| | - Julia von Bülow
- Department of Pharmaceutical and Medicinal Chemistry, Pharmaceutical Institute, University of Kiel, Kiel, Germany
| | - Eric Beitz
- Department of Pharmaceutical and Medicinal Chemistry, Pharmaceutical Institute, University of Kiel, Kiel, Germany
| | - Uwe Nehls
- Faculty for Biology and Chemistry, Botany, University of Bremen, Bremen, Germany
| |
Collapse
|
24
|
Ramos AC, Façanha AR, Palma LM, Okorokov LA, Cruz ZM, Silva AG, Siqueira AF, Bertolazi AA, Canton GC, Melo J, Santos WO, Schimitberger VMB, Okorokova-Façanha AL. An outlook on ion signaling and ionome of mycorrhizal symbiosis. ACTA ACUST UNITED AC 2011. [DOI: 10.1590/s1677-04202011000100010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The 450-million-year-old interaction between the majority of land plants and mycorrhizal fungi is one of the most ancient, abundant, and ecologically important symbiosis on earth. The early events in the evolution of mycorrhizal symbioses seem to have involved reciprocal genetic changes in ancestral plants and free-living fungi. new data on the mechanism of action of specific signaling molecules and how it influence and is influenced by the membrane ions fluxes and cytoplasm ion oscillations which integrate the symbiotic ionome are improving our understanding of the molecular bases of the mycorrhization process. This mini-review will highlight topics regarding what is known about the ionome and ionic communication in the arbuscular mycorrhizal symbiosis focusing on the signals involved in the development of symbioses. Here we present an overview integrating the available data with the prospects of the research in the field.
Collapse
Affiliation(s)
| | | | - Livia M. Palma
- Universidade Estadual do Norte Fluminense Darcy Ribeiro, Brazil
| | - Lev A. Okorokov
- Centro Universitário Vila Velha, Brazil; Universidade Estadual do Norte Fluminense Darcy Ribeiro, Brazil
| | | | | | | | - Amanda A. Bertolazi
- Centro Universitário Vila Velha, Brazil; Laboratório de Biologia Celular e Tecidual
| | | | | | | | | | | |
Collapse
|
25
|
Smith SE, Smith FA. Roles of arbuscular mycorrhizas in plant nutrition and growth: new paradigms from cellular to ecosystem scales. ANNUAL REVIEW OF PLANT BIOLOGY 2011; 62:227-50. [PMID: 21391813 DOI: 10.1146/annurev-arplant-042110-103846] [Citation(s) in RCA: 598] [Impact Index Per Article: 42.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Root systems of most land plants form arbuscular mycorrhizal (AM) symbioses in the field, and these contribute to nutrient uptake. AM roots have two pathways for nutrient absorption, directly through the root epidermis and root hairs and via AM fungal hyphae into root cortical cells, where arbuscules or hyphal coils provide symbiotic interfaces. New physiological and molecular evidence shows that for phosphorus the mycorrhizal pathway (MP) is operational regardless of plant growth responses (positive or negative). Amounts delivered cannot be determined from plant nutrient contents because when responses are negative the contribution of the direct pathway (DP) is reduced. Nitrogen (N) is also delivered to roots via an MP, but the contribution to total N requirement and the costs to the plant are not clear. The functional interplay between activities of the DP and MP has important implications for consideration of AM symbioses in ecological, agronomic, and evolutionary contexts.
Collapse
Affiliation(s)
- Sally E Smith
- Soils Group, School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Adelaide, South Australia 5005, Australia.
| | | |
Collapse
|
26
|
|
27
|
Tian C, Kasiborski B, Koul R, Lammers PJ, Bücking H, Shachar-Hill Y. Regulation of the nitrogen transfer pathway in the arbuscular mycorrhizal symbiosis: gene characterization and the coordination of expression with nitrogen flux. PLANT PHYSIOLOGY 2010; 153:1175-87. [PMID: 20448102 PMCID: PMC2899933 DOI: 10.1104/pp.110.156430] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2010] [Accepted: 05/05/2010] [Indexed: 05/19/2023]
Abstract
The arbuscular mycorrhiza (AM) brings together the roots of over 80% of land plant species and fungi of the phylum Glomeromycota and greatly benefits plants through improved uptake of mineral nutrients. AM fungi can take up both nitrate and ammonium from the soil and transfer nitrogen (N) to host roots in nutritionally substantial quantities. The current model of N handling in the AM symbiosis includes the synthesis of arginine in the extraradical mycelium and the transfer of arginine to the intraradical mycelium, where it is broken down to release N for transfer to the host plant. To understand the mechanisms and regulation of N transfer from the fungus to the plant, 11 fungal genes putatively involved in the pathway were identified from Glomus intraradices, and for six of them the full-length coding sequence was functionally characterized by yeast complementation. Two glutamine synthetase isoforms were found to have different substrate affinities and expression patterns, suggesting different roles in N assimilation. The spatial and temporal expression of plant and fungal N metabolism genes were followed after nitrate was added to the extraradical mycelium under N-limited growth conditions using hairy root cultures. In parallel experiments with (15)N, the levels and labeling of free amino acids were measured to follow transport and metabolism. The gene expression pattern and profiling of metabolites involved in the N pathway support the idea that the rapid uptake, translocation, and transfer of N by the fungus successively trigger metabolic gene expression responses in the extraradical mycelium, intraradical mycelium, and host plant.
Collapse
Affiliation(s)
- Chunjie Tian
- Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824, USA.
| | | | | | | | | | | |
Collapse
|
28
|
Recorbet G, Valot B, Robert F, Gianinazzi-Pearson V, Dumas-Gaudot E. Identification of in planta-expressed arbuscular mycorrhizal fungal proteins upon comparison of the root proteomes of Medicago truncatula colonised with two Glomus species. Fungal Genet Biol 2010; 47:608-18. [DOI: 10.1016/j.fgb.2010.03.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2010] [Revised: 02/26/2010] [Accepted: 03/08/2010] [Indexed: 11/27/2022]
|
29
|
Gamper HA, van der Heijden MGA, Kowalchuk GA. Molecular trait indicators: moving beyond phylogeny in arbuscular mycorrhizal ecology. THE NEW PHYTOLOGIST 2010; 185:67-82. [PMID: 19863727 DOI: 10.1111/j.1469-8137.2009.03058.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Arbuscular mycorrhizal (AM) fungi form symbiotic associations with the roots of most plants, thereby mediating nutrient and carbon fluxes, plant performance, and ecosystem dynamics. Although considerable effort has been expended to understand the keystone ecological position of AM symbioses, most studies have been limited in scope to recording organism occurrences and identities, as determined from morphological characters and (mainly) ribosomal sequence markers. In order to overcome these restrictions and circumvent the shortcomings of culture- and phylogeny-based approaches, we propose a shift toward plant and fungal protein-encoding genes as more immediate indicators of mycorrhizal contributions to ecological processes. A number of candidate target genes, involved in the uptake of phosphorus and nitrogen, carbon cycling, and overall metabolic activity, are proposed. We discuss the advantages and disadvantages of future protein-encoding gene marker and current (phylo-) taxonomic approaches for studying the impact of AM fungi on plant growth and ecosystem functioning. Approaches based on protein-encoding genes are expected to open opportunities to advance the mechanistic understanding of ecological roles of mycorrhizas in natural and managed ecosystems.
Collapse
Affiliation(s)
- Hannes A Gamper
- Botanical Institute, University of Basel, Hebelstrasse 1, CH-4056 Basel, Switzerland.
| | | | | |
Collapse
|
30
|
Gachomo E, Allen JW, Pfeffer PE, Govindarajulu M, Douds DD, Jin H, Nagahashi G, Lammers PJ, Shachar-Hill Y, Bücking H. Germinating spores of Glomus intraradices can use internal and exogenous nitrogen sources for de novo biosynthesis of amino acids. THE NEW PHYTOLOGIST 2009; 184:399-411. [PMID: 19659660 DOI: 10.1111/j.1469-8137.2009.02968.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
* Here, nitrogen (N) uptake and metabolism, and related gene expression, were analyzed in germinating spores of Glomus intraradices to examine the mechanisms and the regulation of N handling during presymbiotic growth. * The uptake and incorporation of organic and inorganic N sources into free amino acids were analyzed using stable and radioactive isotope labeling followed by high-performance liquid chromatography (HPLC), gas chromatography-mass spectrometry (GC-MS) and liquid scintillation counting and the fungal gene expression was measured by quantitative polymerase chain reaction (Q-PCR). * Quiescent spores store Asp, Ala and Arg and can use these internal N resources during germination. Although not required for presymbiotic growth, exogenous N can also be utilized for the de novo biosynthesis of amino acids. Ammonium and urea are more rapidly assimilated than nitrate and amino acids. Root exudates do not stimulate the uptake and utilization of exogenous ammonium, but the expression of genes encoding a putative glutamate dehydrogenase (GDH), a urease accessory protein (UAP) and an ornithine aminotransferase (OAT) were stimulated by root exudates. The transcript levels of an ammonium transporter (AMT) and a glutamine synthetase (GS) were not affected. * Germinating spores can make effective use of different N sources and the ability to synthesize amino acids does not limit presymbiotic growth of arbuscular mycorrhizal (AM) spores.
Collapse
Affiliation(s)
- Emma Gachomo
- South Dakota State University, Biology and Microbiology Department, Brookings, SD 57007, USA
| | - James W Allen
- Michigan State University, Plant Biology Department, East Lansing, MI 48824-1312, USA
| | - Philip E Pfeffer
- USDA, ARS, Eastern Regional Research Center, 600 E. Mermaid Lane, Wyndmoor, PA 19038, USA
| | - Manjula Govindarajulu
- New Mexico State University, Department of Chemistry and Biochemistry, Las Cruces, NM 88003, USA
| | - David D Douds
- USDA, ARS, Eastern Regional Research Center, 600 E. Mermaid Lane, Wyndmoor, PA 19038, USA
| | - Hairu Jin
- USDA, ARS, Eastern Regional Research Center, 600 E. Mermaid Lane, Wyndmoor, PA 19038, USA
| | - Gerald Nagahashi
- USDA, ARS, Eastern Regional Research Center, 600 E. Mermaid Lane, Wyndmoor, PA 19038, USA
| | - Peter J Lammers
- New Mexico State University, Department of Chemistry and Biochemistry, Las Cruces, NM 88003, USA
| | - Yair Shachar-Hill
- Michigan State University, Plant Biology Department, East Lansing, MI 48824-1312, USA
| | - Heike Bücking
- South Dakota State University, Biology and Microbiology Department, Brookings, SD 57007, USA
| |
Collapse
|
31
|
Parrent JL, Vilgalys R. Expression of genes involved in symbiotic carbon and nitrogen transport in Pinus taeda mycorrhizal roots exposed to CO2 enrichment and nitrogen fertilization. MYCORRHIZA 2009; 19:469-479. [PMID: 19415342 DOI: 10.1007/s00572-009-0250-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2009] [Accepted: 04/16/2009] [Indexed: 05/27/2023]
Abstract
As atmospheric carbon dioxide (CO(2)) concentrations rise, one important mechanism by which plants can gain greater access to necessary soil nutrients is through greater investment in their mycorrhizal symbionts. In this study, we tested the hypotheses that (1) plants increase C allocation to ectomycorrhizal fungi (EMF) under elevated CO(2) conditions, (2) N fertilization decreases C allocation to EMF, and (3) EMF activity at the site of symbiotic C and nutrient exchange is enhanced with CO(2) enrichment. To test these hypotheses, we examined expression levels of Pinus taeda genes encoding monosaccharide transport (MST) and ammonium transport (AMT) proteins thought to be involved in symbiotic C and N movement, respectively, from mycorrhizal root tips exposed to CO(2) and N fertilization. We also examined EMF ribosomal RNA expression (18S rRNA) to determine EMF activity. There was a trend toward lower relative MST expression with increased CO(2). AMT expression levels showed no significant differences between control and treatment plots. EMF 18S rRNA expression was increased in CO(2)-enriched plots and there was a marginally significant positive interactive effect of CO(2) and N fertilization on expression (p = 0.09 and 0.10, respectively). These results are consistent with greater C allocation to EMF and greater EMF metabolic activity under elevated CO(2) conditions, although selective allocation of C to particular EMF species and greater fungal biomass on roots are plausible alternative hypotheses.
Collapse
Affiliation(s)
- Jeri Lynn Parrent
- Biology Department, Duke University, P.O. Box 90338, Durham, NC, 27708-0338, USA.
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, 48109-1048, USA.
| | - Rytas Vilgalys
- Biology Department, Duke University, P.O. Box 90338, Durham, NC, 27708-0338, USA
| |
Collapse
|
32
|
Jin H. Arginine bi-directional translocation and breakdown into ornithine along the arbuscular mycorrhizal mycelium. ACTA ACUST UNITED AC 2009; 52:381-9. [PMID: 19381464 DOI: 10.1007/s11427-009-0044-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2008] [Accepted: 08/05/2008] [Indexed: 11/24/2022]
Abstract
Bi-directional translocation and degradation of Arginine (Arg) along the arbuscular mycorrhizal (AM) fungal mycelium were testified through (15)N and/or (13)C isotopic labeling. In vitro mycorrhizas of Glomus intraradices and Ri T-DNA-transformed carrot roots were grown in dual compartment Petri dishes. [(15)N- and/or(13)C]Arg was supplied to either the fungal compartment or the mycorrhizal compartment or separate dishes containing the uncolonized roots. The levels and labeling of free amino acids (AAs) in the mycorrhizal roots and in the extraradical mycelia(ERM) were measured by gas chromatography/mass spectrometry (GC-MS) and high-performance liquid chromatography (HPLC). The ERM of AM fungi exposed in either NH(4) (+) or urea as sole external nitrogen source had much higher (15)N enrichment of Arg, compared with those in nitrate or exogenous Arg; however, glycerol supplied as an external carbon source to the ERM had no significant effect on the level of Arg in the ERM. Meanwhile, Arg biosynthesized in the ERM could be translocated intact to the mycorrhizal roots and thereby the level of Arg in the mycorrhizal roots increased to about 20% after culture of ERM in 4 mmol/L NH(4) (+) for 6 weeks. Also Arg was found to be bi-directionally transported along the AM fungal mycelium through [U-(13)C]Arg labeling either in the mycorrhizal compartment or in the fungal compartment. Once Arg was translocated to the potential N-limited sites, it would be further degraded into ornithine (Orn) and urea since either [U-(13)C] or [U-(15)N/U-(13)C]Orn was apparently shown up in the mycorrhizal root tissues when [U-(13)C] or [U-(15)N/U-(13)C]Arg was labeled in the fungal compartment, respectively. Evidently Orn formation indicated the ongoing activities of Arg translocation and degradation through the urea cycle in AM fungal mycelium.
Collapse
Affiliation(s)
- HaiRu Jin
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, China.
| |
Collapse
|
33
|
Délano-Frier JP, Tejeda-Sartorius M. Unraveling the network: Novel developments in the understanding of signaling and nutrient exchange mechanisms in the arbuscular mycorrhizal symbiosis. PLANT SIGNALING & BEHAVIOR 2008; 3:936-44. [PMID: 19513196 PMCID: PMC2633739 DOI: 10.4161/psb.6789] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2008] [Accepted: 08/15/2008] [Indexed: 05/20/2023]
Abstract
The arbuscular mycorrhhiza (AM) symbiosis involves an intricate network of signaling and biochemical pathways designed to ensure that a beneficial relationship is established between the plant and fungal partners as a result of a mutual nutrient exchange. Emerging data has been recently published to explain why the relationship is not always fair, as observed in prevalent parasitic AM relationships in which the plant host receives no phosphorus (P) in exchange for carbon (C) delivered to the fungus. The theory behind this unorthodox view of the AM relationship, together with the description of other recent developments in nutrient mobilization as well as in key aspects of the bi-directional signaling that culminates in the symbiotic association, is the subject of this review.
Collapse
Affiliation(s)
- John Paul Délano-Frier
- Unidad de Biotecnología e Ingeniería Genética de Plantas; Cinvestav-Campus Guanajuato; Irapuato, Guanajuato México
| | | |
Collapse
|
34
|
Cruz C, Egsgaard H, Trujillo C, Ambus P, Requena N, Martins-Loução MA, Jakobsen I. Enzymatic evidence for the key role of arginine in nitrogen translocation by arbuscular mycorrhizal fungi. PLANT PHYSIOLOGY 2007; 144:782-92. [PMID: 17142485 PMCID: PMC1914155 DOI: 10.1104/pp.106.090522] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2006] [Accepted: 11/26/2006] [Indexed: 05/12/2023]
Abstract
Key enzymes of the urea cycle and (15)N-labeling patterns of arginine (Arg) were measured to elucidate the involvement of Arg in nitrogen translocation by arbuscular mycorrhizal (AM) fungi. Mycorrhiza was established between transformed carrot (Daucus carota) roots and Glomus intraradices in two-compartment petri dishes and three ammonium levels were supplied to the compartment containing the extraradical mycelium (ERM), but no roots. Time courses of specific enzyme activity were obtained for glutamine synthetase, argininosuccinate synthetase, arginase, and urease in the ERM and AM roots. (15)NH(4)(+) was used to follow the dynamics of nitrogen incorporation into and turnover of Arg. Both the absence of external nitrogen and the presence of L-norvaline, an inhibitor of Arg synthesis, prevented the synthesis of Arg in the ERM and resulted in decreased activity of arginase and urease in the AM root. The catabolic activity of the urea cycle in the roots therefore depends on Arg translocation from the ERM. (15)N labeling of Arg in the ERM was very fast and analysis of its time course and isotopomer pattern allowed estimation of the translocation rate of Arg along the mycelium as 0.13 microg Arg mg(-1) fresh weight h(-1). The results highlight the synchronization of the spatially separated reactions involved in the anabolic and catabolic arms of the urea cycle. This synchronization is a prerequisite for Arg to be a key component in nitrogen translocation in the AM mycelium.
Collapse
Affiliation(s)
- Cristina Cruz
- Universidade de Lisboa, Faculdade de Ciências, Departamento de Biologia Vegetal, Centro de Ecologia e Biologia Vegetal, 1749-016 Lisboa, Portugal
| | | | | | | | | | | | | |
Collapse
|
35
|
Darrah PR, Tlalka M, Ashford A, Watkinson SC, Fricker MD. The vacuole system is a significant intracellular pathway for longitudinal solute transport in basidiomycete fungi. EUKARYOTIC CELL 2006; 5:1111-25. [PMID: 16835455 PMCID: PMC1489287 DOI: 10.1128/ec.00026-06] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2006] [Accepted: 04/24/2006] [Indexed: 11/20/2022]
Abstract
Mycelial fungi have a growth form which is unique among multicellular organisms. The data presented here suggest that they have developed a unique solution to internal solute translocation involving a complex, extended vacuole. In all filamentous fungi examined, this extended vacuole forms an interconnected network, dynamically linked by tubules, which has been hypothesized to act as an internal distribution system. We have tested this hypothesis directly by quantifying solute movement within the organelle by photobleaching a fluorescent vacuolar marker. Predictive simulation models were then used to determine the transport characteristics over extended length scales. This modeling showed that the vacuolar organelle forms a functionally important, bidirectional diffusive transport pathway over distances of millimeters to centimeters. Flux through the pathway is regulated by the dynamic tubular connections involving homotypic fusion and fission. There is also a strongly predicted interaction among vacuolar organization, predicted diffusion transport distances, and the architecture of the branching colony margin.
Collapse
Affiliation(s)
- P R Darrah
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, United Kingdom
| | | | | | | | | |
Collapse
|
36
|
Chalot M, Blaudez D, Brun A. Ammonia: a candidate for nitrogen transfer at the mycorrhizal interface. TRENDS IN PLANT SCIENCE 2006; 11:263-6. [PMID: 16697245 DOI: 10.1016/j.tplants.2006.04.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2006] [Revised: 02/20/2006] [Accepted: 04/26/2006] [Indexed: 05/09/2023]
Abstract
In mycorrhizal associations, the fungal partner assists its plant host with nitrogen and phosphorus uptake while obtaining photosynthetically fixed carbon. Recent studies in mycorrhiza have highlighted the potential for direct transfer of ammonia from fungal to plant cells. This presents a new perspective on nitrogen transfer at the mycorrhizal interface, which is discussed here in light of recent progress made in characterizing a large array of membrane proteins that could fulfil the function of transporting ammonia.
Collapse
Affiliation(s)
- Michel Chalot
- Université Henri Poincaré, Nancy I, Faculté des Sciences et Techniques, IFR 110 Génomique, Ecophysiologie et Ecologie fonctionnelles, Vandoeuvre-les-Nancy Cedex, France.
| | | | | |
Collapse
|
37
|
Abstract
When soil nitrogen is in short supply, most terrestrial plants form symbioses with fungi (mycorrhizae): hyphae take up soil nitrogen, transport it into plant roots, and receive plant sugars in return. In ecosystems, the transfers within the pathway fractionate nitrogen isotopes so that the natural abundance of 15N in fungi differs from that in their host plants by as much as 12% per hundred. Here we present a new method to quantify carbon and nitrogen fluxes in the symbiosis based on the fractionation against 15N during transfer of nitrogen from fungi to plant roots. We tested this method, which is based on the mass balance of 15N, with data from arctic Alaska where the nitrogen cycle is well studied. Mycorrhizal fungi provided 61-86% of the nitrogen in plants; plants provided 8-17% of their photosynthetic carbon to the fungi for growth and respiration. This method of analysis avoids the disturbance of the soil-microbe-root relationship caused by collecting samples, mixing the soil, or changing substrate concentrations. This analytical technique also can be applied to other nitrogen-limited ecosystems, such as many temperate and boreal forests, to quantify the importance for terrestrial carbon and nitrogen cycling of nutrient transfers mediated by mycorrhizae at the plant-soil interface.
Collapse
Affiliation(s)
- John E Hobbie
- The Ecosystems Center, Marine Biological Laboratory, Woods Hole, Massachusetts 02543, USA.
| | | |
Collapse
|
38
|
Jin H, Pfeffer PE, Douds DD, Piotrowski E, Lammers PJ, Shachar-Hill Y. The uptake, metabolism, transport and transfer of nitrogen in an arbuscular mycorrhizal symbiosis. THE NEW PHYTOLOGIST 2005; 168:687-96. [PMID: 16313650 DOI: 10.1111/j.1469-8137.2005.01536.x] [Citation(s) in RCA: 113] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Nitrogen (N) is known to be transferred from fungus to plant in the arbuscular mycorrhizal (AM) symbiosis, yet its metabolism, storage and transport are poorly understood. In vitro mycorrhizas of Glomus intra-radices and Ri T-DNA-transformed carrot roots were grown in two-compartment Petri dishes. (15)N- and/or (13)C-labeled substrates were supplied to either the fungal compartment or to separate dishes containing uncolonized roots. The levels and labeling of free amino acids (AAs) in the extra-radical mycelium (ERM) in mycorrhizal roots and in uncolonized roots were measured by gas chromatography/mass spectrometry (GC-MS) and high-performance liquid chromatography (HPLC). Arginine (Arg) was the predominant free AA in the ERM, and almost all Arg molecules became labeled within 3 wk of supplying (15)NH(4) (+) to the fungal compartment. Labeling in Arg represented > 90% of the total (15)N in the free AAs of the ERM. [Guanido-2-(15)N]Arg taken up by the ERM and transported to the intra-radical mycelium (IRM) gave rise to (15)N-labeled AAs. [U-(13)C]Arg added to the fungal compartment did not produce any (13)C labeling of other AAs in the mycorrhizal root. Arg is the major form of N synthesized and stored in the ERM and transported to the IRM. However, NH(4) (+) is the most likely form of N transferred to host cells following its generation from Arg breakdown.
Collapse
Affiliation(s)
- H Jin
- USDA, ARS, Eastern Regional Research Center, 600 E. Mermaid Lane, Wyndmoor, PA 19038, USA
| | | | | | | | | | | |
Collapse
|
39
|
Hobbie EA, Jumpponen A, Trappe J. Foliar and fungal 15 N:14 N ratios reflect development of mycorrhizae and nitrogen supply during primary succession: testing analytical models. Oecologia 2005; 146:258-68. [PMID: 16096847 DOI: 10.1007/s00442-005-0208-z] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2005] [Accepted: 07/06/2005] [Indexed: 10/25/2022]
Abstract
Nitrogen isotopes (15N/14N ratios, expressed as delta15N values) are useful markers of the mycorrhizal role in plant nitrogen supply because discrimination against 15N during creation of transfer compounds within mycorrhizal fungi decreases the 15N/14N in plants (low delta15N) and increases the 15N/14N of the fungi (high delta15N). Analytical models of 15N distribution would be helpful in interpreting delta15N patterns in fungi and plants. To compare different analytical models, we measured nitrogen isotope patterns in soils, saprotrophic fungi, ectomycorrhizal fungi, and plants with different mycorrhizal habits on a glacier foreland exposed during the last 100 years of glacial retreat and on adjacent non-glaciated terrain. Since plants during early primary succession may have only limited access to propagules of mycorrhizal fungi, we hypothesized that mycorrhizal plants would initially be similar to nonmycorrhizal plants in delta15N and then decrease, if mycorrhizal colonization were an important factor influencing plant delta15N. As hypothesized, plants with different mycorrhizal habits initially showed similar delta15N values (-4 to -6 per thousand relative to the standard of atmospheric N2 at 0 per thousand), corresponding to low mycorrhizal colonization in all plant species and an absence of ectomycorrhizal sporocarps. In later successional stages where ectomycorrhizal sporocarps were present, most ectomycorrhizal and ericoid mycorrhizal plants declined by 5-6 per thousand in delta15N, suggesting transfer of 15N-depleted N from fungi to plants. The values recorded (-8 to -11 per thousand) are among the lowest yet observed in vascular plants. In contrast, the delta15N of nonmycorrhizal plants and arbuscular mycorrhizal plants declined only slightly or not at all. On the forefront, most ectomycorrhizal and saprotrophic fungi were similar in delta15N (-1 to -3 per thousand), but the host-specific ectomycorrhizal fungus Cortinarius tenebricus had values of up to 7 per thousand. Plants, fungi and soil were at least 4 per thousand higher in delta15N from the mature site than in recently exposed sites. On both the forefront and the mature site, host-specific ectomycorrhizal fungi had higher delta15N values than ectomycorrhizal fungi with a broad host range. From these isotopic patterns, we conclude: (1) large enrichments in 15N of many ectomycorrhizal fungi relative to co-occurring ectomycorrhizal plants are best explained by treating the plant-fungal-soil system as a closed system with a discrimination against 15N of 8-10 per thousand during transfer from fungi to plants, (2) based on models of 15N mass balance, ericoid and ectomycorrhizal fungi retain up to two-thirds of the N in the plant-mycorrhizal system under the N-limited conditions at forefront sites, (3) sporocarps are probably enriched in 15N by an additional 3 per thousand relative to available nitrogen, and (4) host-specific ectomycorrhizal fungi may transfer more N to plant hosts than non-host-specific ectomycorrhizal fungi. Our study confirms that nitrogen isotopes are a powerful tool for probing nitrogen dynamics between mycorrhizal fungi and associated plants.
Collapse
Affiliation(s)
- Erik A Hobbie
- Complex Systems Research Center, University of New Hampshire, Durham, NH 03833, USA.
| | | | | |
Collapse
|
40
|
Govindarajulu M, Pfeffer PE, Jin H, Abubaker J, Douds DD, Allen JW, Bücking H, Lammers PJ, Shachar-Hill Y. Nitrogen transfer in the arbuscular mycorrhizal symbiosis. Nature 2005; 435:819-23. [PMID: 15944705 DOI: 10.1038/nature03610] [Citation(s) in RCA: 443] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2004] [Accepted: 04/04/2005] [Indexed: 11/08/2022]
Abstract
Most land plants are symbiotic with arbuscular mycorrhizal fungi (AMF), which take up mineral nutrients from the soil and exchange them with plants for photosynthetically fixed carbon. This exchange is a significant factor in global nutrient cycles as well as in the ecology, evolution and physiology of plants. Despite its importance as a nutrient, very little is known about how AMF take up nitrogen and transfer it to their host plants. Here we report the results of stable isotope labelling experiments showing that inorganic nitrogen taken up by the fungus outside the roots is incorporated into amino acids, translocated from the extraradical to the intraradical mycelium as arginine, but transferred to the plant without carbon. Consistent with this mechanism, the genes of primary nitrogen assimilation are preferentially expressed in the extraradical tissues, whereas genes associated with arginine breakdown are more highly expressed in the intraradical mycelium. Strong changes in the expression of these genes in response to nitrogen availability and form also support the operation of this novel metabolic pathway in the arbuscular mycorrhizal symbiosis.
Collapse
Affiliation(s)
- Manjula Govindarajulu
- Department of Chemistry and Biochemistry, New Mexico State University, Las Cruces, New Mexico 88003, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
|
42
|
Morel M, Jacob C, Kohler A, Johansson T, Martin F, Chalot M, Brun A. Identification of genes differentially expressed in extraradical mycelium and ectomycorrhizal roots during Paxillus involutus-Betula pendula ectomycorrhizal symbiosis. Appl Environ Microbiol 2005; 71:382-91. [PMID: 15640212 PMCID: PMC544268 DOI: 10.1128/aem.71.1.382-391.2005] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2004] [Accepted: 08/29/2004] [Indexed: 11/20/2022] Open
Abstract
The development of ectomycorrhizal symbiosis leads to drastic changes in gene expression in both partners. However, little is known about the spatial regulation of symbiosis-regulated genes. Using cDNA array profiling, we compared the levels of expression of fungal genes corresponding to approximately 1,200 expressed sequenced tags in the ectomycorrhizal root tips (ECM) and the connected extraradical mycelium (EM) for the Paxillus involutus-Betula pendula ectomycorrhizal association grown on peat in a microcosm system. Sixty-five unique genes were found to be differentially expressed in these two fungal compartments. In ECM, a gene coding for a putative phosphatidylserine decarboxylase (Psd) was up-regulated by 24-fold, while genes coding for urea (Dur3) and spermine (Tpo3) transporters were up-regulated 4.1- and 6.2-fold in EM. Moreover, urea was the major nitrogen compound found in EM by gas chromatography-mass spectrometry analysis. These results suggest that (i) there is a spatial difference in the patterns of fungal gene expression between ECM and EM, (ii) urea and polyamine transporters could facilitate the translocation of nitrogen compounds within the EM network, and (iii) fungal Psd may contribute to membrane remodeling during ectomycorrhiza formation.
Collapse
Affiliation(s)
- Mélanie Morel
- Université Henri Poincaré-Nancy I, UMR INRA/UHP 1136, Interactions Arbres/Micro-Organismes, Faculté des Sciences et Techniques, BP 239, F-54506 Vandoeuvre-les-Nancy Cedex, France.
| | | | | | | | | | | | | |
Collapse
|
43
|
Toussaint JP, St-Arnaud M, Charest C. Nitrogen transfer and assimilation between the arbuscular mycorrhizal fungus Glomus intraradices Schenck & Smith and Ri T-DNA roots of Daucus carota L. in an in vitro compartmented system. Can J Microbiol 2004; 50:251-60. [PMID: 15213749 DOI: 10.1139/w04-009] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Nitrogen metabolism was examined in monoxenic cultures of carrot roots (Daucus carota L.) colonized with the arbuscular mycorrhizal (AM) fungus Glomus intraradices Schenck & Smith. Glutamine synthetase and glutamate dehydrogenase activities were significantly increased in mycorrhizal roots for which only the extraradical mycelium had exclusive access to NH4NO3 in a distinct hyphal compartment inaccessible to the roots. This was in comparison with the water controls but was similar to the enzyme activities of non-arbuscular-mycorrhizal (non-AM) roots that had direct access to NH4NO3. In addition, glutamate dehydrogenase activity was significantly enhanced in AM roots compared with non-AM roots. Carrot roots took up 15NH4+ more efficiently than 15NO3–, and the extraradical hyphae transfered 15NH4+ to host roots from the hyphal compartment but did not transfer 15NO3–. The extraradical mycelium was shown, for the first time, to have a different glutamine synthetase monomer than roots. Our overall results highlight the active role of AM fungi in nitrogen uptake, transfer, and assimilation in their symbiotic root association.Key words: arbuscular mycorrhizal fungus, Ri T-DNA carrot roots, in vitro root-organ culture, nitrogen metabolism.
Collapse
|
44
|
Lammers PJ, Jun J, Abubaker J, Arreola R, Gopalan A, Bago B, Hernandez-Sebastia C, Allen JW, Douds DD, Pfeffer PE, Shachar-Hill Y. The glyoxylate cycle in an arbuscular mycorrhizal fungus. Carbon flux and gene expression. PLANT PHYSIOLOGY 2001. [PMID: 11706207 DOI: 10.1104/pp.010375] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The arbuscular mycorrhizal (AM) symbiosis is responsible for huge fluxes of photosynthetically fixed carbon from plants to the soil. Lipid, which is the dominant form of stored carbon in the fungal partner and which fuels spore germination, is made by the fungus within the root and is exported to the extraradical mycelium. We tested the hypothesis that the glyoxylate cycle is central to the flow of carbon in the AM symbiosis. The results of (13)C labeling of germinating spores and extraradical mycelium with (13)C(2)-acetate and (13)C(2)-glycerol and analysis by nuclear magnetic resonance spectroscopy indicate that there are very substantial fluxes through the glyoxylate cycle in the fungal partner. Full-length sequences obtained by polymerase chain reaction from a cDNA library from germinating spores of the AM fungus Glomus intraradices showed strong homology to gene sequences for isocitrate lyase and malate synthase from plants and other fungal species. Quantitative real-time polymerase chain reaction measurements show that these genes are expressed at significant levels during the symbiosis. Glyoxysome-like bodies were observed by electron microscopy in fungal structures where the glyoxylate cycle is expected to be active, which is consistent with the presence in both enzyme sequences of motifs associated with glyoxysomal targeting. We also identified among several hundred expressed sequence tags several enzymes of primary metabolism whose expression during spore germination is consistent with previous labeling studies and with fluxes into and out of the glyoxylate cycle.
Collapse
Affiliation(s)
- P J Lammers
- Department of Chemistry and Biochemistry, New Mexico State University, Las Cruces, NM 88001, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|