1
|
Stayte S, Laloli KJ, Rentsch P, Lowth A, Li KM, Pickford R, Vissel B. The kainate receptor antagonist UBP310 but not single deletion of GluK1, GluK2, or GluK3 subunits, inhibits MPTP-induced degeneration in the mouse midbrain. Exp Neurol 2020; 323:113062. [PMID: 31513786 DOI: 10.1016/j.expneurol.2019.113062] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 08/20/2019] [Accepted: 09/07/2019] [Indexed: 12/31/2022]
Abstract
The excitatory neurotransmitter glutamate is essential in basal ganglia motor circuits and has long been thought to contribute to cell death and degeneration in Parkinson's disease (PD). While previous research has shown a significant role of NMDA and AMPA receptors in both excitotoxicity and PD, the third class of ionotropic glutamate receptors, kainate receptors, have been less well studied. Given the expression of kainate receptor subunits GluK1-GluK3 in key PD-related brain regions, it has been suggested that GluK1-GluK3 may contribute to excitotoxic cell loss. Therefore the neuroprotective potential of the kainate receptor antagonist UBP310 in animal models of PD was investigated in this study. Stereological quantification revealed administration of UBP310 significantly increased survival of dopaminergic and total neuron populations in the substantia nigra pars compacta in the acute MPTP mouse model of PD. In contrast, UBP310 was unable to rescue MPTP-induced loss of dopamine levels or dopamine transporter expression in the striatum. Furthermore, deletion of GluK1, GluK2 or GluK3 had no effect on MPTP or UBP310-mediated effects across all measures. Interestingly, UBP310 did not attenuate cell loss in the midbrain induced by intrastriatal 6-OHDA toxicity. These results indicate UBP310 provides neuroprotection in the midbrain against MPTP neurotoxicity that is not dependent on specific kainate receptor subunits.
Collapse
Affiliation(s)
- Sandy Stayte
- Centre for Neuroscience and Regenerative Medicine, Faculty of Science, University of Technology Sydney, Ultimo, Australia; St Vincent's Centre for Applied Medical Research (AMR), Sydney, Darlinghurst, Australia; Garvan Institute of Medical Research, Darlinghurst, Australia
| | - Kathryn J Laloli
- Centre for Neuroscience and Regenerative Medicine, Faculty of Science, University of Technology Sydney, Ultimo, Australia; St Vincent's Centre for Applied Medical Research (AMR), Sydney, Darlinghurst, Australia
| | - Peggy Rentsch
- Centre for Neuroscience and Regenerative Medicine, Faculty of Science, University of Technology Sydney, Ultimo, Australia; St Vincent's Centre for Applied Medical Research (AMR), Sydney, Darlinghurst, Australia; Garvan Institute of Medical Research, Darlinghurst, Australia
| | - Aimee Lowth
- Garvan Institute of Medical Research, Darlinghurst, Australia
| | - Kong M Li
- Pharmacology Department, Bosch Institute, Sydney Medical School, The University of Sydney, Camperdown, Australia
| | - Russell Pickford
- Bioanalytical Mass Spectrometry Facility, Mark Wainwright Analytical Centre, University of New South Wales, Kensington, Australia
| | - Bryce Vissel
- Centre for Neuroscience and Regenerative Medicine, Faculty of Science, University of Technology Sydney, Ultimo, Australia; St Vincent's Centre for Applied Medical Research (AMR), Sydney, Darlinghurst, Australia; Garvan Institute of Medical Research, Darlinghurst, Australia.
| |
Collapse
|
2
|
Foffani G, Trigo‐Damas I, Pineda‐Pardo JA, Blesa J, Rodríguez‐Rojas R, Martínez‐Fernández R, Obeso JA. Focused ultrasound in Parkinson's disease: A twofold path toward disease modification. Mov Disord 2019; 34:1262-1273. [DOI: 10.1002/mds.27805] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 06/14/2019] [Accepted: 06/27/2019] [Indexed: 12/18/2022] Open
Affiliation(s)
- Guglielmo Foffani
- CINACHospital Universitario HM Puerta del Sur, Móstoles, Universidad CEU‐San Pablo Madrid Spain
- Hospital Nacional de Parapléjicos Toledo Spain
| | - Inés Trigo‐Damas
- CINACHospital Universitario HM Puerta del Sur, Móstoles, Universidad CEU‐San Pablo Madrid Spain
- CIBERNEDInstituto de Salud Carlos III Madrid Spain
| | - José A. Pineda‐Pardo
- CINACHospital Universitario HM Puerta del Sur, Móstoles, Universidad CEU‐San Pablo Madrid Spain
- CIBERNEDInstituto de Salud Carlos III Madrid Spain
| | - Javier Blesa
- CINACHospital Universitario HM Puerta del Sur, Móstoles, Universidad CEU‐San Pablo Madrid Spain
- CIBERNEDInstituto de Salud Carlos III Madrid Spain
| | - Rafael Rodríguez‐Rojas
- CINACHospital Universitario HM Puerta del Sur, Móstoles, Universidad CEU‐San Pablo Madrid Spain
- CIBERNEDInstituto de Salud Carlos III Madrid Spain
| | - Raul Martínez‐Fernández
- CINACHospital Universitario HM Puerta del Sur, Móstoles, Universidad CEU‐San Pablo Madrid Spain
- CIBERNEDInstituto de Salud Carlos III Madrid Spain
| | - José A. Obeso
- CINACHospital Universitario HM Puerta del Sur, Móstoles, Universidad CEU‐San Pablo Madrid Spain
- CIBERNEDInstituto de Salud Carlos III Madrid Spain
| |
Collapse
|
3
|
Muddapu VR, Mandali A, Chakravarthy VS, Ramaswamy S. A Computational Model of Loss of Dopaminergic Cells in Parkinson's Disease Due to Glutamate-Induced Excitotoxicity. Front Neural Circuits 2019; 13:11. [PMID: 30858799 PMCID: PMC6397878 DOI: 10.3389/fncir.2019.00011] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 02/05/2019] [Indexed: 01/04/2023] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative disease associated with progressive and inexorable loss of dopaminergic cells in Substantia Nigra pars compacta (SNc). Although many mechanisms have been suggested, a decisive root cause of this cell loss is unknown. A couple of the proposed mechanisms, however, show potential for the development of a novel line of PD therapeutics. One of these mechanisms is the peculiar metabolic vulnerability of SNc cells compared to other dopaminergic clusters; the other is the SubThalamic Nucleus (STN)-induced excitotoxicity in SNc. To investigate the latter hypothesis computationally, we developed a spiking neuron network-model of SNc-STN-GPe system. In the model, prolonged stimulation of SNc cells by an overactive STN leads to an increase in ‘stress' variable; when the stress in a SNc neuron exceeds a stress threshold, the neuron dies. The model shows that the interaction between SNc and STN involves a positive-feedback due to which, an initial loss of SNc cells that crosses a threshold causes a runaway-effect, leading to an inexorable loss of SNc cells, strongly resembling the process of neurodegeneration. The model further suggests a link between the two aforementioned mechanisms of SNc cell loss. Our simulation results show that the excitotoxic cause of SNc cell loss might initiate by weak-excitotoxicity mediated by energy deficit, followed by strong-excitotoxicity, mediated by a disinhibited STN. A variety of conventional therapies were simulated to test their efficacy in slowing down SNc cell loss. Among them, glutamate inhibition, dopamine restoration, subthalamotomy and deep brain stimulation showed superior neuroprotective-effects in the proposed model.
Collapse
Affiliation(s)
| | - Alekhya Mandali
- Department of Psychiatry, Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, United Kingdom
| | - V Srinivasa Chakravarthy
- Computational Neuroscience Lab, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, IIT-Madras, Chennai, India
| | | |
Collapse
|
4
|
Involvement of the kynurenine pathway in the pathogenesis of Parkinson’s disease. Prog Neurobiol 2017; 155:76-95. [DOI: 10.1016/j.pneurobio.2015.12.009] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 12/18/2015] [Accepted: 12/30/2015] [Indexed: 12/14/2022]
|
5
|
Ambrosi G, Cerri S, Blandini F. A further update on the role of excitotoxicity in the pathogenesis of Parkinson’s disease. J Neural Transm (Vienna) 2014; 121:849-59. [DOI: 10.1007/s00702-013-1149-z] [Citation(s) in RCA: 131] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Accepted: 12/19/2013] [Indexed: 11/30/2022]
|
6
|
Abstract
Various pathologies of the central nervous system (CNS) are accompanied by alterations in tryptophan metabolism. The main metabolic route of tryptophan degradation is the kynurenine pathway; its metabolites are responsible for a broad spectrum of effects, including the endogenous regulation of neuronal excitability and the initiation of immune tolerance. This Review highlights the involvement of the kynurenine system in the pathology of neurodegenerative disorders, pain syndromes and autoimmune diseases through a detailed discussion of its potential implications in Huntington's disease, migraine and multiple sclerosis. The most effective preclinical drug candidates are discussed and attention is paid to currently under-investigated roles of the kynurenine pathway in the CNS, where modulation of kynurenine metabolism might be of therapeutic value.
Collapse
|
7
|
Some molecular mechanisms of dopaminergic and glutamatergic dysfunctioning in Parkinson’s disease. J Neural Transm (Vienna) 2012. [DOI: 10.1007/s00702-012-0930-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
8
|
Vecsei L, Plangar I, Szalardy L. Manipulation with kynurenines: a possible tool for treating neurodegenerative diseases? Expert Rev Clin Pharmacol 2012; 5:351-3. [PMID: 22943114 DOI: 10.1586/ecp.12.36] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
9
|
Szabó N, Kincses ZT, Toldi J, Vécsei L. Altered tryptophan metabolism in Parkinson's disease: A possible novel therapeutic approach. J Neurol Sci 2011; 310:256-60. [DOI: 10.1016/j.jns.2011.07.021] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2011] [Revised: 07/13/2011] [Accepted: 07/14/2011] [Indexed: 02/06/2023]
|
10
|
Zádori D, Klivényi P, Plangár I, Toldi J, Vécsei L. Endogenous neuroprotection in chronic neurodegenerative disorders: with particular regard to the kynurenines. J Cell Mol Med 2011; 15:701-17. [PMID: 21155972 PMCID: PMC3922661 DOI: 10.1111/j.1582-4934.2010.01237.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Parkinson's disease (PD) and Huntington's disease (HD) are progressive chronic neurodegenerative disorders that are accompanied by a considerable impairment of the motor functions. PD may develop for familial or sporadic reasons, whereas HD is based on a definite genetic mutation. Nevertheless, the pathological processes involve oxidative stress and glutamate excitotoxicity in both cases. A number of metabolic routes are affected in these disorders. The decrease in antioxidant capacity and alterations in the kynurenine pathway, the main pathway of the tryptophan metabolism, are features that deserve particular interest, because the changes in levels of neuroactive kynurenine pathway compounds appear to be strongly related to the oxidative stress and glutamate excitotoxicity involved in the disease pathogenesis. Increase of the antioxidant capacity and pharmacological manipulation of the kynurenine pathway are therefore promising therapeutic targets in these devastating disorders.
Collapse
Affiliation(s)
- Dénes Zádori
- Department of Neurology, Albert Szent-Györgyi Clinical Centre, University of Szeged, Szeged, Hungary
| | | | | | | | | |
Collapse
|
11
|
Zádori D, Klivényi P, Toldi J, Fülöp F, Vécsei L. Kynurenines in Parkinson's disease: therapeutic perspectives. J Neural Transm (Vienna) 2011; 119:275-83. [PMID: 21858430 DOI: 10.1007/s00702-011-0697-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2011] [Accepted: 07/29/2011] [Indexed: 12/21/2022]
Abstract
Parkinson's disease (PD) is a chronic progressive neurodegenerative disorder the pathomechanism of which is not yet fully known. With regard to the molecular mechanism of development of the disease, oxidative stress/mitochondrial impairment, glutamate excitotoxicity and neuroinflammation are certainly involved. Alterations in the kynurenine pathway, the main pathway of the tryptophan metabolism, can contribute to the complex pathomechanism. There are several possibilities for therapeutic intervention involving targeting of this altered metabolic route. The development of synthetic molecules that would shift the altered balance towards the achievement of neuroprotective effects would be of great promise for future clinical studies on PD.
Collapse
Affiliation(s)
- Dénes Zádori
- Department of Neurology, Albert Szent-Györgyi Clinical Centre, University of Szeged, Semmelweis u. 6, Szeged, 6725, Hungary
| | | | | | | | | |
Collapse
|
12
|
Zinger A, Barcia C, Herrero MT, Guillemin GJ. The involvement of neuroinflammation and kynurenine pathway in Parkinson's disease. PARKINSON'S DISEASE 2011; 2011:716859. [PMID: 21687761 PMCID: PMC3109408 DOI: 10.4061/2011/716859] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2010] [Accepted: 01/31/2011] [Indexed: 12/15/2022]
Abstract
Parkinson's disease (PD) is a common neurodegenerative disorder characterised by loss of dopaminergic neurons and localized neuroinflammation occurring in the midbrain several years before the actual onset of symptoms. Activated microglia themselves release a large number of inflammatory mediators thus perpetuating neuroinflammation and neurotoxicity. The Kynurenine pathway (KP), the main catabolic pathway for tryptophan, is one of the major regulators of the immune response and may also be implicated in the inflammatory response in parkinsonism. The KP generates several neuroactive compounds and therefore has either a neurotoxic or neuroprotective effect. Several of these molecules produced by microglia can activate the N-methyl-D-aspartate (NMDA) receptor-signalling pathway, leading to an excitotoxic response. Previous studies have shown that NMDA antagonists can ease symptoms and exert a neuroprotective effect in PD both in vivo and in vitro. There are to date several lines of evidence linking some of the KP intermediates and the neuropathogenesis of PD. Moreover, it is likely that pharmacological modulation of the KP will represent a new therapeutic strategy for PD.
Collapse
Affiliation(s)
- Anna Zinger
- Department of Pharmacology, School of Medical Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Carlos Barcia
- Experimental and Clinical Neuroscience (NiCE-CIBERNED), Department of Human Anatomy and Psychobiology, School of Medicine, University of Murcia, Murcia, Spain
| | - Maria Trinidad Herrero
- Experimental and Clinical Neuroscience (NiCE-CIBERNED), Department of Human Anatomy and Psychobiology, School of Medicine, University of Murcia, Murcia, Spain
| | - Gilles J. Guillemin
- Department of Pharmacology, School of Medical Sciences, University of New South Wales, Sydney, NSW 2052, Australia
- Experimental and Clinical Neuroscience (NiCE-CIBERNED), Department of Human Anatomy and Psychobiology, School of Medicine, University of Murcia, Murcia, Spain
- St Vincent's Centre for Applied Medical Research, Darlinghurst, NSW 2010, Australia
| |
Collapse
|
13
|
Kincses ZT, Vecsei L. Pharmacological therapy in Parkinson's disease: focus on neuroprotection. CNS Neurosci Ther 2010; 17:345-67. [PMID: 20438581 DOI: 10.1111/j.1755-5949.2010.00150.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Although the number of available therapeutic approaches in Parkinson's disease (PD) is steadily increasing the search for effective neuroprotective agent is continuing. Such research is directed at influencing the key steps in the pathomechanism: the mitochondrial dysfunction, the oxidative stress, the neuroinflammatory processes and the final common apoptotic pathway. Earlier-developed symptomatic therapies were implicated to be neuroprotective, and promising novel disease modifying approaches were brought into the focus of interest. The current review presents a survey of our current knowledge relating to the pathomechanism of PD and discusses the putative neuroprotective therapy.
Collapse
Affiliation(s)
- Zsigmond Tamas Kincses
- Department of Neurology, Albert Szent-Györgyi Clinical Center, University of Szeged, Szeged, Hungary
| | | |
Collapse
|
14
|
Faust K, Gehrke S, Yang Y, Yang L, Beal MF, Lu B. Neuroprotective effects of compounds with antioxidant and anti-inflammatory properties in a Drosophila model of Parkinson's disease. BMC Neurosci 2009; 10:109. [PMID: 19723328 PMCID: PMC3152779 DOI: 10.1186/1471-2202-10-109] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2008] [Accepted: 09/01/2009] [Indexed: 12/21/2022] Open
Abstract
Background Parkinson's disease (PD) is the most common movement disorder. Extrapyramidal motor symptoms stem from the degeneration of the dopaminergic pathways in patient brain. Current treatments for PD are symptomatic, alleviating disease symptoms without reversing or retarding disease progression. Although the cause of PD remains unknown, several pathogenic factors have been identified, which cause dopaminergic neuron (DN) death in the substantia nigra (SN). These include oxidative stress, mitochondrial dysfunction, inflammation and excitotoxicity. Manipulation of these factors may allow the development of disease-modifying treatment strategies to slow neuronal death. Inhibition of DJ-1A, the Drosophila homologue of the familial PD gene DJ-1, leads to oxidative stress, mitochondrial dysfunction, and DN loss, making fly DJ-1A model an excellent in vivo system to test for compounds with therapeutic potential. Results In the present study, a Drosophila DJ-1A model of PD was used to test potential neuroprotective drugs. The drugs applied are the Chinese herb celastrol, the antibiotic minocycline, the bioenergetic amine coenzyme Q10 (coQ10), and the glutamate antagonist 2,3-dihydroxy-6-nitro-7-sulphamoylbenzo[f]-quinoxaline (NBQX). All of these drugs target pathogenic processes implicated in PD, thus constitute mechanism-based treatment strategies. We show that celastrol and minocycline, both having antioxidant and anti-inflammatory properties, confer potent dopaminergic neuroprotection in Drosophila DJ-1A model, while coQ10 shows no protective effect. NBQX exerts differential effects on cell survival and brain dopamine content: it protects against DN loss but fails to restore brain dopamine level. Conclusion The present study further validates Drosophila as a valuable model for preclinical testing of drugs with therapeutic potential for neurodegenerative diseases. The lower cost and amenability to high throughput testing make Drosophila PD models effective in vivo tools for screening novel therapeutic compounds. If our findings can be further validated in mammalian PD models, they would implicate drugs combining antioxidant and anti-inflammatory properties as strong therapeutic candidates for mechanism-based PD treatment.
Collapse
Affiliation(s)
- Katharina Faust
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA.
| | | | | | | | | | | |
Collapse
|
15
|
Kynurenines in chronic neurodegenerative disorders: future therapeutic strategies. J Neural Transm (Vienna) 2009; 116:1403-9. [PMID: 19618107 DOI: 10.1007/s00702-009-0263-4] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2009] [Accepted: 06/11/2009] [Indexed: 10/20/2022]
Abstract
Parkinson's, Alzheimer's and Huntington's diseases are chronic neurodegenerative disorders of a progressive nature which lead to a considerable deterioration of the quality of life. Their pathomechanisms display some common features, including an imbalance of the tryptophan metabolism. Alterations in the concentrations of neuroactive kynurenines can be accompanied by devastating excitotoxic injuries and metabolic disturbances. From therapeutic considerations, possibilities that come into account include increasing the neuroprotective effect of kynurenic acid, or decreasing the levels of neurotoxic 3-hydroxy-L-kynurenine and quinolinic acid. The experimental data indicate that neuroprotection can be achieved by both alternatives, suggesting opportunities for further drug development in this field.
Collapse
|
16
|
Németh H, Toldi J, Vécsei L. Kynurenines, Parkinson's disease and other neurodegenerative disorders: preclinical and clinical studies. JOURNAL OF NEURAL TRANSMISSION. SUPPLEMENTUM 2006:285-304. [PMID: 17017544 DOI: 10.1007/978-3-211-45295-0_45] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
The kynurenine pathway is the main pathway of tryptophan metabolism. L-kynurenine is a central compound of this pathway since it can change to the neuroprotective agent kynurenic acid or to the neurotoxic agent quinolinic acid. The break-up of these endogenous compounds' balance can be observable in many disorders. It can be occur in neurodegenerative disorders, such as Parkinson's disease, Huntington's and Alzheimer's disease, in stroke, in epilepsy, in multiple sclerosis, in amyotrophic lateral sclerosis, and in mental failures, such as schizophrenia and depression. The increase of QUIN concentration or decrease of KYNA concentration could enhance the symptoms of several diseases. According to numerous studies, lowered KYNA level was found in patients with Parkinson's disease. It can be also noticeable that KYNA-treatment prevents against the QUIN-induced lesion of rat striatum in animal experiments. Administrating of KYNA can be appear a promising therapeutic approach, but its use is limited because of its poorly transport across the blood-brain barrier. The solution may be the development of KYNA analogues (e.g. glucoseamine-kynurenic acid) which can pass across this barrier and disengaging in the brain, then KYNA can exert its neuroprotective effects binding at the excitatory glutamate receptors, in particular the NMDA receptors. Furthermore, it seems hopeful to use kynurenine derivatives (e.g. 4-chloro-kynurenine) or enzyme inhibitors (e.g. Ro-61-8048) to ensure an increased kynurenic acid concentration in the central nervous system.
Collapse
Affiliation(s)
- H Németh
- Department of Neurology, University of Szeged, Hungary
| | | | | |
Collapse
|
17
|
Foster SB, Tang H, Miller KE, Dryhurst G. Increased extracellular glutamate evoked by 1-methyl-4-phenylpyridinium [MPP(+)] in the rat striatum is not essential for dopaminergic neurotoxicity and is not derived from released glutathione. Neurotox Res 2005; 7:251-63. [PMID: 16179262 DOI: 10.1007/bf03033883] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A number of studies have implicated the interactions of the excitatory amino acid L-glutamate (Glu) with its ionotropic and metabotropic receptors as important components of the mechanism underlying the dopaminergic neurotoxicity of 1-methyl-4-phenylpyridinium [MPP(+)]. Furthermore, microdialysis experiments have demonstrated that perfusion of relatively high concentrations of MPP(+) into the rat striatum evoke a delayed, massive release of Glu. Interestingly, perfusion of MPP(+) also mediates a similar release of glutathione (GSH). Together, these observations raise the possibility that the rise of extracellular Glu mediated by MPP(+) may be the result of hydrolysis of released GSH by gamma-glutamyl transpeptidase (gamma-GT). In the present investigation it is demonstrated that perfusions of solutions of 0.7 and 1.3 mM MPP(+) dissolved in artificial cerebrospinal fluid into the rat striatum evoke neurotoxic damage to dopaminergic terminals, assessed by both a two-day test/challenge procedure and tyrosine hydroxylase immunoreactivity, but without the release of Glu. Perfusions of 2.5 mM MPP(+) cause more extensive dopaminergic neurotoxicity and a dose-dependent release of Glu. However, neither this release of Glu nor MPP(+)-induced dopaminergic neurotoxicity are blocked by the irreversible gamma-GT inhibitor acivicin. Together, these observations indicate that a rise of extracellular levels of Glu is not essential for the dopaminergic neurotoxicity of MPP(+). Furthermore, the rise of extracellular Glu caused by perfusion of 2.5 mM MPP(+) is not the result of the gamma-GT-mediated hydrolysis of released GSH. It is possible that the rise of extracellular levels of Glu, L-aspartate, L-glycine and L-taurine evoked by perfusions of 2.5 mM MPP(+) into the rat striatum may reflect, at least in part, the release of these amino acids from astrocytes.
Collapse
Affiliation(s)
- S B Foster
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK 73019, USA
| | | | | | | |
Collapse
|
18
|
Ghorayeb I, Fernagut PO, Hervier L, Labattu B, Bioulac B, Tison F. A 'single toxin-double lesion' rat model of striatonigral degeneration by intrastriatal 1-methyl-4-phenylpyridinium ion injection: a motor behavioural analysis. Neuroscience 2003; 115:533-46. [PMID: 12421620 DOI: 10.1016/s0306-4522(02)00401-3] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Previous attempts to reproduce striatonigral degeneration, the core pathology underlying Parkinsonism in multiple system atrophy, have been impeded by interactions in the neurotoxins used to replicate striatal and nigral degeneration in rodents. To overcome these interactions, we have developed a new model of striatonigral degeneration which uses a single unilateral administration of 1-methyl-4-phenylpyridinium ion (MPP(+)) into the rat striatum. Spontaneous and drug-induced rotational behaviour, thigmotactic scanning, stepping adjusting steps and paw reaching deficits were compared in four groups of animals: group 1 (control), group 2 (20 microg quinolinic acid), group 3 (20 microg 6-hydroxydopamine), and group 4 (90 nmol MPP(+)). MPP(+) administration resulted in the absence of the amphetamine-induced ipsilateral bias observed in the 6-hydroxydopamine group and of the apomorphine-induced ipsilateral bias observed in the quinolinic acid group. There was no thigmotactic scanning asymmetry in the MPP(+)-injected rats compared to the quinolinic acid- and the 6-hydroxydopamine-injected rats. MPP(+) elicited a bilateral stepping adjustment deficit similar to that found in the quinolinic acid group when compared to controls. MPP(+) also elicited a more severe and significant contralateral deficit in paw reaching compared to controls, 6-hydroxydopamine and quinolinic acid groups. Histopathology revealed a significant reduction of the lesioned striatal surface (-47.53%) with neuronal loss and increased astrogliosis in the MPP(+) group grossly similar to that found in the quinolinic acid group. Contrary to the latter group, however, loss of intrastriatal and striatal-crossing fibre bundles was observed in the MPP(+) group as there was also some retrograde degeneration in the ipsilateral thalamic parafascicular nucleus. The mean loss of dopaminergic cells in the ipsilateral substantia nigra pars compacta in MPP(+) rats was less marked (-48.8%) than in the 6-hydroxydopamine rats (-63.6%) and was not significant in quinolinic acid rats (-5.2%). This study shows that a single unilateral intrastriatal administration of MPP(+) induces a unique motor behaviour resulting from both nigral and striatal degeneration, but also from possible extrastriatal damage. This 'single toxin-double lesion' paradigm may thus serve as a rat model of striatonigral degeneration.
Collapse
Affiliation(s)
- I Ghorayeb
- Laboratoire de Neurophysiologie, CNRS-UMR 5543, Université Victor Segalen-Bordeaux 2, 146 rue Léo-Saignat, 33076 Bordeaux Cedex, France
| | | | | | | | | | | |
Collapse
|
19
|
Dryhurst G. Are dopamine, norepinephrine, and serotonin precursors of biologically reactive intermediates involved in the pathogenesis of neurodegenerative brain disorders? ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2002; 500:373-96. [PMID: 11764972 DOI: 10.1007/978-1-4615-0667-6_61] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
Affiliation(s)
- G Dryhurst
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman 73019, USA
| |
Collapse
|
20
|
Araki T, Kumagai T, Tanaka K, Matsubara M, Kato H, Itoyama Y, Imai Y. Neuroprotective effect of riluzole in MPTP-treated mice. Brain Res 2001; 918:176-81. [PMID: 11684056 DOI: 10.1016/s0006-8993(01)02944-4] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The neuroprotective effects of riluzole, a Na(+) channel blocker with antiglutamatergic activity, and MK-801, a blocker of N-methyl-D-aspartate (NMDA) receptors, were compared in the model of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced depletion of dopamine, 3,4-dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA) levels in mice. The mice were injected intraperitoneally (i.p.) with four administrations of MPTP (10 mg/kg) at 1 h intervals and then the brains were analyzed 1, 3 and 7 days after the treatment. Dopamine and DOPAC levels were significantly decreased in the striatum from 1 day after MPTP treatment. A severe depletion in dopamine and DOPAC levels was found in the striatum 3 and 7 days after MPTP treatment. Riluzole antagonized the MPTP-induced decrease in dopamine, DOPAC and HVA levels in the striatum. On the other hand, MK-801 prevented the MPTP-induced decrease in DOPAC levels, but not in dopamine levels in the striatum. An immunohistochemical study indicated that riluzole can protect against MPTP-induced neuronal damage in the substantia nigra. These results suggest that riluzole is effective against MPTP-induced neurodegeneration of the nigrostriatal dopaminergic neuronal pathway.
Collapse
Affiliation(s)
- T Araki
- Department of Clinical Pharmacology and Therapeutics, Tohoku University Graduate School of Pharmaceutical Science and Medicine, Aoba-yama, Sendai 980-8578, Japan.
| | | | | | | | | | | | | |
Collapse
|
21
|
Castro SL, Zigmond MJ. Stress-induced increase in extracellular dopamine in striatum: role of glutamatergic action via N-methyl-d-aspartate receptors in substantia nigra. Brain Res 2001; 901:47-54. [PMID: 11368949 DOI: 10.1016/s0006-8993(01)02229-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
There is considerable support for an influence of excitatory amino acids released from corticofugal neurons on dopaminergic activity in the basal ganglia. However, the relative importance of cortico-striatal and cortico-mesencephalic projections remains unclear, particularly with respect to the nigro-neostriatal pathway. We have therefore examined the influence of endogenous excitatory amino acids in substantia nigra on stress-induced dopaminergic activity in neostriatum. Microdialysis probes were implanted unilaterally into substantia nigra and ipsilateral neostriatum, and dopamine release in neostriatum was monitored by measuring changes in extracellular dopamine. In separate animals, neostriatal dopamine synthesis was assessed by measuring extracellular DOPA in the presence of 3-hydroxylbenzylhydrazine (NSD-1015; 100 microM), an inhibitor of aromatic amino acid decarboxylase. Thirty minutes of intermittent foot shock increased both dopamine release (+41%) and synthesis (+37%) in neostriatum. Infusion of 2-amino-5-phosphonovalerate (APV; 100 microM), an inhibitor of N-methyl-D-aspartate (NMDA) receptors, into substantia nigra greatly attenuated the stress-induced increase in neostriatal dopamine release, while having no effect on the apparent increase in stress-induced dopamine synthesis. These data suggest that excitatory amino acids such as glutamate act on NMDA receptors in substantia nigra to increase striatal dopamine release produced by exposure to stress, but that the increase in dopamine synthesis is mediated through a separate mechanism.
Collapse
Affiliation(s)
- S L Castro
- Departments of Neurology and Psychiatry, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | | |
Collapse
|
22
|
Gu L, Miller KE, Dryhurst G. Nigrostriatal dopaminergic neurotoxicity of L-cysteine after stereotaxic administration into the substantia nigra of rats: Potential implications for MPTP-induced neurotoxicity and parkinson’s disease. Neurotox Res 2000. [DOI: 10.1007/bf03033344] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|