1
|
Pardridge WM. Treatment of Parkinson's disease with biologics that penetrate the blood-brain barrier via receptor-mediated transport. Front Aging Neurosci 2023; 15:1276376. [PMID: 38035276 PMCID: PMC10682952 DOI: 10.3389/fnagi.2023.1276376] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 10/27/2023] [Indexed: 12/02/2023] Open
Abstract
Parkinson's disease (PD) is characterized by neurodegeneration of nigral-striatal neurons in parallel with the formation of intra-neuronal α-synuclein aggregates, and these processes are exacerbated by neuro-inflammation. All 3 components of PD pathology are potentially treatable with biologics. Neurotrophins, such as glial derived neurotrophic factor or erythropoietin, can promote neural repair. Therapeutic antibodies can lead to disaggregation of α-synuclein neuronal inclusions. Decoy receptors can block the activity of pro-inflammatory cytokines in brain. However, these biologic drugs do not cross the blood-brain barrier (BBB). Biologics can be made transportable through the BBB following the re-engineering of the biologic as an IgG fusion protein, where the IgG domain targets an endogenous receptor-mediated transcytosis (RMT) system within the BBB, such as the insulin receptor or transferrin receptor. The receptor-specific antibody domain of the fusion protein acts as a molecular Trojan horse to ferry the biologic into brain via the BBB RMT pathway. This review describes the re-engineering of all 3 classes of biologics (neurotrophins, decoy receptor, therapeutic antibodies) for BBB delivery and treatment of PD. Targeting the RMT pathway at the BBB also enables non-viral gene therapy of PD using lipid nanoparticles (LNP) encapsulated with plasmid DNA encoding therapeutic genes. The surface of the lipid nanoparticle is conjugated with a receptor-specific IgG that triggers RMT of the LNP across the BBB in vivo.
Collapse
|
2
|
Villadiego J, García-Swinburn R, García-González D, Lebrón-Galán R, Murcia-Belmonte V, García-Roldán E, Suárez-Luna N, Nombela C, Marchena M, de Castro F, Toledo-Aral JJ. Extracellular matrix protein anosmin-1 overexpression alters dopaminergic phenotype in the CNS and the PNS with no pathogenic consequences in a MPTP model of Parkinson's disease. Brain Struct Funct 2023; 228:907-920. [PMID: 36995433 PMCID: PMC10147818 DOI: 10.1007/s00429-023-02631-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 03/15/2023] [Indexed: 03/31/2023]
Abstract
The development and survival of dopaminergic neurons are influenced by the fibroblast growth factor (FGF) pathway. Anosmin-1 (A1) is an extracellular matrix protein that acts as a major regulator of this signaling pathway, controlling FGF diffusion, and receptor interaction and shuttling. In particular, previous work showed that A1 overexpression results in more dopaminergic neurons in the olfactory bulb. Prompted by those intriguing results, in this study, we investigated the effects of A1 overexpression on different populations of catecholaminergic neurons in the central (CNS) and the peripheral nervous systems (PNS). We found that A1 overexpression increases the number of dopaminergic substantia nigra pars compacta (SNpc) neurons and alters the striosome/matrix organization of the striatum. Interestingly, these numerical and morphological changes in the nigrostriatal pathway of A1-mice did not confer an altered susceptibility to experimental MPTP-parkinsonism with respect to wild-type controls. Moreover, the study of the effects of A1 overexpression was extended to different dopaminergic tissues associated with the PNS, detecting a significant reduction in the number of dopaminergic chemosensitive carotid body glomus cells in A1-mice. Overall, our work shows that A1 regulates the development and survival of dopaminergic neurons in different nuclei of the mammalian nervous system.
Collapse
Affiliation(s)
- Javier Villadiego
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío-CSIC-Universidad de Sevilla, Avda. Manuel Siurot s/n, 41013, Seville, Spain
- Departamento de Fisiología Médica y Biofísica, Universidad de Sevilla, 41009, Sevilla, Spain
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Roberto García-Swinburn
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío-CSIC-Universidad de Sevilla, Avda. Manuel Siurot s/n, 41013, Seville, Spain
- Departamento de Fisiología Médica y Biofísica, Universidad de Sevilla, 41009, Sevilla, Spain
| | - Diego García-González
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío-CSIC-Universidad de Sevilla, Avda. Manuel Siurot s/n, 41013, Seville, Spain
- Grupo de Neurobiología del Desarrollo-GNDe, Hospital Nacional de Parapléjicos, 45071, Toledo, Spain
| | - Rafael Lebrón-Galán
- Grupo de Neurobiología del Desarrollo-GNDe, Hospital Nacional de Parapléjicos, 45071, Toledo, Spain
| | - Verónica Murcia-Belmonte
- Grupo de Neurobiología del Desarrollo-GNDe, Hospital Nacional de Parapléjicos, 45071, Toledo, Spain
- Instituto de Neurociencias, UMH-CSIC, Sant Joan d´Alacant, 03550, Alicante, Spain
| | - Ernesto García-Roldán
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío-CSIC-Universidad de Sevilla, Avda. Manuel Siurot s/n, 41013, Seville, Spain
- Departamento de Fisiología Médica y Biofísica, Universidad de Sevilla, 41009, Sevilla, Spain
- Servicio de Neurología y Neurofisiología Clínica, Hospital Universitario Virgen del Rocío, 41013, Sevilla, Spain
| | - Nela Suárez-Luna
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío-CSIC-Universidad de Sevilla, Avda. Manuel Siurot s/n, 41013, Seville, Spain
- Departamento de Fisiología Médica y Biofísica, Universidad de Sevilla, 41009, Sevilla, Spain
| | - Cristina Nombela
- Departamento de Psicología Biológica y de la Salud, Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - Miguel Marchena
- Grupo de Neurobiología del Desarrollo-GNDe, Instituto Cajal-CSIC, Avenida Doctor Arce 37, 28002, Madrid, Spain
- Departamento de Medicina, Universidad Europea de Madrid-UEM, Villaviciosa de Odón, 28670, Madrid, Spain
| | - Fernando de Castro
- Grupo de Neurobiología del Desarrollo-GNDe, Hospital Nacional de Parapléjicos, 45071, Toledo, Spain.
- Grupo de Neurobiología del Desarrollo-GNDe, Instituto Cajal-CSIC, Avenida Doctor Arce 37, 28002, Madrid, Spain.
| | - Juan José Toledo-Aral
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío-CSIC-Universidad de Sevilla, Avda. Manuel Siurot s/n, 41013, Seville, Spain.
- Departamento de Fisiología Médica y Biofísica, Universidad de Sevilla, 41009, Sevilla, Spain.
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.
| |
Collapse
|
3
|
Sajwan-Khatri M, Senthilkumaran B. MPTP induces neurodegeneration by modulating dopaminergic activity in catfish brain. Neurotoxicol Teratol 2023; 95:107146. [PMID: 36481438 DOI: 10.1016/j.ntt.2022.107146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 11/10/2022] [Accepted: 11/27/2022] [Indexed: 12/12/2022]
Abstract
Tyrosine hydroxylase (Th) is an allosteric rate-limiting enzyme in catecholamine (CA) biosynthesis. The CAs, dopamine (DA), norepinephrine (NE), and epinephrine are important neurotransmitters wherein DA contributes a key role in the central nervous system of vertebrates. The present study evaluated DA and Th's significance in DA-ergic activity and neurodegeneration upon 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) exposure in catfish. Further, the expression of certain brain-and ovary-related genes measured through qPCR were downregulated upon MPTP treatment which is in accordance with the decreased levels of L-Dopa, DA, and NE levels estimated through HPLC-ECD. Additionally, TEM analysis depicted structural disarray of brain upon MPTP exposure and also decreased serum levels of testosterone, 11-ketotestosterone, and estradiol-17β. MPTP treatment, in vitro, using primary brain cell culture resulted in diminished cell viability and increased ROS levels leading to elevated apoptotic cells significantly. Consequently, the study highlights the MPTP-induced neurodegeneration of the Th and DA-ergic activity in corroboration with female brain-related genes downregulation, also gonadal function as evidenced by depleted sex steroids level and low expression of ovary-related genes.
Collapse
Affiliation(s)
- Mamta Sajwan-Khatri
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, P.O. Central University, Hyderabad 500046, Telangana, India.
| | - Balasubramanian Senthilkumaran
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, P.O. Central University, Hyderabad 500046, Telangana, India.
| |
Collapse
|
4
|
Saito Y, Miyajima M, Yamamoto S, Miura N, Sato T, Kita A, Ijima S, Fujimiya M, Chikenji TS. OUP accepted manuscript. Stem Cells Transl Med 2022; 11:644-658. [PMID: 35466994 PMCID: PMC9216504 DOI: 10.1093/stcltm/szac021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Accepted: 03/06/2022] [Indexed: 11/15/2022] Open
Affiliation(s)
- Yuki Saito
- Department of Anatomy, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Maki Miyajima
- Graduate School of Health Sciences, Hokkaido University, Sapporo, Japan
| | - Sena Yamamoto
- Graduate School of Health Sciences, Hokkaido University, Sapporo, Japan
| | - Norihiro Miura
- Graduate School of Health Sciences, Hokkaido University, Sapporo, Japan
| | - Tsukasa Sato
- Graduate School of Health Sciences, Hokkaido University, Sapporo, Japan
| | - Arisa Kita
- Department of Plastic and Reconstructive Surgery, Sapporo Medical University, Sapporo, Japan
| | - Shogo Ijima
- Department of Oral Surgery, Sapporo Medical University, Sapporo, Japan
| | - Mineko Fujimiya
- Department of Anatomy, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Takako S Chikenji
- Corresponding author: Takako S. Chikenji, PhD. , North 12 West 5, Kitaku, Sapporo 060-0812, Japan. Tel: +011 706 3382; Fax: +011 706 3382;
| |
Collapse
|
5
|
Mesa-Infante V, Afonso-Oramas D, Salas-Hernández J, Rodríguez-Núñez J, Barroso-Chinea P. Long-term exposure to GDNF induces dephosphorylation of Ret, AKT, and ERK1/2, and is ineffective at protecting midbrain dopaminergic neurons in cellular models of Parkinson's disease. Mol Cell Neurosci 2021; 118:103684. [PMID: 34826608 DOI: 10.1016/j.mcn.2021.103684] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 11/12/2021] [Accepted: 11/13/2021] [Indexed: 12/01/2022] Open
Abstract
Glial cell line-derived neurotrophic factor (GDNF) promotes differentiation, proliferation, and survival in different cell types, including dopaminergic neurons. Thus, GDNF has been proposed as a promising neuroprotective therapy in Parkinson's disease. Although findings from cellular and animal models of Parkinson's disease were encouraging, results emerging from clinical trials were not as good as expected, probably due to the inappropriate administration protocols. Despite the growing information on GDNF action mechanisms, many aspects of its pharmacological effects are still unclear and data from different studies are still contradictory. Considering that GDNF action mechanisms are mediated by its receptor tyrosine kinase Ret, which activates PI3K/AKT and MAPK/ERK signaling pathways, we aimed to investigate Ret activation and its effect over both signaling pathways in midbrain cell cultures treated with GDNF at different doses (0.3, 1, and 10 ng/ml) and times (15 min, 24 h, 24 h (7 days), and 7 continuous days). The results showed that short-term or acute (15 min, 24 h, and 24 h (7 days)) GDNF treatment in rat midbrain neurons increases Tyrosine hydroxylase (TH) expression and the phosphorylation levels of Ret (Tyr 1062), AKT (Ser 473), ERK1/2 (Thr202/Tyr204), S6 (Ser 235/236), and GSK3-β (Ser 9). However, the phosphorylation level of these kinases, TH expression, and dopamine uptake, decreased below basal levels after long-term or prolonged treatment with 1 and 10 ng/ml GDNF (7 continuous days). Our data suggest that long-term GDNF treatment inactivates the receptor by an unknown mechanism, affecting its neuroprotective capacity against degeneration caused by 6-OHDA or rotenone, while short-term exposure to GDNF promoted dopaminergic cell survival. These findings highlight the need to find new and more effective long-acting therapeutic approaches for disorders in which GDNF plays a beneficial role, including Parkinson's disease. In this regard, it is necessary to propose new GDNF treatment guidelines to regulate and control its long-term expression levels and optimize the clinical use of this trophic factor in patients with Parkinson's disease.
Collapse
Affiliation(s)
- V Mesa-Infante
- Departamento de Ciencias Médicas Básicas, Facultad de Medicina, Universidad de La Laguna, Tenerife, Spain
| | - D Afonso-Oramas
- Departamento de Ciencias Médicas Básicas, Facultad de Medicina, Universidad de La Laguna, Tenerife, Spain; Instituto de Tecnologías Biomédicas de Canarias (ITB), Universidad de La Laguna, Tenerife, Spain.
| | - J Salas-Hernández
- Departamento de Ciencias Médicas Básicas, Facultad de Medicina, Universidad de La Laguna, Tenerife, Spain
| | - J Rodríguez-Núñez
- Departamento de Ciencias Médicas Básicas, Facultad de Medicina, Universidad de La Laguna, Tenerife, Spain
| | - P Barroso-Chinea
- Departamento de Ciencias Médicas Básicas, Facultad de Medicina, Universidad de La Laguna, Tenerife, Spain; Instituto de Tecnologías Biomédicas de Canarias (ITB), Universidad de La Laguna, Tenerife, Spain.
| |
Collapse
|
6
|
Lara-Rodarte R, Cortés D, Soriano K, Carmona F, Rocha L, Estudillo E, López-Ornelas A, Velasco I. Mouse Embryonic Stem Cells Expressing GDNF Show Enhanced Dopaminergic Differentiation and Promote Behavioral Recovery After Grafting in Parkinsonian Rats. Front Cell Dev Biol 2021; 9:661656. [PMID: 34239871 PMCID: PMC8258349 DOI: 10.3389/fcell.2021.661656] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 05/17/2021] [Indexed: 11/17/2022] Open
Abstract
Parkinson's disease (PD) is characterized by the progressive loss of midbrain dopaminergic neurons (DaNs) of the substantia nigra pars compacta and the decrease of dopamine in the brain. Grafting DaN differentiated from embryonic stem cells (ESCs) has been proposed as an alternative therapy for current pharmacological treatments. Intrastriatal grafting of such DaNs differentiated from mouse or human ESCs improves motor performance, restores DA release, and suppresses dopamine receptor super-sensitivity. However, a low percentage of grafted neurons survive in the brain. Glial cell line-derived neurotrophic factor (GDNF) is a strong survival factor for DaNs. GDNF has proved to be neurotrophic for DaNs in vitro and in vivo, and induces axonal sprouting and maturation. Here, we engineered mouse ESCs to constitutively produce human GDNF, to analyze DaN differentiation and the possible neuroprotection by transgenic GDNF after toxic challenges in vitro, or after grafting differentiated DaNs into the striatum of Parkinsonian rats. GDNF overexpression throughout in vitro differentiation of mouse ESCs increases the proportion of midbrain DaNs. These transgenic cells were less sensitive than control cells to 6-hydroxydopamine in vitro. After grafting control or GDNF transgenic DaNs in hemi-Parkinsonian rats, we observed significant recoveries in both pharmacological and non-pharmacological behavioral tests, as well as increased striatal DA release, indicating that DaNs are functional in the brain. The graft volume, the number of surviving neurons, the number of DaNs present in the striatum, and the proportion of DaNs in the grafts were significantly higher in rats transplanted with GDNF-expressing cells, when compared to control cells. Interestingly, no morphological alterations in the brain of rats were found after grafting of GDNF-expressing cells. This approach is novel, because previous works have use co-grafting of DaNs with other cell types that express GDNF, or viral transduction in the host tissue before or after grafting of DaNs. In conclusion, GDNF production by mouse ESCs contributes to enhanced midbrain differentiation and permits a higher number of surviving DaNs after a 6-hydroxydopamine challenge in vitro, as well as post-grafting in the lesioned striatum. These GDNF-expressing ESCs can be useful to improve neuronal survival after transplantation.
Collapse
Affiliation(s)
- Rolando Lara-Rodarte
- Instituto de Fisiología Celular – Neurociencias, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Laboratorio de Reprogramación Celular, Instituto Nacional de Neurología y Neurocirugía “Manuel Velasco Suárez,”Mexico City, Mexico
| | - Daniel Cortés
- Instituto de Fisiología Celular – Neurociencias, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Laboratorio de Reprogramación Celular, Instituto Nacional de Neurología y Neurocirugía “Manuel Velasco Suárez,”Mexico City, Mexico
| | - Karla Soriano
- Instituto de Fisiología Celular – Neurociencias, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Laboratorio de Reprogramación Celular, Instituto Nacional de Neurología y Neurocirugía “Manuel Velasco Suárez,”Mexico City, Mexico
| | - Francia Carmona
- Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados (Cinvestav), Mexico City, Mexico
| | - Luisa Rocha
- Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados (Cinvestav), Mexico City, Mexico
| | - Enrique Estudillo
- Laboratorio de Reprogramación Celular, Instituto Nacional de Neurología y Neurocirugía “Manuel Velasco Suárez,”Mexico City, Mexico
| | - Adolfo López-Ornelas
- Instituto de Fisiología Celular – Neurociencias, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Laboratorio de Reprogramación Celular, Instituto Nacional de Neurología y Neurocirugía “Manuel Velasco Suárez,”Mexico City, Mexico
- División de Investigación, Hospital Juárez de México, Mexico City, Mexico
| | - Iván Velasco
- Instituto de Fisiología Celular – Neurociencias, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Laboratorio de Reprogramación Celular, Instituto Nacional de Neurología y Neurocirugía “Manuel Velasco Suárez,”Mexico City, Mexico
| |
Collapse
|
7
|
Viral Delivery of GDNF Promotes Functional Integration of Human Stem Cell Grafts in Parkinson's Disease. Cell Stem Cell 2020; 26:511-526.e5. [PMID: 32059808 DOI: 10.1016/j.stem.2020.01.010] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 10/31/2019] [Accepted: 01/16/2020] [Indexed: 12/12/2022]
Abstract
Dopaminergic neurons (DAns), generated from human pluripotent stem cells (hPSCs), are capable of functionally integrating following transplantation and have recently advanced to clinical trials for Parkinson's disease (PD). However, pre-clinical studies have highlighted the low proportion of DAns within hPSC-derived grafts and their inferior plasticity compared to fetal tissue. Here, we examined whether delivery of a developmentally critical protein, glial cell line-derived neurotrophic factor (GDNF), could improve graft outcomes. We tracked the response of DAns implanted into either a GDNF-rich environment or after a delay in exposure. Early GDNF promoted survival and plasticity of non-DAns, leading to enhanced motor recovery in PD rats. Delayed exposure to GDNF promoted functional recovery through increases in DAn specification, DAn plasticity, and DA metabolism. Transcriptional profiling revealed a role for mitogen-activated protein kinase (MAPK)-signaling downstream of GDNF. Collectively, these results demonstrate the potential of neurotrophic gene therapy strategies to improve hPSC graft outcomes.
Collapse
|
8
|
Kumasaka MY, Yajima I, Ohgami N, Ninomiya H, Iida M, Li X, Oshino R, Tanihata H, Yoshinaga M, Kato M. Manganese-Mediated Decrease in Levels of c-RET and Tyrosine Hydroxylase Expression In Vitro. Neurotox Res 2017; 32:661-670. [PMID: 28730349 DOI: 10.1007/s12640-017-9783-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 06/29/2017] [Accepted: 07/05/2017] [Indexed: 10/19/2022]
Abstract
Previous studies showed that overexposure to manganese causes parkinsonism, a disorder of dopaminergic neurons. Previous studies also showed that activity of c-RET kinase controls dopamine production through regulation of tyrosine hydroxylase (TH) expression, suggesting the involvement of c-RET in the development of parkinsonism. To our knowledge, however, there is no report showing a correlation between manganese-mediated parkinsonism and c-RET. In this study, we examined the effect of manganese on the expression and/or activation levels of c-RET and TH in human TH-expressing cells (TGW cells). We first found that treatment with 30 and 100 μM manganese resulted in reduction of c-RET transcript level and degradation of c-RET protein through promotion of ubiquitination. We then examined the biological significance of manganese-mediated decrease of c-RET protein expression. Decreased TH expression with decreased c-RET kinase activity was observed in c-RET protein-depleted TGW cells by treatment with manganese (30 μM) as well as by c-RET siRNA transfection. Since TH protein has been shown to be involved in the dopamine-producing pathway in previous studies, our results indicate the possibility that manganese-mediated reduction of TH expression and phosphorylation via decreased expression of c-RET protein in neural cells is involved in parkinsonism induced by manganese.
Collapse
Affiliation(s)
- Mayuko Y Kumasaka
- Department of Occupational and Environmental Health, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8550, Japan.,Unit of Environmental Health Sciences, Department of Biomedical Sciences, College of Life and Health Sciences, Chubu University, Kasugai-shi, Aichi, 487-8501, Japan.,Voluntary Body for International Health Care in Universities, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8550, Japan
| | - Ichiro Yajima
- Department of Occupational and Environmental Health, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8550, Japan.,Unit of Environmental Health Sciences, Department of Biomedical Sciences, College of Life and Health Sciences, Chubu University, Kasugai-shi, Aichi, 487-8501, Japan.,Voluntary Body for International Health Care in Universities, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8550, Japan
| | - Nobutaka Ohgami
- Department of Occupational and Environmental Health, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8550, Japan.,Unit of Environmental Health Sciences, Department of Biomedical Sciences, College of Life and Health Sciences, Chubu University, Kasugai-shi, Aichi, 487-8501, Japan.,Voluntary Body for International Health Care in Universities, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8550, Japan
| | - Hiromasa Ninomiya
- Department of Occupational and Environmental Health, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8550, Japan.,Voluntary Body for International Health Care in Universities, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8550, Japan
| | - Machiko Iida
- Department of Occupational and Environmental Health, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8550, Japan.,Unit of Environmental Health Sciences, Department of Biomedical Sciences, College of Life and Health Sciences, Chubu University, Kasugai-shi, Aichi, 487-8501, Japan.,Voluntary Body for International Health Care in Universities, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8550, Japan
| | - Xiang Li
- Department of Occupational and Environmental Health, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8550, Japan
| | - Reina Oshino
- Department of Occupational and Environmental Health, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8550, Japan.,Voluntary Body for International Health Care in Universities, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8550, Japan
| | - Hiroko Tanihata
- Department of Occupational and Environmental Health, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8550, Japan
| | - Masafumi Yoshinaga
- Department of Occupational and Environmental Health, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8550, Japan.,Voluntary Body for International Health Care in Universities, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8550, Japan
| | - Masashi Kato
- Department of Occupational and Environmental Health, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8550, Japan. .,Unit of Environmental Health Sciences, Department of Biomedical Sciences, College of Life and Health Sciences, Chubu University, Kasugai-shi, Aichi, 487-8501, Japan. .,Voluntary Body for International Health Care in Universities, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8550, Japan.
| |
Collapse
|
9
|
Dampened Amphetamine-Stimulated Behavior and Altered Dopamine Transporter Function in the Absence of Brain GDNF. J Neurosci 2017; 37:1581-1590. [PMID: 28096470 DOI: 10.1523/jneurosci.1673-16.2016] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 11/25/2016] [Accepted: 12/13/2016] [Indexed: 12/22/2022] Open
Abstract
Midbrain dopamine neuron dysfunction contributes to various psychiatric and neurological diseases, including drug addiction and Parkinson's disease. Because of its well established dopaminotrophic effects, the therapeutic potential of glial cell line-derived neurotrophic factor (GDNF) has been studied extensively in various disorders with disturbed dopamine homeostasis. However, the outcomes from preclinical and clinical studies vary, highlighting a need for a better understanding of the physiological role of GDNF on striatal dopaminergic function. Nevertheless, the current lack of appropriate animal models has limited this understanding. Therefore, we have generated novel mouse models to study conditional Gdnf deletion in the CNS during embryonic development and reduction of striatal GDNF levels in adult mice via AAV-Cre delivery. We found that both of these mice have reduced amphetamine-induced locomotor response and striatal dopamine efflux. Embryonic GDNF deletion in the CNS did not affect striatal dopamine levels or dopamine release, but dopamine reuptake was increased due to increased levels of both total and synaptic membrane-associated dopamine transporters. Collectively, these results suggest that endogenous GDNF plays an important role in regulating the function of dopamine transporters in the striatum.SIGNIFICANCE STATEMENT Delivery of ectopic glial cell line-derived neurotrophic factor (GDNF) promotes the function, plasticity, and survival of midbrain dopaminergic neurons, the dysfunction of which contributes to various neurological and psychiatric diseases. However, how the deletion or reduction of GDNF in the CNS affects the function of dopaminergic neurons has remained unknown. Using conditional Gdnf knock-out mice, we found that endogenous GDNF affects striatal dopamine homeostasis and regulates amphetamine-induced behaviors by regulating the level and function of dopamine transporters. These data regarding the physiological role of GDNF are relevant in the context of neurological and neurodegenerative diseases that involve changes in dopamine transporter function.
Collapse
|
10
|
Kramer ER, Liss B. GDNF-Ret signaling in midbrain dopaminergic neurons and its implication for Parkinson disease. FEBS Lett 2015; 589:3760-72. [DOI: 10.1016/j.febslet.2015.11.006] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Revised: 10/29/2015] [Accepted: 11/03/2015] [Indexed: 12/11/2022]
|
11
|
Treating small fiber neuropathy by topical application of a small molecule modulator of ligand-induced GFRα/RET receptor signaling. Proc Natl Acad Sci U S A 2014; 111:2325-30. [PMID: 24449858 DOI: 10.1073/pnas.1308889111] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Small-fiber neuropathy (SFN) is a disorder of peripheral nerves commonly found in patients with diabetes mellitus, HIV infection, and those receiving chemotherapy. The complexity of disease etiology has led to a scarcity of effective treatments. Using two models of progressive SFN, we show that overexpression of glial cell line-derived neurotrophic factor (GDNF) in skin keratinocytes or topical application of XIB4035, a reported nonpeptidyl agonist of GDNF receptor α1 (GFRα1), are effective treatments for SFN. We also demonstrate that XIB4035 is not a GFRα1 agonist, but rather it enhances GFRα family receptor signaling in conjunction with ligand stimulation. Taken together, our results indicate that topical application of GFRα/RET receptor signaling modulators may be a unique therapy for SFN, and we have identified XIB4035 as a candidate therapeutic agent.
Collapse
|
12
|
Functional neuroprotection and efficient regulation of GDNF using destabilizing domains in a rodent model of Parkinson's disease. Mol Ther 2013; 21:2169-80. [PMID: 23881415 DOI: 10.1038/mt.2013.169] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Accepted: 07/10/2013] [Indexed: 11/08/2022] Open
Abstract
Glial cell line-derived neurotrophic factor (GDNF) has great potential to treat Parkinson's disease (PD). However, constitutive expression of GDNF can over time lead to side effects. Therefore, it would be useful to regulate GDNF expression. Recently, a new gene inducible system using destabilizing domains (DD) from E. coli dihydrofolate reductase (DHFR) has been developed and characterized. The advantage of this novel DD is that it is regulated by trimethoprim (TMP), a well-characterized drug that crosses the blood-brain barrier and can therefore be used to regulate gene expression in the brain. We have adapted this system to regulate expression of GDNF. A C-terminal fusion of GDNF and a DD with an additional furin cleavage site was able to be efficiently regulated in vitro, properly processed and was able to bind to canonical GDNF receptors, inducing a signaling cascade response in target cells. In vivo characterization of the protein showed that it could be efficiently induced by TMP and it was only functional when gene expression was turned on. Further characterization in a rodent model of PD showed that the regulated GDNF protected neurons, improved motor behavior of animals and was efficiently regulated in a pathological setting.
Collapse
|
13
|
Quintino L, Baudet A, Larsson J, Lundberg C. FACS binding assay for analysing GDNF interactions. J Neurosci Methods 2013; 218:25-8. [PMID: 23669067 DOI: 10.1016/j.jneumeth.2013.04.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Revised: 04/10/2013] [Accepted: 04/11/2013] [Indexed: 11/29/2022]
Abstract
Glial cell-line derived neurotrophic factor (GDNF) is a secreted protein with great therapeutic potential. However, in order to analyse the interactions between GDNF and its receptors, researchers have been mostly dependent of radioactive binding assays. We developed a FACS-based binding assay for GDNF as an alternative to current methods. We demonstrated that the FACS-based assay using TGW cells allowed readily detection of GDNF binding and displacement to endogenous receptors. The dissociation constant and half maximal inhibitory concentration obtained were comparable to other studies using standard binding assays. Overall, this FACS-based, simple to perform and adaptable to high throughput setup, provides a safer and reliable alternative to radioactive methods.
Collapse
Affiliation(s)
- Luís Quintino
- CNS Gene Therapy, Department of Experimental Medical Sciences, Faculty of Medicine, Lund University, Lund, Sweden
| | | | | | | |
Collapse
|
14
|
Tai K, Quintino L, Isaksson C, Gussing F, Lundberg C. Destabilizing domains mediate reversible transgene expression in the brain. PLoS One 2012; 7:e46269. [PMID: 23029456 PMCID: PMC3460874 DOI: 10.1371/journal.pone.0046269] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Accepted: 08/28/2012] [Indexed: 11/18/2022] Open
Abstract
Regulating transgene expression in vivo by delivering oral drugs has been a long-time goal for the gene therapy field. A novel gene regulating system based on targeted proteasomal degradation has been recently developed. The system is based on a destabilizing domain (DD) of the Escherichia coli dihydrofolate reductase (DHFR) that directs fused proteins to proteasomal destruction. Creating YFP proteins fused to destabilizing domains enabled TMP based induction of YFP expression in the brain, whereas omission of TMP resulted in loss of YFP expression. Moreover, induction of YFP expression was dose dependent and at higher TMP dosages, induced YFP reached levels comparable to expression of unregulated transgene., Transgene expression could be reversibly regulated using the DD system. Importantly, no adverse effects of TMP treatment or expression of DD-fusion proteins in the brain were observed. To show proof of concept that destabilizing domains derived from DHFR could be used with a biologically active molecule, DD were fused to GDNF, which is a potent neurotrophic factor of dopamine neurons. N-terminal placement of the DD resulted in TMP-regulated release of biologically active GDNF. Our findings suggest that TMP-regulated destabilizing domains can afford transgene regulation in the brain. The fact that GDNF could be regulated is very promising for developing future gene therapies (e.g. for Parkinson's disease) and should be further investigated.
Collapse
Affiliation(s)
| | | | | | | | - Cecilia Lundberg
- CNS Gene Therapy Unit, Wallenberg Neuroscience Center, Department of Experimental Medical Science, Lund University, Lund, Sweden
| |
Collapse
|
15
|
Hirata Y, Furuta K, Suzuki M, Oh-hashi K, Ueno Y, Kiuchi K. Neuroprotective cyclopentenone prostaglandins up-regulate neurotrophic factors in C6 glioma cells. Brain Res 2012; 1482:91-100. [PMID: 22982731 DOI: 10.1016/j.brainres.2012.09.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Revised: 09/05/2012] [Accepted: 09/06/2012] [Indexed: 12/30/2022]
Abstract
In a previous study, we developed newly synthesized arylthio derivatives of cyclopentenone prostaglandins (GIF-0642, GIF-0643, GIF-0644, GIF-0745 and GIF-0747), which are neuroprotective against both manganese toxicity in PC12 cells and glutamate toxicity in HT22 cells. In the present study, we showed that these compounds and their lead compound, NEPP11, are potent inducers of glial cell line-derived neurotrophic factor (GDNF) expression in C6 glioma cells and primary astrocytes. These neuroprotective cyclopentenone prostaglandins also induced the gene expression of nerve growth factor and, to a lesser extent, brain-derived neurotrophic factor. The induction of GDNF mRNA was transcription-dependent, and the overexpression of dominant-negative Nrf2 attenuated the ability of the (arylthio)cyclopentenone prostaglandins to stimulate GDNF gene expression. These results suggest that (arylthio)cyclopentenone prostaglandins increase GDNF gene expression partly via the Keap1/Nrf2 pathway. A growing number of reports demonstrate the importance of increasing the amounts of neurotrophic factors, especially GDNF, in neuropathological states. Although the precise mechanisms by which the GIF compounds inhibit cell death are under investigation, an increase in neurotrophic factors may contribute to the diverse pharmacological properties of (arylthio)cyclopentenone prostaglandins in vivo and will make them potentially valuable in the treatment of neurodegenerative disorders.
Collapse
Affiliation(s)
- Yoko Hirata
- Department of Biomolecular Science, Faculty of Engineering, Gifu University, Yanagido, Gifu 501 1193, Japan.
| | | | | | | | | | | |
Collapse
|
16
|
Fukuchi M, Fujii H, Takachi H, Ichinose H, Kuwana Y, Tabuchi A, Tsuda M. Activation of tyrosine hydroxylase (TH) gene transcription induced by brain-derived neurotrophic factor (BDNF) and its selective inhibition through Ca2+ signals evoked via the N-methyl-d-aspartate (NMDA) receptor. Brain Res 2010; 1366:18-26. [DOI: 10.1016/j.brainres.2010.10.034] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2010] [Revised: 09/30/2010] [Accepted: 10/11/2010] [Indexed: 02/06/2023]
|
17
|
Pruett BS, Salvatore MF. GFR α-1 receptor expression in the aging nigrostriatal and mesoaccumbens pathways. J Neurochem 2010; 115:707-15. [DOI: 10.1111/j.1471-4159.2010.06963.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
18
|
Intravenous treatment of experimental Parkinson's disease in the mouse with an IgG-GDNF fusion protein that penetrates the blood-brain barrier. Brain Res 2010; 1352:208-13. [PMID: 20599807 DOI: 10.1016/j.brainres.2010.06.059] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2010] [Revised: 06/22/2010] [Accepted: 06/23/2010] [Indexed: 12/30/2022]
Abstract
Glial-derived neurotrophic factor (GDNF) is a trophic factor for the nigra-striatal tract in experimental Parkinson's disease (PD). The neurotrophin must be administered by intra-cerebral injection, because GDNF does not cross the blood-brain barrier (BBB). In the present study, GDNF was re-engineered to enable receptor-mediated transport across the BBB following fusion of GDNF to the heavy chain of a chimeric monoclonal antibody (MAb) against the mouse transferrin receptor (TfR), and this fusion protein is designated cTfRMAb-GDNF. This fusion protein had been previously shown to retain low nM binding constants for both the GDNF receptor and the mouse TfR, and to rapidly enter the mouse brain in vivo following intravenous administration. Experimental PD in mice was induced by the intra-striatal injection of 6-hydroxydopamine, and mice were treated with either saline or the cTfRMAb-GDNF fusion protein every other day for 3 weeks, starting 1 h after toxin injection. Fusion protein treatment caused a 44% decrease in apomorphine-induced rotation, a 45% reduction in amphetamine-induced rotation, a 121% increase in the vibrissae-elicited forelimb placing test, and a 272% increase in striatal tyrosine hydroxylase (TH) enzyme activity at 3 weeks after toxin injection. Fusion protein treatment caused no change in TH enzyme activity in either the contralateral striatum or the frontal cortex. In conclusion, following fusion of GDNF to a BBB molecular Trojan horse, GDNF trophic effects in brain in experimental PD are observed following intravenous administration.
Collapse
|
19
|
Zhao Q, Gao J, Li W, Cai D. Neurotrophic and neurorescue effects of Echinacoside in the subacute MPTP mouse model of Parkinson's disease. Brain Res 2010; 1346:224-36. [PMID: 20478277 DOI: 10.1016/j.brainres.2010.05.018] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2010] [Revised: 05/01/2010] [Accepted: 05/04/2010] [Indexed: 12/29/2022]
Abstract
Many experiments support the notion that augmentation of neurotrophic factors' (NTFs) activity, especially glial cell line-derived neurotrophic factor (GDNF) and brain-derived neurotrophic factor (BDNF) could prevent or halt the progress of neurodegeneration in Parkinson's disease (PD). However, application of NTFs as therapeutic agents for PD is hampered by the difficulty in delivering them to specific brain regions safely and effectively. Another potential strategy is to stimulate the endogenous expression of NTFs. In this study, we investigated the effects of Echinacoside (ECH), a monomer extracted from herbs, on rescuing dopaminergic function in 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP)-lesioned mice. We found that oral administration of ECH (30 mg/kg/day for 14 days) to MPTP-treated mice, commencing after impairment of the nigrstriatal system, suppressed the reduction of nigral dopaminergic neurons, striatal fibers, dopamine and dopamine transporter to 134.24%, 203.17%, 147.25% and 154.72 of MPTP-lesioned animals respectively (p<0.05). There was a relative elevation in expression of GDNF and BDNF mRNA (2.94 and 3.75-fold) and protein (184.34% and 185.93%) in ECH treated mice compared with vehicle-treated MPTP-lesioned mice (p<0.05). In addition, the apoptosis cells and Bax/Bcl-2 ratio of mRNA and protein in MPTP-lesioned mice significantly increased, and these effects could be prevented by ECH. At the 7th and 14th days of ECH treatment, the gait disorder displayed obvious improvement (p<0.05). These findings demonstrate that ECH is probably a novel, orally active, non-peptide inducer of NTFs and inhibitor of apoptosis, and they provide preclinical support for therapeutic potential of this compound in the treatment of PD.
Collapse
MESH Headings
- Animals
- Apoptosis/drug effects
- Axons/enzymology
- Blotting, Western
- Brain-Derived Neurotrophic Factor/biosynthesis
- Cell Survival/drug effects
- Chromatography, High Pressure Liquid
- Dopamine/metabolism
- Dopamine/physiology
- Gait Disorders, Neurologic/chemically induced
- Gait Disorders, Neurologic/psychology
- Glial Cell Line-Derived Neurotrophic Factor/biosynthesis
- Glycosides/therapeutic use
- Immunohistochemistry
- In Situ Nick-End Labeling
- MPTP Poisoning/drug therapy
- MPTP Poisoning/metabolism
- Male
- Mice
- Mice, Inbred C57BL
- Neostriatum/enzymology
- Nerve Growth Factors/biosynthesis
- Neurons/drug effects
- Neurons/physiology
- Parkinson Disease, Secondary/chemically induced
- Parkinson Disease, Secondary/drug therapy
- Parkinson Disease, Secondary/metabolism
- Proto-Oncogene Proteins c-bcl-2/biosynthesis
- RNA, Messenger/biosynthesis
- RNA, Messenger/genetics
- Tyrosine 3-Monooxygenase/metabolism
- bcl-2-Associated X Protein/biosynthesis
Collapse
Affiliation(s)
- Qing Zhao
- Laboratory of Neurology, Institute of Integrative Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | | | | | | |
Collapse
|
20
|
Yang X, Mertens B, Lehtonen E, Vercammen L, Bockstael O, Chtarto A, Levivier M, Brotchi J, Michotte Y, Baekelandt V, Sarre S, Tenenbaum L. Reversible neurochemical changes mediated by delayed intrastriatal glial cell line-derived neurotrophic factor gene delivery in a partial Parkinson's disease rat model. J Gene Med 2009; 11:899-912. [PMID: 19639608 DOI: 10.1002/jgm.1377] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Efficient protection of dopaminergic neurons against a subsequent 6-hydroxydopamine lesion by glial cell line-derived neurotrophic factor (GDNF) gene delivery has been demonstrated. By contrast, the neurorestorative effects of GDNF administered several weeks after the toxin have been less characterized. In particular, whether these were permanent or dependent on the continuous presence of GDNF remains elusive. METHODS A tetracycline-inducible adeno-associated virus (AAV)-1 vector expressing human GDNF cDNA was administered unilaterally in the rat striatum 5 weeks after 6-hydroxydopamine. Rats were treated with doxycycline (dox) or untreated from the day of vector injection until sacrifice (4 or 14 weeks). A sub-group was dox-treated for 7 weeks then untreated until 14 weeks. The motor behavior was assessed by amphetamine-induced rotations and spontaneous forelimb asymmetry. The amounts of tyrosine hydroxylase (TH), serine-40-phosphorylated TH (S40-TH) and aromatic amino acid decarboxylase (AADC) proteins were compared by western blotting and the dopamine levels quantified by high-performance liquid chromatography. RESULTS Dox-dependent behavioral improvements were demonstrated 4 weeks post-vector injection. At later time points, spontaneous partial recovery was observed in all rats, but no further improvement was found in dox-treated animals. TH levels were significantly increased in dox-treated rats at all time points. By contrast, striatal dopamine and S40-TH were increased at 4 weeks, but not 14 weeks, and AADC remained unchanged. Dox withdrawal after 7 weeks, resulted in TH levels comparable to the controls at 14 weeks. CONCLUSIONS Delayed GDNF gene delivery only transiently improved dopaminergic function. Over the long term, TH was more abundant, but not functional, and the increase was lost when GDNF gene expression was switched off.
Collapse
Affiliation(s)
- Xin Yang
- Laboratory of Experimental Neurosurgery, Université Libre de Bruxelles, Brussels, Belgium
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Tremblay RG, Sikorska M, Sandhu JK, Lanthier P, Ribecco-Lutkiewicz M, Bani-Yaghoub M. Differentiation of mouse Neuro 2A cells into dopamine neurons. J Neurosci Methods 2009; 186:60-7. [PMID: 19903493 DOI: 10.1016/j.jneumeth.2009.11.004] [Citation(s) in RCA: 212] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2009] [Revised: 10/06/2009] [Accepted: 11/04/2009] [Indexed: 01/19/2023]
Abstract
Neuro 2A (N2a) is a mouse neural crest-derived cell line that has been extensively used to study neuronal differentiation, axonal growth and signaling pathways. A convenient characteristic of these cells is their ability to differentiate into neurons within a few days. However, most differentiation methods reported for N2a cells do not provide information about the neuronal types obtained after each treatment. In this study, we evaluated the generation of N2a dopamine neurons following treatment with a number of factors known to induce neuronal differentiation. Our results showed that N2a cells express Nurr-related factor 1 (Nurr1) and produce low levels of tyrosine hydroxylase (TH) and dopamine. Both TH and dopamine levels were significantly enhanced in the presence of dibutyryl cyclic adenosine monophosphate (dbcAMP), as evidenced by Western blot, immunocytochemistry and high performance liquid chromatography (HPLC). In contrast to dbcAMP, other factors such as transforming growth factor beta1 (TGF beta 1), bone morphogenetic protein 4 (BMP4), glial cell-derived neurotrophic factor (GDNF) and retinoic acid (RA) did not increase TH expression. Further investigation confirmed that the effect of dbcAMP on production of TH-positive neurons was mediated through cyclic AMP (cAMP) responsive element binding protein (CREB) and it was antagonized by RA. Thus, although various treatments can be used to generate N2a neurons, only dbcAMP significantly enhanced the formation of dopamine neurons. Taken together, this study provided a simple and reliable method to generate dopamine neurons for rapid and efficient physiological and pharmacological assays.
Collapse
Affiliation(s)
- Roger G Tremblay
- Neurogenesis and Brain Repair Group, Neurobiology Program, Institute for Biological Sciences, National Research Council Canada, Ottawa, ON, K1A 0R6, Canada
| | | | | | | | | | | |
Collapse
|
22
|
Ko JY, Lee HS, Park CH, Koh HC, Lee YS, Lee SH. Conditions for tumor-free and dopamine neuron-enriched grafts after transplanting human ES cell-derived neural precursor cells. Mol Ther 2009; 17:1761-70. [PMID: 19603007 DOI: 10.1038/mt.2009.148] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
We have previously demonstrated derivation of neural precursor (NP) cells of a midbrain-type from human embryonic stem (hES) cells to yield an enriched population of dopamine (DA) neurons. These hES-derived NPs can be expanded in vitro through multiple passages without altering their DA neurogenic potential. Here, we studied two aspects of these hES-NP cells that are critical issues in cell therapeutic approaches for Parkinson's disease (PD): cell survival and tumorigenic potential. Neuroepithelial rosettes, a potentially tumorigenic structure, disappeared during hES-NP cell expansion in vitro. Although a minor population of cells positive for Oct3/4, a marker specific for undifferentiated hES cells, persisted in culture during hES-NP cell expansion, they could be completely eliminated by subculturing hES-NPs under differentiation-inducing conditions. Consistently, no tumors/teratomas are formed in rats grafted with multipassaged hES-NPs. However, extensively expanded hES-NP cells easily underwent cell death during differentiation in vitro and after transplantation in vivo. Transgenic expression of Bcl-XL and sonic hedgehog (SHH) completely overcame the cell survival problems without increasing tumor formation. These findings indicate that hES-NP cell expansion in conjunction with Bcl-XL+SHH transgene expression may provide a renewable and safe source of DA neurons for transplantation in PD.
Collapse
Affiliation(s)
- Ji-Yun Ko
- Department of Biochemistry and Molecular Biology, College of Medicine, Hanyang University, Seoul 133-791, Korea
| | | | | | | | | | | |
Collapse
|
23
|
Herpes simplex virus vector-mediated delivery of neurturin rescues erectile dysfunction of cavernous nerve injury. Gene Ther 2008; 16:26-33. [PMID: 18668142 DOI: 10.1038/gt.2008.132] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Neurturin (NTN), a member of glial cell line-derived neurotrophic factor (GDNF) family, is known as an important neurotrophic factor for penis-projecting neurons. We recently demonstrated significant protection from erectile dysfunction (ED) following a replication-defective herpes simplex virus (HSV) vector-mediated GDNF delivery to the injured cavernous nerve. Herein, we applied HSV vector-mediated delivery of NTN to this ED model. Rat cavernous nerve was injured bilaterally using a clamp and dry ice. For HSV-treated groups, 20 microl of vector stock was administered directly to the damaged nerve. Delivery of an HSV vector expressing both green fluorescent protein and lacZ (HSV-LacZ) was used as a control. Intracavernous pressure along with systemic arterial pressure (ICP/AP) was measured 2 and 4 weeks after the nerve injury. Fluorogold (FG) was injected into the penile crus 7 days before being killed to assess neuronal survival. Four weeks after nerve injury, rats treated with HSV-NTN exhibited significantly higher ICP/AP compared with untreated or control vector-treated groups. The HSV-NTN group had more FG-positive major pelvic ganglion neurons than the control group following injury. HSV vector-mediated delivery of NTN could be a viable approach for the improvement of ED following cavernous nerve injury.
Collapse
|
24
|
Stewart AL, Anderson RB, Kobayashi K, Young HM. Effects of NGF, NT-3 and GDNF family members on neurite outgrowth and migration from pelvic ganglia from embryonic and newborn mice. BMC DEVELOPMENTAL BIOLOGY 2008; 8:73. [PMID: 18657279 PMCID: PMC2515305 DOI: 10.1186/1471-213x-8-73] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2008] [Accepted: 07/25/2008] [Indexed: 01/09/2023]
Abstract
Background Pelvic ganglia are derived from the sacral neural crest and contain both sympathetic and parasympathetic neurons. Various members of the neurotrophin and GDNF families of neurotrophic factors have been shown to play important roles in the development of a variety of peripheral sympathetic and parasympathetic neurons; however, to date, the role of these factors in the development of pelvic ganglia has been limited to postnatal and older ages. We examined the effects of NGF, NT-3, GDNF, neurturin and artemin on cell migration and neurite outgrowth from explants of the pelvic ganglia from embryonic and newborn mice grown on collagen gels, and correlated the responses with the immunohistochemical localization of the relevant receptors in fixed tissue. Results Cell migration assays showed that GDNF strongly stimulated migration of tyrosine hydroxylase (TH) cells of pelvic ganglia from E11.5, E14.5 and P0 mice. Other factors also promoted TH cell migration, although to a lesser extent and only at discrete developmental stages. The cells and neurites of the pelvic ganglia were responsive to each of the GDNF family ligands – GDNF, neurturin and artemin – from E11.5 onwards. In contrast, NGF and NT-3 did not elicit a significant neurite outgrowth effect until E14.5 onwards. Artemin and NGF promoted significant outgrowth of sympathetic (TH+) neurites only, whereas neurturin affected primarily parasympathetic (TH-negative) neurite outgrowth, and GDNF and NT-3 enhanced both sympathetic and parasympathetic neurite outgrowth. In comparison, collagen gel assays using gut explants from E11.5 and E14.5 mice showed neurite outgrowth only in response to GDNF at E11.5 and to neurturin only in E14.5 mice. Conclusion Our data show that there are both age-dependent and neuron type-dependent differences in the responsiveness of embryonic and neo-natal pelvic ganglion neurons to growth factors.
Collapse
Affiliation(s)
- Ashley L Stewart
- Department of Anatomy and Cell Biology, University of Melbourne, 3010, Australia.
| | | | | | | |
Collapse
|
25
|
Boado RJ, Zhang Y, Zhang Y, Wang Y, Pardridge WM. GDNF fusion protein for targeted-drug delivery across the human blood-brain barrier. Biotechnol Bioeng 2008; 100:387-96. [PMID: 18080333 DOI: 10.1002/bit.21764] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Glial-derived neurotrophic factor (GDNF) is a neurotrophin that could be developed as a neurotherapeutic for Parkinson's disease, stroke, and motor neuron disease. However, GDNF does not cross the blood-brain barrier (BBB). Human GDNF was re-engineered by fusion of the mature GDNF protein to the carboxyl terminus of the chimeric monoclonal antibody (MAb) to the human insulin receptor (HIR). The HIRMAb-GDNF fusion protein is bi-functional, and both binds the HIR, to trigger receptor-mediated transport across the BBB, and binds the GDNF receptor (GFR)-alpha1, to activate GDNF neuroprotection pathways behind the BBB. COS cells were dual transfected with the heavy chain (HC) and light chain fusion protein expression plasmids, and the HC of the fusion protein was immunoreactive with antibodies to both human IgG and GDNF. The HIRMAb-GDNF fusion protein bound with high affinity to the extracellular domain of both the HIR, ED(50) = 0.87 +/- 0.13 nM, and the GFRalpha1, ED(50) = 1.68 +/- 0.17 nM. The HIRMAb-GDNF fusion protein activated luciferase gene expression in human neural SK-N-MC cells dual transfected with the c-ret kinase and a luciferase reporter gene under the influence of the rat tyrosine hydroxylase promoter, and the ED(50), 1.68 +/- 0.45 nM, was identical to the ED(50) in the GFRalpha1 binding assay. The fusion protein was active in vivo in a rat middle cerebral artery occlusion model, where the stroke volume was reduced 77% (P < 0.001). In conclusion, these studies describe the re-engineering of GDNF, to make this neurotrophin transportable across the human BBB.
Collapse
Affiliation(s)
- Ruben J Boado
- ArmaGen Technologies, Inc., Santa Monica, California, USA
| | | | | | | | | |
Collapse
|
26
|
Mijatovic J, Airavaara M, Planken A, Auvinen P, Raasmaja A, Piepponen TP, Costantini F, Ahtee L, Saarma M. Constitutive Ret activity in knock-in multiple endocrine neoplasia type B mice induces profound elevation of brain dopamine concentration via enhanced synthesis and increases the number of TH-positive cells in the substantia nigra. J Neurosci 2007; 27:4799-809. [PMID: 17475787 PMCID: PMC6672089 DOI: 10.1523/jneurosci.5647-06.2007] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Ret is the common signaling receptor for glial cell line-derived neurotrophic factor (GDNF) and other ligands of the GDNF family that have potent effects on brain dopaminergic neurons. The Met918Thr mutation leads to constitutive activity of Ret receptor tyrosine kinase, causing the cancer syndrome called multiple endocrine neoplasia type B (MEN2B). We used knock-in MEN2B mice with the Ret-MEN2B mutation to study the effects of constitutive Ret activity on the brain dopaminergic system and found robustly increased concentrations of dopamine (DA) and its metabolites in the striatum, cortex, and hypothalamus. The concentrations of brain serotonin were not affected and those of noradrenaline were slightly increased only in the lower brainstem. Tyrosine hydroxylase (TH) protein levels were increased in the striatum and substantia nigra/ventral tegmental area (SN/VTA), and TH mRNA levels were increased in SN/VTA of MEN2B mice, suggesting that constitutive Ret activity increases DA levels by increasing its synthesis. Also, the striatal DA transporter protein levels in the MEN2B mice were increased, which agrees with increased sensitivity of these mice to the stimulatory effects of cocaine. In the SN pars compacta of homozygous MEN2B mice, we found a 26% increase in the number of TH-positive cells, but no differences were found in the VTA. Thus, we show here that the constitutive Ret activity in mice is sufficient to increase the number of dopaminergic neurons and leads to profound elevation of brain DA concentration. These data clearly suggest that Ret activity per se can have a direct biological function that actively changes and shapes the brain dopaminergic system.
Collapse
Affiliation(s)
- Jelena Mijatovic
- Division of Pharmacology and Toxicology, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland.
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
McMillan CR, Sharma R, Ottenhof T, Niles LP. Modulation of tyrosine hydroxylase expression by melatonin in human SH-SY5Y neuroblastoma cells. Neurosci Lett 2007; 419:202-6. [PMID: 17482356 DOI: 10.1016/j.neulet.2007.04.029] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2006] [Revised: 03/17/2007] [Accepted: 04/10/2007] [Indexed: 12/23/2022]
Abstract
We have previously reported in vivo preservation of tyrosine hydroxylase (TH), the rate-limiting enzyme in dopamine synthesis, following treatment with physiological doses of melatonin, in a 6-hydroxydopamine model of Parkinson's disease. Based on these findings, we postulated that melatonin would similarly modulate the expression of TH in vitro. Therefore, using human SH-SY5Y neuroblastoma cells which can differentiate into dopaminergic neurons following treatment with retinoic acid, we first examined whether these cells express melatonin receptors. Subsequently, the physiological dose-dependent effects of melatonin on TH expression were examined in both undifferentiated and differentiated cells. The novel detection of the G protein-coupled melatonin MT(1) receptor in SH-SY5Y cells by RT-PCR was confirmed by sequencing and Western blotting. In addition, following treatment of SH-SY5Y cells with melatonin (0.1-100 nM) for 24h, Western analysis revealed a significant increase in TH protein levels. A biphasic response, with significant increases in TH protein at 0.5 and 1 nM melatonin and a reversal at higher doses was seen in undifferentiated cells; whereas in differentiated cells, melatonin was effective at doses of 1 and 100 nM. These findings suggest a physiological role for melatonin in modulating TH expression, possibly via the MT(1) receptor.
Collapse
Affiliation(s)
- Catherine R McMillan
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, HSC-4N77, 1200 Main Street West, Hamilton, Ontario, Canada L8N 3Z5
| | | | | | | |
Collapse
|
28
|
Paul G, Christophersen NS, Raymon H, Kiaer C, Smith R, Brundin P. Tyrosine hydroxylase expression is unstable in a human immortalized mesencephalic cell line--studies in vitro and after intracerebral grafting in vivo. Mol Cell Neurosci 2007; 34:390-9. [PMID: 17222562 DOI: 10.1016/j.mcn.2006.11.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2006] [Revised: 11/09/2006] [Accepted: 11/14/2006] [Indexed: 11/17/2022] Open
Abstract
We have studied the stability of the dopaminergic phenotype in a conditionally immortalized human mesencephalic cell line, MESC2.10. Even though MESC2.10 cells exhibit features of dopaminergic neurons in vitro, none of the cells expressed tyrosine hydroxylase (TH) after transplantation into a rat model of Parkinson's disease. We examined whether this is caused by cell death or loss of transmitter phenotype. Cells were cultured in differentiation medium, then harvested and replated into the same medium where they continued to express TH, whereas replated cells fed medium lacking differentiation factors (dibutyryl cAMP and glial cell line-derived neurotrophic factor) did not. Interestingly, cultures grown in the absence of differentiation factors could regain TH expression once exposed to differentiation medium. Our data suggest that TH expression in vitro is inducible in neurons derived from the MESC2.10 cell line and that the dopaminergic phenotype of these cells in vivo might be unstable.
Collapse
Affiliation(s)
- Gesine Paul
- Neuronal Survival Unit, Department of Experimental Medical Science, Wallenberg Neuroscience Center, 22184-Lund, Sweden.
| | | | | | | | | | | |
Collapse
|
29
|
Saavedra A, Baltazar G, Duarte EP. Interleukin-1beta mediates GDNF up-regulation upon dopaminergic injury in ventral midbrain cell cultures. Neurobiol Dis 2006; 25:92-104. [PMID: 17027275 DOI: 10.1016/j.nbd.2006.08.019] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2006] [Revised: 08/24/2006] [Accepted: 08/25/2006] [Indexed: 01/25/2023] Open
Abstract
We recently proposed the involvement of diffusible modulators in signalling astrocytes to increase glial cell line-derived neurotrophic factor (GDNF) expression after selective dopaminergic injury by H2O2 or L-DOPA. Here we report that interleukin-1beta (IL-1beta) is involved in this crosstalk between injured neurons and astrocytes. IL-1beta was detected only in the media from challenged neuron-glia cultures. Exogenous IL-1beta did not change GDNF protein levels in astrocyte cultures, and diminished GDNF levels in neuron-glia cultures. This decrease was not due to cell loss, as assessed by the MTT assay and immunocytochemistry. Neither H2O2 nor L-DOPA induced microglia proliferation or appeared to change its activation state. The IL-1 receptor antagonist (IL-1ra) prevented GDNF up-regulation in challenged cultures, showing that IL-1beta is involved in the signalling between injured neurons and astrocytes. Since IL-1ra decreased the number of dopaminergic neurons in H2O2-treated cultures, we propose that IL-1 has a neuroprotective role in this system involving GDNF up-regulation.
Collapse
Affiliation(s)
- Ana Saavedra
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | | | | |
Collapse
|
30
|
Cerchia L, D'Alessio A, Amabile G, Duconge F, Pestourie C, Tavitian B, Libri D, de Franciscis V. An autocrine loop involving ret and glial cell-derived neurotrophic factor mediates retinoic acid-induced neuroblastoma cell differentiation. Mol Cancer Res 2006; 4:481-8. [PMID: 16849523 DOI: 10.1158/1541-7786.mcr-06-0050] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In several neuroblastoma cell lines, retinoic acid (RA)-induced differentiation is coupled to increased expression of functional neurotrophic factor receptors, including Trk family receptors and the glial cell-derived neurotrophic factor receptor, Ret. In several cases, increased expression is dependent on signaling through TrkB. Unlike TrkA and TrkB, Ret has never been implicated as a prognostic marker for neuroblastomas. SK-N-BE(2) cells do not express any of Trk family receptors; therefore, they are a choice system to study the specific role of Ret in RA-induced differentiation. Using a 2'-fluoro-RNA aptamer and a truncated Ret protein as specific inhibitors of Ret, we show that RA-induced differentiation is mediated by a positive autocrine loop that sustains Ret downstream signaling and depends on glial cell-derived neurotrophic factor expression and release. This report shows that in SK-N-BE(2) cells, stimulation of Ret is a major upstream mechanism needed to mediate RA-induced differentiation. These results provide important insights on the molecular mechanism of RA action, which might be relevant for the development of biologically based therapeutic strategies.
Collapse
Affiliation(s)
- Laura Cerchia
- Istituto per l'Endocrinologia e l'Oncologia Sperimentale del Consiglio Nazionale delle Ricerche G. Salvatore, Naples, Italy
| | | | | | | | | | | | | | | |
Collapse
|
31
|
|
32
|
Keast JR. Plasticity of pelvic autonomic ganglia and urogenital innervation. INTERNATIONAL REVIEW OF CYTOLOGY 2006; 248:141-208. [PMID: 16487791 DOI: 10.1016/s0074-7696(06)48003-7] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Pelvic ganglia contain a mixture of sympathetic and parasympathetic neurons and provide most of the motor innervation of the urogenital organs. They show a remarkable sensitivity to androgens and estrogens, which impacts on their development into sexually dimorphic structures and provide an array of mechanisms by which plasticity of these neurons can occur during puberty and adulthood. The structure of pelvic ganglia varies widely among species, ranging from rodents, which have a pair of large ganglia, to humans, in whom pelvic ganglion neurons are distributed in a large, complex plexus. This plexus is frequently injured during pelvic surgical procedures, yet strategies for its repair have yet to be developed. Advances in this area will come from a better understanding of the effects of injury on the cellular signaling process in pelvic neurons and also the role of neurotrophic factors during development, maintenance, and repair of these axons.
Collapse
Affiliation(s)
- Janet R Keast
- Pain Management Research Institute, University of Sydney at Royal North Shore Hospital, St Leonards, New South Wales, Australia
| |
Collapse
|
33
|
Sharma R, McMillan CR, Tenn CC, Niles LP. Physiological neuroprotection by melatonin in a 6-hydroxydopamine model of Parkinson's disease. Brain Res 2006; 1068:230-6. [PMID: 16375867 DOI: 10.1016/j.brainres.2005.10.084] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2005] [Revised: 10/21/2005] [Accepted: 10/31/2005] [Indexed: 10/25/2022]
Abstract
There is considerable evidence that pharmacological doses of the pineal hormone, melatonin, are neuroprotective in diverse models of neurodegeneration including Parkinson's disease. However, there is limited information about the effects of physiological doses of this hormone in similar models. In this study, rats were chronically treated with melatonin via drinking water following partial 6-hydroxydopamine lesioning in the striatum. The two doses of melatonin (0.4 microg/ml and 4.0 microg/ml) were within the reported physiological concentrations present in the serum and cerebrospinal fluid respectively. At 2 weeks after surgery, the higher dose of melatonin significantly attenuated rotational behavior in hemi-parkinsonian rats compared to similarly lesioned animals receiving either vehicle (P < 0.001) or the lower dose of melatonin (P < 0.01). Animals were perfused or sacrificed 10 weeks after commencing melatonin treatment for immunohistochemical or mRNA studies. Animals treated with 4.0 microg/ml melatonin exhibited normal tyrosine hydroxylase (TH) immunoreactivity in the lesioned striatum, whereas little or no TH immunofluorescence was visible in similarly lesioned animals receiving vehicle. In contrast, semiquantitative RT-PCR analysis revealed no group differences in TH mRNA, suggesting spontaneous recovery of this transcript as observed previously in partially lesioned animals. There were no significant differences in striatal GDNF mRNA levels between sham and lesioned animals. However, there was a significant (P < 0.01) increase in GDNF mRNA expression in the intact contralateral striata of lesioned animals treated with vehicle. Interestingly, melatonin treatment attenuated this novel compensatory contralateral increase in striatal GDNF expression, presumably due to its neuroprotective effect. These findings support a physiological role for melatonin in protecting against parkinsonian neurodegeneration in the nigrostriatal system.
Collapse
Affiliation(s)
- Rohita Sharma
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, 1200 Main Street West, Hamilton, Ontario, Canada L8N 3Z5
| | | | | | | |
Collapse
|
34
|
Wanigasekara Y, Keast JR. Neurturin has multiple neurotrophic effects on adult rat sacral parasympathetic ganglion neurons. Eur J Neurosci 2005; 22:595-604. [PMID: 16101741 DOI: 10.1111/j.1460-9568.2005.04260.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Neurturin (NTN) is an important neurotrophic factor for parasympathetic neurons; however, no studies to date have investigated the signalling mechanisms downstream of GFRalpha2 and Ret activation underlying this neurotrophic support. This is particularly important for pelvic parasympathetic neurons, which are prone to injury during surgical procedures such as prostatectomy, and where there are no current therapies for axonal regeneration. To address this issue we have cultured dissociated adult rat pelvic ganglion neurons and also examined the structural changes in pelvic ganglion neurons after axotomy. Axotomised penile neurons deprived of target-derived support had smaller somata than intact neurons. Studies of cultured adult pelvic ganglion neurons also demonstrated that NTN stimulated soma growth. Further experiments showed that NTN reduced the up-regulation of tyrosine hydroxylase expression in cultured pelvic parasympathetic neurons. NTN stimulated the extension of neurites in cultured parasympathetic, but not sympathetic, pelvic ganglion neurons. Inhibition of phosphatidylinositol 3-kinase prevented initiation of neurite outgrowth, whereas inhibition of the mitogen-activated protein kinase and the Src family kinase pathways disrupted NTN-stimulated microtubule assembly. Surprisingly, NTN did not activate the transcription factor cAMP-response element binding protein (CREB), which is typically involved in neurotrophic signalling in sympathetic neurons. This is the first study to identify signalling pathways activated by NTN in adult parasympathetic neurons. Our results may lead to a better understanding of regenerative mechanisms in parasympathetic neurons, especially for those innervating urogenital organs. Our results also indicate that neurotrophic signalling in parasympathetic neurons is different from that in other types of peripheral neurons.
Collapse
Affiliation(s)
- Yewlan Wanigasekara
- Prince of Wales Medical Research Institute, University of New South Wales, Randwick NSW 2031, Australia
| | | |
Collapse
|
35
|
Jingzhong Z, Hui Y, Deyi D, Chunli D, Chunli Z, Xiaohong S, Jinlu Z, Qunyuan X. Long-term therapeutic effects on parkinsonian rats of intrastriatal co-grafts with genetically engineered fibroblasts expressing tyrosine hydroxylase and glial cell line-derived neurotrophic factor. Int J Neurosci 2005; 115:769-79. [PMID: 16019573 DOI: 10.1080/00207450590881542] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The long-term improvement of intrastriatal co-grafts with genetically engineered fibroblasts expressing tyrosine hydroxylase (TH) and glial cell line-derived neurotrophic factor (GDNF) was investigated in the present study. Two recombinant vectors, pCMV-TH and pCI-neo-GDNF, were transfected respectively into the primary fibroblasts, and their expression was further identified by in situ hybridization and immunocytochemistry. The engineered fibroblasts expressing TH, GDNF, or both were transplanted into the striatum of parkinsonian rats, and the therapeutic effects were observed for 20 weeks. Data revealed that only animals with fibroblasts expressing both TH and GDNF exhibited a stable and significant behavioral and biochemical recovery. Moreover, persistence of both TH and GDNF expression in grafts was demonstrated 20 weeks after transplantation. These results suggest that combined transplantation of fibroblasts expressing TH and GDNF can lead to long-term and remarkable therapeutic effects on parkinsonian rat model.
Collapse
Affiliation(s)
- Zhang Jingzhong
- Beijing Institute for Neuroscience Beijing Center for Neural Regeneration and Repairing Capital University of Medical Sciences Beijing, P.R.C
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Smith AD, Kozlowski DA, Bohn MC, Zigmond MJ. Effect of AdGDNF on dopaminergic neurotransmission in the striatum of 6-OHDA-treated rats. Exp Neurol 2005; 193:420-6. [PMID: 15869944 DOI: 10.1016/j.expneurol.2005.01.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2003] [Revised: 01/05/2005] [Accepted: 01/06/2005] [Indexed: 10/25/2022]
Abstract
We have previously observed that the delivery of an adenoviral vector encoding for glial cell line-derived neurotrophic factor (AdGDNF) into the substantia nigra (SN) 7 days after intrastriatal administration of 6-hydroxydopamine (6-OHDA) protects dopamine (DA)-dependent behaviors, tyrosine hydroxylase immunoreactive (TH+) cells in SN, and amphetamine-induced c-fos induction in striatum. In the present study, we sought to determine if the behavioral protection observed in 6-OHDA-treated rats receiving AdGDNF was associated with an increase in DA availability in the striatum as measured by microdialysis. Rats received intrastriatal 6-OHDA (16 microg/2.8 microl) or vehicle followed 7 days later by intranigral AdGDNF (3.2x10(7) pfu/2 microl), AdLacZ (3.2 x 10(7) pfu/2 microl), or phosphate buffered saline (PBS). Three weeks later, microdialysis samples were collected from the same striatal region under basal conditions, following KCl (100 mM) or amphetamine (250 microM) administered via the striatal microdialysis probe, or amphetamine administered systemically (6.8 mg/kg i.p). Animals given 6-OHDA followed by either PBS or AdLacZ showed a decrease in basal extracellular striatal DA levels to 24% of control. In contrast, basal extracellular DA in 6-OHDA-lesioned rats with a nigral injection of AdGDNF was almost 3-fold higher than 6-OHDA-vehicle treated animals, 65% of control DA levels. Moreover, although KCl and amphetamine produced no increase in striatal DA release in 6-OHDA-treated rats that subsequently were given either PBS or AdLacZ, these manipulations increased DA levels significantly in 6-OHDA-treated rats later given AdGDNF. Thus, DA neurotransmission within the striatum of 6-OHDA treated rats appears to be enhanced by increased expression of GDNF in the nigra.
Collapse
Affiliation(s)
- A D Smith
- Department of Neurology, University of Pittsburgh, S-510 Biomedical Science Tower, Pittsburgh, PA 15213, USA.
| | | | | | | |
Collapse
|
37
|
Huang L, Guo H, Hellard DT, Katz DM. Glial cell line-derived neurotrophic factor (GDNF) is required for differentiation of pontine noradrenergic neurons and patterning of central respiratory output. Neuroscience 2005; 130:95-105. [PMID: 15561428 DOI: 10.1016/j.neuroscience.2004.08.036] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/24/2004] [Indexed: 02/07/2023]
Abstract
Genetic mutations affecting signaling by glial cell line-derived neurotrophic factor (GDNF) perturb development of breathing in mice and are associated with congenital central hypoventilation syndrome in humans. However, the role of GDNF in development of brainstem neurons that control breathing is largely unknown. The present study demonstrates that genetic loss of GDNF decreases the number of tyrosine hydroxylase (TH) neurons in the pontine A5 noradrenergic cell group, a major source of inhibitory input to the medullary respiratory pattern generator. This phenotype is associated with a significant increase in the frequency of central respiratory output recorded from the fetal medulla-spinal cord in vitro. In dissociate cultures of the A5 region from rat embryos, GDNF increases TH cell number and neurite growth without affecting total neuronal survival or proliferation of TH neurons. These effects of GDNF are inhibited by function blocking antibodies against endogenous brain-derived neurotrophic factor (BDNF), indicating that GDNF requires BDNF as a cofactor to stimulate differentiation of A5 neurons. Our findings demonstrate that GDNF is required for development of pontine noradrenergic neurons in vivo and indicate that defects in the A5 cell group may contribute to the effects of genetic disruption of GDNF signaling on respiratory control.
Collapse
Affiliation(s)
- L Huang
- Department of Pediatrics, University Hospitals of Cleveland, Case Western Reserve University School of Medicine, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | | | | | | |
Collapse
|
38
|
Krieglstein K. Factors promoting survival of mesencephalic dopaminergic neurons. Cell Tissue Res 2004; 318:73-80. [PMID: 15300492 DOI: 10.1007/s00441-004-0920-8] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2004] [Accepted: 05/11/2004] [Indexed: 12/22/2022]
Abstract
Growth factors promoting survival of mesencephalic dopaminergic neurons are discussed in the context of their requirement during development and adulthood. The expression of growth factors should be detectable in the nigrostriatal system during critical periods of development, i.e., during the period of ontogenetic cell death and synaptogenesis and during neurite extension and neurotransmitter synthesis. Growth factors discussed include members of the family of glial-cell-line-derived neurotrophic factors (GDNF), neurotrophins, transforming growth factors beta, and low molecular compounds mimicking growth factor activities. To date, the available data support the notion that GDNF is a highly promising candidate, although GDNF-null mice lack a dopaminergic phenotype. There remains a possibility that endogenous dopaminotrophic factors remain to be discovered.
Collapse
Affiliation(s)
- Kerstin Krieglstein
- Department Neuroanatomy, Medical Faculty, Center for Molecular Physiology of the Brain, University of Göttingen, Kreuzbergring 36, 37075 Göttingen, Germany.
| |
Collapse
|
39
|
Huang Y, Cheung L, Rowe D, Halliday G. Genetic contributions to Parkinson's disease. ACTA ACUST UNITED AC 2004; 46:44-70. [PMID: 15297154 DOI: 10.1016/j.brainresrev.2004.04.007] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/05/2004] [Indexed: 01/12/2023]
Abstract
Sporadic Parkinson's disease (PD) is a common neurodegenerative disorder, characterized by the loss of midbrain dopamine neurons and Lewy body inclusions. It is thought to result from a complex interaction between multiple predisposing genes and environmental influences, although these interactions are still poorly understood. Several causative genes have been identified in different families. Mutations in two genes [alpha-synuclein and nuclear receptor-related 1 (Nurr1)] cause the same pathology, and a third locus on chromosome 2 also causes this pathology. Other familial PD mutations have identified genes involved in the ubiquitin-proteasome system [parkin and ubiquitin C-terminal hydroxylase L1 (UCHL1)], although such cases do not produce Lewy bodies. These studies highlight critical cellular proteins and mechanisms for dopamine neuron survival as disrupted in Parkinson's disease. Understanding the genetic variations impacting on dopamine neurons may illuminate other molecular mechanisms involved. Additional candidate genes involved in dopamine cell survival, dopamine synthesis, metabolism and function, energy supply, oxidative stress, and cellular detoxification have been indicated by transgenic animal models and/or screened in human populations with differing results. Genetic variation in genes known to produce different patterns and types of neurodegeneration that may impact on the function of dopamine neurons are also reviewed. These studies suggest that environment and genetic background are likely to have a significant influence on susceptibility to Parkinson's disease. The identification of multiple genes predisposing to Parkinson's disease will assist in determining the cellular pathway/s leading to the neurodegeneration observed in this disease.
Collapse
Affiliation(s)
- Yue Huang
- Prince of Wales Medical Research Institute and the University of New South Wales, Barker Street, Randwick, Sydney 2031, Australia
| | | | | | | |
Collapse
|
40
|
Cho J, Yarygina O, Oo TF, Kholodilov NG, Burke RE. Glial cell line-derived neurotrophic factor receptor GFRα1 is expressed in the rat striatum during postnatal development. ACTA ACUST UNITED AC 2004; 127:96-104. [PMID: 15306125 DOI: 10.1016/j.molbrainres.2004.05.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/12/2004] [Indexed: 10/26/2022]
Abstract
Dopamine neurons of the substantia nigra (SN) undergo a natural cell death event which is biphasic, with peaks at postnatal days (PNDs) 2 and 14. There is growing evidence that GDNF functions as a striatal target-derived neurotrophic factor to regulate the first phase. It has been unknown whether the GDNF receptor, GFRalpha1, may play a role in regulating either phase. To evaluate a possible role for GFRalpha1 we have examined its expression throughout postnatal development in the SN and particularly in the striatum, where its expression has been uncertain. GFRalpha1 mRNA is highly expressed in SN, as previously shown, with highest levels at PND14-28. We find that it is also expressed in striatum with a similar time course, but with a more discrete period of maximal expression between PND10 and PND14. The cellular basis of this maximum of expression is an increased number of GFRalpha1 mRNA-positive medium-sized neurons evenly distributed within the striatum. Immunostaining reveals GFRalpha1 protein-positive neurons with a similar morphology and distribution. We conclude that GFRalpha1 is expressed in striatum maximally late in postnatal development. In this location it may act in trans to influence the viability and development of nigral dopamine neurons.
Collapse
Affiliation(s)
- JinWhan Cho
- Department of Neurology, The College of Physicians and Surgeons, Columbia University, Room 308, Black Building, 650 West 168th Street, New York, NY 10032, USA
| | | | | | | | | |
Collapse
|
41
|
Tanaka M, Xiao H, Hirata Y, Kiuchi K. A rapid assay for glial cell line-derived neurotrophic factor and neurturin based on transfection of cells with tyrosine hydroxylase promoter-luciferase construct. BRAIN RESEARCH. BRAIN RESEARCH PROTOCOLS 2003; 11:119-22. [PMID: 12738007 DOI: 10.1016/s1385-299x(03)00023-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Glial cell line-derived neurotrophic factor (GDNF), a potent survival and trophic factor for various neuronal cells, has been measured by assaying its bioactivity based on neurite outgrowth or cell proliferation. We describe herein a sensitive and simple non-radioactive quantitative bioassay for GDNF family proteins based on their ability to induce tyrosine hydroxylase (TH) gene expression. Human neuroblastoma SK-N-MC cells were stably transfected with expression constructs of c-ret and with a luciferase reporter gene driven by 2 kb of the rat TH gene promoter region. In the presence of GDNF, luciferase activity increased with 20 h of incubation. A dose-dependent increase in luciferase activity was observed in the presence of GDNF between 1 and 300 ng/ml. This assay was also applicable for the quantification of the bioactivity of neurturin, another member of the GDNF family showing an even more sensitive profile of dose dependency than GDNF. Typical culture media were applicable in this assay. This method can be easily applied to numerous samples of conditioned medium in a short time.
Collapse
Affiliation(s)
- Mikiei Tanaka
- Laboratory for Genes of Motor Systems, Bio-Mimetic Control Research Program, The Institute of Physical and Chemical Research (RIKEN), Moriyama, Nagoya 463-0003, Japan
| | | | | | | |
Collapse
|