1
|
Wang YW, Yang XH, Zheng XH, Zhou GS, Zhao XX, Zhao YL, Wu SH. Unraveling the relationship between inflammation and cluster headache. Front Neurol 2025; 16:1548522. [PMID: 40248013 PMCID: PMC12003110 DOI: 10.3389/fneur.2025.1548522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Accepted: 03/19/2025] [Indexed: 04/19/2025] Open
Abstract
Cluster headache (CH) is often referred to as the 'suicide headache.' Existing research suggests that the activation of the trigeminal-vascular system, increased sensitivity of nerve fibers, and the release and interaction of various neuropeptides and inflammatory mediators may contribute to neurogenic inflammation, which serves as a crucial pathophysiological basis for the development of CH. Additionally, some neuropeptides can modulate neuronal activity related to pain transmission and may increase pain perception by sensitizing central nerves. This review discusses the neuropeptides and inflammatory mediators associated with CH neuroinflammation, focusing on calcitonin gene-related peptide (CGRP), inflammatory cytokines and related signaling pathways, nitric oxide (NO), pituitary adenylate cyclase-activating peptide 38 (PACAP-38), and vasoactive intestinal peptide (VIP), incorporating both preclinical and clinical evidence to provide new insights into potential therapeutic targets for CH.
Collapse
Affiliation(s)
- Yu-Wen Wang
- Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Xu-Hong Yang
- Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Xin-Hui Zheng
- Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Gao-Shui Zhou
- Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Xiao-Xia Zhao
- Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Yi-Lan Zhao
- Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Shu-Hong Wu
- Chongqing Beibei District Hospital of Traditional Chinese Medicine, Chongqing, China
| |
Collapse
|
2
|
Carril Pardo C, Oyarce Merino K, Vera-Montecinos A. Neuroinflammatory Loop in Schizophrenia, Is There a Relationship with Symptoms or Cognition Decline? Int J Mol Sci 2025; 26:310. [PMID: 39796167 PMCID: PMC11720417 DOI: 10.3390/ijms26010310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 12/19/2024] [Accepted: 12/24/2024] [Indexed: 01/13/2025] Open
Abstract
Schizophrenia (SZ), a complex psychiatric disorder of neurodevelopment, is characterised by a range of symptoms, including hallucinations, delusions, social isolation and cognitive deterioration. One of the hypotheses that underlie SZ is related to inflammatory events which could be partly responsible for symptoms. However, it is unknown how inflammatory molecules can contribute to cognitive decline in SZ. This review summarises and exposes the possible contribution of the imbalance between pro-inflammatory and anti-inflammatory interleukins like IL-1beta, IL-4 and TNFalfa among others on cognitive impairment. We discuss how this inflammatory imbalance affects microglia and astrocytes inducing the disruption of the blood-brain barrier (BBB) in SZ, which could impact the prefrontal cortex or associative areas involved in executive functions such as planning and working tasks. We also highlight that inflammatory molecules generated by intestinal microbiota alterations, due to dysfunctional microbial colonisers or the use of some anti-psychotics, could impact the central nervous system. Finally, the question arises as to whether it is possible to modulate or correct the inflammatory imbalance that characterises SZ, and if an immunomodulatory strategy can be incorporated into conventional clinical treatments, either alone or in complement, to be applied in specific phases, such as prodromal or in the first-episode psychosis.
Collapse
Affiliation(s)
- Claudio Carril Pardo
- Laboratorio de Neuroinmunología, Facultad de Medicina y Ciencia, Universidad San Sebastián, Sede Tres Pascualas, Concepción 4080871, Chile; (C.C.P.)
| | - Karina Oyarce Merino
- Laboratorio de Neuroinmunología, Facultad de Medicina y Ciencia, Universidad San Sebastián, Sede Tres Pascualas, Concepción 4080871, Chile; (C.C.P.)
| | - América Vera-Montecinos
- Departamento de Ciencias Biológicas y Químicas, Facultad De Medicina y Ciencia, Universidad San Sebastián, Sede Tres Pascualas Lientur 1457, Concepción 4080871, Chile
| |
Collapse
|
3
|
Snoer AH, Vollesen ALH, Beske RP, Guo S, Hoffmann J, Jørgensen NR, Martinussen T, Ashina M, Jensen RH. S100B and NSE in Cluster Headache - Evidence for Glial Cell Activation? Headache 2020; 60:1569-1580. [PMID: 32548854 DOI: 10.1111/head.13864] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 05/02/2020] [Accepted: 05/02/2020] [Indexed: 01/03/2023]
Abstract
OBJECTIVE Neuronal-specific enolase (NSE) and protein S100B have gained considerable interest as the markers of CNS injury, glial cell activation, and/or blood-brain barrier (BBB) disruption. No studies have investigated NSE and S100B in cluster headache (CH), but these biomarkers could contribute to the understanding of CH. METHODS Patients with episodic CH in bout (eCHa), in remission (eCHr), and chronic CH (cCH) were included in this randomized, double-blind, placebo-controlled, 2-way cross-over provocation study carried out at the Danish Headache Center. The primary endpoints included (1) differences of NSE and S100B in between groups (eCHa, eCHr, and cCH) at baseline; (2) differences over time in plasma concentrations of NSE and S100B between patient developing an attack and those who did not; (3) differences in plasma concentrations over time of NSE and S100B between active day and placebo day. Baseline findings were compared to the historical data on migraine patients and healthy controls and presented with means ± SD. RESULTS Nine eCHa, 9 eCHr, and 13 cCH patients completed the study and blood samples from 11 CGRP-induced CH attacks were obtained. There were no differences in NSE levels between CH groups at baseline, but CH patients in active disease phase had higher levels compared with 32 migraine patients (9.1 ± 2.2 µg/L vs 6.0 ± 2.2 µg/L, P < .0001) and 6 healthy controls (9.1 ± 2.2 µg/L vs 7.3 ± 2.0 µg/L, P = .007). CGRP-infusion caused no NSE changes and, but a slight, non-significant, increase in NSE was seen in patients who reported a CGRP-induced CH attack (2.39 µg/L, 95% Cl [-0.26, 3.85], P = .061). At baseline S100B levels in eCHa patients were higher compared to cCH patients (0.06 ± 0.02 µg/L vs 0.04 ± 0.02 µg/L, P = .018). Infusion of CGRP and CGRP-induced attacks did not change S100B levels. Apart from induced CH-attacks no other adverse events were noted. CONCLUSIONS At baseline eCHa patients had higher S100B plasma levels than cCH patients and there was a slight, however not significant, NSE increase in response to CGRP-induced CH attack. Our findings suggest a possible role of an ictal activation of glial cells in CH pathophysiology, but further studies are warranted.
Collapse
Affiliation(s)
- Agneta H Snoer
- Danish Headache Center, Department of Neurology, Rigshospitalet-Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Anne Luise H Vollesen
- Danish Headache Center, Department of Neurology, Rigshospitalet-Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Rasmus Paulin Beske
- Danish Headache Center, Department of Neurology, Rigshospitalet-Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Song Guo
- Danish Headache Center, Department of Neurology, Rigshospitalet-Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jan Hoffmann
- Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Niklas R Jørgensen
- Department of Clinical Biochemistry, Rigshospitalet Glostrup, Glostrup, Denmark.,OPEN, Odense Patient Data Explorative Network, Odense University Hospital, Odense, Denmark.,Institute of Clinical Research, University of Southern Denmark, Odense, Denmark
| | | | - Messoud Ashina
- Danish Headache Center, Department of Neurology, Rigshospitalet-Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Rigmor H Jensen
- Danish Headache Center, Department of Neurology, Rigshospitalet-Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
4
|
Lipids Nutrients in Parkinson and Alzheimer's Diseases: Cell Death and Cytoprotection. Int J Mol Sci 2020; 21:ijms21072501. [PMID: 32260305 PMCID: PMC7178281 DOI: 10.3390/ijms21072501] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 03/26/2020] [Accepted: 04/01/2020] [Indexed: 12/11/2022] Open
Abstract
Neurodegenerative diseases, particularly Parkinson’s and Alzheimer’s, have common features: protein accumulation, cell death with mitochondrial involvement and oxidative stress. Patients are treated to cure the symptoms, but the treatments do not target the causes; so, the disease is not stopped. It is interesting to look at the side of nutrition which could help prevent the first signs of the disease or slow its progression in addition to existing therapeutic strategies. Lipids, whether in the form of vegetable or animal oils or in the form of fatty acids, could be incorporated into diets with the aim of preventing neurodegenerative diseases. These different lipids can inhibit the cytotoxicity induced during the pathology, whether at the level of mitochondria, oxidative stress or apoptosis and inflammation. The conclusions of the various studies cited are oriented towards the preventive use of oils or fatty acids. The future of these lipids that can be used in therapy/prevention will undoubtedly involve a better delivery to the body and to the brain by utilizing lipid encapsulation.
Collapse
|
5
|
Sahley TL, Anderson DJ, Hammonds MD, Chandu K, Musiek FE. Evidence for a dynorphin-mediated inner ear immune/inflammatory response and glutamate-induced neural excitotoxicity: an updated analysis. J Neurophysiol 2019; 122:1421-1460. [DOI: 10.1152/jn.00595.2018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Acoustic overstimulation (AOS) is defined as the stressful overexposure to high-intensity sounds. AOS is a precipitating factor that leads to a glutamate (GLU)-induced Type I auditory neural excitotoxicity and an activation of an immune/inflammatory/oxidative stress response within the inner ear, often resulting in cochlear hearing loss. The dendrites of the Type I auditory neural neurons that innervate the inner hair cells (IHCs), and respond to the IHC release of the excitatory neurotransmitter GLU, are themselves directly innervated by the dynorphin (DYN)-bearing axon terminals of the descending brain stem lateral olivocochlear (LOC) system. DYNs are known to increase GLU availability, potentiate GLU excitotoxicity, and induce superoxide production. DYNs also increase the production of proinflammatory cytokines by modulating immune/inflammatory signal transduction pathways. Evidence is provided supporting the possibility that the GLU-mediated Type I auditory neural dendritic swelling, inflammation, excitotoxicity, and cochlear hearing loss that follow AOS may be part of a brain stem-activated, DYN-mediated cascade of inflammatory events subsequent to a LOC release of DYNs into the cochlea. In support of a DYN-mediated cascade of events are established investigations linking DYNs to the immune/inflammatory/excitotoxic response in other neural systems.
Collapse
Affiliation(s)
- Tony L. Sahley
- Department of Biological, Geological, and Environmental Sciences, Cleveland State University, Cleveland, Ohio
- School of Health Sciences, Cleveland State University, Cleveland, Ohio
| | - David J. Anderson
- Department of Chemistry, Cleveland State University, Cleveland, Ohio
| | | | - Karthik Chandu
- Department of Chemistry, Cleveland State University, Cleveland, Ohio
| | - Frank E. Musiek
- Department of Speech, Language, and Hearing Sciences, University of Arizona, Tucson, Arizona
| |
Collapse
|
6
|
O'Neill E, Chiara Goisis R, Haverty R, Harkin A. L-alpha-aminoadipic acid restricts dopaminergic neurodegeneration and motor deficits in an inflammatory model of Parkinson's disease in male rats. J Neurosci Res 2019; 97:804-816. [PMID: 30924171 DOI: 10.1002/jnr.24420] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 02/21/2019] [Accepted: 03/08/2019] [Indexed: 12/20/2022]
Abstract
Neuroinflammation is a contributory factor underlying the progressive nature of dopaminergic neuronal loss within the substantia nigra (SN) of Parkinson's disease (PD) patients, albeit the role of astrocytes in this process has been relatively unexplored to date. Here, we aimed to investigate the impact of midbrain astrocytic dysfunction in the pathophysiology of intra-nigral lipopolysaccharide (LPS)-induced experimental Parkinsonism in male Wistar rats via simultaneous co-injection of the astrocytic toxin L-alpha-aminoadipic acid (L-AAA). Simultaneous intra-nigral injection of L-AAA attenuated the LPS-induced loss of tyrosine hydroxylase-positive (TH+ ) dopamine neurons in the SNpc and suppressed the affiliated degeneration of TH+ dopaminergic nerve terminals in the striatum. L-AAA also repressed LPS-induced nigrostriatal dopamine depletion and provided partial protection against ensuing motor dysfunction. L-AAA abrogated intra-nigral LPS-induced glial fibrillary acidic protein-positive (GFAP+ ) reactive astrogliosis and attenuated the LPS-mediated increases in nigral S100β expression levels in a time-dependent manner, findings which were associated with reduced ionized calcium binding adaptor molecule 1-positive (Iba1+ ) microgliosis, thus indicating a role for reactive astrocytes in sustaining microglial activation at the interface of dopaminergic neuronal loss in response to an immune stimulus. These results indicate that midbrain astrocytic dysfunction restricts the development of dopaminergic neuropathology and motor impairments in rats, highlighting reactive astrocytes as key contributors in inflammatory associated degeneration of the nigrostriatal tract.
Collapse
Affiliation(s)
- Eoin O'Neill
- Neuropsychopharmacology Research Group, School of Pharmacy and Pharmaceutical Sciences & Trinity College Institute of Neuroscience, Trinity College, Dublin 2, Ireland
| | - Rosa Chiara Goisis
- Neuropsychopharmacology Research Group, School of Pharmacy and Pharmaceutical Sciences & Trinity College Institute of Neuroscience, Trinity College, Dublin 2, Ireland
| | - Ruth Haverty
- Neuropsychopharmacology Research Group, School of Pharmacy and Pharmaceutical Sciences & Trinity College Institute of Neuroscience, Trinity College, Dublin 2, Ireland
| | - Andrew Harkin
- Neuropsychopharmacology Research Group, School of Pharmacy and Pharmaceutical Sciences & Trinity College Institute of Neuroscience, Trinity College, Dublin 2, Ireland
| |
Collapse
|
7
|
Parfenov VA, Ostroumova OD, Ostroumova TM, Kochetkov AI, Fateeva VV, Khacheva KK, Khakimova GR, Epstein OI. Vascular cognitive impairment: pathophysiological mechanisms, insights into structural basis, and perspectives in specific treatments. Neuropsychiatr Dis Treat 2019; 15:1381-1402. [PMID: 31190841 PMCID: PMC6535085 DOI: 10.2147/ndt.s197032] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 02/14/2019] [Indexed: 01/19/2023] Open
Abstract
Vascular cognitive impairment (VCI) and vascular dementia are the most common forms of cognitive disorder associated with cerebrovascular disease and related to increased morbidity and mortality among the older population. Growing evidence suggests the contribution of blood-pressure variability, cardiac arrhythmia, hyperactivation of the renin-angiotensin-aldosterone system, endothelial dysfunction, vascular remodeling and stiffness, different angiopathies, neural tissue homeostasis, and systemic metabolic disorders to the pathophysiology of VCI. In this review, we focus on factors contributing to cerebrovascular disease, neurovascular unit alterations, and novel approaches to cognitive improvement in patients with cognitive decline. One of the important factors associated with the neuronal causes of VCI is the S100B protein, which can affect the expression of cytokines in the brain, support homeostasis, and regulate processes of differentiation, repair, and apoptosis of the nervous tissue. Since the pathological basis of VCI is complex and diverse, treatment affecting the mechanisms of cognitive disorders should be developed. The prospective role of a novel complex drug consisting of released-active antibodies to S100 and to endothelial NO synthase in VCI treatment is highlighted.
Collapse
Affiliation(s)
- Vladimir A Parfenov
- Department of Neurology, Federal State Autonomous Educational Institution of Higher Education, I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), Moscow, Russian Federation
| | - Olga D Ostroumova
- Laboratory of Clinical Pharmacology and therapy, Federal State Budgetary Educational Institution of Higher Education "N.I. Pirogov Russian National Research Medical University" of the Ministry of Health of the Russian Federation, Russian Clinical and Research Center of Gerontology, Moscow, Russia.,Department of Clinical Pharmacology, Internal Medicine and Propaedeutics I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Tatiana M Ostroumova
- Department of Neurology, Federal State Autonomous Educational Institution of Higher Education, I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), Moscow, Russian Federation
| | - Alexey I Kochetkov
- Laboratory of Clinical Pharmacology and therapy, Federal State Budgetary Educational Institution of Higher Education "N.I. Pirogov Russian National Research Medical University" of the Ministry of Health of the Russian Federation, Russian Clinical and Research Center of Gerontology, Moscow, Russia
| | - Victoria V Fateeva
- Medical Information Department, OOO NPF Materia Medica Holding, Moscow, Russian Federation
| | - Kristina K Khacheva
- Medical Information Department, OOO NPF Materia Medica Holding, Moscow, Russian Federation
| | - Gulnara R Khakimova
- Research and Analytical Division of Scientific Research and Development Department, Moscow, Russian Federation
| | - Oleg I Epstein
- Laboratory of Physiologicaly Active Substances, Department of Molecular and Cellular Pathophysiology, Research Institute of General Pathology and Pathophysiology, Moscow, Russian Federation
| |
Collapse
|
8
|
Pallottie A, Ratnayake A, Ni L, Acioglu C, Li L, Mirabelli E, Heary RF, Elkabes S. A toll-like receptor 9 antagonist restores below-level glial glutamate transporter expression in the dorsal horn following spinal cord injury. Sci Rep 2018; 8:8723. [PMID: 29880832 PMCID: PMC5992189 DOI: 10.1038/s41598-018-26915-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 05/18/2018] [Indexed: 01/04/2023] Open
Abstract
Spinal cord (SC) trauma elicits pathological changes at the primary lesion and in regions distant from the injury epicenter. Therapeutic agents that target mechanisms at the injury site are likely to exert additional effects in these remote regions. We previously reported that a toll-like receptor 9 (TLR9) antagonist, oligodeoxynucleotide 2088 (ODN 2088), improves functional deficits and modulates the milieu at the epicenter in mice sustaining a mid-thoracic contusion. The present investigations use the same paradigm to assess ODN 2088-elicited alterations in the lumbar dorsal horn (LDH), a region remote from the injury site where SCI-induced molecular alterations have been well defined. We report that ODN 2088 counteracts the SCI-elicited decrease in glial glutamate aspartate transporter (GLAST) and glutamate transporter 1 (GLT1) levels, whereas the levels of the neuronal glutamate transporter excitatory amino acid carrier 1 (EAAC1) and astroglial GABA transporter 3 (GAT3) were unaffected. The restoration of GLAST and GLT1 was neither paralleled by a global effect on astrocyte and microglia activation nor by changes in the expression of cytokines and growth factors reported to regulate these transporters. We conclude that the effects of intrathecal ODN 2088 treatment extend to loci beyond the epicenter by selectively targeting glial glutamate transporters.
Collapse
Affiliation(s)
- Alexandra Pallottie
- The Reynolds Family Spine Laboratory, New Jersey Medical School, Department of Neurological Surgery, Rutgers, The State University of New Jersey, Newark, NJ, 07103, USA.,The School of Graduate Studies, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, 07103, USA
| | - Ayomi Ratnayake
- The Reynolds Family Spine Laboratory, New Jersey Medical School, Department of Neurological Surgery, Rutgers, The State University of New Jersey, Newark, NJ, 07103, USA
| | - Li Ni
- The Reynolds Family Spine Laboratory, New Jersey Medical School, Department of Neurological Surgery, Rutgers, The State University of New Jersey, Newark, NJ, 07103, USA
| | - Cigdem Acioglu
- The Reynolds Family Spine Laboratory, New Jersey Medical School, Department of Neurological Surgery, Rutgers, The State University of New Jersey, Newark, NJ, 07103, USA
| | - Lun Li
- The Reynolds Family Spine Laboratory, New Jersey Medical School, Department of Neurological Surgery, Rutgers, The State University of New Jersey, Newark, NJ, 07103, USA.,The School of Graduate Studies, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, 07103, USA
| | - Ersilia Mirabelli
- The Reynolds Family Spine Laboratory, New Jersey Medical School, Department of Neurological Surgery, Rutgers, The State University of New Jersey, Newark, NJ, 07103, USA.,The School of Graduate Studies, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, 07103, USA
| | - Robert F Heary
- The Reynolds Family Spine Laboratory, New Jersey Medical School, Department of Neurological Surgery, Rutgers, The State University of New Jersey, Newark, NJ, 07103, USA.,The School of Graduate Studies, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, 07103, USA
| | - Stella Elkabes
- The Reynolds Family Spine Laboratory, New Jersey Medical School, Department of Neurological Surgery, Rutgers, The State University of New Jersey, Newark, NJ, 07103, USA. .,The School of Graduate Studies, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, 07103, USA.
| |
Collapse
|
9
|
Fardell C, Zettergren A, Ran C, Carmine Belin A, Ekman A, Sydow O, Bäckman L, Holmberg B, Dizdar N, Söderkvist P, Nissbrandt H. S100B polymorphisms are associated with age of onset of Parkinson's disease. BMC MEDICAL GENETICS 2018. [PMID: 29529989 PMCID: PMC5848451 DOI: 10.1186/s12881-018-0547-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Background In this study we investigated the association between SNPs in the S100B gene and Parkinson’s disease (PD) in two independent Swedish cohorts. The SNP rs9722 has previously been shown to be associated with higher S100B concentrations in serum and frontal cortex in humans. S100B is widely expressed in the central nervous system and has many functions such as regulating calcium homeostasis, inflammatory processes, cytoskeleton assembly/disassembly, protein phosphorylation and degradation, and cell proliferation and differentiation. Several of these functions have been suggested to be of importance for the pathophysiology of PD. Methods The SNPs rs9722, rs2239574, rs881827, rs9984765, and rs1051169 of the S100B gene were genotyped using the KASPar® PCR SNP genotyping system in a case-control study of two populations (431 PD patients and 465 controls, 195 PD patients and 378 controls, respectively). The association between the genotype and allelic distributions and PD risk was evaluated using Chi-Square and Cox proportional hazards test, as well as logistic regression. Linear regression and Cox proportional hazards tests were applied to assess the effect of the rs9722 genotypes on age of disease onset. Results The S100B SNPs tested were not associated with the risk of PD. However, in both cohorts, the T allele of rs9722 was significantly more common in early onset PD patients compared to late onset PD patients. The SNP rs9722 was significantly related to age of onset, and each T allele lowered disease onset with 4.9 years. In addition, allelic variants of rs881827, rs9984765, and rs1051169, were significantly more common in early-onset PD compared to late-onset PD in the pooled population. Conclusions rs9722, a functional SNP in the 3’-UTR of the S100B gene, was strongly associated with age of onset of PD.
Collapse
Affiliation(s)
- Camilla Fardell
- Department of Pharmacology, Sahlgrenska Academy at the University of Gothenburg, P.O. Box 431, 405 30, Gothenburg, Sweden.
| | - Anna Zettergren
- Department of Pharmacology, Sahlgrenska Academy at the University of Gothenburg, P.O. Box 431, 405 30, Gothenburg, Sweden
| | - Caroline Ran
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | | | - Agneta Ekman
- Department of Pharmacology, Sahlgrenska Academy at the University of Gothenburg, P.O. Box 431, 405 30, Gothenburg, Sweden
| | - Olof Sydow
- Department of Clinical Neuroscience, Karolinska University Hospital, Stockholm, Sweden
| | - Lars Bäckman
- Aging Research Center, Karolinska Institutet, Stockholm, Sweden
| | - Björn Holmberg
- Department of Clinical Neuroscience and Rehabilitation, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Nil Dizdar
- Department of Clinical and Experimental Medicine, Faculty of Health Sciences, Linköping University, Linköping, Sweden.,Department of Neurology, Linköping University Hospital, Linköping University, Linköping, Sweden
| | - Peter Söderkvist
- Department of Clinical and Experimental Medicine, Faculty of Health Sciences, Linköping University, Linköping, Sweden
| | - Hans Nissbrandt
- Department of Pharmacology, Sahlgrenska Academy at the University of Gothenburg, P.O. Box 431, 405 30, Gothenburg, Sweden
| |
Collapse
|
10
|
Wang CH, Gu JY, Zhang XL, Dong J, Yang J, Zhang YL, Ning QF, Shan XW, Li Y. Venlafaxine ameliorates the depression-like behaviors and hippocampal S100B expression in a rat depression model. Behav Brain Funct 2016; 12:34. [PMID: 27931233 PMCID: PMC5146825 DOI: 10.1186/s12993-016-0116-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 11/22/2016] [Indexed: 01/02/2023] Open
Abstract
Background Accumulating evidence has indicated that S100B may be involved in the pathophysiology of depression. No published study has examined the effect of the antidepressant drug venlafaxine on S100B in animal models of depression. This study investigated S100B expression in the hippocampus and assessed the effect of venlafaxine on S100B mRNA level and protein expression in rats exposed to chronic unpredictable mild stress (CUMS). Methods Forty Sprague-Dawley rats were randomly divided into four groups as control, 0, 5 and 10 mg venlafaxine groups. The venlafaxine groups were exposed to CUMS from day 2 to day 43. Venlafaxine 0, 5 and 10 mg/kg were then administered from day 23 to day 43. We performed behavioral assessments with weight change, open-field and sucrose preference, and analyzed S100B protein expression and mRNA level in the hippocampus. Results The CUMS led to a decrease in body weight, locomotor activity and sucrose consumption, but venlafaxine treatment (10 mg) reversed these CUMS-induced decreases Also, CUMS increased S100B protein expression and mRNA level in the hippocampus, but venlafaxine treatment (10 mg) significantly decreased S100B protein expression and mRNA level, which were significantly lower than the other treatment groups, without significant difference between the 10 mg venlafaxine and the control groups. Conclusions Our findings showed that venlafaxine treatment (10 mg) may improve the depression-like behaviors and decrease over-expression of S100B protein and mRNA in the hippocampus in a rat model of depression. Electronic supplementary material The online version of this article (doi:10.1186/s12993-016-0116-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Chang-Hong Wang
- Department of Psychiatry, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, 453002, Henan, China
| | - Jing-Yang Gu
- Department of Psychiatry, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, 453002, Henan, China
| | - Xiao-Li Zhang
- Department of Psychiatry, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, 453002, Henan, China
| | - Jiao Dong
- Department of Psychiatry, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, 453002, Henan, China
| | - Jun Yang
- Standard Technological Co. Ltd. (Xinxiang Institute for New Medicine), Xinxiang, 453003, Henan, China.,Xinjiang Hongda Food & Beverage Co. Ltd., Xinjiang, 043102, Shanxi, China
| | - Ying-Li Zhang
- Department of Psychiatry, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, 453002, Henan, China
| | - Qiu-Fen Ning
- Department of Psychiatry, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, 453002, Henan, China
| | - Xiao-Wen Shan
- Department of Psychiatry, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, 453002, Henan, China
| | - Yan Li
- Department of Child and Adolescent, Public Health College, Zhengzhou University, 100 Kexue Road, Zhengzhou, 450001, Henan, China.
| |
Collapse
|
11
|
Effect of Amaranthus on Advanced Glycation End-Products Induced Cytotoxicity and Proinflammatory Cytokine Gene Expression in SH-SY5Y Cells. Molecules 2015; 20:17288-308. [PMID: 26393562 PMCID: PMC6332459 DOI: 10.3390/molecules200917288] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 09/11/2015] [Accepted: 09/11/2015] [Indexed: 11/17/2022] Open
Abstract
Amaranthus plants, or spinach, are used extensively as a vegetable and are known to possess medicinal properties. Neuroinflammation and oxidative stress play a major role in the pathogenesis of many neurodegenerative diseases, such as Alzheimer’s disease and Parkinson’s disease. Advanced glycation end-products (AGEs) cause cell toxicity in the human neuronal cell line, SH-SY5Y, through an increase in oxidative stress, as shown by reducing cell viability and increasing cell toxicity in a dose-dependent manner. We found that preincubation of SH-SY5Y cells with either petroleum ether, dichloromethane or methanol extracts of A. lividus and A. tricolor dose-dependently attenuated the neuron toxicity caused by AGEs treatment. Moreover, the results showed that A. lividus and A. tricolor extracts significantly downregulated the gene expression of the pro-inflammatory cytokines, TNF-α, IL-1 and IL-6 genes in AGEs-induced cells. We concluded that A. lividus and A. tricolor extracts not only have a neuroprotective effect against AGEs toxicity, but also have anti-inflammatory activity by reducing pro-inflammatory cytokine gene expression. This suggests that Amaranthus may be useful for treating chronic inflammation associated with neurodegenerative disorders.
Collapse
|
12
|
Individual Cytokines Modulate the Neurological Symptoms of ATM Deficiency in a Region Specific Manner. eNeuro 2015; 2:eN-NWR-0032-15. [PMID: 26465009 PMCID: PMC4596028 DOI: 10.1523/eneuro.0032-15.2015] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Revised: 06/16/2015] [Accepted: 06/29/2015] [Indexed: 01/01/2023] Open
Abstract
Ataxia-telangiectasia (A-T) is a multisystemic neurodegenerative disease of childhood caused by the absence of functional ATM (A-T mutated) protein. The cerebellar cortex has the most obvious neuropathology, yet cells in other brain regions are also abnormal. A-T mouse models have been produced that replicate much, though not all, of the complex A-T phenotype. Nongenetic factors, including modulations of the immune status of the animal, have also recently been found to play a role in the disease phenotype. Here we report that these modulations show both cytokine and brain region specificity. The CNS changes induced by broad-spectrum immune challenges, such as lipopolysaccharide (LPS) injections are a complex mixture of neuroprotective (TNFα) and neurodegenerative (IL1β) cytokine responses that change over time. For example, LPS first induces a protective response in A-T neurons through activation of tissue repair genes through infiltration of monocytes with M2 phenotype, followed over time by a set of more degenerative responses. Additional phenotypic complexity arises because the neuronal response to an immune challenge is regionally variable; cerebellum and cortex differ in important ways in their patterns of cellular and biochemical changes. Tracking these changes reveals an important though not exclusive role for the MAP kinase pathway. Our findings suggest brain responses to cytokine challenges are temporally and regionally specific and that both features are altered by the absence of ATM. This implies that management of the immune status of A-T patients might have significant clinical benefit.
Collapse
|
13
|
Sweeney MD, Sagare AP, Zlokovic BV. Cerebrospinal fluid biomarkers of neurovascular dysfunction in mild dementia and Alzheimer's disease. J Cereb Blood Flow Metab 2015; 35:1055-68. [PMID: 25899298 PMCID: PMC4640280 DOI: 10.1038/jcbfm.2015.76] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Revised: 02/27/2015] [Accepted: 03/08/2015] [Indexed: 02/06/2023]
Abstract
Alzheimer's disease (AD) is the most common form of age-related dementias. In addition to genetics, environment, and lifestyle, growing evidence supports vascular contributions to dementias including dementia because of AD. Alzheimer's disease affects multiple cell types within the neurovascular unit (NVU), including brain vascular cells (endothelial cells, pericytes, and vascular smooth muscle cells), glial cells (astrocytes and microglia), and neurons. Thus, identifying and integrating biomarkers of the NVU cell-specific responses and injury with established AD biomarkers, amyloid-β (Aβ) and tau, has a potential to contribute to better understanding of the disease process in dementias including AD. Here, we discuss the existing literature on cerebrospinal fluid biomarkers of the NVU cell-specific responses during early stages of dementia and AD. We suggest that the clinical usefulness of established AD biomarkers, Aβ and tau, could be further improved by developing an algorithm that will incorporate biomarkers of the NVU cell-specific responses and injury. Such biomarker algorithm could aid in early detection and intervention as well as identify novel treatment targets to delay disease onset, slow progression, and/or prevent AD.
Collapse
Affiliation(s)
- Melanie D Sweeney
- Department of Physiology and Biophysics, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Abhay P Sagare
- Department of Physiology and Biophysics, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Berislav V Zlokovic
- Department of Physiology and Biophysics, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
14
|
Abstract
BACKGROUND S100B level in the blood has been used as a marker for brain damage and blood-brain barrier (BBB) disruption. Elevations of S100B levels after exercise have been observed, suggesting that the BBB may be compromised during exercise. However, an increase in S100B levels may be confounded by other variables. OBJECTIVES The primary objective of this review was to compile findings on the relationship between S100B and exercise in order to determine if this protein is a valid marker for BBB disruptions during exercise. The secondary objective was to consolidate known factors causing S100B increases that may give rise to inaccurate interpretations of S100B levels. DATA SOURCES AND STUDY SELECTION PubMed, Web of Science and ScienceDirect were searched for relevant studies up to January 2013, in which S100B measurements were taken after a bout of exercise. Animal studies were excluded. Variables of interest such as the type of activity, exercise intensities, duration, detection methods, presence and extent of head trauma were examined and compiled. RESULTS This review included 23 studies; 15 (65 %) reported S100B increases after exercise, and among these, ten reported S100B increases regardless of intervention, while five reported increases in only some trials but not others. Eight (35 %) studies reported no increases in S100B levels across all trials. Most baseline S100B levels fall below 0.16 μg/L, with an increase in S100B levels of less than 0.07 μg/L following exercise. Factors that are likely to affect S100B levels include exercise intensity, and duration, presence and extent of head trauma. Several other probable factors influencing S100B elevations are muscle breakdown, level of training and oxidative stress, but current findings are still weak and inconclusive. CONCLUSIONS Elevated S100B levels have been recorded following exercise and are mostly attributed to either an increase in BBB permeability or trauma to the head. However, even in the absence of head trauma, it appears that the BBB may be compromised following exercise, with the severity dependent on exercise intensity.
Collapse
|
15
|
Serpente M, Bonsi R, Scarpini E, Galimberti D. Innate immune system and inflammation in Alzheimer's disease: from pathogenesis to treatment. Neuroimmunomodulation 2014; 21:79-87. [PMID: 24557039 DOI: 10.1159/000356529] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Immune activation and inflammation, likely triggered by amyloid-beta (Aβ) deposition, play a remarkable role in the pathogenesis of Alzheimer's disease (AD), which is the most frequent cause of dementia in the elderly. The principal cellular elements of the brain innate immune system likely to be involved in such processes are microglia. In an attempt to search for new disease-modifying drugs, the immune system has been addressed, with the aim of removing deposition of Aβ or tau by developing vaccines and humanized monoclonal antibodies. The aim of this review is to summarize the current evidence regarding the role played by microglia and inflammatory molecules in the pathogenesis of AD. In addition, we will discuss the main active and passive immunotherapeutic approaches.
Collapse
Affiliation(s)
- Maria Serpente
- Neurology Unit, Department of Pathophysiology and Transplantation, University of Milan, Fondazione Cà Granda, IRCCS Ospedale Maggiore Policlinico, Milan, Italy
| | | | | | | |
Collapse
|
16
|
S100B protein as a possible participant in the brain metastasis of NSCLC. Med Oncol 2013; 29:2626-32. [PMID: 22286962 DOI: 10.1007/s12032-012-0169-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2011] [Accepted: 01/14/2012] [Indexed: 01/02/2023]
Abstract
Brain metastasis is a frequent occurrence in lung cancer, especially non-small cell lung cancer (NSCLC), the prognosis for NSCLC with brain metastasis is very poor. Our previous study found high S100B expression in the brain-specific metastatic NSCLC line PC14/B, suggested S100B is closely correlated with brain metastasis in NSCLC. However, the details have not yet been revealed. The aim of this study was to investigate the correlation between S100B and brain metastasis in NSCLC and to study the effects of S100B on non-brain metastatic NSCLC line PC14. We investigated serum S100B levels in 30 newly diagnosed NSCLC patients (15 with brain metastasis and 15 without brain metastasis) using enzyme-linked immunosorbent assay. Results showed that serum S100B levels were significant higher in NSCLC patients with brain metastasis compared to those without brain metastasis (P<0.01). We constructed the full-length S100B expression vector and transfected into PC14 cells. MTT and flow cytometric analysis showed that S100B transfection promoted cell proliferation and inhibited cell apoptosis (P<0.05). Transwell migration and invasion assays indicated that S100B transfection promoted cell invasion and cell migration compared to control cells transfected with empty vector alone (P<0.01). These results suggested that S100B could be involved in the development of brain metastasis in NSCLC.
Collapse
|
17
|
Cappellano G, Carecchio M, Fleetwood T, Magistrelli L, Cantello R, Dianzani U, Comi C. Immunity and inflammation in neurodegenerative diseases. AMERICAN JOURNAL OF NEURODEGENERATIVE DISEASE 2013; 2:89-107. [PMID: 23844334 PMCID: PMC3703122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Accepted: 06/11/2013] [Indexed: 06/02/2023]
Abstract
Immune reactions inside the central nervous system are finely regulated, thanks to the presence of several checkpoints that have the fundamental purpose to preserve this fragile tissue form harmful events. The current knowledge on the role of neuroinflammation and neuro-immune interactions in the fields of multiple sclerosis, Alzheimer's disease and Parkinson's disease is reviewed. Moreover, a focus on the potential role of both active and passive immunotherapy is provided. Finally, we propose a common perspective, which implies that, under pathological conditions, inflammation may exert both detrimental and protective functions, depending on local factors and the timing of immune activation and shutting-off systems.
Collapse
Affiliation(s)
- Giuseppe Cappellano
- Interdisciplinary Research Center of Autoimmune Diseases (IRCAD), University of Eastern Piedmont, “Amedeo Avogadro”Novara, Italy
- Department of Health Sciences, University of Eastern Piedmont, “Amedeo Avogadro”Novara, Italy
| | - Miryam Carecchio
- Department of Translational Medicine, Section of Neurology, University of Eastern Piedmont, “Amedeo Avogadro”Novara, Italy
| | - Thomas Fleetwood
- Department of Translational Medicine, Section of Neurology, University of Eastern Piedmont, “Amedeo Avogadro”Novara, Italy
| | - Luca Magistrelli
- Department of Translational Medicine, Section of Neurology, University of Eastern Piedmont, “Amedeo Avogadro”Novara, Italy
| | - Roberto Cantello
- Department of Translational Medicine, Section of Neurology, University of Eastern Piedmont, “Amedeo Avogadro”Novara, Italy
| | - Umberto Dianzani
- Interdisciplinary Research Center of Autoimmune Diseases (IRCAD), University of Eastern Piedmont, “Amedeo Avogadro”Novara, Italy
- Department of Health Sciences, University of Eastern Piedmont, “Amedeo Avogadro”Novara, Italy
| | - Cristoforo Comi
- Interdisciplinary Research Center of Autoimmune Diseases (IRCAD), University of Eastern Piedmont, “Amedeo Avogadro”Novara, Italy
- Department of Translational Medicine, Section of Neurology, University of Eastern Piedmont, “Amedeo Avogadro”Novara, Italy
| |
Collapse
|
18
|
Sathe K, Maetzler W, Lang JD, Mounsey RB, Fleckenstein C, Martin HL, Schulte C, Mustafa S, Synofzik M, Vukovic Z, Itohara S, Berg D, Teismann P. S100B is increased in Parkinson's disease and ablation protects against MPTP-induced toxicity through the RAGE and TNF-α pathway. ACTA ACUST UNITED AC 2013; 135:3336-47. [PMID: 23169921 PMCID: PMC3501971 DOI: 10.1093/brain/aws250] [Citation(s) in RCA: 140] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Parkinson’s disease is a neurodegenerative disorder that can, at least partly, be mimicked by the neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. S100B is a calcium-binding protein expressed in, and secreted by, astrocytes. There is increasing evidence that S100B acts as a cytokine or damage-associated molecular pattern protein not only in inflammatory but also in neurodegenerative diseases. In this study, we show that S100B protein levels were higher in post-mortem substantia nigra of patients with Parkinson’s disease compared with control tissue, and cerebrospinal fluid S100B levels were higher in a large cohort of patients with Parkinson’s disease compared with controls. Correspondingly, mice treated with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine showed upregulated S100B messenger RNA and protein levels. In turn, ablation of S100B resulted in neuroprotection, reduced microgliosis and reduced expression of both the receptor for advanced glycation endproducts and tumour necrosis factor-α. Our results demonstrate a role of S100B in the pathophysiology of Parkinson’s disease. Targeting S100B may emerge as a potential treatment strategy in this disorder.
Collapse
Affiliation(s)
- Kinnari Sathe
- School of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Teismann P, Sathe K, Bierhaus A, Leng L, Martin HL, Bucala R, Weigle B, Nawroth PP, Schulz JB. Receptor for advanced glycation endproducts (RAGE) deficiency protects against MPTP toxicity. Neurobiol Aging 2012; 33:2478-90. [PMID: 22227007 PMCID: PMC3712169 DOI: 10.1016/j.neurobiolaging.2011.12.006] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2011] [Revised: 11/09/2011] [Accepted: 12/01/2011] [Indexed: 11/19/2022]
Abstract
Parkinson's disease (PD) is a common neurodegenerative disorder of unknown pathogenesis characterized by the loss of nigrostriatal dopaminergic neurons. Oxidative stress, microglial activation and inflammatory responses seem to contribute to the pathogenesis. The receptor for advanced glycation endproducts (RAGE) is a multiligand receptor of the immunoglobulin superfamily of cell surface molecules. The formation of advanced glycation end products (AGEs), the first ligand of RAGE identified, requires a complex series of reactions including nonenzymatic glycation and free radical reactions involving superoxide-radicals and hydrogen peroxide. Binding of RAGE ligands results in activation of nuclear factor-kappaB (NF-κB). We show that RAGE ablation protected nigral dopaminergic neurons against cell death induced by the neurotoxin MPTP that mimics most features of PD. In RAGE-deficient mice the translocation of the NF-κB subunit p65 to the nucleus, in dopaminergic neurons and glial cells was inhibited suggesting that RAGE involves the activation of NF-κB. The mRNA level of S100, one of the ligands of RAGE, was increased after MPTP treatment. The dopaminergic neurons treated with MPP(+) and S100 protein showed increased levels of apoptotic cell death, which was attenuated in RAGE-deficient mice. Our results suggest that activation of RAGE contributes to MPTP/MPP(+)-induced death of dopaminergic neurons that may be mediated by NF-κB activation.
Collapse
Affiliation(s)
- Peter Teismann
- Department of Neurodegeneration and Restorative Research, Center of Molecular Physiology of the Brain, University of Göttingen, Göttingen, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Kitazawa M, Cheng D, Tsukamoto MR, Koike MA, Wes PD, Vasilevko V, Cribbs DH, LaFerla FM. Blocking IL-1 signaling rescues cognition, attenuates tau pathology, and restores neuronal β-catenin pathway function in an Alzheimer's disease model. THE JOURNAL OF IMMUNOLOGY 2011; 187:6539-49. [PMID: 22095718 DOI: 10.4049/jimmunol.1100620] [Citation(s) in RCA: 353] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Inflammation is a key pathological hallmark of Alzheimer's disease (AD), although its impact on disease progression and neurodegeneration remains an area of active investigation. Among numerous inflammatory cytokines associated with AD, IL-1β in particular has been implicated in playing a pathogenic role. In this study, we sought to investigate whether inhibition of IL-1β signaling provides disease-modifying benefits in an AD mouse model and, if so, by what molecular mechanisms. We report that chronic dosing of 3xTg-AD mice with an IL-1R blocking Ab significantly alters brain inflammatory responses, alleviates cognitive deficits, markedly attenuates tau pathology, and partly reduces certain fibrillar and oligomeric forms of amyloid-β. Alterations in inflammatory responses correspond to reduced NF-κB activity. Furthermore, inhibition of IL-1 signaling reduces the activity of several tau kinases in the brain, including cdk5/p25, GSK-3β, and p38-MAPK, and also reduces phosphorylated tau levels. We also detected a reduction in the astrocyte-derived cytokine, S100B, and in the extent of neuronal Wnt/β-catenin signaling in 3xTg-AD brains, and provided in vitro evidence that these changes may, in part, provide a mechanistic link between IL-1 signaling and GSK-3β activation. Taken together, our results suggest that the IL-1 signaling cascade may be involved in one of the key disease mechanisms for AD.
Collapse
Affiliation(s)
- Masashi Kitazawa
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA 92697, USA.
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Effects of S100B on Serotonergic Plasticity and Neuroinflammation in the Hippocampus in Down Syndrome and Alzheimer's Disease: Studies in an S100B Overexpressing Mouse Model. Cardiovasc Psychiatry Neurol 2010; 2010. [PMID: 20827311 PMCID: PMC2933893 DOI: 10.1155/2010/153657] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2010] [Revised: 06/01/2010] [Accepted: 07/02/2010] [Indexed: 12/17/2022] Open
Abstract
S100B promotes development and maturation in the mammalian brain. However, prolonged or extensive exposure can lead to neurodegeneration. Two important functions of S100B in this regard, are its role in the development and plasticity of the serotonergic neurotransmitter system, and its role in the cascade of glial changes associated with neuroinflammation. Both of these processes are therefore accelerated towards degeneration in disease processes wherein S100B is increased, notably, Alzheimer's disease (AD) and Down syndrome (DS).
In order to study the role of S100B in this context, we have examined S100B overexpressing transgenic mice. Similar to AD and DS, the transgenic animals show a profound change in serotonin innervation. By 28 weeks of age, there is a significant loss of terminals in the hippocampus. Similarly, the transgenic animals show neuroinflammatory changes analogous with AD and DS. These include decreased numbers of mature, stable astroglial cells, increased numbers of activated microglial cells and increased microglial expression of the cell surface receptor RAGE. Eventually, the S100B transgenic animals show neurodegeneration and the appearance of hyperphosphorylated tau structures, as seen in late stage DS and AD. The role of S100B in these conditions is discussed.
Collapse
|
22
|
Salminen A, Kauppinen A, Suuronen T, Kaarniranta K, Ojala J. ER stress in Alzheimer's disease: a novel neuronal trigger for inflammation and Alzheimer's pathology. J Neuroinflammation 2009; 6:41. [PMID: 20035627 PMCID: PMC2806266 DOI: 10.1186/1742-2094-6-41] [Citation(s) in RCA: 247] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2009] [Accepted: 12/26/2009] [Indexed: 12/20/2022] Open
Abstract
The endoplasmic reticulum (ER) is involved in several crucial cellular functions, e.g. protein folding and quality control, maintenance of Ca2+ balance, and cholesterol synthesis. Many genetic and environmental insults can disturb the function of ER and induce ER stress. ER contains three branches of stress sensors, i.e. IRE1, PERK and ATF6 transducers, which recognize the misfolding of proteins in ER and activate a complex signaling network to generate the unfolded protein response (UPR). Alzheimer's disease (AD) is a progressive neurodegenerative disorder involving misfolding and aggregation of proteins in conjunction with prolonged cellular stress, e.g. in redox regulation and Ca2+ homeostasis. Emerging evidence indicates that the UPR is activated in neurons but not in glial cells in AD brains. Neurons display pPERK, peIF2α and pIRE1α immunostaining along with abundant diffuse staining of phosphorylated tau protein. Recent studies have demonstrated that ER stress can also induce an inflammatory response via different UPR transducers. The most potent pathways are IRE1-TRAF2, PERK-eIF2α, PERK-GSK-3, ATF6-CREBH, as well as inflammatory caspase-induced signaling pathways. We will describe the mechanisms which could link the ER stress of neurons to the activation of the inflammatory response and the evolution of pathological changes in AD.
Collapse
Affiliation(s)
- Antero Salminen
- Department of Neurology, Institute of Clinical Medicine, University of Kuopio, PO Box 1627, FIN-70211 Kuopio, Finland.
| | | | | | | | | |
Collapse
|
23
|
Hutchinson MR, Lewis SS, Coats BD, Skyba DA, Crysdale NY, Berkelhammer DL, Brzeski A, Northcutt A, Vietz CM, Judd CM, Maier SF, Watkins LR, Johnson KW. Reduction of opioid withdrawal and potentiation of acute opioid analgesia by systemic AV411 (ibudilast). Brain Behav Immun 2009; 23:240-50. [PMID: 18938237 PMCID: PMC2662518 DOI: 10.1016/j.bbi.2008.09.012] [Citation(s) in RCA: 202] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2008] [Revised: 09/18/2008] [Accepted: 09/28/2008] [Indexed: 12/26/2022] Open
Abstract
Morphine-induced glial proinflammatory responses have been documented to contribute to tolerance to opioid analgesia. Here, we examined whether drugs previously shown to suppress glial proinflammatory responses can alter other clinically relevant opioid effects; namely, withdrawal or acute analgesia. AV411 (ibudilast) and minocycline, drugs with distinct mechanisms of action that result in attenuation of glial proinflammatory responses, each reduced naloxone-precipitated withdrawal. Analysis of brain nuclei associated with opioid withdrawal revealed that morphine altered expression of glial activation markers, cytokines, chemokines, and a neurotrophic factor. AV411 attenuated many of these morphine-induced effects. AV411 also protected against spontaneous withdrawal-induced hyperactivity and weight loss recorded across a 12-day timecourse. Notably, in the spontaneous withdrawal study, AV411 treatment was delayed relative to the start of the morphine regimen so to also test whether AV411 could still be effective in the face of established morphine dependence, which it was. AV411 did not simply attenuate all opioid effects, as co-administering AV411 with morphine or oxycodone caused three-to-five-fold increases in acute analgesic potency, as revealed by leftward shifts in the analgesic dose response curves. Timecourse analyses revealed that plasma morphine levels were not altered by AV411, suggestive that potentiated analgesia was not simply due to prolongation of morphine exposure or increased plasma concentrations. These data support and extend similar potentiation of acute opioid analgesia by minocycline, again providing converging lines of evidence of glial involvement. Hence, suppression of glial proinflammatory responses can significantly reduce opioid withdrawal, while improving analgesia.
Collapse
Affiliation(s)
- Mark R. Hutchinson
- Department of Psychology and the Center for Neuroscience, University of Colorado at Boulder, Boulder, CO, USA,Discipline of Pharmacology, School of Medical Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - Susannah S. Lewis
- Department of Psychology and the Center for Neuroscience, University of Colorado at Boulder, Boulder, CO, USA
| | - Benjamen D. Coats
- Department of Psychology and the Center for Neuroscience, University of Colorado at Boulder, Boulder, CO, USA
| | - David A. Skyba
- Department of Basic Sciences, College of Osteopathic Medicine, Touro University Nevada, Henderson, NV, USA
| | - Nicole Y. Crysdale
- Department of Psychology and the Center for Neuroscience, University of Colorado at Boulder, Boulder, CO, USA
| | - Debra L. Berkelhammer
- Department of Psychology and the Center for Neuroscience, University of Colorado at Boulder, Boulder, CO, USA
| | - Anita Brzeski
- Department of Psychology and the Center for Neuroscience, University of Colorado at Boulder, Boulder, CO, USA
| | - Alexis Northcutt
- Department of Psychology and the Center for Neuroscience, University of Colorado at Boulder, Boulder, CO, USA
| | | | - Charles M. Judd
- Department of Psychology and the Center for Neuroscience, University of Colorado at Boulder, Boulder, CO, USA
| | - Steven F. Maier
- Department of Psychology and the Center for Neuroscience, University of Colorado at Boulder, Boulder, CO, USA
| | - Linda R. Watkins
- Department of Psychology and the Center for Neuroscience, University of Colorado at Boulder, Boulder, CO, USA,Corresponding author: Linda R. Watkins, Department of Psychology, Campus Box 345, University of Colorado at Boulder, Boulder, Colorado, USA 80309-0345, , Fax: 303 492 2967, Ph: 303 492-7034
| | | |
Collapse
|
24
|
Mao X, Moerman-Herzog AM, Wang W, Barger SW. Differential transcriptional control of the superoxide dismutase-2 kappaB element in neurons and astrocytes. J Biol Chem 2006; 281:35863-72. [PMID: 17023425 PMCID: PMC2063448 DOI: 10.1074/jbc.m604166200] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
In addition to their conventional G-C/T target sequences, Sp1 family transcription factors (Sp-factors) can interact with a subset of the target sequences for NFkappaB. Due to the low level of bona fide NFkappaB activity in most resting cells, this interaction between Sp-factors and kappaB-sites could play important roles in cell function. Here we used mutagenesis of a canonical kappaB element from the immunoglobulin and HIV promoters to identify the GC-rich sequences at each end required for Sp-factor targeting. Through screening of multiple kappaB elements, a sequence element located in the second intron of superoxide dismutase-2 (SOD2) was identified as a good candidate for both NFkappaB and Sp-factor binding. In neurons, the prominent proteins interacting with this site were Sp3 and Sp4, whereas Sp1, Sp3, and NFkappaB were associated with this site in astroglia. The neuronal Sp-factors repressed transcriptional activity through this kappaB-site. In contrast, astroglial Sp-factors activated promoter activity through the same element. NFkappaB contributed to control of the SOD2 kappaB element only in astrocytes. These findings imply that cell-type specificity of transcription in the central nervous system, particularly with regard to kappaB elements, may include two unique aspects of neurons: 1) a recalcitrant NFkappaB and 2) the substitution of Sp4 for Sp1.
Collapse
Affiliation(s)
- Xianrong Mao
- Department of Geriatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, USA
| | | | | | | |
Collapse
|
25
|
Thal LJ, Kantarci K, Reiman EM, Klunk WE, Weiner MW, Zetterberg H, Galasko D, Praticò D, Griffin S, Schenk D, Siemers E. The role of biomarkers in clinical trials for Alzheimer disease. Alzheimer Dis Assoc Disord 2006; 20:6-15. [PMID: 16493230 PMCID: PMC1820855 DOI: 10.1097/01.wad.0000191420.61260.a8] [Citation(s) in RCA: 151] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Biomarkers are likely to be important in the study of Alzheimer disease (AD) for a variety of reasons. A clinical diagnosis of Alzheimer disease is inaccurate even among experienced investigators in about 10% to 15% of cases, and biomarkers might improve the accuracy of diagnosis. Importantly for the development of putative disease-modifying drugs for Alzheimer disease, biomarkers might also serve as indirect measures of disease severity. When used in this way, sample sizes of clinical trials might be reduced, and a change in biomarker could be considered supporting evidence of disease modification. This review summarizes a meeting of the Alzheimer's Association's Research Roundtable, during which existing and emerging biomarkers for AD were evaluated. Imaging biomarkers including volumetric magnetic resonance imaging and positron emission tomography assessing either glucose utilization or ligands binding to amyloid plaque are discussed. Additionally, biochemical biomarkers in blood or cerebrospinal fluid are assessed. Currently appropriate uses of biomarkers in the study of Alzheimer disease, and areas where additional work is needed, are discussed.
Collapse
Affiliation(s)
- Leon J. Thal
- From the University of California San Diego, Department of Neurosciences, La Jolla, California
| | - Kejal Kantarci
- Department of Radiology, Mayo Clinic, Rochester, Minnesota
| | - Eric M. Reiman
- Banner Good Samaritan Medical Center, University of Arizona, Translational Genomics Research Institute, Arizona Alzheimer’s Disease Consortium, Phoenix, Arizona
| | - William E. Klunk
- Department of Psychiatry, Laboratory of Molecular Neuropharmacology, Western Psychiatric Institute and Clinic, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Michael W. Weiner
- Center for Imaging of Neurodegenerative Diseases, VA Medical Center
- Department of Radiology, University of California, San Francisco; San Francisco, California; # Center for Neurologic Diseases, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts
| | - Henrik Zetterberg
- From the University of California San Diego, Department of Neurosciences, La Jolla, California
- Institute of Clinical Neuroscience, Department of Experimental Neuroscience, Sahlgrenska University Hospital, Göteborg University, Göteborg, Sweden
| | - Douglas Galasko
- Department of Neurosciences, University of California, San Diego; San Diego, California
| | - Domenico Praticò
- Department of Pharmacology, Center for Experimental Therapeutics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania
| | - Sue Griffin
- Donald W. Reynolds Institute on Aging, Department of Geriatrics, University of Arkansas for Medical Sciences and GRECC VA Medical Center, Little Rock, Arkansas
| | - Dale Schenk
- Elan Pharmaceuticals, South San Francisco, California
| | | |
Collapse
|
26
|
Venkataraman R, Song M, Lynas R, Kellum JA. Hemoadsorption to Improve Organ Recovery from Brain-Dead Organ Donors: A Novel Therapy for a Novel Indication? Blood Purif 2004; 22:143-9. [PMID: 14732823 DOI: 10.1159/000074935] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
While brain-dead organ donors represent the majority of the organ donor pool, it appears that graft survival is adversely affected by brain death itself. Brain death has been shown to cause severe disturbances in the hormonal, hemodynamic and immunological homeostasis, which could in part be responsible for the inferior outcome of organs originating from brain-dead donors compared to living donors. Hemodynamic effects of brain death lead to a wide fluctuation in mean perfusion pressures, blood flow to the organs and systemic oxygen consumption, altering regional perfusion. In addition, a wide array of immunological changes has been shown to occur after brain death contributing to organ injury and hemodynamic instability. Recent studies have shown that brain death upregulates multiple lymphocyte- and macrophage-derived cytokines and the injured brain itself may be the source of proinflammatory factors such as S100B. This increased inflammatory response seen during and immediately after brain death has also been associated with poor allograft function. Furthermore, there is evidence to suggest that the massive inflammatory response seen in brain-dead donors could also lead to increased immunogenicity and accelerated allograft rejection after transplantation. Hence, we hypothesize that nonspecific downregulation of this inflammatory response by hemoadsorption could potentially lead to improved donor organ and allograft function. As a 'proof of concept' we tested the ability of a novel hemoadsorbent to remove S100B in vitro using two human glioblastoma cell lines. Our results indicate a >80% reduction in S100B after 2 h of circulation with the sorbent.
Collapse
Affiliation(s)
- Ramesh Venkataraman
- CRISMA Laboratory (Clinical Research, Investigation, and Systems Modeling of Acute Illness), Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | | | | | | |
Collapse
|
27
|
Sorci G, Riuzzi F, Agneletti AL, Marchetti C, Donato R. S100B inhibits myogenic differentiation and myotube formation in a RAGE-independent manner. Mol Cell Biol 2003; 23:4870-81. [PMID: 12832473 PMCID: PMC162222 DOI: 10.1128/mcb.23.14.4870-4881.2003] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
S100B is a Ca(2+)-modulated protein of the EF-hand type with both intracellular and extracellular roles. S100B, which is most abundant in the brain, has been shown to exert trophic and toxic effects on neurons depending on the concentration attained in the extracellular space. S100B is also found in normal serum, and its serum concentration increases in several nervous and nonnervous pathological conditions, suggesting that S100B-expressing cells outside the brain might release the protein and S100B might exert effects on nonnervous cells. We show here that at picomolar to nanomolar levels, S100B inhibits myogenic differentiation of rat L6 myoblasts via inactivation of p38 kinase with resulting decrease in the expression of the myogenic differentiation markers, myogenin, muscle creatine kinase, and myosin heavy chain, and reduction of myotube formation. Although myoblasts express the multiligand receptor RAGE, which has been shown to transduce S100B effects on neurons, S100B produces identical effects on myoblasts overexpressing either full-length RAGE or RAGE lacking the transducing domain. This suggests that S100B affects myoblasts by interacting with another receptor and that RAGE is not the only receptor for S100B. Our data suggest that S100B might participate in the regulation of muscle development and regeneration by inhibiting crucial steps of the myogenic program in a RAGE-independent manner.
Collapse
Affiliation(s)
- Guglielmo Sorci
- Section of Anatomy, Department of Experimental Medicine and Biochemical Sciences, University of Perugia, 06122 Perugia, Italy
| | | | | | | | | |
Collapse
|
28
|
Interleukin-1 mediates pathological effects of microglia on tau phosphorylation and on synaptophysin synthesis in cortical neurons through a p38-MAPK pathway. J Neurosci 2003. [PMID: 12629164 DOI: 10.1523/jneurosci.23-05-01605.2003] [Citation(s) in RCA: 385] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The presence of tangles of abnormally phosphorylated tau is a characteristic of Alzheimer's disease (AD), and the loss of synapses correlates with the degree of dementia. In addition, the overexpression of interleukin-1 (IL-1) has been implicated in tangle formation in AD. As a direct test of the requirement for IL-1 in tau phosphorylation and synaptophysin expression, IL-1 actions in neuron-microglia cocultures were manipulated. Activation of microglia with secreted beta-amyloid precursor protein or lipopolysaccharide elevated their expression of IL-1alpha, IL-1beta, and tumor necrosis factor alpha (TNFalpha) mRNA. When such activated microglia were placed in coculture with primary neocortical neurons, a significant increase in the phosphorylation of neuronal tau was accompanied by a decline in synaptophysin levels. Similar effects were evoked by treatment of neurons with recombinant IL-1beta. IL-1 receptor antagonist (IL-1ra) as well as anti-IL-1beta antibody attenuated the influence of activated microglia on neuronal tau and synaptophysin, but anti-TNFalpha antibody was ineffective. Some effects of microglial activation on neurons appear to be mediated by activation of p38 mitogen-activated protein kinase (p38-MAPK), because activated microglia stimulated p38-MAPK phosphorylation in neurons, and an inhibitor of p38-MAPK reversed the influence of IL-1beta on tau phosphorylation and synaptophysin levels. Our results, together with previous observations, suggest that activated microglia may contribute to neurofibrillary pathology in AD through their production of IL-1, activation of neuronal p38-MAPK, and resultant changes in neuronal cytoskeletal and synaptic elements.
Collapse
|
29
|
Ryckman C, Vandal K, Rouleau P, Talbot M, Tessier PA. Proinflammatory activities of S100: proteins S100A8, S100A9, and S100A8/A9 induce neutrophil chemotaxis and adhesion. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2003; 170:3233-42. [PMID: 12626582 DOI: 10.4049/jimmunol.170.6.3233] [Citation(s) in RCA: 650] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
S100A8 and S100A9 are small calcium-binding proteins that are highly expressed in neutrophil and monocyte cytosol and are found at high levels in the extracellular milieu during inflammatory conditions. Although reports have proposed a proinflammatory role for these proteins, their extracellular activity remains controversial. In this study, we report that S100A8, S100A9, and S100A8/A9 caused neutrophil chemotaxis at concentrations of 10(-12)-10(-9) M. S100A8, S100A9, and S100A8/A9 stimulated shedding of L-selectin, up-regulated and activated Mac-1, and induced neutrophil adhesion to fibrinogen in vitro. Neutralization with Ab showed that this adhesion was mediated by Mac-1. Neutrophil adhesion was also associated with an increase in intracellular calcium levels. However, neutrophil activation by S100A8, S100A9, and S100A8/A9 did not induce actin polymerization. Finally, injection of S100A8, S100A9, or S100A8/A9 into a murine air pouch model led to rapid, transient accumulation of neutrophils confirming their activities in vivo. These studies 1) show that S100A8, S100A9, and S100A8/A9 are potent stimulators of neutrophils and 2) strongly suggest that these proteins are involved in neutrophil migration to inflammatory sites.
Collapse
Affiliation(s)
- Carle Ryckman
- Infectious Diseases Research Center, Laval University Hospital Center, Sainte-Foy, Quebec, Canada
| | | | | | | | | |
Collapse
|
30
|
Li Y, Liu L, Barger SW, Griffin WST. Interleukin-1 mediates pathological effects of microglia on tau phosphorylation and on synaptophysin synthesis in cortical neurons through a p38-MAPK pathway. J Neurosci 2003; 23:1605-11. [PMID: 12629164 PMCID: PMC3833596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023] Open
Abstract
The presence of tangles of abnormally phosphorylated tau is a characteristic of Alzheimer's disease (AD), and the loss of synapses correlates with the degree of dementia. In addition, the overexpression of interleukin-1 (IL-1) has been implicated in tangle formation in AD. As a direct test of the requirement for IL-1 in tau phosphorylation and synaptophysin expression, IL-1 actions in neuron-microglia cocultures were manipulated. Activation of microglia with secreted beta-amyloid precursor protein or lipopolysaccharide elevated their expression of IL-1alpha, IL-1beta, and tumor necrosis factor alpha (TNFalpha) mRNA. When such activated microglia were placed in coculture with primary neocortical neurons, a significant increase in the phosphorylation of neuronal tau was accompanied by a decline in synaptophysin levels. Similar effects were evoked by treatment of neurons with recombinant IL-1beta. IL-1 receptor antagonist (IL-1ra) as well as anti-IL-1beta antibody attenuated the influence of activated microglia on neuronal tau and synaptophysin, but anti-TNFalpha antibody was ineffective. Some effects of microglial activation on neurons appear to be mediated by activation of p38 mitogen-activated protein kinase (p38-MAPK), because activated microglia stimulated p38-MAPK phosphorylation in neurons, and an inhibitor of p38-MAPK reversed the influence of IL-1beta on tau phosphorylation and synaptophysin levels. Our results, together with previous observations, suggest that activated microglia may contribute to neurofibrillary pathology in AD through their production of IL-1, activation of neuronal p38-MAPK, and resultant changes in neuronal cytoskeletal and synaptic elements.
Collapse
Affiliation(s)
- Yuekui Li
- Department of Geriatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, USA
| | | | | | | |
Collapse
|
31
|
Li Y, Liu L, Barger SW, Mrak RE, Griffin WS. Vitamin E suppression of microglial activation is neuroprotective. J Neurosci Res 2001; 66:163-70. [PMID: 11592111 PMCID: PMC3903400 DOI: 10.1002/jnr.1208] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Neurotoxic microglial-neuronal interactions have been implicated in the pathogenesis of various neurodegenerative diseases such as Alzheimer's disease, and vitamin E has been shown to have direct neuroprotective effects. To determine whether vitamin E also has indirect neuroprotective effects through suppression of microglial activation, we used a microglial-neuronal coculture. Lipopolysaccharide (LPS) treatment of a microglial cell line (N9) induced a time-dependent activation of both p38 mitogen-activated protein kinase (p38 MAPK) and nuclear factor-kappaB (NFkappaB), with consequent increases in interleukin-1alpha (IL-1alpha), tumor necrosis factor-alpha (TNF-alpha), and nitric oxide (NO) production. Differentiated neuronal cells (PC12 cells treated with nerve growth factor) exhibited marked loss of processes and decreased survival when cocultured with LPS-activated microglia. Preincubation of microglia with vitamin E diminished this neurotoxic effect, independently of direct effects of the antioxidant on the neuronal cells. Microglial NO production and the induction of IL-1alpha and TNFalpha expression also were attenuated by vitamin E. Such antiinflammatory effects of vitamin E were correlated with suppression of p38 MAPK and NFkappaB activation and were mimicked by an inhibition of either p38 MAPK (by SB203580) or NFkappaB (by decoy oligonucleotides). These results suggest that, in addition to the beneficial effects of providing direct antioxidant protection to neurons reported by others, vitamin E may provide neuroprotection in vivo through suppression of signaling events necessary for microglial activation.
Collapse
Affiliation(s)
- Y Li
- Department of Geriatrics, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | | | | | | | | |
Collapse
|
32
|
Abstract
Established genetic causes of familial Alzheimer disease (AD) involve genes for beta-amyloid precursor protein (betaAPP), presenilin-1, and presenilin-2. For the more common sporadic forms of AD, increased risk has been associated with a number of genes; the most important of which is the epsilon4 allele of apolipoprotein E. Two recent studies, one clinical and one using postmortem material, now show increased risk for AD associated with certain polymorphisms in the genes encoding the alpha and beta isoforms of interleukin-1 (IL-1). IL-1 levels are elevated in Alzheimer brain, and overexpression of IL-1 is associated with beta-amyloid plaque progression. IL-1 interacts with the gene products of several other known or suspected genetic risk factors for AD, including betaAPP, apolipoprotein E, alpha1-antichymotrypsin, and alpha2-macroglobulin. IL-1 overexpression is also associated with environmental risk factors for AD, including normal aging and head trauma. These observations suggest an important pathogenic role for IL-1, and for IL-1-driven cascades, in the pathogenesis of AD.
Collapse
Affiliation(s)
- R E Mrak
- Pathology and Laboratory Medicine Service, Department of Veterans' Affairs Medical Center, Little Rock, Arkansas, USA
| | | |
Collapse
|