1
|
Lim JR, Chae CW, Park JY, Jung YH, Yoon JH, Kim MJ, Lee HJ, Choi GE, Han HJ. Ethanol-induced ceramide production causes neuronal apoptosis by increasing MCL-1S-mediated ER-mitochondria contacts. Neurobiol Dis 2023; 177:106009. [PMID: 36689912 DOI: 10.1016/j.nbd.2023.106009] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/06/2023] [Accepted: 01/19/2023] [Indexed: 01/21/2023] Open
Abstract
Heavy alcohol consumption causes neuronal cell death and cognitive impairment. Neuronal cell death induced by ethanol may result from increased production of the sphingolipid metabolite ceramide. However, the molecular mechanisms of neuronal cell death caused by ethanol-induced ceramide production have not been elucidated. Therefore, we investigated the mechanism through which ethanol-induced ceramide production causes neuronal cell apoptosis using human induced-pluripotent stem cell-derived neurons and SH-SY5Y cells and identified the effects of ceramide on memory deficits in C57BL/6 mice. First, we found that ethanol-induced ceramide production was decreased by inhibition of the de novo synthesis pathway, mediated by serine palmitoyltransferase (SPT). The associated alterations of the molecules related to the ceramide pathway suggest that the elevated level of ceramide activated protein phosphatase 1 (PP1), which inhibited the nuclear translocation of serine/arginine-rich splicing factor 1 (SRSF1). This led to aberrant splicing of myeloid cell leukemia 1 (MCL-1) pre-mRNA, which upregulated MCL-1S expression. Our results demonstrated that the interaction of MCL-1S with the inositol 1, 4, 5-trisphosphate receptor (IP3R) increases calcium release from the endoplasmic reticulum (ER) and then activated ER-bound inverted formin 2 (INF2). In addition, we discovered that F-actin polymerization through INF2 activation promoted ER-mitochondria contacts, which induced mitochondrial calcium influx and mitochondrial reactive oxygen species (mtROS) production. Markedly, MCL-1S silencing decreased mitochondria-associated ER membrane (MAM) formation and prevented mitochondrial calcium influx and mtROS accumulation, by inhibiting INF2-dependent actin polymerization interacting with mitochondria. Furthermore, the inhibition of ceramide production in ethanol-fed mice reduced MCL-1S expression, neuronal cell death, and cognitive impairment. In conclusion, we suggest that ethanol-induced ceramide production may lead to mitochondrial calcium overload through MCL-1S-mediated INF2 activation-dependent MAM formation, which promotes neuronal apoptosis.
Collapse
Affiliation(s)
- Jae Ryong Lim
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, and BK21 Four Future Veterinary Medicine Leading Education & Research Center, Seoul National University, Seoul, 08826, Republic of Korea
| | - Chang Woo Chae
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, and BK21 Four Future Veterinary Medicine Leading Education & Research Center, Seoul National University, Seoul, 08826, Republic of Korea
| | - Ji Yong Park
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, and BK21 Four Future Veterinary Medicine Leading Education & Research Center, Seoul National University, Seoul, 08826, Republic of Korea
| | - Young Hyun Jung
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, and BK21 Four Future Veterinary Medicine Leading Education & Research Center, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jee Hyeon Yoon
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, and BK21 Four Future Veterinary Medicine Leading Education & Research Center, Seoul National University, Seoul, 08826, Republic of Korea
| | - Min Jeong Kim
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, and BK21 Four Future Veterinary Medicine Leading Education & Research Center, Seoul National University, Seoul, 08826, Republic of Korea
| | - Hyun Jik Lee
- Laboratory of Veterinary Physiology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, 28644, Republic of Korea; Institute for Stem Cell & Regenerative Medicine (ISCRM), Chungbuk National University, Cheongju, Chungbuk, 28644, Republic of Korea
| | - Gee Euhn Choi
- Laboratory of Veterinary Biochemistry, College of Veterinary Medicine, Jeju National University, Jeju, 63243, Republic of Korea
| | - Ho Jae Han
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, and BK21 Four Future Veterinary Medicine Leading Education & Research Center, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
2
|
Hollen C, Neilson LE, Barajas RF, Greenhouse I, Spain RI. Oxidative stress in multiple sclerosis-Emerging imaging techniques. Front Neurol 2023; 13:1025659. [PMID: 36712455 PMCID: PMC9878592 DOI: 10.3389/fneur.2022.1025659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 12/23/2022] [Indexed: 01/14/2023] Open
Abstract
While conventional magnetic resonance imaging (MRI) is central to the evaluation of patients with multiple sclerosis, its role in detecting the pathophysiology underlying neurodegeneration is more limited. One of the common outcome measures for progressive multiple sclerosis trials, atrophy on brain MRI, is non-specific and reflects end-stage changes after considerable neurodegeneration has occurred. Identifying biomarkers that identify processes underlying neurodegeneration before it is irreversible and that reflect relevant neurodegenerative pathophysiology is an area of significant need. Accumulating evidence suggests that oxidative stress plays a major role in the pathogenesis of multiple neurodegenerative diseases, including multiple sclerosis. Imaging markers related to inflammation, myelination, and neuronal integrity have been areas of advancement in recent years but oxidative stress has remained an area of unrealized potential. In this article we will begin by reviewing the role of oxidative stress in the pathogenesis of multiple sclerosis. Chronic inflammation appears to be directly related to the increased production of reactive oxygen species and the effects of subsequent oxidative stress appear to be amplified by aging and accumulating disease. We will then discuss techniques in development used in the assessment of MS as well as other models of neurodegenerative disease in which oxidative stress is implicated. Multiple blood and CSF markers of oxidative stress have been evaluated in subjects with MS, but non-invasive imaging offers major upside in that it provides real-time assessment within the brain.
Collapse
Affiliation(s)
- Christopher Hollen
- Department of Neurology, Veterans Affairs Medical Center, Portland, OR, United States
- Department of Neurology, Oregon Health and Sciences University, Portland, OR, United States
| | - Lee E. Neilson
- Department of Neurology, Veterans Affairs Medical Center, Portland, OR, United States
- Department of Neurology, Oregon Health and Sciences University, Portland, OR, United States
| | - Ramon F. Barajas
- Department of Radiology, Neuroradiology Section, Oregon Health & Sciences University, Portland, OR, United States
- Advanced Imaging Research Center, Oregon Health & Science University, Portland, OR, United States
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, United States
| | - Ian Greenhouse
- Department of Human Physiology, University of Oregon, Eugene, OR, United States
| | - Rebecca I. Spain
- Department of Neurology, Veterans Affairs Medical Center, Portland, OR, United States
- Department of Neurology, Oregon Health and Sciences University, Portland, OR, United States
| |
Collapse
|
3
|
Momchilova A, Pankov R, Alexandrov A, Markovska T, Pankov S, Krastev P, Staneva G, Vassileva E, Krastev N, Pinkas A. Sphingolipid Catabolism and Glycerophospholipid Levels Are Altered in Erythrocytes and Plasma from Multiple Sclerosis Patients. Int J Mol Sci 2022; 23:ijms23147592. [PMID: 35886939 PMCID: PMC9315580 DOI: 10.3390/ijms23147592] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 07/01/2022] [Accepted: 07/07/2022] [Indexed: 01/27/2023] Open
Abstract
Multiple sclerosis (MS) is an autoimmune, inflammatory, degenerative disease of the central nervous system. Changes in lipid metabolism have been suggested to play important roles in MS pathophysiology and progression. In this work we analyzed the lipid composition and sphingolipid-catabolizing enzymes in erythrocytes and plasma from MS patients and healthy controls. We observed reduction of sphingomyelin (SM) and elevation of its products—ceramide (CER) and shingosine (SPH). These changes were supported by the detected up-regulation of the activity of acid sphingomyelinase (ASM) in MS plasma and alkaline ceramidase (ALCER) in erythrocytes from MS patients. In addition, Western blot analysis showed elevated expression of ASM, but not of ALCER. We also compared the ratios between saturated (SAT), unsaturated (UNSAT) and polyunsaturated fatty acids and suggest, based on the significant differences observed for this ratio, that the UNSAT/SAT values could serve as a marker distinguishing erythrocytes and plasma of MS from controls. In conclusion, the application of lipid analysis in the medical practice would contribute to definition of more precise diagnosis, analysis of disease progression, and evaluation of therapeutic strategies. Based on the molecular changes of blood lipids in neurodegenerative pathologies, including MS, clinical lipidomic analytical approaches could become a promising contemporary tool for personalized medicine.
Collapse
Affiliation(s)
- Albena Momchilova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str. Bl. 21, 1113 Sofia, Bulgaria; (A.A.); (T.M.); (S.P.); (G.S.)
- Correspondence: ; Tel.: +359-2-9792686 or +359-898-238971
| | - Roumen Pankov
- Biological Faculty, Sofia University, 8, Dragan Tzankov Str., 1164 Sofia, Bulgaria;
| | - Alexander Alexandrov
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str. Bl. 21, 1113 Sofia, Bulgaria; (A.A.); (T.M.); (S.P.); (G.S.)
| | - Tania Markovska
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str. Bl. 21, 1113 Sofia, Bulgaria; (A.A.); (T.M.); (S.P.); (G.S.)
| | - Stefan Pankov
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str. Bl. 21, 1113 Sofia, Bulgaria; (A.A.); (T.M.); (S.P.); (G.S.)
| | - Plamen Krastev
- Cardiology Clinic, University Hospital St. Ekaterina, 1431 Sofia, Bulgaria;
| | - Galya Staneva
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str. Bl. 21, 1113 Sofia, Bulgaria; (A.A.); (T.M.); (S.P.); (G.S.)
| | - Evgenia Vassileva
- Clinic of Neurology, Tsaritsa Yoanna University Hospital-ISUL, 1527 Sofia, Bulgaria;
| | - Nikolai Krastev
- Department of Anatomy, Histology and Embryology, Medical University-Sofia, Blvd. Sv. Georgi Sofiisky 1, 1431 Sofia, Bulgaria;
- Medical Center Relax, 8 Ami Bue Str., 1606 Sofia, Bulgaria
| | - Adriana Pinkas
- STEP/CSTEP, Office of Continuing Education, Suffolk County Community College 30 Greene Ave., Sayville, NY 11782, USA;
| |
Collapse
|
4
|
Vesga-Jiménez DJ, Martin C, Barreto GE, Aristizábal-Pachón AF, Pinzón A, González J. Fatty Acids: An Insight into the Pathogenesis of Neurodegenerative Diseases and Therapeutic Potential. Int J Mol Sci 2022; 23:2577. [PMID: 35269720 PMCID: PMC8910658 DOI: 10.3390/ijms23052577] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 01/12/2022] [Accepted: 01/20/2022] [Indexed: 12/13/2022] Open
Abstract
One of the most common lipids in the human body is palmitic acid (PA), a saturated fatty acid with essential functions in brain cells. PA is used by cells as an energy source, besides being a precursor of signaling molecules and protein tilting across the membrane. Although PA plays physiological functions in the brain, its excessive accumulation leads to detrimental effects on brain cells, causing lipotoxicity. This mechanism involves the activation of toll-like receptors (TLR) and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) pathways, with the consequent release of pro-inflammatory cytokines, increased production of reactive oxygen species (ROS), endoplasmic reticulum (ER) stress, and autophagy impairment. Importantly, some of the cellular changes induced by PA lead to an augmented susceptibility to the development of Alzheimer's and Parkinson´s diseases. Considering the complexity of the response to PA and the intrinsic differences of the brain, in this review, we provide an overview of the molecular and cellular effects of PA on different brain cells and their possible relationships with neurodegenerative diseases (NDs). Furthermore, we propose the use of other fatty acids, such as oleic acid or linoleic acid, as potential therapeutic approaches against NDs, as these fatty acids can counteract PA's negative effects on cells.
Collapse
Affiliation(s)
- Diego Julián Vesga-Jiménez
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogota 110231, Colombia; (D.J.V.-J.); (A.F.A.-P.)
- Division of Neuropharmacology and Neurologic Diseases, Yerkes National Primate Research Center, Atlanta, GA 30329, USA;
| | - Cynthia Martin
- Division of Neuropharmacology and Neurologic Diseases, Yerkes National Primate Research Center, Atlanta, GA 30329, USA;
| | - George E. Barreto
- Department of Biological Sciences, University of Limerick, V94 T9PX Limerick, Ireland;
- Health Research Institute, University of Limerick, V94 T9PX Limerick, Ireland
| | - Andrés Felipe Aristizábal-Pachón
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogota 110231, Colombia; (D.J.V.-J.); (A.F.A.-P.)
| | - Andrés Pinzón
- Laboratorio de Bioinformática y Biología de Sistemas, Universidad Nacional de Colombia, Bogota 111321, Colombia;
| | - Janneth González
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogota 110231, Colombia; (D.J.V.-J.); (A.F.A.-P.)
| |
Collapse
|
5
|
Fisher-Wellman KH, Hagen JT, Neufer PD, Kassai M, Cabot MC. On the nature of ceramide-mitochondria interactions - Dissection using comprehensive mitochondrial phenotyping. Cell Signal 2020; 78:109838. [PMID: 33212155 DOI: 10.1016/j.cellsig.2020.109838] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 11/12/2020] [Accepted: 11/13/2020] [Indexed: 02/06/2023]
Abstract
Sphingolipids are a unique class of lipids owing to their non-glycerol-containing backbone, ceramide, that is constructed from a long-chain aliphatic amino alcohol, sphinganine, to which a fatty acid is attached via an amide bond. Ceramide plays a star role in the initiation of apoptosis by virtue of its interactions with mitochondria, a control point for a downstream array of signaling cascades culminating in apoptosis. Many pathways converge on mitochondria to elicit mitochondrial outer membrane permeabilization (MOMP), a step that corrupts bioenergetic service. Although much is known regarding ceramides interaction with mitochondria and the ensuing cell signal transduction cascades, how ceramide impacts the elements of mitochondrial bioenergetic function is poorly understood. The objective of this review is to introduce the reader to sphingolipid metabolism, present a snapshot of mitochondrial respiration, elaborate on ceramides convergence on mitochondria and the upstream players that collaborate to elicit MOMP, and introduce a mitochondrial phenotyping platform that can be of utility in dissecting the fine-points of ceramide impact on cellular bioenergetics.
Collapse
Affiliation(s)
- Kelsey H Fisher-Wellman
- Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, NC, United States of America; East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC, United States of America.
| | - James T Hagen
- Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, NC, United States of America; East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC, United States of America
| | - P Darrell Neufer
- East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC, United States of America
| | - Miki Kassai
- Department of Biochemistry and Molecular Biology, Brody School of Medicine, East Carolina University, Greenville, NC, United States of America; East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC, United States of America
| | - Myles C Cabot
- Department of Biochemistry and Molecular Biology, Brody School of Medicine, East Carolina University, Greenville, NC, United States of America; East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC, United States of America.
| |
Collapse
|
6
|
Ferreira HB, Neves B, Guerra IM, Moreira A, Melo T, Paiva A, Domingues MR. An overview of lipidomic analysis in different human matrices of multiple sclerosis. Mult Scler Relat Disord 2020; 44:102189. [PMID: 32516740 DOI: 10.1016/j.msard.2020.102189] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 05/05/2020] [Accepted: 05/06/2020] [Indexed: 02/06/2023]
Abstract
Multiple sclerosis is a chronic inflammatory and neurodegenerative disease of the central nervous system, and it is one of the most common neurological cause of disability in young adults. It is known that several factors contribute to increase the risk of development and pathogenesis of multiple sclerosis, nonetheless, but the true etiology of this pathology remains unknown. Similar to other inflammatory diseases, oxidative stress and lipid peroxidation are also associated to multiple sclerosis. Alterations in the lipid profile seem to be a hallmark of this pathology which can contribute to the dysregulation of lipid homeostasis and lipid metabolism in multiple sclerosis. Lipidomic studies analysed in this review clearly demonstrate the role of lipids in inflammatory processes, in immunity, and in the onset and development of multiple sclerosis. Several investigations reported alterations of some molecular lipid species, in particular, with decrease of fatty acids (FA) 18:2 and 20:4 and total polyunsaturated FA, with compensatory increases of saturated FA with shorter carbon chains. Oxidized phospholipids were reported in few studies as well. Also, it was shown that clinical lipidomics has potential as a tool to aid both in multiple sclerosis diagnosis and therapeutics by allowing a detailed lipidome profiling of the patients suffering with this disease.
Collapse
Affiliation(s)
- Helena Beatriz Ferreira
- Mass Spectrometry Center & QOPNA/LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Bruna Neves
- Mass Spectrometry Center & QOPNA/LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Inês M Guerra
- Mass Spectrometry Center & QOPNA/LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Ana Moreira
- Mass Spectrometry Center & QOPNA/LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal; CICECO, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago 3810-193 Aveiro, Portugal
| | - Tânia Melo
- Mass Spectrometry Center & QOPNA/LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal; CESAM, Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago 3810-193 Aveiro, Portugal
| | - Artur Paiva
- Unidade de Gestão Operacional em Citometria, Centro Hospitalar e Universitário de Coimbra (CHUC, Portugal); Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Coimbra, Portugal.; Instituto Politécnico de Coimbra, ESTESC - Coimbra Health School, Ciências Biomédicas Laboratoriais, Portugal
| | - M Rosário Domingues
- Mass Spectrometry Center & QOPNA/LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal; CESAM, Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago 3810-193 Aveiro, Portugal.
| |
Collapse
|
7
|
Ross MM, Piorczynski TB, Harvey J, Burnham TS, Francis M, Larsen MW, Roe K, Hansen JM, Stark MR. Ceramide: a novel inducer for neural tube defects. Dev Dyn 2019; 248:979-996. [PMID: 31390103 DOI: 10.1002/dvdy.93] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 07/02/2019] [Accepted: 07/21/2019] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Circulating plasma ceramides, a class of bioactive sphingolipids, are elevated in metabolic disorders, including obesity. Infants of women with these disorders are at 2- to 3-fold greater risk for developing a neural tube defect (NTD). This study aimed to test the effects of embryonic exposure to C2-ceramides (C2) during neural tube closure. Preliminary data shows an increase in NTDs in chick embryos after C2 exposure, and addresses potential mechanisms. RESULTS Cell and embryo models were used to examine redox shifts after ceramide exposure. While undifferentiated P19 cells were resistant to ceramide exposure, neuronally differentiated P19 cells exhibited an oxidizing shift. Consistent with these observations, GSH E h curves revealed a shift to a more oxidized state in C2 treated embryos without increasing apoptosis or changing Pax3 expression, however cell proliferation was lower. Neural tube defects were observed in 45% of chick embryos exposed to C2, compared to 12% in control embryos. CONCLUSIONS C2 exposure during critical developmental stages increased the frequency of NTDs in the avian model. Increased ROS generation in cell culture, along with the more oxidative GSH E h profiles of C2 exposed cells and embryos, support a model wherein ceramide affects neural tube closure via altered tissue redox environments.
Collapse
Affiliation(s)
- Micah M Ross
- Department of Physiology and Developmental Biology, College of Life Sciences, Brigham Young University, Provo, Utah
| | - Ted B Piorczynski
- Department of Physiology and Developmental Biology, College of Life Sciences, Brigham Young University, Provo, Utah
| | - Jamison Harvey
- Department of Physiology and Developmental Biology, College of Life Sciences, Brigham Young University, Provo, Utah
| | - Tyson S Burnham
- Department of Physiology and Developmental Biology, College of Life Sciences, Brigham Young University, Provo, Utah
| | - Morgan Francis
- Department of Physiology and Developmental Biology, College of Life Sciences, Brigham Young University, Provo, Utah
| | - Madison W Larsen
- Department of Physiology and Developmental Biology, College of Life Sciences, Brigham Young University, Provo, Utah
| | - Kyle Roe
- Department of Physiology and Developmental Biology, College of Life Sciences, Brigham Young University, Provo, Utah
| | - Jason M Hansen
- Department of Physiology and Developmental Biology, College of Life Sciences, Brigham Young University, Provo, Utah
| | - Michael R Stark
- Department of Physiology and Developmental Biology, College of Life Sciences, Brigham Young University, Provo, Utah
| |
Collapse
|
8
|
Assessment of cytosolic free calcium changes during ceramide-induced cell death in MDA-MB-231 breast cancer cells expressing the calcium sensor GCaMP6m. Cell Calcium 2018; 72:39-50. [PMID: 29748132 DOI: 10.1016/j.ceca.2018.02.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 02/12/2018] [Accepted: 02/19/2018] [Indexed: 12/17/2022]
Abstract
Alterations in Ca2+ signaling can regulate key cancer hallmarks such as proliferation, invasiveness and resistance to cell death. Changes in the regulation of intracellular Ca2+ and specific components of Ca2+ influx are a feature of several cancers and/or cancer subtypes, including the basal-like breast cancer subtype, which has a poor prognosis. The development of genetically encoded calcium indicators, such as GCaMP6, represents an opportunity to measure changes in intracellular free Ca2+ during processes relevant to breast cancer progression that occur over long periods (e.g. hours), such as cell death. This study describes the development of a MDA-MB-231 breast cancer cell line stably expressing GCaMP6m. The cell line retained the key features of this aggressive basal-like breast cancer cell line. Using this model, we defined alterations in relative cytosolic free Ca2+ ([Ca2+]CYT) when the cells were treated with C2-ceramide. Cell death was measured simultaneously via assessment of propidium iodide permeability. Treatment with ceramide produced delayed and heterogeneous sustained increases in [Ca2+]CYT. Where cell death occurred, [Ca2+]CYT increases preceded cell death. The sustained increases in [Ca2+]CYT were not related to the rapid morphological changes induced by ceramide. Silencing of the plasma membrane Ca2+ ATPase isoform 1 (PMCA1) was associated with an augmentation in ceramide-induced increases in [Ca2+]CYT and also cell death. This work demonstrates the utility of GCaMP6 Ca2+ indicators for investigating [Ca2+]CYT changes in breast cancer cells during events relevant to tumor progression, which occur over hours rather than minutes.
Collapse
|
9
|
Martin-Jiménez CA, García-Vega Á, Cabezas R, Aliev G, Echeverria V, González J, Barreto GE. Astrocytes and endoplasmic reticulum stress: A bridge between obesity and neurodegenerative diseases. Prog Neurobiol 2017; 158:45-68. [DOI: 10.1016/j.pneurobio.2017.08.001] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 05/22/2017] [Accepted: 08/04/2017] [Indexed: 12/13/2022]
|
10
|
The Evaluation of Oxidative Stress Parameters in Serum Patients with Relapsing-Remitting Multiple Sclerosis Treated with II-Line Immunomodulatory Therapy. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:9625806. [PMID: 29138683 PMCID: PMC5613460 DOI: 10.1155/2017/9625806] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 07/30/2017] [Accepted: 08/20/2017] [Indexed: 11/20/2022]
Abstract
Objectives The assessment of oxidative stress (OS) in serum relapsing-remitting multiple sclerosis patients treated with II-line immunomodulatory therapy (fingolimod, natalizumab) compared to newly diagnosed patients (de novo group) treated with interferon (IFN) beta and controls. The relationship between OS parameters and gender, age, disease duration, Expanded Disability Status Scale, annualized relapse rate, MRI lesions in patients treated with II-line. Materials and Methods One hundred and twenty-one patients with RRMS were enrolled in the study. Patients were divided into groups: de novo group, IFN, fingolimod (FG), natalizumab (NT), and controls. Lipid hydroperoxides (LHP), malondialdehyde (MDA), lipofuscin (LPS), and total oxidative status (TOS) were determined. Results LHP, MDA, and TOS were lower in NT and FG groups compared to the de novo group. Levels of OS were different between NT and FG patients and the IFN group. Women treated with FG and NT had lower MDA, LPH, and TOS than women who were not treated while in men only LPH was lowered. Positive correlations were found between MDA, LHP, TOS, and ARR in the NT group. Conclusion The II-line immunomodulatory treatment decreased OS particularly among women. No difference in OS levels was observed between II-line therapy and IFN beta.
Collapse
|
11
|
Decrock E, Hoorelbeke D, Ramadan R, Delvaeye T, De Bock M, Wang N, Krysko DV, Baatout S, Bultynck G, Aerts A, Vinken M, Leybaert L. Calcium, oxidative stress and connexin channels, a harmonious orchestra directing the response to radiotherapy treatment? BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2017; 1864:1099-1120. [DOI: 10.1016/j.bbamcr.2017.02.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 02/02/2017] [Accepted: 02/04/2017] [Indexed: 02/07/2023]
|
12
|
Targeting sphingosine-1-phosphate signaling for cancer therapy. SCIENCE CHINA-LIFE SCIENCES 2017. [DOI: 10.1007/s11427-017-9046-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
13
|
New Insights into the Role of Oxidative Stress Mechanisms in the Pathophysiology and Treatment of Multiple Sclerosis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:1973834. [PMID: 27829982 PMCID: PMC5088319 DOI: 10.1155/2016/1973834] [Citation(s) in RCA: 107] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 08/05/2016] [Accepted: 09/19/2016] [Indexed: 12/11/2022]
Abstract
Multiple sclerosis (MS) is a multifactorial disease of the central nervous system (CNS) characterized by an inflammatory process and demyelination. The etiology of the disease is still not fully understood. Therefore, finding new etiological factors is of such crucial importance. It is suspected that the development of MS may be affected by oxidative stress (OS). In the acute phase OS initiates inflammatory processes and in the chronic phase it sustains neurodegeneration. Redox processes in MS are associated with mitochondrial dysfunction, dysregulation of axonal bioenergetics, iron accumulation in the brain, impaired oxidant/antioxidant balance, and OS memory. The present paper is a review of the current literature about the role of OS in MS and it focuses on all major aspects. The article explains the mechanisms of OS, reports unique biomarkers with regard to their clinical significance, and presents a poorly understood relationship between OS and neurodegeneration. It also provides novel methods of treatment, including the use of antioxidants and the role of antioxidants in neuroprotection. Furthermore, adding new drugs in the treatment of relapse may be useful. The article considers the significance of OS in the current treatment of MS patients.
Collapse
|
14
|
Hernández-Corbacho MJ, Salama MF, Canals D, Senkal CE, Obeid LM. Sphingolipids in mitochondria. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1862:56-68. [PMID: 27697478 DOI: 10.1016/j.bbalip.2016.09.019] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 08/01/2016] [Accepted: 09/24/2016] [Indexed: 01/16/2023]
Abstract
Sphingolipids are bioactive lipids found in cell membranes that exert a critical role in signal transduction. In recent years, it has become apparent that sphingolipids participate in growth, senescence, differentiation and apoptosis. The anabolism and catabolism of sphingolipids occur in discrete subcellular locations and consist of a strictly regulated and interconnected network, with ceramide as the central hub. Altered sphingolipid metabolism is linked to several human diseases. Hence, an advanced knowledge of how and where sphingolipids are metabolized is of paramount importance in order to understand the role of sphingolipids in cellular functions. In this review, we provide an overview of sphingolipid metabolism. We focus on the distinct pathways of ceramide synthesis, highlighting the mitochondrial ceramide generation, transport of ceramide to mitochondria and its role in the regulation of mitochondrial-mediated apoptosis, mitophagy and implications to disease. We will discuss unanswered questions and exciting future directions. This article is part of a Special Issue entitled: Lipids of Mitochondria edited by Guenther Daum.
Collapse
Affiliation(s)
- María José Hernández-Corbacho
- Stony Brook Cancer Center and the Department of Medicine, Stony Brook University, Health Sciences Center, Stony Brook, NY 11794, USA
| | - Mohamed F Salama
- Stony Brook Cancer Center and the Department of Medicine, Stony Brook University, Health Sciences Center, Stony Brook, NY 11794, USA; Department of Biochemistry, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Daniel Canals
- Stony Brook Cancer Center and the Department of Medicine, Stony Brook University, Health Sciences Center, Stony Brook, NY 11794, USA
| | - Can E Senkal
- Stony Brook Cancer Center and the Department of Medicine, Stony Brook University, Health Sciences Center, Stony Brook, NY 11794, USA
| | - Lina M Obeid
- Stony Brook Cancer Center and the Department of Medicine, Stony Brook University, Health Sciences Center, Stony Brook, NY 11794, USA; The Northport VA Medical Center, Northport, NY 11768, USA.
| |
Collapse
|
15
|
Sepulveda-Diaz JE, Ouidja MO, Socias SB, Hamadat S, Guerreiro S, Raisman-Vozari R, Michel PP. A simplified approach for efficient isolation of functional microglial cells: Application for modeling neuroinflammatory responsesin vitro. Glia 2016; 64:1912-24. [DOI: 10.1002/glia.23032] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 05/24/2016] [Accepted: 06/30/2016] [Indexed: 11/12/2022]
Affiliation(s)
- Julia E. Sepulveda-Diaz
- Institut National De La Santé Et De La Recherche Médicale, U 1127, CNRS, Unité Mixte De Recherche (UMR) 7225, Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127, Institut Du Cerveau Et De La Moelle Epinière, ICM; Paris France
| | - Mohand O. Ouidja
- Laboratoire Croissance, Régénération, Réparation Et Régénération Tissulaires (CRRET)/EAC CNRS 7149, Université Paris Est Créteil, Université Paris Est; Créteil France
| | - Sergio B. Socias
- Institut National De La Santé Et De La Recherche Médicale, U 1127, CNRS, Unité Mixte De Recherche (UMR) 7225, Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127, Institut Du Cerveau Et De La Moelle Epinière, ICM; Paris France
- Facultad De Bioquímica, Química Y Farmacia (UNT), Instituto Superior De Investigaciones Biológicas, INSIBIO (CONICET-UNT) and Instituto De Química Biológica “Dr Bernabé Bloj,”; Tucumán Argentina
| | - Sabah Hamadat
- Institut National De La Santé Et De La Recherche Médicale, U 1127, CNRS, Unité Mixte De Recherche (UMR) 7225, Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127, Institut Du Cerveau Et De La Moelle Epinière, ICM; Paris France
| | - Serge Guerreiro
- Institut National De La Santé Et De La Recherche Médicale, U 1127, CNRS, Unité Mixte De Recherche (UMR) 7225, Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127, Institut Du Cerveau Et De La Moelle Epinière, ICM; Paris France
| | - Rita Raisman-Vozari
- Institut National De La Santé Et De La Recherche Médicale, U 1127, CNRS, Unité Mixte De Recherche (UMR) 7225, Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127, Institut Du Cerveau Et De La Moelle Epinière, ICM; Paris France
| | - Patrick P. Michel
- Institut National De La Santé Et De La Recherche Médicale, U 1127, CNRS, Unité Mixte De Recherche (UMR) 7225, Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127, Institut Du Cerveau Et De La Moelle Epinière, ICM; Paris France
| |
Collapse
|
16
|
Lin CF, Tsai CC, Huang WC, Wang YC, Tseng PC, Tsai TT, Chen CL. Glycogen Synthase Kinase-3β and Caspase-2 Mediate Ceramide- and Etoposide-Induced Apoptosis by Regulating the Lysosomal-Mitochondrial Axis. PLoS One 2016; 11:e0145460. [PMID: 26727221 PMCID: PMC4699703 DOI: 10.1371/journal.pone.0145460] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 12/03/2015] [Indexed: 11/18/2022] Open
Abstract
Glycogen synthase kinase-3β (GSK-3β) regulates the sequential activation of caspase-2 and caspase-8 before mitochondrial apoptosis. Here, we report the regulation of Mcl-1 destabilization and cathepsin D-regulated caspase-8 activation by GSK-3β and caspase-2. Treatment with either the ceramide analogue C2-ceramide or the topoisomerase II inhibitor etoposide sequentially induced lysosomal membrane permeabilization (LMP), the reduction of mitochondrial transmembrane potential, and apoptosis. Following LMP, cathepsin D translocated from lysosomes to the cytoplasm, whereas inhibiting cathepsin D blocked mitochondrial apoptosis. Furthermore, cathepsin D caused the activation of caspase-8 but not caspase-2. Inhibiting GSK-3β and caspase-2 blocked Mcl-1 destabilization, LMP, cathepsin D re-localization, caspase-8 activation, and mitochondrial apoptosis. Expression of Mcl-1 was localized to the lysosomes, and forced expression of Mcl-1 prevented apoptotic signaling via the lysosomal-mitochondrial pathway. These results demonstrate the importance of GSK-3β and caspase-2 in ceramide- and etoposide-induced apoptosis through mechanisms involving Mcl-1 destabilization and the lysosomal-mitochondrial axis.
Collapse
Affiliation(s)
- Chiou-Feng Lin
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, 110, Taiwan
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, 110, Taiwan
| | - Cheng-Chieh Tsai
- Department of Nursing, Chung Hwa University of Medical Technology, Tainan, 717, Taiwan
| | - Wei-Ching Huang
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, 701, Taiwan
| | - Yu-Chih Wang
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, 110, Taiwan
| | - Po-Chun Tseng
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, 701, Taiwan
| | - Tsung-Ting Tsai
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, 110, Taiwan
| | - Chia-Ling Chen
- Translational Research Center, Taipei Medical University, Taipei, 110, Taiwan
- * E-mail:
| |
Collapse
|
17
|
Ceramides in Alzheimer's Disease: Key Mediators of Neuronal Apoptosis Induced by Oxidative Stress and Aβ Accumulation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2015:346783. [PMID: 26090071 PMCID: PMC4458271 DOI: 10.1155/2015/346783] [Citation(s) in RCA: 147] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Revised: 05/06/2015] [Accepted: 05/07/2015] [Indexed: 11/17/2022]
Abstract
Alzheimer's disease (AD), the most common chronic and progressive neurodegenerative disorder, is characterized by extracellular deposits of amyloid β-peptides (Aβ) and intracellular deposits of hyperphosphorylated tau (phospho-tau) protein. Ceramides, the major molecules of sphingolipid metabolism and lipid second messengers, have been associated with AD progression and pathology via Aβ generation. Enhanced levels of ceramides directly increase Aβ through stabilization of β-secretase, the key enzyme in the amyloidogenic processing of Aβ precursor protein (APP). As a positive feedback loop, the generated oligomeric and fibrillar Aβ induces a further increase in ceramide levels by activating sphingomyelinases that catalyze the catabolic breakdown of sphingomyelin to ceramide. Evidence also supports important role of ceramides in neuronal apoptosis. Ceramides may initiate a cascade of biochemical alterations, which ultimately leads to neuronal death by diverse mechanisms, including depolarization and permeabilization of mitochondria, increased production of reactive oxygen species (ROS), cytochrome c release, Bcl-2 depletion, and caspase-3 activation, mainly by modulating intracellular signalling, particularly along the pathways related to Akt/PKB kinase and mitogen-activated protein kinases (MAPKs). This review summarizes recent findings related to the role of ceramides in oxidative stress-driven neuronal apoptosis and interplay with Aβ in the cascade of events ending in neuronal degeneration.
Collapse
|
18
|
de Faria Poloni J, Bonatto D. Systems Chemo-Biology and Transcriptomic Meta-Analysis Reveal the Molecular Roles of Bioactive Lipids in Cardiomyocyte Differentiation. J Cell Biochem 2015; 116:2018-31. [PMID: 25752681 DOI: 10.1002/jcb.25156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2015] [Accepted: 03/03/2015] [Indexed: 11/12/2022]
Abstract
Lipids, which are essential constituents of biological membranes, play structural and functional roles in the cell. In recent years, certain lipids have been identified as regulatory signaling molecules and have been termed "bioactive lipids". Subsequently, the importance of bioactive lipids in stem cell differentiation and cardiogenesis has gained increasing recognition. Therefore, the aim of this study was to identify the biological processes underlying murine cardiac differentiation and the mechanisms by which bioactive lipids affect these processes. For this purpose, a transcriptomic meta-analysis of microarray and RNA-seq data from murine stem cells undergoing cardiogenic differentiation was performed. The differentially expressed genes identified via this meta-analysis, as well as bioactive lipids, were evaluated using systems chemo-biology tools. These data indicated that bioactive lipids are associated with the regulation of cell motility, cell adhesion, cytoskeletal rearrangement, and gene expression. Moreover, bioactive lipids integrate the signaling pathways involved in cell migration, the secretion and remodeling of extracellular matrix components, and the establishment of the cardiac phenotype. In conclusion, this study provides new insights into the contribution of bioactive lipids to the induction of cellular responses to various stimuli, which may originate from the extracellular environment and morphogens, and the manner in which this contribution directly affects murine heart morphogenesis.
Collapse
Affiliation(s)
- Joice de Faria Poloni
- Centro de Biotecnologia da Universidade Federal do Rio Grande do Sul, Departamento de Biologia Molecular e Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Diego Bonatto
- Centro de Biotecnologia da Universidade Federal do Rio Grande do Sul, Departamento de Biologia Molecular e Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| |
Collapse
|
19
|
Ueda N. Ceramide-induced apoptosis in renal tubular cells: a role of mitochondria and sphingosine-1-phoshate. Int J Mol Sci 2015; 16:5076-124. [PMID: 25751724 PMCID: PMC4394466 DOI: 10.3390/ijms16035076] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Revised: 02/09/2015] [Accepted: 02/12/2015] [Indexed: 12/16/2022] Open
Abstract
Ceramide is synthesized upon stimuli, and induces apoptosis in renal tubular cells (RTCs). Sphingosine-1 phosphate (S1P) functions as a survival factor. Thus, the balance of ceramide/S1P determines ceramide-induced apoptosis. Mitochondria play a key role for ceramide-induced apoptosis by altered mitochondrial outer membrane permeability (MOMP). Ceramide enhances oligomerization of pro-apoptotic Bcl-2 family proteins, ceramide channel, and reduces anti-apoptotic Bcl-2 proteins in the MOM. This process alters MOMP, resulting in generation of reactive oxygen species (ROS), cytochrome C release into the cytosol, caspase activation, and apoptosis. Ceramide regulates apoptosis through mitogen-activated protein kinases (MAPKs)-dependent and -independent pathways. Conversely, MAPKs alter ceramide generation by regulating the enzymes involving ceramide metabolism, affecting ceramide-induced apoptosis. Crosstalk between Bcl-2 family proteins, ROS, and many signaling pathways regulates ceramide-induced apoptosis. Growth factors rescue ceramide-induced apoptosis by regulating the enzymes involving ceramide metabolism, S1P, and signaling pathways including MAPKs. This article reviews evidence supporting a role of ceramide for apoptosis and discusses a role of mitochondria, including MOMP, Bcl-2 family proteins, ROS, and signaling pathways, and crosstalk between these factors in the regulation of ceramide-induced apoptosis of RTCs. A balancing role between ceramide and S1P and the strategy for preventing ceramide-induced apoptosis by growth factors are also discussed.
Collapse
Affiliation(s)
- Norishi Ueda
- Department of Pediatrics, Public Central Hospital of Matto Ishikawa, 3-8 Kuramitsu, Hakusan, Ishikawa 924-8588, Japan.
| |
Collapse
|
20
|
Vidaurre OG, Haines JD, Katz Sand I, Adula KP, Huynh JL, McGraw CA, Zhang F, Varghese M, Sotirchos E, Bhargava P, Bandaru VVR, Pasinetti G, Zhang W, Inglese M, Calabresi PA, Wu G, Miller AE, Haughey NJ, Lublin FD, Casaccia P. Cerebrospinal fluid ceramides from patients with multiple sclerosis impair neuronal bioenergetics. Brain 2014; 137:2271-86. [PMID: 24893707 PMCID: PMC4164163 DOI: 10.1093/brain/awu139] [Citation(s) in RCA: 118] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 03/20/2014] [Accepted: 04/06/2014] [Indexed: 11/14/2022] Open
Abstract
Axonal damage is a prominent cause of disability and yet its pathogenesis is incompletely understood. Using a xenogeneic system, here we define the bioenergetic changes induced in rat neurons by exposure to cerebrospinal fluid samples from patients with multiple sclerosis compared to control subjects. A first discovery cohort of cerebrospinal fluid from 13 patients with multiple sclerosis and 10 control subjects showed that acute exposure to cerebrospinal fluid from patients with multiple sclerosis induced oxidative stress and decreased expression of neuroprotective genes, while increasing expression of genes involved in lipid signalling and in the response to oxidative stress. Protracted exposure of neurons to stress led to neurotoxicity and bioenergetics failure after cerebrospinal fluid exposure and positively correlated with the levels of neurofilament light chain. These findings were validated using a second independent cohort of cerebrospinal fluid samples (eight patients with multiple sclerosis and eight control subjects), collected at a different centre. The toxic effect of cerebrospinal fluid on neurons was not attributable to differences in IgG content, glucose, lactate or glutamate levels or differences in cytokine levels. A lipidomic profiling approach led to the identification of increased levels of ceramide C16:0 and C24:0 in the cerebrospinal fluid from patients with multiple sclerosis. Exposure of cultured neurons to micelles composed of these ceramide species was sufficient to recapitulate the bioenergetic dysfunction and oxidative damage induced by exposure to cerebrospinal fluid from patients with multiple sclerosis. Therefore, our data suggest that C16:0 and C24:0 ceramides are enriched in the cerebrospinal fluid of patients with multiple sclerosis and are sufficient to induce neuronal mitochondrial dysfunction and axonal damage.
Collapse
Affiliation(s)
- Oscar G Vidaurre
- 1 Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jeffery D Haines
- 1 Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ilana Katz Sand
- 2 Corinne Goldsmith Dickinson Centre for MS, Mount Sinai Medical Centre, New York, NY 10029, USA
| | - Kadidia P Adula
- 1 Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jimmy L Huynh
- 1 Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Corey A McGraw
- 3 Department of Neurology, Albert Einstein College of Medicine, Montefiore Medical Centre, Bronx, NY, USA
| | - Fan Zhang
- 4 Bioinformatics Department, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Merina Varghese
- 5 Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Elias Sotirchos
- 6 Department of Neurology, The Johns Hopkins Hospital, Baltimore, MD, USA
| | - Pavan Bhargava
- 6 Department of Neurology, The Johns Hopkins Hospital, Baltimore, MD, USA
| | | | - Giulio Pasinetti
- 5 Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Weijia Zhang
- 4 Bioinformatics Department, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Matilde Inglese
- 7 Department of Neurology, Radiology and Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Peter A Calabresi
- 6 Department of Neurology, The Johns Hopkins Hospital, Baltimore, MD, USA
| | - Gang Wu
- 8 Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Aaron E Miller
- 2 Corinne Goldsmith Dickinson Centre for MS, Mount Sinai Medical Centre, New York, NY 10029, USA
| | - Norman J Haughey
- 6 Department of Neurology, The Johns Hopkins Hospital, Baltimore, MD, USA
| | - Fred D Lublin
- 2 Corinne Goldsmith Dickinson Centre for MS, Mount Sinai Medical Centre, New York, NY 10029, USA
| | - Patrizia Casaccia
- 1 Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
21
|
Cadmium and cellular signaling cascades: interactions between cell death and survival pathways. Arch Toxicol 2013; 87:1743-86. [PMID: 23982889 DOI: 10.1007/s00204-013-1110-9] [Citation(s) in RCA: 183] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2013] [Accepted: 07/29/2013] [Indexed: 12/20/2022]
Abstract
Cellular stress elicited by the toxic metal Cd(2+) does not coerce the cell into committing to die from the onset. Rather, detoxification and adaptive processes are triggered concurrently, allowing survival until normal function is restored. With high Cd(2+), death pathways predominate. However, if sublethal stress levels affect cells for prolonged periods, as in chronic low Cd(2+) exposure, adaptive and survival mechanisms may deregulate, such that tumorigenesis ensues. Hence, death and malignancy are the two ends of a continuum of cellular responses to Cd(2+), determined by magnitude and duration of Cd(2+) stress. Signaling cascades are the key factors affecting cellular reactions to Cd(2+). This review critically surveys recent literature to outline major features of death and survival signaling pathways as well as their activation, interactions and cross talk in cells exposed to Cd(2+). Under physiological conditions, receptor activation generates 2nd messengers, which are short-lived and act specifically on effectors through their spatial and temporal dynamics to transiently alter effector activity. Cd(2+) recruits physiological 2nd messenger systems, in particular Ca(2+) and reactive oxygen species (ROS), which control key Ca(2+)- and redox-sensitive molecular switches dictating cell function and fate. Severe ROS/Ca(2+) signals activate cell death effectors (ceramides, ASK1-JNK/p38, calpains, caspases) and/or cause irreversible damage to vital organelles, such as mitochondria and endoplasmic reticulum (ER), whereas low localized ROS/Ca(2+) levels act as 2nd messengers promoting cellular adaptation and survival through signal transduction (ERK1/2, PI3K/Akt-PKB) and transcriptional regulators (Ref1-Nrf2, NF-κB, Wnt, AP-1, bestrophin-3). Other cellular proteins and processes targeted by ROS/Ca(2+) (metallothioneins, Bcl-2 proteins, ubiquitin-proteasome system, ER stress-associated unfolded protein response, autophagy, cell cycle) can evoke death or survival. Hence, temporary or permanent disruptions of ROS/Ca(2+) induced by Cd(2+) play a crucial role in eliciting, modulating and linking downstream cell death and adaptive and survival signaling cascades.
Collapse
|
22
|
Abstract
One crucial barrier to progress in the treatment of cancer has been the inability to control the balance between cell proliferation and apoptosis: enter ceramide. Discoveries over the past 15 years have elevated this sphingolipid to the lofty position of a regulator of cell fate. Ceramide, it turns out, is a powerful tumour suppressor, potentiating signalling events that drive apoptosis, autophagic responses and cell cycle arrest. However, defects in ceramide generation and metabolism in cancer cells contribute to tumour cell survival and resistance to chemotherapy. This Review focuses on ceramide signalling and the targeting of specific metabolic junctures to amplify the tumour suppressive activities of ceramide. The potential of ceramide-based therapeutics in the treatment of cancer is also discussed.
Collapse
Affiliation(s)
- Samy A F Morad
- Department of Experimental Therapeutics, John Wayne Cancer Institute at Saint John's Health Center, 2200 Santa Monica Boulevard, Santa Monica, California 90404, USA.
| | | |
Collapse
|
23
|
Alteration of fatty-acid-metabolizing enzymes affects mitochondrial form and function in hereditary spastic paraplegia. Am J Hum Genet 2012. [PMID: 23176821 DOI: 10.1016/j.ajhg.2012.11.001] [Citation(s) in RCA: 154] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Hereditary spastic paraplegia (HSP) is considered one of the most heterogeneous groups of neurological disorders, both clinically and genetically. The disease comprises pure and complex forms that clinically include slowly progressive lower-limb spasticity resulting from degeneration of the corticospinal tract. At least 48 loci accounting for these diseases have been mapped to date, and mutations have been identified in 22 genes, most of which play a role in intracellular trafficking. Here, we identified mutations in two functionally related genes (DDHD1 and CYP2U1) in individuals with autosomal-recessive forms of HSP by using either the classical positional cloning or a combination of whole-genome linkage mapping and next-generation sequencing. Interestingly, three subjects with CYP2U1 mutations presented with a thin corpus callosum, white-matter abnormalities, and/or calcification of the basal ganglia. These genes code for two enzymes involved in fatty-acid metabolism, and we have demonstrated in human cells that the HSP pathophysiology includes alteration of mitochondrial architecture and bioenergetics with increased oxidative stress. Our combined results focus attention on lipid metabolism as a critical HSP pathway with a deleterious impact on mitochondrial bioenergetic function.
Collapse
|
24
|
Martinez TN, Chen X, Bandyopadhyay S, Merrill AH, Tansey MG. Ceramide sphingolipid signaling mediates Tumor Necrosis Factor (TNF)-dependent toxicity via caspase signaling in dopaminergic neurons. Mol Neurodegener 2012; 7:45. [PMID: 22973882 PMCID: PMC3472284 DOI: 10.1186/1750-1326-7-45] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2012] [Accepted: 08/20/2012] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Dopaminergic (DA) neurons in the ventral midbrain selectively degenerate in Parkinson's disease (PD) in part because their oxidative environment in the substantia nigra (SN) may render them vulnerable to neuroinflammatory stimuli. Chronic inhibition of soluble Tumor Necrosis Factor (TNF) with dominant-negative TNF inhibitors protects DA neurons in rat models of parkinsonism, yet the molecular mechanisms and pathway(s) that mediate TNF toxicity remain(s) to be clearly identified. Here we investigated the contribution of ceramide sphingolipid signaling in TNF-dependent toxicity. RESULTS Ceramide dose-dependently reduced the viability of DA neuroblastoma cells and primary DA neurons and pharmacological inhibition of sphingomyelinases (SMases) with three different inhibitors during TNF treatment afforded significant neuroprotection by attenuating increased endoplasmic reticulum (ER) stress, loss of mitochondrial membrane potential, caspase-3 activation and decreases in Akt phosphorylation. Using lipidomics mass spectrometry we confirmed that TNF treatment not only promotes generation of ceramide, but also leads to accumulation of several atypical deoxy-sphingoid bases (DSBs). Exposure of DA neuroblastoma cells to atypical DSBs in the micromolar range reduced cell viability and inhibited neurite outgrowth and branching in primary DA neurons, suggesting that TNF-induced de novo synthesis of atypical DSBs may be a secondary mechanism involved in mediating its neurotoxicity in DA neurons. CONCLUSIONS We conclude that TNF/TNFR1-dependent activation of SMases generates ceramide and sphingolipid species that promote degeneration and caspase-dependent cell death of DA neurons. Ceramide and atypical DSBs may represent novel drug targets for development of neuroprotective strategies that can delay or attenuate the progressive loss of nigral DA neurons in patients with PD.
Collapse
Affiliation(s)
- Terina N Martinez
- Department of Physiology, The University of Texas Southwestern Medical Center at Dallas, 6001 Forest Park Rd., Dallas, TX, 75390, USA
| | - Xi Chen
- Department of Physiology, Emory University School of Medicine, 615 Michael St., Atlanta, GA, 30322, USA
| | - Sibali Bandyopadhyay
- School of Biology and the Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, 315 Ferst Drive, Atlanta, GA, 30332-0363, USA
| | - Alfred H Merrill
- School of Biology and the Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, 315 Ferst Drive, Atlanta, GA, 30332-0363, USA
| | - Malú G Tansey
- Department of Physiology, The University of Texas Southwestern Medical Center at Dallas, 6001 Forest Park Rd., Dallas, TX, 75390, USA
- Department of Physiology, Emory University School of Medicine, 615 Michael St., Atlanta, GA, 30322, USA
| |
Collapse
|
25
|
Kanno T, Nishizaki T. Sphingosine induces apoptosis in hippocampal neurons and astrocytes by activating caspase-3/-9 via a mitochondrial pathway linked to SDK/14-3-3 protein/Bax/cytochrome c. J Cell Physiol 2011; 226:2329-37. [DOI: 10.1002/jcp.22571] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
26
|
Pozuelo-Rubio M. Proteomic and biochemical analysis of 14-3-3-binding proteins during C2-ceramide-induced apoptosis. FEBS J 2010; 277:3321-42. [DOI: 10.1111/j.1742-4658.2010.07730.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
27
|
From biological gastroenterology to fundamental neurosciences: How studies in gastric emptying have led to the discovery of a new mechanism of neuronal functioning. ACTA ACUST UNITED AC 2010; 34:260-6. [DOI: 10.1016/j.gcb.2010.03.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2010] [Accepted: 03/16/2010] [Indexed: 11/21/2022]
|
28
|
Fasano C, Niel JP. The mammalian sympathetic prevertebral ganglia: Models for the study of neuronal networks and basic neuronal properties. Auton Neurosci 2009; 150:8-20. [DOI: 10.1016/j.autneu.2009.06.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2009] [Revised: 06/04/2009] [Accepted: 06/05/2009] [Indexed: 11/24/2022]
|
29
|
Wu S, Hyrc KL, Moulder KL, Lin Y, Warmke T, Snider BJ. Cellular calcium deficiency plays a role in neuronal death caused by proteasome inhibitors. J Neurochem 2009; 109:1225-36. [PMID: 19476541 PMCID: PMC2690718 DOI: 10.1111/j.1471-4159.2009.06037.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cytosolic Ca(2+) concentration ([Ca(2+)](i)) is reduced in cultured neurons undergoing neuronal death caused by inhibitors of the ubiquitin proteasome system. Activation of calcium entry via voltage-gated Ca(2+) channels restores cytosolic Ca(2+) levels and reduces this neuronal death (Snider et al. 2002). We now show that this reduction in [Ca(2+)](i) is transient and occurs early in the cell death process, before activation of caspase 3. Agents that increase Ca(2+) influx such as activation of voltage-gated Ca(2+) channels or stimulation of Ca(2+) entry via the plasma membrane Na-Ca exchanger attenuate neuronal death only if applied early in the cell death process. Cultures treated with proteasome inhibitors had reduced current density for voltage-gated Ca(2+) channels and a less robust increase in [Ca(2+)](i) after depolarization. Levels of endoplasmic reticulum Ca(2+) were reduced and capacitative Ca(2+) entry was impaired early in the cell death process. Mitochondrial Ca(2+) was slightly increased. Preventing the transfer of Ca(2+) from mitochondria to cytosol increased neuronal vulnerability to this death while blockade of mitochondrial Ca(2+) uptake via the uniporter had no effect. Programmed cell death induced by proteasome inhibition may be caused in part by an early reduction in cytosolic and endoplasmic reticulum Ca(2+,) possibly mediated by dysfunction of voltage-gated Ca(2+) channels. These findings may have implications for the treatment of disorders associated with protein misfolding in which proteasome impairment and programmed cell death may occur.
Collapse
Affiliation(s)
- Shengzhou Wu
- laboratory of B. Joy Snider, Hope Center for Neurological Disorders, Washington University School of Medicine, Saint Louis, MO, USA
- laboratory of B. Joy Snider, Department of Neurology, Washington University School of Medicine, Saint Louis, MO, USA
| | - Krzysztof L. Hyrc
- laboratory of B. Joy Snider, Hope Center for Neurological Disorders, Washington University School of Medicine, Saint Louis, MO, USA
- laboratory of B. Joy Snider, Department of Neurology, Washington University School of Medicine, Saint Louis, MO, USA
| | - Krista L. Moulder
- laboratory of B. Joy Snider, Hope Center for Neurological Disorders, Washington University School of Medicine, Saint Louis, MO, USA
- laboratory of B. Joy Snider, Department of Psychiatry, Washington University School of Medicine, Saint Louis, MO, USA
| | - Ying Lin
- laboratory of B. Joy Snider, Hope Center for Neurological Disorders, Washington University School of Medicine, Saint Louis, MO, USA
- laboratory of B. Joy Snider, Department of Neurology, Washington University School of Medicine, Saint Louis, MO, USA
| | - Timothy Warmke
- laboratory of B. Joy Snider, Hope Center for Neurological Disorders, Washington University School of Medicine, Saint Louis, MO, USA
- laboratory of B. Joy Snider, Department of Neurology, Washington University School of Medicine, Saint Louis, MO, USA
| | - B. Joy Snider
- laboratory of B. Joy Snider, Hope Center for Neurological Disorders, Washington University School of Medicine, Saint Louis, MO, USA
- laboratory of B. Joy Snider, Department of Neurology, Washington University School of Medicine, Saint Louis, MO, USA
| |
Collapse
|
30
|
Jana A, Hogan EL, Pahan K. Ceramide and neurodegeneration: susceptibility of neurons and oligodendrocytes to cell damage and death. J Neurol Sci 2009; 278:5-15. [PMID: 19147160 PMCID: PMC2660887 DOI: 10.1016/j.jns.2008.12.010] [Citation(s) in RCA: 173] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2008] [Revised: 12/03/2008] [Accepted: 12/09/2008] [Indexed: 12/18/2022]
Abstract
Neurodegenerative disorders are marked by extensive neuronal apoptosis and gliosis. Although several apoptosis-inducing agents have been described, understanding of the regulatory mechanisms underlying modes of cell death is incomplete. A major breakthrough in delineation of the mechanism of cell death came from elucidation of the sphingomyelin (SM)-ceramide pathway that has received worldwide attention in recent years. The SM pathway induces apoptosis, differentiation, proliferation, and growth arrest depending upon cell and receptor types, and on downstream targets. Sphingomyelin, a plasma membrane constituent, is abundant in mammalian nervous system, and ceramide, its primary catabolic product released by activation of either neutral or acidic sphingomyelinase, serves as a potential lipid second messenger or mediator molecule modulating diverse cellular signaling pathways. Neutral sphingomyelinase (NSMase) is a key enzyme in the regulated activation of the SM cycle and is particularly sensitive to oxidative stress. In a context of increasing clarification of the mechanisms of neurodegeneration, we thought that it would be useful to review details of recent findings that we and others have made concerning different pro-apoptotic neurotoxins including proinflammatory cytokines, hypoxia-induced SM hydrolysis and ceramide production that induce cell death in human primary neurons and primary oligodendrocytes: redox sensitive events. What has and is emerging is a vista of therapeutically important ceramide regulation affecting a variety of different neurodegenerative and neuroinflammatory disorders.
Collapse
Affiliation(s)
- Arundhati Jana
- Department of Neurological sciences, Rush University Medical Center, Chicago, IL 60612
| | - Edward L. Hogan
- Institute of Molecular Medicine and Genetics, Medical College of Georgia, Augusta, GA 30912
| | - Kalipada Pahan
- Department of Neurological sciences, Rush University Medical Center, Chicago, IL 60612
| |
Collapse
|
31
|
Lei X, Zhang S, Bohrer A, Ramanadham S. Calcium-independent phospholipase A2 (iPLA2 beta)-mediated ceramide generation plays a key role in the cross-talk between the endoplasmic reticulum (ER) and mitochondria during ER stress-induced insulin-secreting cell apoptosis. J Biol Chem 2008; 283:34819-32. [PMID: 18936091 PMCID: PMC2596401 DOI: 10.1074/jbc.m807409200] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2008] [Revised: 10/15/2008] [Indexed: 01/09/2023] Open
Abstract
Endoplasmic reticulum (ER) stress induces INS-1 cell apoptosis by a pathway involving Ca(2+)-independent phospholipase A(2) (iPLA(2)beta)-mediated ceramide generation, but the mechanism by which iPLA(2)beta and ceramides contribute to apoptosis is not well understood. We report here that both caspase-12 and caspase-3 are activated in INS-1 cells following induction of ER stress with thapsigargin, but only caspase-3 cleavage is amplified in iPLA(2)beta overexpressing INS-1 cells (OE), relative to empty vector-transfected cells, and is suppressed by iPLA(2)beta inhibition. ER stress also led to the release of cytochrome c and Smac and, unexpectedly, their accumulation in the cytosol is amplified in OE cells. These findings raise the likelihood that iPLA(2)beta participates in ER stress-induced apoptosis by activating the intrinsic apoptotic pathway. Consistent with this possibility, we find that ER stress promotes iPLA(2)beta accumulation in the mitochondria, opening of mitochondrial permeability transition pore, and loss in mitochondrial membrane potential (Delta Psi) in INS-1 cells and that these changes are amplified in OE cells. ER stress also led to greater ceramide generation in ER and mitochondria fractions of OE cells. Exposure to ceramide alone induces loss in Delta Psi and apoptosis and these are suppressed by forskolin. ER stress-induced mitochondrial dysfunction and apoptosis are also inhibited by forskolin, as well as by inactivation of iPLA(2)beta or NSMase, suggesting that iPLA(2)beta-mediated generation of ceramides via sphingomyelin hydrolysis during ER stress affect the mitochondria. In support, inhibition of iPLA(2)beta or NSMase prevents cytochrome c release. Collectively, our findings indicate that the iPLA(2)beta-ceramide axis plays a critical role in activating the mitochondrial apoptotic pathway in insulin-secreting cells during ER stress.
Collapse
Affiliation(s)
| | | | | | - Sasanka Ramanadham
- Department of Medicine, Mass Spectrometry Resource and Division of
Endocrinology, Metabolism, and Lipid Research, Washington University School of
Medicine, St. Louis, Missouri 63110
| |
Collapse
|
32
|
Harris CS, Mo F, Migahed L, Chepelev L, Haddad PS, Wright JS, Willmore WG, Arnason JT, Bennett SAL. Plant phenolics regulate neoplastic cell growth and survival: a quantitative structure-activity and biochemical analysis. Can J Physiol Pharmacol 2008; 85:1124-38. [PMID: 18066115 DOI: 10.1139/y07-101] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The anti-tumour activities of many plant phenolics at high concentrations (>100 micromol/L) suggest their potential use as dietary supplements in cancer chemoprevention and cancer chemotherapy. However, it is not clear what impact phenolic compounds have at the physiological concentrations obtained through consumption of high phenolic diets on neoplastic cells. In the present study, 54 naturally occurring phenolics were evaluated at physiologically relevant concentrations for their capacity to alter PC12 cell viability in response to serum deprivation, the chemotherepeutic agent etoposide, and the apoptogen C2-ceramide. Surprisingly, novel mitogenic, cytoprotective, and antiapoptotic activities were detected. Quantitative structure-activity relationship modelling indicated that many of these activities could be predicted by compound lipophilicity, steric bulk, and (or) antioxidant capacity, with the exception of inhibition of ceramide-induced apoptosis. Where quantitative structure-activity relationship analysis was insufficient, biochemical assessment demonstrated that the benzoate orsellinic acid blocked downstream caspase-12 activation following ceramide challenge. These findings demonstrate substantive mitogenic, cytoprotective, and antiapoptotic biological activities of plant phenolics on neoplastic cells at physiologically relevant dietary concentrations that should be considered in chemopreventive and chemotherapeutic strategies.
Collapse
Affiliation(s)
- Cory S Harris
- Neural Regeneration Laboratory and Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, 451 Smyth Rd, Ottawa, ON K1H 8M5, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Abstract
Mitochondria have a low affinity for Ca(2+), but they take up these ions during normal cell activity because they are in close proximity to the sites of calcium entry into the cell and of internal Ca(2+) release. This gives mitochondria privileged access to cytoplasmic Ca(2+) without requiring a direct communication with the endoplasmic reticulum.
Collapse
Affiliation(s)
- Clara Franzini-Armstrong
- Department of Cell and Developmental Biology, School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
34
|
Tun C, Guo W, Nguyen H, Yun B, Libby RT, Morrison RS, Garden GA. Activation of the extrinsic caspase pathway in cultured cortical neurons requires p53-mediated down-regulation of the X-linked inhibitor of apoptosis protein to induce apoptosis. J Neurochem 2007; 102:1206-19. [PMID: 17488272 DOI: 10.1111/j.1471-4159.2007.04609.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Cultured cortical neurons exposed to the Human Immunodeficiency Virus gp120 coat protein undergo apoptosis involving activation of both caspase-8 and caspase-9. Additionally, gp120-mediated neuronal apoptosis requires the pro-apoptotic transcription factor p53. As caspase-8-induced apoptosis does not typically require p53, we examined the possibility of a novel role for p53 in caspase-8 activation initiated by gp120. We observed that gp120 treatment of cultured cortical neurons induced caspase-8 activity and Bid cleavage independently of p53, but induction of caspase-3 enzymatic activity required p53 expression. These findings suggested the possibility that p53 down-regulates a caspase-3 inhibitor. We observed high-level expression of the caspase-3/9 inhibitor X-linked inhibitor of apoptosis protein (XIAP) in cultured cortical neurons. Adenoviral expression of p53 or induction of endogenous p53 by camptothecin treatment reduced XIAP protein in neurons. Infection with a p53 expressing adenovirus increased expression of the mRNA for Omi/HtrA2, a protease that cleaves and inactivates XIAP. These findings suggest that p53 regulates neuronal apoptosis, in part, by suppressing the anti-apoptotic protein XIAP via transcriptional activation of Omi/HtrA2.
Collapse
Affiliation(s)
- Christina Tun
- Department of Neurology, The University of Washington, Seattle, Washington 98195, USA
| | | | | | | | | | | | | |
Collapse
|
35
|
Lin CF, Chen CL, Chiang CW, Jan MS, Huang WC, Lin YS. GSK-3beta acts downstream of PP2A and the PI 3-kinase-Akt pathway, and upstream of caspase-2 in ceramide-induced mitochondrial apoptosis. J Cell Sci 2007; 120:2935-43. [PMID: 17666435 DOI: 10.1242/jcs.03473] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The signaling of glycogen synthase kinase-3beta (GSK-3beta) has been implicated in stress-induced apoptosis. However, the pro-apoptotic role of GSK-3beta is still unclear. Here, we show the involvement of GSK-3beta in ceramide-induced mitochondrial apoptosis. Ceramide induced GSK-3beta activation via protein dephosphorylation at serine 9. We previously reported that ceramide induced caspase-2 and caspase-8 activation, Bid cleavage, mitochondrial damage, and apoptosis. In this study, we found that caspase-2 activation and the subsequent apoptotic events were abolished by the GSK-3beta inhibitors lithium chloride and SB216763, and by GSK-3beta knockdown using short interfering RNA. We also found that ceramide-activated protein phosphatase 2A (PP2A) indirectly caused GSK-3beta activation, and that the PP2A-regulated PI 3-kinase-Akt pathway was involved in GSK-3beta activation. These results indicate a role for GSK-3beta in ceramide-induced apoptosis, in which GSK-3beta acts downstream of PP2A and the PI 3-kinase-Akt pathway, and upstream of caspase-2 and caspase-8.
Collapse
Affiliation(s)
- Chiou-Feng Lin
- Department of Microbiology and Immunology, National Cheng Kung University Medical College, Tainan 701, Taiwan
| | | | | | | | | | | |
Collapse
|
36
|
Larsen EC, Hatcher JF, Adibhatla RM. Effect of tricyclodecan-9-yl potassium xanthate (D609) on phospholipid metabolism and cell death during oxygen-glucose deprivation in PC12 cells. Neuroscience 2007; 146:946-61. [PMID: 17434680 PMCID: PMC2041837 DOI: 10.1016/j.neuroscience.2007.02.022] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2007] [Revised: 02/05/2007] [Accepted: 02/08/2007] [Indexed: 02/02/2023]
Abstract
Alterations in lipid metabolism play an integral role in neuronal death in cerebral ischemia. Here we used an in vitro model, oxygen-glucose deprivation (OGD) of rat pheochromocytoma (PC12) cells, and analyzed changes in phosphatidylcholine (PC) and sphingomyelin (SM) metabolism. OGD (4-8 h) of PC12 cells triggered a dramatic reduction in PC and SM levels, and a significant increase in ceramide. OGD also caused increases in phosphatidylcholine-phospholipase C (PC-PLC) and phospholipase D (PLD) activities and PLD2 protein expression, and reduction in cytidine triphosphate:phosphocholine cytidylyltransferase-alpha (CCTalpha, the rate-limiting enzyme in PC synthesis) protein expression and activity. Phospholipase A2 activity and expression were unaltered during OGD. Increased neutral sphingomyelinase activity during OGD could account for SM loss and increased ceramide. Surprisingly, treatment with PC-PLC inhibitor tricyclodecan-9-yl potassium xanthate (D609) aggravated cell death in PC12 cells during OGD. D609 was cytotoxic only during OGD; cell death could be prevented by inclusion of sera, glucose or oxygen. During OGD, D609 caused further loss of PC and SM, depletion of 1,2-diacylglycerol (DAG), increase in ceramide and free fatty acids (FFA), cytochrome c release from mitochondria, increases in intracellular Ca2+ ([Ca2+]i), poly-ADP ribose polymerase (PARP) cleavage and phosphatidylserine externalization, indicative of apoptotic cell death. Exogenous PC during OGD in PC12 cells with D609 attenuated PC, SM loss, restored DAG, attenuated ceramide levels, decreased cytochrome c release, PARP cleavage, annexin V binding, attenuated the increase in [Ca2+]i, FFA release, and significantly increased cell viability. Exogenous PC may have elicited these effects by restoring membrane PC levels. A tentative scheme depicting the mechanism of action of D609 (inhibiting PC-PLC, SM synthase, PC synthesis at the CDP-choline-1,2-diacylglycerol phosphocholine transferase (CPT) step and causing mitochondrial dysfunction) has been proposed based on our observations and literature.
Collapse
Affiliation(s)
- E. C. Larsen
- Department of Neurological Surgery, University of Wisconsin, Madison, WI
| | - J. F. Hatcher
- Department of Neurological Surgery, University of Wisconsin, Madison, WI
| | - Rao Muralikrishna Adibhatla
- Department of Neurological Surgery, University of Wisconsin, Madison, WI
- Cardiovascular Research Center, University of Wisconsin, Madison, WI
- Neuroscience Training Program, University of Wisconsin, Madison, WI
- Veterans Administration Hospital, Madison, WI
| |
Collapse
|
37
|
Masud A, Mohapatra A, Lakhani SA, Ferrandino A, Hakem R, Flavell RA. Endoplasmic reticulum stress-induced death of mouse embryonic fibroblasts requires the intrinsic pathway of apoptosis. J Biol Chem 2007; 282:14132-9. [PMID: 17371867 DOI: 10.1074/jbc.m700077200] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Members of the caspase family are essential for many apoptotic programs. We studied mouse embryonic fibroblasts (MEFs) deficient in caspases 3 and 7 and in caspase 9 to determine the role of these proteases in endoplasmic reticulum (ER) stress-induced apoptosis. Both caspase 3(-/-)/caspase 7(-/-) and caspase 9(-/-) MEFs were resistant to cytotoxicity induced via ER stress and failed to exhibit apoptotic morphology. Specifically, apoptosis induced by increased intracellular calcium was shown to depend only on caspases 3 and 9, whereas apoptosis induced by disruption of ER function depended additionally on caspase 7. Caspase 3(-/-)/caspase 7(-/-) and caspase 9(-/-) MEFs also exhibited decreased loss of mitochondrial membrane potential, which correlated with altered caspase 9 processing, increased induction of procaspase 11, and decreased processing of caspase 12 in caspase 3(-/-)/caspase 7(-/-) cells. Furthermore, disruption of ER function was sufficient to induce accumulation of cleaved caspase 3 and 7 in a heavy membrane compartment, suggesting a potential mechanism for caspase 12 processing and its role as an amplifier in the death pathway. Caspase 8(-/-) MEFs were not resistant to ER stress-induced cytotoxicity, and processing of caspase 8 was not observed upon induction of ER stress. This study thus demonstrates a requirement for caspases 3 and 9 and a key role for the intrinsic pathway in ER stress-induced apoptosis.
Collapse
Affiliation(s)
- Ali Masud
- University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
| | | | | | | | | | | |
Collapse
|
38
|
Voccoli V, Mazzoni F, Garcia-Gil M, Colombaioni L. Serum-withdrawal-dependent apoptosis of hippocampal neuroblasts involves Ca++ release by endoplasmic reticulum and caspase-12 activation. Brain Res 2007; 1147:1-11. [PMID: 17399692 DOI: 10.1016/j.brainres.2007.01.145] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2006] [Revised: 12/09/2006] [Accepted: 01/02/2007] [Indexed: 01/08/2023]
Abstract
Apoptotic death caused by diseases or toxic insults is preceded and determined by endoplasmic reticulum dysfunction and altered intraluminar calcium homeostasis in many different cell types. With the present study we have explored the possibility that the ER stress could be involved also in apoptotic death induced by serum deprivation in neuronal cells. We have chosen as a model of study the cell line HN9.10e, constituted by immortalized hippocampal neuroblasts. The Ca(++) concentration in the lumen of the ER has been evaluated by using the low affinity Ca(++) probe Mag-fluo-4. We show that serum deprivation lowers the ER Ca(++) concentration with a time course closely related to the increase of apoptosis incidence. Serum deprivation also enhances the expression of a well-known marker of ER stress, the glucose-regulated protein-78 (GRP-78), a member of the heat shock/stress response protein family. Moreover, in serum-deprived neuroblasts, following GRP-78 up-regulation, the ER-associated procaspase-12 is cleaved with a time course which parallels the ER calcium loss while activation of caspase-3 is a later event. Depletion of ER Ca(++) by thapsigargin, a specific inhibitor of the ER-associated Ca(++) ATPase, also produces caspase-12 processing and apoptotic cell death, whereas agents capable of reducing the ER calcium loss protect the cells from serum-deprivation-induced apoptosis. These findings indicate that, in hippocampal neuroblasts, Ca(++) mobilization from ER and caspase-12 activation are components of the molecular pathway that leads to apoptosis triggered by serum deprivation and may constitute an amplifying loop of the mitochondrial pathway.
Collapse
Affiliation(s)
- Vladimir Voccoli
- Istituto di Neuroscienze CNR, Via G. Moruzzi 1, 56100 Pisa, Italy
| | | | | | | |
Collapse
|
39
|
Boelsterli UA, Lim PLK. Mitochondrial abnormalities--a link to idiosyncratic drug hepatotoxicity? Toxicol Appl Pharmacol 2006; 220:92-107. [PMID: 17275868 DOI: 10.1016/j.taap.2006.12.013] [Citation(s) in RCA: 166] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2006] [Revised: 12/12/2006] [Accepted: 12/12/2006] [Indexed: 12/17/2022]
Abstract
Idiosyncratic drug-induced liver injury (DILI) is a major clinical problem and poses a considerable challenge for drug development as an increasing number of successfully launched drugs or new potential drugs have been implicated in causing DILI in susceptible patient subsets. Although the incidence for a particular drug is very low (yet grossly underestimated), the outcome of DILI can be serious. Unfortunately, prediction has remained poor (both for patients at risk and for new chemical entities). The underlying mechanisms and the determinants of susceptibility have largely remained ill-defined. The aim of this review is to provide both clinical and experimental evidence for a major role of mitochondria both as a target of drugs causing idiosyncratic DILI and as mediators of delayed liver injury. We develop a unifying hypothesis that involves underlying genetic or acquired mitochondrial abnormalities as a major determinant of susceptibility for a number of drugs that target mitochondria and cause DILI. The mitochondrial hypothesis, implying gradually accumulating and initially silent mitochondrial injury in heteroplasmic cells which reaches a critical threshold and abruptly triggers liver injury, is consistent with the findings that typically idiosyncratic DILI is delayed (by weeks or months), that increasing age and female gender are risk factors and that these drugs are targeted to the liver and clearly exhibit a mitochondrial hazard in vitro and in vivo. New animal models (e.g., the Sod2(+/-) mouse) provide supporting evidence for this concept. However, genetic analyses of DILI patient samples are needed to ultimately provide the proof-of-concept.
Collapse
Affiliation(s)
- Urs A Boelsterli
- Molecular Toxicology Lab, Department of Pharmacology, Yong Loo Lin School of Medicine, Singapore.
| | | |
Collapse
|
40
|
Posse de Chaves EI. Sphingolipids in apoptosis, survival and regeneration in the nervous system. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2006; 1758:1995-2015. [PMID: 17084809 DOI: 10.1016/j.bbamem.2006.09.018] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2006] [Revised: 09/20/2006] [Accepted: 09/21/2006] [Indexed: 12/27/2022]
Abstract
Simple sphingolipids such as ceramide, sphingosine and sphingosine 1-phosphate are key regulators of diverse cellular functions. Their roles in the nervous system are supported by extensive evidence derived primarily from studies in cultured cells. More recently animal studies and studies with human samples have revealed the importance of ceramide and its metabolites in the development and progression of neurodegenerative disorders. The roles of sphingolipids in neurons and glial cells are complex, cell dependent, and many times contradictory. In this review I will summarize the effects elicited by ceramide and ceramide metabolites in cells of the nervous system, in particular those effects related to cell survival and death, emphasizing the molecular mechanisms involved. I also discuss recent evidence for the implication of sphingolipids in the development and progression of certain dementias.
Collapse
Affiliation(s)
- Elena I Posse de Chaves
- Centre for Alzheimer and Neurodegenerative Research, Signal Transduction Research Group and Department of Pharmacology, University of Alberta, Edmonton, Alberta, Canada T6G 2H7.
| |
Collapse
|
41
|
Holtz WA, Turetzky JM, Jong YJI, O'Malley KL. Oxidative stress-triggered unfolded protein response is upstream of intrinsic cell death evoked by parkinsonian mimetics. J Neurochem 2006; 99:54-69. [PMID: 16987235 DOI: 10.1111/j.1471-4159.2006.04025.x] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Oxidative stress is a key player in a variety of neurodegenerative disorders including Parkinson's disease. Widely used as a parkinsonian mimetic, 6-hydroxydopamine (6-OHDA) generates reactive oxygen species (ROS) as well as coordinated changes in gene transcription associated with the unfolded protein response (UPR) and apoptosis. Whether 6-OHDA-induced UPR activation is dependent on ROS has not yet been determined. The present study used molecular indicators of oxidative stress to place 6-OHDA-generated ROS upstream of the appearance of UPR markers such as activating transcription factor 3 (ATF3) and phosphorylated stress-activated protein kinase (SAPK/JNK) signaling molecules. Antioxidants completely blocked 6-OHDA-mediated UPR activation and rescued cells from toxicity. Moreover, cytochrome c release from mitochondria was observed after the appearance of early UPR markers, suggesting that cellular stress pathways are responsible for its release. Mechanistically, the 6-OHDA-induced UPR was independent of intracellular calcium changes. Rather, evidence of protein oxidation was observed before the expression of UPR markers, suggesting that the rapid accumulation of damaged proteins triggered cell stress/UPR. Taken together, 6-OHDA-mediated cell death in dopaminergic cells proceeds via ROS-dependent UPR up-regulation which leads to an interaction with the intrinsic mitochondrial pathway and downstream caspase activation.
Collapse
Affiliation(s)
- William A Holtz
- Department of Anatomy and Neurobiology, Washington University School of Medicine, St Louis, Missouri 63110, USA
| | | | | | | |
Collapse
|
42
|
Chen YC, Chow JM, Lin CW, Wu CY, Shen SC. Baicalein inhibition of oxidative-stress-induced apoptosis via modulation of ERKs activation and induction of HO-1 gene expression in rat glioma cells C6. Toxicol Appl Pharmacol 2006; 216:263-73. [PMID: 16814338 DOI: 10.1016/j.taap.2006.05.008] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2006] [Revised: 05/09/2006] [Accepted: 05/14/2006] [Indexed: 12/22/2022]
Abstract
In the present study, we examined the protective mechanism of baicalein (BE) and its glycoside, baicalin (BI), on hydrogen-peroxide (H(2)O(2))-induced cell death in rat glioma C6 cells. Results of the MTT assay, LDH release assay, and morphological observation showed that H(2)O(2) addition reduced the viability of C6 cells, and this was prevented by the addition of BE but not BI. Incubation of C6 cells with BE significantly decreased the intracellular peroxide level induced by H(2)O(2) according to flow cytometric analysis using DCHF-DA as a fluorescent substrate. Suppression of H(2)O(2)-induced apoptotic events including DNA ladders, hypodiploid cells, and activation of caspases 3, 8, and, 9 by BE but not BI was identified in C6 cells. The cytotoxicity and phosphorylation of ERK proteins induced by H(2)O(2) were blocked by the ERK inhibitor PD98059. Catalase addition prevented H(2)O(2)-induced ROS production, ERKs protein phosphorylation, and cell death, and BE dose-dependently inhibited H(2)O(2)-induced ERK protein phosphorylation in C6 cells. These data suggest that ROS-scavenging activity is involved in BE prevention of H(2)O(2)-induced cell death via blocking ERKs activation. Additionally, BE but not BI induced heat shock protein 32 (HSP32; HO-1) protein expression in both time- and dose-dependent manners, but not heme oxygenase 2 (HO-2), heat shock protein 70 (HSP70), or heat shock protein 90 (HSP90) protein expression. In the absence of H(2)O(2), BE induces ERKs protein phosphorylation, and HO-1 protein expression induced by BE was blocked by the addition of cycloheximide, actinomycin D, and the ERK inhibitor PD98059. The addition of the HO inhibitor ZnPP inhibited the protective effect of BE against H(2)O(2)-induced cytotoxicity in C6 cells according to the MTT assay and apoptotic morphology under microscopic observation, accompanied by blocking the ROS-scavenging activity of BE in C6 cells. However, BE treatment was unable to protect C6 cells from C2-ceramide-induced cell death. These data indicate that BE possesses abilities to inhibit ROS-mediated cytotoxic effects through modulation of ERKs activation and induction of HO-1 protein expression. The role of HO-1 in ROS-scavenging activity of BE is proposed.
Collapse
Affiliation(s)
- Yen-Chou Chen
- Graduate Institute of Pharmacognosy, School of Pharmacy, Taipei Medical University, Taipei, Taiwan.
| | | | | | | | | |
Collapse
|
43
|
Neurotoxic calcium transfer from endoplasmic reticulum to mitochondria is regulated by cyclin-dependent kinase 5-dependent phosphorylation of tau. J Neurosci 2006; 25:4159-68. [PMID: 15843619 DOI: 10.1523/jneurosci.0060-05.2005] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Increased levels of mitochondrial-free calcium have been associated with several cell-death paradigms, such as excitotoxicity and ceramide-mediated neuronal death. In the latter, calcium is transferred from the endoplasmic reticulum to mitochondria by a mechanism that is only partly understood. We show here that CDK5 (cyclin-dependent kinase 5) plays a role. Free calcium levels in the endoplasmic reticulum and mitochondria were measured with fluorescent markers in C2-ceramide-treated primary cultures of mesencephalic neurons and differentiated pheochromocytoma PC12 cells. Calcium levels decreased in the endoplasmic reticulum as they increased in mitochondria. Both changes were blocked by the pharmacological and molecular CDK5 inhibitors roscovitine and a dominant-negative form of CDK5. Although the kinase did not mediate the transfer of calcium per se, which required the proapoptotic Bcl-2 family protein t-Bid (the truncated form of Bid), it facilitated the transfer by inducing the clustering of endoplasmic reticulum and mitochondria around the centrosome where they formed close contacts, as shown by immunocytochemistry and electron microscopy. Organelle clustering resulted from CDK5-dependent phosphorylation of the microtubule-associated protein tau on threonine 231. This caused its release from microtubules into the soluble fraction of cellular proteins, which appears to favor retrograde transport of the organelles. Mutation of threonine 231 to alanine, so that tau could not be phosphorylated at this site, prevented the ceramide-induced release of tau from microtubules, organelle clustering, the increase in mitochondrial-free calcium levels, and neuronal death, demonstrating the importance of the CDK5-dependent signaling cascade in this calcium-dependent cell-death mechanism.
Collapse
|
44
|
Cheung HH, Arora V, Korneluk RG. Abnormalities of cell structures in tumors: apoptosis in tumors. EXS 2006:201-21. [PMID: 16383020 DOI: 10.1007/3-7643-7378-4_9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
A conceptual shift has occurred in recent years from considering cancer as simply a disease of deregulated cell proliferation to a view that incorporates the aberrant control of apoptosis into the equation. Apoptosis is an organized, genetically programmed cell death process by which multicellular organisms specifically destroy, dismantle and dispose of cells. In cancer cells, this tightly controlled process is suppressed by genetic lesions, allowing cancer cells to survive beyond their normal life span even in hostile environments that are prone to hypoxia and lack many trophic factor supports. In the last two decades, cancer researchers have made great strides in our understanding of the underlying molecular mechanism of apoptosis in chemoresistance generation and tumorigenesis. This tremendous increase in our knowledge of apoptosis in tumors has greatly impacted our perspective on carcinogenesis. Key regulators of apoptosis such as members of the Inhibitors of Apoptosis family and Bcl-2 family have been shown to play a pivotal role in allowing most cancer cells to escape apoptosis. The identification of specific targets involved in the suppression of apoptosis in cancer cells has facilitated the design and development of therapeutic strategies based on rational molecular approaches that aim to modulate apoptotic pathways. Many promising apoptosis-dependent strategies have been translated into clinical trials in the continued assessment of regimens that can effectively eradicate cancers.
Collapse
Affiliation(s)
- Herman H Cheung
- Apoptosis Research Centre, Children's Hospital of Eastern Ontario, Research Institute, 401 Smyth Road, Ottawa, Ontario K1H 8L1, Canada.
| | | | | |
Collapse
|
45
|
Jeon HJ, Lee DH, Kang MS, Lee MO, Jung KM, Jung SY, Kim DK. Dopamine release in PC12 cells is mediated by Ca2+-dependent production of ceramide via sphingomyelin pathway. J Neurochem 2005; 95:811-20. [PMID: 16135082 DOI: 10.1111/j.1471-4159.2005.03403.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
A presynaptic membrane disturbance is an essential process for the release of various neurotransmitters. Ceramide, which is a tumor suppressive lipid, has been shown to act as a channel-forming molecule and serve as a precursor of ceramide-1-phosphate, which can disturb the cellular membrane. This study found that while permeable ceramide increases the rate of dopamine release in the presence of a Ca(2+)-ionophore, A23187, permeable ceramide-1-phosphate provoked its release even without the ionophore. The treatment of PC12 cells with the ionophore at concentrations < 2 microM produced ceramide via the sphingomyelin (SM) pathway with a concomitant release of dopamine, and no cell damage was observed. The addition of a Ca(2+) chelator, EGTA, to the medium inhibited the increase in the release of both the ceramide and dopamine. This suggests that ceramide might be produced by Ca(2+) and is implicated in the membrane disturbance associated with the release of dopamine as a result of its conversion to ceramide-1-phosphate. Consistent with these results, this study detected a membrane-associated and neutral pH optimum sphingomyelinase (SMase) whose activity was increased by Ca(2+). Together, these results demonstrate that ceramide can be produced via the activation of a neutral form of SMase through Ca(2+), and is involved in the dopamine release in concert with Ca(2+).
Collapse
Affiliation(s)
- Hyung Jun Jeon
- Department of Environmental and Health Chemistry, College of Pharmacy, Chung-Ang University, Dongjakgu, Seoul, Korea
| | | | | | | | | | | | | |
Collapse
|
46
|
Townley HE, McDonald K, Jenkins GI, Knight MR, Leaver CJ. Ceramides induce programmed cell death in Arabidopsis cells in a calcium-dependent manner. Biol Chem 2005; 386:161-6. [PMID: 15843160 DOI: 10.1515/bc.2005.020] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
While the role of C2-ceramide in the induction of programmed cell death (PCD) in animal systems has been well documented, little is known of its role in plant cells. Here we show that C2-ceramide induces PCD in Arabidopsis suspension cultures, which is preceded by the generation of a calcium transient and an increase in reactive oxygen species (ROS). Inhibition of the calcium transient prevented cell death, whereas inhibition of ROS had no effect on cell survival. These observations suggest that calcium signalling plays a role in ceramide-induced PCD but is independent of the generation of ROS.
Collapse
Affiliation(s)
- Helen E Townley
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK.
| | | | | | | | | |
Collapse
|
47
|
Takashiro Y, Nakamura H, Koide Y, Nishida A, Murayama T. Involvement of p38 MAP kinase-mediated cytochrome c release on sphingosine-1-phosphate (S1P)- and N-monomethyl-S1P-induced cell death of PC12 cells. Biochem Pharmacol 2005; 70:258-65. [PMID: 15907808 DOI: 10.1016/j.bcp.2005.04.027] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2005] [Revised: 04/20/2005] [Accepted: 04/20/2005] [Indexed: 10/25/2022]
Abstract
d-erythro-Sphingosine-1-phosphate (S1P), a sphingolipid metabolite, affects various neuronal functions including cell fate. S1P appears to have contradictory effects in PC12 cells, a neuronal model cell line; neurite retraction and cell survival/differentiation. In the present study, we examined whether S1P induces cell death in undifferentiated PC12 cells. Culture with S1P at 20 microM for 4 h caused lactate dehydrogenase leakage 24 h later. The response was reduced by an inhibitor of caspases and accompanied by the release of cytochrome c and DNA fragmentation. S1P caused the phosphorylation of p38 mitogen-activated protein kinase (p38 MAPK) within 10 min. An inhibitor of p38 MAPK (10 microM SB203580) inhibited both the release of cytochrome c and DNA fragmentation induced by S1P. Treatment with nerve growth factor or pertussis toxin (PTX) decreased S1P-induced phosphorylation of p38 MAPK and cell death. These findings suggest that S1P-activated p38 MAPK acts as a death signal upstream of the release of cytochrome c. N-Monomethyl-S1P (MM-S1P), a weak agonist in cells expressing S1P1 receptors, had marked effects (phosphorylation of p38 MAPK, release of cytochrome c and DNA fragmentation) at lower concentrations than S1P and in a PTX-sensitive manner. These findings show that the activation of S1P receptors by S1P and MM-S1P causes cell death accompanied by DNA fragmentation via the p38 MAPK pathway-mediated release of cytochrome c in PC12 cells. The potential of S1P and MM-S1P to act as agonists of S1P receptors and as intracellular messengers is discussed.
Collapse
Affiliation(s)
- Yuko Takashiro
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 260-8675, Japan
| | | | | | | | | |
Collapse
|
48
|
Landowski TH, Megli CJ, Nullmeyer KD, Lynch RM, Dorr RT. Mitochondrial-Mediated Disregulation of Ca2+ Is a Critical Determinant of Velcade (PS-341/Bortezomib) Cytotoxicity in Myeloma Cell Lines. Cancer Res 2005; 65:3828-36. [PMID: 15867381 DOI: 10.1158/0008-5472.can-04-3684] [Citation(s) in RCA: 157] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The proteasome inhibitor bortezomib (also known as PS-341/Velcade) is a dipeptidyl boronic acid that has recently been approved for use in patients with multiple myeloma. Bortezomib inhibits the activity of the 26S proteasome and induces cell death in a variety of tumor cells; however, the mechanism of cytotoxicity is not well understood. In this report, oligonucleotide microarray analysis of the 8226 multiple myeloma cell line showed a predominant induction of gene products associated with the endoplasmic reticulum secretory pathway following short-term, high-dose exposure to bortezomib. Examination of mediators of endoplasmic reticulum stress-induced cell death showed specific activation of caspase 12, as well as of caspases 8, 9, 7, and 3, and cleavage of bid. Treatment of myeloma cells with bortezomib also showed disregulation of intracellular Ca2+ as a mechanism of caspase activation. Cotreatment with a panel of Ca2+-modulating agents identified the mitochondrial uniporter as a critical regulatory factor in bortezomib cytotoxicity. The uniporter inhibitors ruthenium red and Ru360 prevented caspase activation and bid cleavage, and almost entirely inhibited bortezomib-induced cell death, but had no effect on any other chemotherapeutic drug examined. Additional Ca2+-modulating agents, including 2-amino-ethoxydiphenylborate, 1,2-bis (o-aminophenoxy) ethane-tretraacetic acid (acetoxymethyl) ester, and dantrolene, did not alter bortezomib cytotoxicity. Analysis of intracellular Ca2+ showed that the ruthenium-containing compounds inhibited Ca2+ store loading and abrogated the desensitized capacitative calcium influx associated with bortezomib treatment. These data support the hypothesis that intracellular Ca2+ disregulation is a critical determinant of bortezomib cytotoxicity.
Collapse
Affiliation(s)
- Terry H Landowski
- College of Medicine, Department of Pharmacology, University of Arizona, Tucson, Arizona 85724, USA
| | | | | | | | | |
Collapse
|
49
|
Abstract
The endoplasmic reticulum is not the only major agonist-releasable Ca2+ store within cells; it is now clear that virtually all organelles so far studied have the ability to act as mobilizable Ca2+ stores. From recent findings with regard to Ca2+ transportation and Ca2+ homeostasis within a variety of cell organelles such as the mitochondria, nucleus, Golgi and lysosomes, it emerges that many of these organellar Ca2+ stores appear to interact with each other, adding a further level of complexity to Ca2+ signalling events.
Collapse
|
50
|
Parkash J, Chaudhry MA, Rhoten WB. Tumor necrosis factor-α-induced changes in insulin-producing β-cells. ACTA ACUST UNITED AC 2005; 286:982-93. [PMID: 16114068 DOI: 10.1002/ar.a.20229] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The migration of macrophages and lymphocytes that produce cytokines such as tumor necrosis factor-alpha (TNF-alpha) causes beta-cell death, leading to type 1 diabetes. Similarly, in type 2 diabetes, the adipocyte-derived cytokines including TNF-alpha are elevated in the circulation, causing inflammation and insulin resistance. Thus, the studies described in this article using TNF-alpha are relevant to furthering our understanding of the pathogenesis of diabetes mellitus. We used RINr1046-38 (RIN) insulin-producing beta-cells, which constitutively express calbindin-D(28k), to characterize the effect of TNF-alpha on apoptosis, replication, insulin release, and gene and protein expression. Western blots of TNF-alpha-treated RIN cells revealed a decrease in calbindin-D(28k). By ELISA, TNF-alpha-treated beta-cells had 47% less calbindin-D(28k) than controls. In association with the decline in calbindin-D(28k), TNF-alpha treatment of RIN cells led to a 73% greater increase in changes in intracellular calcium concentration (Delta[Ca(2+)](i)) in TNF-alpha-treated cells as compared to that in control RIN cells upon treatment with 50 mM KCl; caused a greater increase in the [Ca(2+)](i) following the addition of 5.5 microM ionomycin; increased by more than threefold the apoptotic rate, expressed as the percentage of TUNEL-positive nuclei to total nuclei; decreased the rate of cell replication by 36%; and increased and decreased selectively the expression of specific genes as determined by microarray analysis. The subcellular localizations of Bcl-2, an antiapoptotic protein, and Bax, a proapoptotic protein, within RIN cells were altered with TNF-alpha treatment such that the two were colocalized with mitochondria in the perinuclear region. We conclude that the proapoptotic action of TNF-alpha on beta-cells is manifested via decreased expression of calbindin-D(28k) and is mediated at least in part by [Ca(2+)](i).
Collapse
Affiliation(s)
- Jai Parkash
- Joan C. Edwards School of Medicine, Department of Anatomy, Cell and Neurobiology, Marshall University, Huntington, West Virginia 25704, USA.
| | | | | |
Collapse
|