1
|
Guatteo E, Berretta N, Monda V, Ledonne A, Mercuri NB. Pathophysiological Features of Nigral Dopaminergic Neurons in Animal Models of Parkinson's Disease. Int J Mol Sci 2022; 23:ijms23094508. [PMID: 35562898 PMCID: PMC9102081 DOI: 10.3390/ijms23094508] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/16/2022] [Accepted: 04/18/2022] [Indexed: 12/21/2022] Open
Abstract
The degeneration of nigral dopaminergic neurons is considered the hallmark of Parkinson’s disease (PD), and it is triggered by different factors, including mitochondrial dysfunction, Lewy body accumulation, neuroinflammation, excitotoxicity and metal accumulation. Despite the extensive literature devoted to unravelling the signalling pathways involved in neuronal degeneration, little is known about the functional impairments occurring in these cells during illness progression. Of course, it is not possible to obtain direct information on the properties of the dopaminergic cells in patients. However, several data are available in the literature reporting changes in the function of these cells in PD animal models. In the present manuscript, we focus on dopaminergic neuron functional properties and summarize shared or peculiar features of neuronal dysfunction in different PD animal models at different stages of the disease in an attempt to design a picture of the functional modifications occurring in nigral dopaminergic neurons during disease progression preceding their eventual death.
Collapse
Affiliation(s)
- Ezia Guatteo
- Department of Motor Science and Wellness, University of Naples Parthenope, 80133 Naples, Italy; (E.G.); (V.M.)
- Experimental Neurology Laboratory, IRCCS Santa Lucia Foundation, 00143 Rome, Italy;
| | - Nicola Berretta
- Experimental Neurology Laboratory, IRCCS Santa Lucia Foundation, 00143 Rome, Italy;
| | - Vincenzo Monda
- Department of Motor Science and Wellness, University of Naples Parthenope, 80133 Naples, Italy; (E.G.); (V.M.)
| | - Ada Ledonne
- Experimental Neurology Laboratory, IRCCS Santa Lucia Foundation, 00143 Rome, Italy;
- Correspondence: (A.L.); (N.B.M.)
| | - Nicola Biagio Mercuri
- Experimental Neurology Laboratory, IRCCS Santa Lucia Foundation, 00143 Rome, Italy;
- Department of Systems Medicine, University of Rome Tor Vergata, 00143 Rome, Italy
- Correspondence: (A.L.); (N.B.M.)
| |
Collapse
|
2
|
Heusinkveld HJ, van den Berg M, Westerink RHS. In vitro dopaminergic neurotoxicity of pesticides: a link with neurodegeneration? Vet Q 2015; 34:120-31. [PMID: 25506807 DOI: 10.1080/01652176.2014.980934] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Around the globe, chemical compounds are used to treat or repel pests and plagues that pose a threat to food and feed production. From epidemiological studies, it is known that there is a link between exposure to certain chemical classes of these so-called pesticides and the prevalence of neurodegenerative disorders such as Parkinson's disease in humans. However, which particular compound(s) account for this link or what underlying mechanisms are involved is still largely unresolved. The degenerative process in Parkinson's disease is largely limited to the dopaminergic neurons in the basal ganglia. Cellular mechanisms that are implicated in parkinsonian neurodegeneration include mitochondrial dysfunction, oxidative stress, disturbance of intracellular calcium homeostasis and endoplasmic reticulum (ER) stress. A major characteristic that distinguishes the dopaminergic neurons in the basal ganglia from other dopaminergic neurons is a particular reliance on intracellular calcium for spontaneous activity. Considering the energy consuming nature of maintenance of the intracellular calcium homeostasis and its involvement in life and death of a neuron, this may explain the specific vulnerability of this neuronal population. Despite a large variation in primary mechanism of action it has been demonstrated that pesticides from different classes disturb intracellular calcium homeostasis, thus interfering with intracellular calcium signalling. This relates to altered dopaminergic signalling, disturbed protein homeostasis and increased oxidative stress. Therefore, effects of (mixtures of) pesticides on the intracellular calcium homeostasis may play a role in the development of Parkinson's disease in humans. Although human exposure to pesticides via e.g. food often occurs in complex mixtures, (human) risk assessment is largely based on the assessment of single compounds. The discovery of common modes of action across different classes of pesticides therefore underpins the urgency of development of new models and approaches in risk assessment.
Collapse
Affiliation(s)
- Harm J Heusinkveld
- a Neurotoxicology Research Group, Division of Toxicology, Institute for Risk Assessment Sciences, Faculty of Veterinary Medicine , Utrecht University , 3508 TD Utrecht , The Netherlands
| | | | | |
Collapse
|
3
|
Liu Q, Huang Y, Shen J, Steffensen S, Wu J. Functional α7β2 nicotinic acetylcholine receptors expressed in hippocampal interneurons exhibit high sensitivity to pathological level of amyloid β peptides. BMC Neurosci 2012; 13:155. [PMID: 23272676 PMCID: PMC3573893 DOI: 10.1186/1471-2202-13-155] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Accepted: 12/18/2012] [Indexed: 11/10/2022] Open
Abstract
Background β-amyloid (Aβ) accumulation is described as a hallmark of Alzheimer’s disease (AD). Aβ perturbs a number of synaptic components including nicotinic acetylcholine receptors containing α7 subunits (α7-nAChRs), which are abundantly expressed in the hippocampus and found on GABAergic interneurons. We have previously demonstrated the existence of a novel, heteromeric α7β2-nAChR in basal forebrain cholinergic neurons that exhibits high sensitivity to acute Aβ exposure. To extend our previous work, we evaluated the expression and pharmacology of α7β2-nAChRs in hippocampal interneurons and their sensitivity to Aβ. Results GABAergic interneurons in the CA1 subregion of the hippocampus expressed functional α7β2-nAChRs, which were characterized by relatively slow whole-cell current kinetics, pharmacological sensitivity to dihydro-β-erythroidine (DHβE), a nAChR β2* subunit selective blocker, and α7 and β2 subunit interaction using immunoprecipitation assay. In addition, α7β2-nAChRs were sensitive to 1 nM oligomeric Aβ. Similar effects were observed in identified hippocampal interneurons prepared from GFP-GAD mice. Conclusion These findings suggest that Aβ modulation of cholinergic signaling in hippocampal GABAergic interneurons via α7β2-nAChRs could be an early and critical event in Aβ-induced functional abnormalities of hippocampal function, which may be relevant to learning and memory deficits in AD.
Collapse
Affiliation(s)
- Qiang Liu
- Divisions of Neurology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ 85013-4496, USA
| | | | | | | | | |
Collapse
|
4
|
Liu Q, Huang Y, Xue F, Simard A, DeChon J, Li G, Zhang J, Lucero L, Wang M, Sierks M, Hu G, Chang Y, Lukas RJ, Wu J. A novel nicotinic acetylcholine receptor subtype in basal forebrain cholinergic neurons with high sensitivity to amyloid peptides. J Neurosci 2009; 29:918-29. [PMID: 19176801 PMCID: PMC2857410 DOI: 10.1523/jneurosci.3952-08.2009] [Citation(s) in RCA: 135] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2008] [Revised: 12/02/2008] [Accepted: 12/16/2008] [Indexed: 11/21/2022] Open
Abstract
Nicotinic acetylcholine receptors (nAChRs) containing alpha7 subunits are thought to assemble as homomers. alpha7-nAChR function has been implicated in learning and memory, and alterations of alpha7-nAChR have been found in patients with Alzheimer's disease (AD). Here we report findings consistent with a novel, naturally occurring nAChR subtype in rodent, basal forebrain cholinergic neurons. In these cells, alpha7 subunits are coexpressed, colocalize, and coassemble with beta2 subunit(s). Compared with homomeric alpha7-nAChRs from ventral tegmental area neurons, functional, presumably heteromeric alpha7beta2-nAChRs on cholinergic neurons freshly dissociated from medial septum/diagonal band (MS/DB) exhibit relatively slow kinetics of whole-cell current responses to nicotinic agonists and are more sensitive to the beta2 subunit-containing nAChR-selective antagonist, dihydro-beta-erythroidine (DHbetaE). Interestingly, presumed, heteromeric alpha7beta2-nAChRs are highly sensitive to functional inhibition by pathologically relevant concentrations of oligomeric, but not monomeric or fibrillar, forms of amyloid beta(1-42) (Abeta(1-42)). Slow whole-cell current kinetics, sensitivity to DHbetaE, and specific antagonism by oligomeric Abeta(1-42) also are characteristics of heteromeric alpha7beta2-nAChRs, but not of homomeric alpha7-nAChRs, heterologously expressed in Xenopus oocytes. Moreover, choline-induced currents have faster kinetics and less sensitivity to Abeta when elicited from MS/DB neurons derived from nAChR beta2 subunit knock-out mice rather than from wild-type mice. The presence of novel, functional, heteromeric alpha7beta2-nAChRs on basal forebrain cholinergic neurons and their high sensitivity to blockade by low concentrations of oligomeric Abeta(1-42) suggests possible mechanisms for deficits in cholinergic signaling that could occur early in the etiopathogenesis of AD and might be targeted by disease therapies.
Collapse
MESH Headings
- Acetylcholine/metabolism
- Acetylcholine/pharmacology
- Amyloid beta-Peptides/pharmacology
- Animals
- Animals, Newborn
- Cells, Cultured
- Choline O-Acetyltransferase/metabolism
- Cholinergic Agents/pharmacology
- Dose-Response Relationship, Drug
- Immunoprecipitation/methods
- Membrane Potentials/drug effects
- Membrane Potentials/genetics
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Neurons/drug effects
- Neurons/metabolism
- Oocytes
- Patch-Clamp Techniques/methods
- Peptide Fragments/pharmacology
- Prosencephalon/cytology
- Protein Subunits/genetics
- Protein Subunits/metabolism
- Rats
- Rats, Wistar
- Receptors, Nicotinic/chemistry
- Receptors, Nicotinic/deficiency
- Receptors, Nicotinic/genetics
- Receptors, Nicotinic/metabolism
- Xenopus laevis
- alpha7 Nicotinic Acetylcholine Receptor
Collapse
Affiliation(s)
| | - Yao Huang
- Department of Obstetrics and Gynecology, St. Joseph's Hospital and Medical Center, Phoenix, Arizona 85004
| | - Fenqin Xue
- Neurobiology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona 85013-4496
| | - Alain Simard
- Neurobiology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona 85013-4496
| | | | | | - Jianliang Zhang
- Neurobiology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona 85013-4496
| | - Linda Lucero
- Neurobiology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona 85013-4496
| | - Min Wang
- Department of Chemical Engineering, Arizona State University, Tempe, Arizona 85281, and
| | - Michael Sierks
- Department of Chemical Engineering, Arizona State University, Tempe, Arizona 85281, and
| | - Gang Hu
- Department of Pharmacology, Nanjing Medical University, Nanjing 210029, People's Republic of China
| | - Yongchang Chang
- Neurobiology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona 85013-4496
| | - Ronald J. Lukas
- Neurobiology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona 85013-4496
| | - Jie Wu
- Divisions of Neurology and
| |
Collapse
|
5
|
Wu J, Hu J, Chen YP, Takeo T, Suga S, Dechon J, Liu Q, Yang KC, St John PA, Hu G, Wang H, Wakui M. Iptakalim modulates ATP-sensitive K(+) channels in dopamine neurons from rat substantia nigra pars compacta. J Pharmacol Exp Ther 2006; 319:155-64. [PMID: 16837559 DOI: 10.1124/jpet.106.106286] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Iptakalim, a novel cardiovascular ATP-sensitive K(+) (K(ATP)) channel opener, exerts neuroprotective effects on dopaminergic (DA) neurons against metabolic stress-induced neurotoxicity, but the mechanisms are largely unknown. Here, we examined the effects of iptakalim on functional K(ATP) channels in the plasma membrane (pm) and mitochondrial membrane using patch-clamp and fluorescence-imaging techniques. In identified DA neurons acutely dissociated from rat substantia nigra pars compacta (SNc), both the mitochondrial metabolic inhibitor rotenone and the sulfonylurea receptor subtype (SUR) 1-selective K(ATP) channel opener (KCO) diazoxide induced neuronal hyperpolarization and abolished action potential firing, but the SUR2B-selective KCO cromakalim exerted little effect, suggesting that functional K(ATP) channels in rat SNc DA neurons are mainly composed of SUR1. Immunocytochemical staining showed a SUR1-rather than a SUR2B-positive reaction in most dissociated DA neurons. At concentrations between 3 and 300 microM, iptakalim failed to hyperpolarize DA neurons; however, 300 microM iptakalim increased neuronal firing. In addition, iptakalim restored DA neuronal firing during rotenone-induced hyperpolarization and suppressed rotenone-induced outward current, suggesting that high concentrations of iptakalim close neuronal K(ATP) channels. Furthermore, in human embryonic kidney 293 cells, iptakalim (300-500 microM) closed diazoxide-induced Kir6.2/SUR1 K(ATP) channels, which were heterologously expressed. In rhodamine-123-preloaded DA neurons, iptakalim neither depolarized mitochondrial membrane nor prevented rotenone-induced mitochondrial depolarization. These data indicate that iptakalim is not a K(ATP) channel opener in rat SNc DA neurons; instead, iptakalim is a pm-K(ATP) channel closer at high concentrations. These effects of iptakalim stimulate further pharmacological investigation and the development of possible therapeutic applications.
Collapse
Affiliation(s)
- Jie Wu
- Neurophysiology Laboratory, Neurology Research, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ 85013-4496, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Matsumoto N, Noda E, Nabekura J. Run down of GABAergic depolarization during metabolic inhibition of rat hippocampal CA1 neurons. Life Sci 2006; 79:1021-6. [PMID: 16624329 DOI: 10.1016/j.lfs.2006.03.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2005] [Revised: 01/15/2006] [Accepted: 03/13/2006] [Indexed: 11/26/2022]
Abstract
We investigated the effects of metabolic inhibition on both the shift in the equilibrium potential for Cl(-) (E(Cl)) and the run down of GABA(A) receptor responses, using nystatin- and gramicidin-perforated patch-clamp recordings from rat hippocampal CA1 neurons. Metabolic inhibition with NaCN decreased outward GABAergic currents while increasing inward GABAergic currents. E(Cl) showed a positive shift almost immediately after metabolic poisoning. This shift always occurred prior to GABA receptor run down, which was observed as decreases in whole cell conductance during application of a GABA(A) receptor agonist. The results indicate that GABAergic responses tend to become depolarizing during metabolic inhibition and the run down of the GABAergic response may therefore be neuroprotective against excitotoxicity. Furthermore the results illustrate the importance of considering both changes in receptor function and current driving force, and their temporal relationship, in order to understand the physiological response of the GABAergic system during metabolic stress.
Collapse
Affiliation(s)
- Nozomu Matsumoto
- Cellular and System Physiology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.
| | | | | |
Collapse
|
7
|
Hu J, DeChon J, Yan KC, Liu Q, Hu G, Wu J. Iptakalim inhibits nicotinic acetylcholine receptor-mediated currents in dopamine neurons acutely dissociated from rat substantia nigra pars compacta. Neurosci Lett 2006; 403:57-62. [PMID: 16730119 DOI: 10.1016/j.neulet.2006.04.060] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2006] [Revised: 04/18/2006] [Accepted: 04/19/2006] [Indexed: 10/24/2022]
Abstract
Iptakalim hydrochloride, a novel cardiovascular ATP-sensitive K(+) (K(ATP)) channel opener, has shown remarkable antihypertensive and neuroprotective effects in a variety of studies using in vivo and in vitro preparations. We recently found that iptakalim blocked human alpha4-containing nicotinic acetylcholine receptors (nAChRs) heterologously expressed in the human SH-EP1 cell line. In the present study, we examined the effects of iptakalim on several neurotransmitter-induced current responses in single DA neurons freshly dissociated from rat substantia nigra pars compacta (SNc), using perforated patch-clamp recordings combined with a U-tube rapid drug application. In identified DA neurons under voltage-clamp configuration, glutamate-, NMDA-, and GABA-induced currents were insensitive to co-application with iptakalim (100 microM), while whole-cell currents induced by ACh (1 mM+1 microM atropine) or an alpha4beta2 nicotinic acetylcholine receptors relatively selective agonist, RJR-2403 (300 microM), were eliminated by iptakalim. Iptakalim inhibited RJR-2403-induced current in a concentration-dependent manner, and reduced maximal RJR-2403-induced currents at the highest agonist concentration, suggesting a non-competitive block. In current-clamp mode, iptakalim failed to affect resting membrane potential and spontaneous action potential firing, but abolished RJR-2403-induced neuronal firing acceleration. Together, these results indicate that in dissociated SNc DA neurons, alpha4-containing nAChRs, rather than ionotropic glutamate receptors, GABA(A) receptors or perhaps K-ATP channels are the sensitive targets to mediate iptakalim's pharmacological roles.
Collapse
Affiliation(s)
- J Hu
- Department of Pharmacology, Nanjing Medical University, Nanjing, PR China
| | | | | | | | | | | |
Collapse
|
8
|
Wu J, Xu L, Kim DY, Rho JM, St John PA, Lue LF, Coons S, Ellsworth K, Nowak L, Johnson E, Rekate H, Kerrigan JF. Electrophysiological properties of human hypothalamic hamartomas. Ann Neurol 2005; 58:371-82. [PMID: 16130091 DOI: 10.1002/ana.20580] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The hypothalamic hamartoma (HH) is a rare developmental malformation often characterized by gelastic seizures, which are usually refractory to medical therapy. The mechanisms of epileptogenesis operative in this subcortical lesion are unknown. In this study, we used standard patch-clamp electrophysiological techniques combined with histochemical approaches to study individual cells from human HH tissue immediately after surgical resection. More than 90% of dissociated HH cells were small (6-9 microm soma) and exhibited immunoreactivity to the neuronal marker NeuN, and to glutamic acid decarboxylase, but not to glial fibrillary acidic protein. Under current-clamp, whole-cell recordings in single dissociated cells or in intact HH slices demonstrated typical neuronal responses to depolarizing and hyperpolarizing current injection. In some cases, HH cells exhibited a "sag-like" membrane potential change during membrane hyperpolarization. Interestingly, most HH cells exhibited robust, spontaneous "pacemaker-like" action potential firing. Under voltage-clamp, dissociated HH cells exhibited functional tetrodotoxin (TTX)-sensitive Na(+) and tetraethylammonium-sensitive K(+) currents. Both GABA and glutamate evoked whole-cell currents, with GABA exhibiting a peak current amplitude 10-fold greater than glutamate. These findings suggest that human HH tissues, associated with gelastic seizures, contained predominantly small GABAergic inhibitory neurons that exhibited intrinsic "pacemaker-like" behavior.
Collapse
Affiliation(s)
- Jie Wu
- Division of Neurology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ 85013, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Kuo YP, Xu L, Eaton JB, Zhao L, Wu J, Lukas RJ. Roles for nicotinic acetylcholine receptor subunit large cytoplasmic loop sequences in receptor expression and function. J Pharmacol Exp Ther 2005; 314:455-66. [PMID: 15833891 DOI: 10.1124/jpet.105.084954] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
To evaluate possible physiological roles of the large cytoplasmic loops (C2) and neighboring transmembrane domains of nicotinic acetylcholine receptor (nAChR) subunits, we generated novel fusion constructs in which human nAChR alpha4, beta2, or beta4 subunit C2 or C2 and neighboring sequences were replaced by corresponding sequences from the mouse serotonin type 3A (5-HT3A) receptor subunit. Following stable expression in human SH-EP1 cells, we found that extensive sequence substitutions involving third and fourth transmembrane domains and neighboring "proximal" C2 sequences (e.g., beta2 H322-V335 and V449-R460) did not allow functional expression of nAChR containing chimeric subunits. However, expression of functional nAChR was achieved containing wild-type alpha4 subunits and chimeric beta2 (beta2chi) subunits whose "nested" C2 domain sequences K336-S448 were replaced with the corresponding 5-HT3A subunit sequences. Whereas these findings suggested indispensable roles for M3/M4 transmembrane and/or proximal C2 sequences in alpha4beta2-nAChR function, nested C2 sequences in the beta2 subunit are not essential for functional receptor expression. Ligand-binding analyses also revealed only subtle differences in pharmacological profiles of alpha4beta2-nAChR compared with alpha4beta2chi-nAChR. Nevertheless, there was heightened emergence of agonist-mediated self-inhibition of alpha4beta2chi function, greater sensitivity to functional blockade by a number of antagonists, and faster and more complete acute desensitization of alpha4beta2chi-nAChR than for alpha4beta2-nAChR. These studies are consistent with unexpected roles of nested C2 sequences in nAChR function.
Collapse
Affiliation(s)
- Yen-Ping Kuo
- Department of Neurobiology, Barrow Neurological Institute, 350 West Thomas Road, Phoenix, AZ 85013, USA.
| | | | | | | | | | | |
Collapse
|
10
|
González-Hernández T, Barroso-Chinea P, Rodríguez M. Response of the GABAergic and dopaminergic mesostriatal projections to the lesion of the contralateral dopaminergic mesostriatal pathway in the rat. Mov Disord 2004; 19:1029-1042. [PMID: 15372592 DOI: 10.1002/mds.20206] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Although dopamine is the main neurotransmitter in the mesostriatal system, recent studies indicate the existence of two nigrostriatal GABAergic projections: one arising from neurons immunoreactive for GABA, glutamic acid decarboxylase (GAD67), and parvalbumin (PV) lying in the substantia nigra pars reticulata (nigrostriatal GABA cells) and the other arising from a subpopulation of dopaminergic neurons lying in the substantia nigra pars compacta and ventral tegmental area, which under normal conditions, contains mRNA for GAD65 (one of the two isoforms of glutamic acid decarboxylase), but which is not immunoreactive for GABA and GAD65 (nigrostriatal dopaminergic [DA]/GABA cells). With the aim of improving our knowledge about the interaction between the nigrostriatal system of both brain hemispheres, we have studied the response of these three components of the mesostriatal system (GABA, DA/GABA, and DA) to the lesion of the contralateral mesostriatal DA pathway, by using morphological and neurophysiological techniques. Our findings show that, in the side contralateral to the lesion, (1) the number of nigrostriatal GABA cells increases from 6% to 17% with respect to the total number of nigrostriatal cells, (2) the soma of DA/GABA cells becomes immunoreactive for GABA and GAD65, and (3) there is an increase in the firing rate and burst activity of DA-neurons, except in those projecting to the striatum, which may be under the action of the GABA hyperactivity. Taken together, our results suggest that the GABAergic components of the mesostriatal projection play a regulatory role on the DA component, activated or upregulated after contralateral DA lesion and are probably addressed to restoring the functional symmetry in basal ganglia and to slowing down the contralateral progression of DA-cell degeneration in Parkinson's disease.
Collapse
|
11
|
Wu J, Kuo YP, George AA, Xu L, Hu J, Lukas RJ. beta-Amyloid directly inhibits human alpha4beta2-nicotinic acetylcholine receptors heterologously expressed in human SH-EP1 cells. J Biol Chem 2004; 279:37842-51. [PMID: 15234980 DOI: 10.1074/jbc.m400335200] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Amyloid-beta (Abeta) accumulation and aggregation are thought to contribute to the pathogenesis of Alzheimer's disease (AD). In AD, there is a selective decrease in the numbers of radioligand binding sites corresponding to the most abundant nicotinic acetylcholine receptor (nAChR) subtype, which contains human alpha4 and beta2 subunits (halpha4beta2-nAChR). However, the relationships between these phenomena are uncertain, and effects of Abeta on halpha4beta2-nAChR function have not been investigated in detail. We first confirmed expression of halpha4 and hbeta2 subunits as messenger RNA in transfected, human SHEP1 cells by reverse transcription-polymerase chain reaction and mRNA fluorescence in situ hybridization analyses. Immunoprecipitation Western analyses confirmed alpha4 and beta2 subunit protein expression and co-assembly. Whole cell current recording demonstrated heterologous expression in SH-EP1-halpha4beta2 cells of functional halpha4beta2-nAChRs with characteristic responses to nicotinic agonists or antagonists. Nicotine-induced whole cell currents were suppressed by Abeta(1-42) in a dose-dependent manner. Functional inhibition was selective for Abeta(1-42) compared with the functionally inactive, control peptide Abeta(40-1).Abeta(1-42)-mediated inhibition of halpha4beta2-nAChR function was non-competitive, voltage-independent, and use-independent. Pre-loading of cells with guanyl-5'-yl thiophosphate failed to prevent Abeta(1-42)-induced inhibition, suggesting that down-regulation of halpha4beta2-nAChR function by Abeta(1-42) is not mediated by nAChR internalization. Sensitivity to Abeta(1-42) antagonism at 1 nm was evident for halpha4beta2-nAChRs, but not for heterologously expressed human alpha7-nAChRs, although both nAChR subtypes were functionally inhibited by 100 nm Abeta(1-42), with the magnitude of functional block being higher for 100 nm Abeta(1-42) acting on halpha7-nAChRs. These findings suggest that halpha4beta2-nAChRs are sensitive and perhaps pathophysiologically relevant targets for Abeta neurotoxicity in AD.
Collapse
Affiliation(s)
- Jie Wu
- Division of Neurology, St. Joseph's Hospital and Medical Center, Phoenix, AZ 85013, USA.
| | | | | | | | | | | |
Collapse
|
12
|
Wu J, Ellsworth K, Ellsworth M, Schroeder KM, Smith K, Fisher RS. Abnormal benzodiazepine and zinc modulation of GABAA receptors in an acquired absence epilepsy model. Brain Res 2004; 1013:230-40. [PMID: 15193533 DOI: 10.1016/j.brainres.2004.03.075] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/23/2004] [Indexed: 11/19/2022]
Abstract
Brain cholesterol synthesis inhibition (CSI) at a young age in rats has been shown to be a faithful model of acquired absence epilepsy, a devastating condition for which few therapies or models exist. We employed the CSI model to study cellular mechanisms of acquired absence epilepsy in Long-Evans Hooded rats. Patch-clamp, whole-cell recordings were compared from neurons acutely dissociated from the nucleus reticularis of thalamus (nRt) treated and untreated with a cholesterol synthesis inhibitor, U18666A. In U18666A-treated animals, 91% of rats developed EEG spike-waves (SWs). Patchclamp results revealed that although there was no remarkable change in GABAA receptor affinity, both a loss of ability of benzodiazepines to enhance GABAA-receptor responses and an increase of Zn2+ inhibition of GABAA-receptor responses of nRt neurons occurred in Long-Evans Hooded rats previously administered U18666A. This change was specific, since no significant changes were found in neurons exposed to the GABA allosteric modulator, pentobarbital. Taken collectively, these findings provide evidence for abnormalities in benzodiazepine and Zn2+ modulation of GABAA receptors in the CSI model, and suggest that decreased gamma2 subunit expression may underlie important aspects of generation of thalamocortical SWs in atypical absence seizures. The present results are also consistent with recent findings that mutation of the gamma2 subunit of the GABAA receptor changes benzodiazepine modulation in families with generalized epilepsy syndromes.
Collapse
Affiliation(s)
- Jie Wu
- Division of Neurology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, 350 West Thomas Road, Phoenix, AZ 85013-4496, USA.
| | | | | | | | | | | |
Collapse
|
13
|
Zhao L, Kuo YP, George AA, Peng JH, Purandare MS, Schroeder KM, Lukas RJ, Wu J. Functional properties of homomeric, human alpha 7-nicotinic acetylcholine receptors heterologously expressed in the SH-EP1 human epithelial cell line. J Pharmacol Exp Ther 2003; 305:1132-41. [PMID: 12626641 DOI: 10.1124/jpet.103.048777] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
alpha 7-Nicotinic acetylcholine receptors (alpha 7-nAChRs) are broadly distributed in the central nervous system, where they play important roles in chemical and electrical signaling, and perhaps in neurite outgrowth, synaptic plasticity, and neuronal death/survival. To help elucidate their normal and pathophysiological roles, we have heterologously expressed human alpha 7-nAChR in transfected SH-EP1 human epithelial cells. Reverse transcription-polymerase chain reaction and mRNA fluorescence in situ hybridization analyses demonstrate expression of human alpha 7 subunits as messenger RNA. Patch-clamp recordings exploiting a novel strategy to prevent functional rundown of whole-cell peak current responses to repeated acute challenges with nicotinic agonists show successful expression of functional alpha 7-nAChR that mediate inward currents characterized by rapid phases of activation and inactivation. Concentration-response curves show that nicotine, acetylcholine, and choline are efficacious agonists at human alpha 7-nAChRs. Current-voltage relationships show inward rectification for agonist-induced currents. Human alpha 7-nAChRs exhibit some sensitivity to alpha 7-nAChR antagonists alpha-bungarotoxin (Bgt) or methyllycaconitine (MLA) when applied coincidentally with agonist, but much higher affinity block occurs when cells and alpha 7-nAChRs are pre-exposed to antagonists for 2 min before challenge with agonist. Both Bgt and MLA are competitive inhibitors of alpha 7-nAChR function. Whole-cell current peak amplitudes and half-times for inactivation of alpha 7-nAChR functional responses to nicotine are dramatically reduced in the absence of extracellular Ca2+, suggestive of high Ca2+ permeability of the alpha 7-nAChR channel. Thus, heterologously expressed human alpha 7-nAChR in mammalian cells have properties of native alpha 7-nAChR or of alpha 7-nAChR heterologously expressed in other systems and serve as excellent models for studies of molecular bases of alpha 7-nAChR function.
Collapse
Affiliation(s)
- Lingke Zhao
- Division of Neurology, Barrow Neurological Institute, 350 West Thomas Rd., Phoenix, AZ 85013-4496, USA
| | | | | | | | | | | | | | | |
Collapse
|