1
|
Lee D, Yamazaki Y, Kuwamizu R, Okamoto M, Soya H. Prefrontal executive function enhanced by prior acute inhalation of low-dose hypoxic gas: Modulation via cardiac vagal activity. Neuroimage 2025; 310:121139. [PMID: 40101440 DOI: 10.1016/j.neuroimage.2025.121139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 03/09/2025] [Accepted: 03/11/2025] [Indexed: 03/20/2025] Open
Abstract
Today, diverse psychophysiological stresses, such as severe time constraints and busy lifestyles, contribute to cardiac parasympathetic dysfunction, potentially leading to mental health issues and declines in critical executive functions. It is essential to develop accessible methods of enhancing cardiac vagal activity (CVA) to mitigate these adverse effects. We previously demonstrated that inhaling low-dose hypoxic gas (FIO₂: 13.5 %) for 10 min acts as a hormetic stressor, inducing a supercompensation effect in CVA post-hypoxia. Since CVA is a key mediator of brain-heart communication in that it influences executive functions by interacting with the left dorsolateral prefrontal cortex (L-DLPFC), increasing CVA may enhance cognitive ability. We hypothesized that acute low-dose hypoxia leads to enhanced executive function via CVA modulation. Twenty-six individuals participated in both normobaric hypoxia (NH; FIO₂: 13.5 %) and normoxia (NN; ambient air) conditions. CVA, measured through heart rate variability, was analyzed three times: pre-hypoxia/normoxia, hypoxia/normoxia, and post-hypoxia/normoxia. Executive function was assessed using the Stroop task before and after exposure, and prefrontal cortex activity during the task was monitored using multichannel functional near-infrared spectroscopy. A supercompensation of CVA occurred concomitantly with a reduction in heart rate following hypoxic gas inhalation. Stroop performance improved with increased task-related activation of the L-DLPFC in the NH condition. Causal mediation analysis revealed that the post-hypoxia enhancement of CVA mediated improvements in Stroop performance and increased L-DLPFC activation. These findings strongly support our hypothesis that the enhancement of CVA following hormetic hypoxic stress contributes to improved executive function, broadening the scope of neurocognitive approaches for effectively enhancing executive function.
Collapse
Affiliation(s)
- Dongmin Lee
- Laboratory of Exercise Biochemistry and Neuroendocrinology, Institute of Health and Sport Sciences, University of Tsukuba, Ibaraki 305-8574, Japan
| | - Yudai Yamazaki
- Laboratory of Exercise Biochemistry and Neuroendocrinology, Institute of Health and Sport Sciences, University of Tsukuba, Ibaraki 305-8574, Japan
| | - Ryuta Kuwamizu
- Laboratory of Exercise Biochemistry and Neuroendocrinology, Institute of Health and Sport Sciences, University of Tsukuba, Ibaraki 305-8574, Japan; Sport Neuroscience Division, Advanced Research Initiative for Human High Performance (ARIHHP), Institute of Health and Sport Sciences, University of Tsukuba, Ibaraki 305-8574, Japan
| | - Masahiro Okamoto
- Laboratory of Exercise Biochemistry and Neuroendocrinology, Institute of Health and Sport Sciences, University of Tsukuba, Ibaraki 305-8574, Japan; Sport Neuroscience Division, Advanced Research Initiative for Human High Performance (ARIHHP), Institute of Health and Sport Sciences, University of Tsukuba, Ibaraki 305-8574, Japan
| | - Hideaki Soya
- Laboratory of Exercise Biochemistry and Neuroendocrinology, Institute of Health and Sport Sciences, University of Tsukuba, Ibaraki 305-8574, Japan; Sport Neuroscience Division, Advanced Research Initiative for Human High Performance (ARIHHP), Institute of Health and Sport Sciences, University of Tsukuba, Ibaraki 305-8574, Japan.
| |
Collapse
|
2
|
Lee D, Yamazaki Y, Kuwamizu R, Aoike N, Okamoto M, Kato M, Soya H. Enhanced cardiac vagal activity and mood after low-dose hypoxic gas inhalation in healthy young adults. J Physiol Sci 2025; 75:100002. [PMID: 39823965 PMCID: PMC11979666 DOI: 10.1016/j.jphyss.2024.100002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 12/05/2024] [Accepted: 12/16/2024] [Indexed: 01/20/2025]
Abstract
Developing strategies to enhance cardiac vagal activity (CVA) is essential for improving mood and managing stress. Although hypoxia inhalation may boost CVA, the optimal acute hypoxic conditions remain unclear. Therefore, we aimed to achieve a comprehensive understanding of the hypoxic conditions required to improve CVA and mood following hypoxia. Twenty-one healthy adults participated in both normobaric hypoxic (NH; FIO2: 13.5 %) and normoxic (NN; FIO2: 20.9 %) conditions. We monitored heart rate variability (HRV), percutaneous oxygen saturation (SpO2), and mood across pre-, hypoxia, and post-sessions and assessed psychophysiological stress using the Baevsky Stress Index (SI). Under hypoxia, SpO2 decreased to 88.1 %, accompanied by reductions in vagally-mediated HRV, followed by supercompensation post-hypoxia. Additionally, mood declined during hypoxia but rapidly rebounded, correlating with CVA and SI fluctuations. These results indicate that acute low-dose hypoxic gas inhalation at FIO2: 13.5 % enhances CVA and mood post-hypoxia, offering a practical method for building resilience.
Collapse
Affiliation(s)
- Dongmin Lee
- Laboratory of Exercise Biochemistry and Neuroendocrinology, Institute of Health and Sport Sciences, University of Tsukuba, Ibaraki 305-8574, Japan
| | - Yudai Yamazaki
- Laboratory of Exercise Biochemistry and Neuroendocrinology, Institute of Health and Sport Sciences, University of Tsukuba, Ibaraki 305-8574, Japan
| | - Ryuta Kuwamizu
- Laboratory of Exercise Biochemistry and Neuroendocrinology, Institute of Health and Sport Sciences, University of Tsukuba, Ibaraki 305-8574, Japan; Sport Neuroscience Division, Advanced Research Initiative for Human High Performance (ARIHHP), Institute of Health and Sport Sciences, University of Tsukuba, Ibaraki 305-8574, Japan
| | - Naoki Aoike
- Laboratory of Exercise Biochemistry and Neuroendocrinology, Institute of Health and Sport Sciences, University of Tsukuba, Ibaraki 305-8574, Japan
| | - Masahiro Okamoto
- Laboratory of Exercise Biochemistry and Neuroendocrinology, Institute of Health and Sport Sciences, University of Tsukuba, Ibaraki 305-8574, Japan; Sport Neuroscience Division, Advanced Research Initiative for Human High Performance (ARIHHP), Institute of Health and Sport Sciences, University of Tsukuba, Ibaraki 305-8574, Japan
| | - Morimasa Kato
- Department of Health and Nutrition, Yamagata Prefectural Yonezawa University of Nutrition Sciences, Yonezawa 992-0025, Japan
| | - Hideaki Soya
- Laboratory of Exercise Biochemistry and Neuroendocrinology, Institute of Health and Sport Sciences, University of Tsukuba, Ibaraki 305-8574, Japan; Sport Neuroscience Division, Advanced Research Initiative for Human High Performance (ARIHHP), Institute of Health and Sport Sciences, University of Tsukuba, Ibaraki 305-8574, Japan.
| |
Collapse
|
3
|
Wang NN, Yu SF, Chen DM, Hu QL, Han CX, Yang XY, Huang XY, Ding BY, Wu QY, Su R, Li H, Ma HL, Liu M, Zhang DL. The recovery of decreased executive attention in Tibetan migrants at high-altitude. Eur J Neurosci 2024; 60:6525-6542. [PMID: 39421897 DOI: 10.1111/ejn.16573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/22/2024] [Accepted: 10/02/2024] [Indexed: 10/19/2024]
Abstract
Attention is one of the basic cognitive functions sensitive to high altitude, and most studies have focussed on exposure times of approximately 3 years; however, it is unclear how attention changes in migrants who have lived and worked at high altitude for nearly 20 years. We explored the dynamics of attentional networks and neurophysiological mechanisms in migrants over 3-20 years using the Attentional Network Test combined with Electrocardiograph and Electroencephalography and found a consistent quadratic correlation between exposure and executive control efficiency, P3 amplitude and heart rate variability (HRV), with a decrease followed by an increase/relative stability, with approximately 10 years being the breakpoint. However, neither linear nor quadratic trajectories were observed for the alerting and orienting network. Mediation analysis revealed that the P3 amplitude mediated the decrease and increase in executive control efficiency with exposure time depends on the breakpoint. Correlations between HRV and executive control efficiency and P3 amplitude suggest that U-shaped changes in executive control in migrants may be related to body homeostasis maintained by the autonomic nervous system, and that P3 amplitude may serve as a neurophysiological marker of migrants' adaptation/recovery from high-altitude exposure.
Collapse
Affiliation(s)
- Nian-Nian Wang
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, South China Normal University, Guangzhou, China
- Key Laboratory of High Altitudes Brain Science and Environmental Acclimation, Tibet University, Lhasa, China
- School of Psychology, Center for Studies of Psychological Application, and Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, China
| | - Si-Fang Yu
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, South China Normal University, Guangzhou, China
- School of Psychology, Center for Studies of Psychological Application, and Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, China
| | - Dong-Mei Chen
- Key Laboratory of High Altitudes Brain Science and Environmental Acclimation, Tibet University, Lhasa, China
| | - Quan-Ling Hu
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, South China Normal University, Guangzhou, China
- Key Laboratory of High Altitudes Brain Science and Environmental Acclimation, Tibet University, Lhasa, China
- School of Psychology, Center for Studies of Psychological Application, and Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, China
| | - Chen-Xiao Han
- Key Laboratory of High Altitudes Brain Science and Environmental Acclimation, Tibet University, Lhasa, China
| | - Xi-Yue Yang
- Key Laboratory of High Altitudes Brain Science and Environmental Acclimation, Tibet University, Lhasa, China
| | - Xiao-Yan Huang
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, South China Normal University, Guangzhou, China
- School of Psychology, Center for Studies of Psychological Application, and Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, China
| | - Bi-Yu Ding
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, South China Normal University, Guangzhou, China
- School of Psychology, Center for Studies of Psychological Application, and Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, China
| | - Qing-Ya Wu
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, South China Normal University, Guangzhou, China
- School of Psychology, Center for Studies of Psychological Application, and Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, China
| | - Rui Su
- Key Laboratory of High Altitudes Brain Science and Environmental Acclimation, Tibet University, Lhasa, China
| | - Hao Li
- Key Laboratory of High Altitudes Brain Science and Environmental Acclimation, Tibet University, Lhasa, China
| | - Hai-Lin Ma
- Key Laboratory of High Altitudes Brain Science and Environmental Acclimation, Tibet University, Lhasa, China
| | - Ming Liu
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, South China Normal University, Guangzhou, China
- Key Laboratory of High Altitudes Brain Science and Environmental Acclimation, Tibet University, Lhasa, China
- School of Psychology, Center for Studies of Psychological Application, and Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, China
| | - De-Long Zhang
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, South China Normal University, Guangzhou, China
- Key Laboratory of High Altitudes Brain Science and Environmental Acclimation, Tibet University, Lhasa, China
- School of Psychology, Center for Studies of Psychological Application, and Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, China
- School of Educational Sciences, Kashi University, Kashi, China
| |
Collapse
|
4
|
Oniscenko B, Socha V, Hanakova L, Tlapak J, Matowicki M. Impact of mild hypoxia on pilots’ performance and physiological response: A systematic review and experimental study. INTERNATIONAL JOURNAL OF INDUSTRIAL ERGONOMICS 2024; 104:103650. [DOI: 10.1016/j.ergon.2024.103650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
5
|
Wang NN, Yu SF, Dang P, Su R, Li H, Ma HL, Liu M, Zhang DL. The neuroimmune pathway of high-altitude adaptation: influence of erythrocytes on attention networks through inflammation and the autonomic nervous system. Front Neurosci 2024; 18:1373136. [PMID: 38638694 PMCID: PMC11024340 DOI: 10.3389/fnins.2024.1373136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 03/19/2024] [Indexed: 04/20/2024] Open
Abstract
Introduction Many studies have shown that the functional adaptation of immigrants to high-altitude is closely related to oxygen transport, inflammatory response and autonomic nervous system. However, it remains unclear how human attention changes in response to hypoxia-induced neurophysiological activity during high-altitude exposure. Methods In the present study, we analyzed the relationship between hypoxic-induced neurophysiological responses and attention networks in 116 immigrants (3,680 m) using an attention network test to simultaneously record electroencephalogram and electrocardiogram in combination with specific routine blood markers. Results Our analysis revealed that red blood cells exert an indirect influence on the three attention networks, mediated through inflammatory processes and heart rate variability. Discussion The present study provides experimental evidence for the role of a neuroimmune pathway in determining human attention performance at high- altitude. Our findings have implications for understanding the complex interactions between physiological and neurocognitive processes in immigrants adapting to hypoxic environments.
Collapse
Affiliation(s)
- Nian-Nian Wang
- Key Laboratory of High Altitudes Brain Science and Environmental Acclimation, Tibet University, Lhasa, China
- Key Laboratory of Brain, Cognition, and Education Sciences, Ministry of Education, Guangzhou, China
- School of Psychology, Center for Studies of Psychological Application, and Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, China
| | - Si-Fang Yu
- Key Laboratory of Brain, Cognition, and Education Sciences, Ministry of Education, Guangzhou, China
- School of Psychology, Center for Studies of Psychological Application, and Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, China
| | - Peng Dang
- Key Laboratory of High Altitudes Brain Science and Environmental Acclimation, Tibet University, Lhasa, China
| | - Rui Su
- Key Laboratory of High Altitudes Brain Science and Environmental Acclimation, Tibet University, Lhasa, China
| | - Hao Li
- Key Laboratory of High Altitudes Brain Science and Environmental Acclimation, Tibet University, Lhasa, China
| | - Hai-Lin Ma
- Key Laboratory of High Altitudes Brain Science and Environmental Acclimation, Tibet University, Lhasa, China
| | - Ming Liu
- Key Laboratory of High Altitudes Brain Science and Environmental Acclimation, Tibet University, Lhasa, China
- Key Laboratory of Brain, Cognition, and Education Sciences, Ministry of Education, Guangzhou, China
- School of Psychology, Center for Studies of Psychological Application, and Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, China
| | - De-Long Zhang
- Key Laboratory of High Altitudes Brain Science and Environmental Acclimation, Tibet University, Lhasa, China
- Key Laboratory of Brain, Cognition, and Education Sciences, Ministry of Education, Guangzhou, China
- School of Psychology, Center for Studies of Psychological Application, and Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, China
- School of Educational Sciences, Kashi University, Kashi, China
| |
Collapse
|
6
|
Shaw DM, Bloomfield PM, Benfell A, Hughes I, Gant N. Recovery from acute hypoxia: A systematic review of cognitive and physiological responses during the 'hypoxia hangover'. PLoS One 2023; 18:e0289716. [PMID: 37585402 PMCID: PMC10431643 DOI: 10.1371/journal.pone.0289716] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 07/21/2023] [Indexed: 08/18/2023] Open
Abstract
Recovery of cognitive and physiological responses following a hypoxic exposure may not be considered in various operational and research settings. Understanding recovery profiles and influential factors can guide post-hypoxia restrictions to reduce the risk of further cognitive and physiological deterioration, and the potential for incidents and accidents. We systematically evaluated the available evidence on recovery of cognitive and basic physiological responses following an acute hypoxic exposure to improve understanding of the performance and safety implications, and to inform post-hypoxia restrictions. This systematic review summarises 30 studies that document the recovery of either a cognitive or physiological index from an acute hypoxic exposure. Titles and abstracts from PubMed (MEDLINE) and Scopus were searched from inception to July 2022, of which 22 full text articles were considered eligible. An additional 8 articles from other sources were identified and also considered eligible. The overall quality of evidence was moderate (average Rosendal score, 58%) and there was a large range of hypoxic exposures. Heart rate, peripheral blood haemoglobin-oxygen saturation and heart rate variability typically normalised within seconds-to-minutes following return to normoxia or hyperoxia. Whereas, cognitive performance, blood pressure, cerebral tissue oxygenation, ventilation and electroencephalogram indices could persist for minutes-to-hours following a hypoxic exposure, and one study suggested regional cerebral tissue oxygenation requires up to 24 hours to recover. Full recovery of most cognitive and physiological indices, however, appear much sooner and typically within ~2-4 hours. Based on these findings, there is evidence to support a 'hypoxia hangover' and a need to implement restrictions following acute hypoxic exposures. The severity and duration of these restrictions is unclear but should consider the population, subsequent requirement for safety-critical tasks and hypoxic exposure.
Collapse
Affiliation(s)
- David M. Shaw
- Aviation Medicine Unit, Royal New Zealand Air Force Base Auckland, Whenuapai, Auckland, New Zealand
| | - Peter M. Bloomfield
- Department of Exercise Sciences, University of Auckland, Auckland, New Zealand
| | - Anthony Benfell
- Department of Medicine, University of Auckland, Auckland, New Zealand
| | - Isadore Hughes
- Department of Medicine, University of Auckland, Auckland, New Zealand
| | - Nicholas Gant
- Department of Exercise Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|
7
|
Bourdillon N, Aebi MR, Kayser B, Bron D, Millet GP. Both Hypoxia and Hypobaria Impair Baroreflex Sensitivity but through Different Mechanisms. Int J Sports Med 2023; 44:177-183. [PMID: 36455595 PMCID: PMC9977572 DOI: 10.1055/a-1960-3407] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 09/04/2022] [Indexed: 12/05/2022]
Abstract
Baroreflex sensitivity (BRS) is a measure of cardiovagal baroreflex and is lower in normobaric and hypobaric hypoxia compared to normobaric normoxia. The aim of this study was to assess the effects of hypobaria on BRS in normoxia and hypoxia. Continuous blood pressure and ventilation were recorded in eighteen seated participants in normobaric normoxia (NNx), hypobaric normoxia (HNx), normobaric hypoxia (NHx) and hypobaric hypoxia (HHx). Barometric pressure was matched between NNx vs. NHx (723±4 mmHg) and HNx vs. HHx (406±4 vs. 403±5 mmHg). Inspired oxygen pressure (PiO2) was matched between NNx vs. HNx (141.2±0.8 vs. 141.5±1.5 mmHg) and NHx vs. HHx (75.7±0.4 vs. 74.3±1.0 mmHg). BRS was assessed using the sequence method. BRS significantly decreased in HNx, NHx and HHx compared to NNx. Heart rate, mean systolic and diastolic blood pressures did not differ between conditions. There was the specific effect of hypobaria on BRS in normoxia (BRS was lower in HNx than in NNx). The hypoxic and hypobaric effects do not add to each other resulting in comparable BRS decreases in HNx, NHx and HHx. BRS decrease under low barometric pressure requires future studies independently controlling O2 and CO2 to identify central and peripheral chemoreceptors' roles.
Collapse
Affiliation(s)
- Nicolas Bourdillon
- ISSUL, institute of sports sciences, Université de Lausanne,
Lausanne, Switzerland
| | - Mathias Rolland Aebi
- ISSUL, institute of sports sciences, Université de Lausanne,
Lausanne, Switzerland
- Wissenschaft & Technologie, armasuisse, Thun,
Switzerland
| | - Bengt Kayser
- ISSUL, institute of sports sciences, Université de Lausanne,
Lausanne, Switzerland
| | - Denis Bron
- ISSUL, institute of sports sciences, Université de Lausanne,
Lausanne, Switzerland
| | | |
Collapse
|
8
|
Meszaros M, Schneider SR, Mayer LC, Lichtblau M, Pengo MF, Berlier C, Saxer S, Furian M, Bloch KE, Ulrich S, Schwarz EI. Effects of Acute Hypoxia on Heart Rate Variability in Patients with Pulmonary Vascular Disease. J Clin Med 2023; 12:1782. [PMID: 36902567 PMCID: PMC10003175 DOI: 10.3390/jcm12051782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/19/2023] [Accepted: 02/21/2023] [Indexed: 02/25/2023] Open
Abstract
Pulmonary vascular diseases (PVDs), defined as arterial or chronic thromboembolic pulmonary hypertension, are associated with autonomic cardiovascular dysregulation. Resting heart rate variability (HRV) is commonly used to assess autonomic function. Hypoxia is associated with sympathetic overactivation and patients with PVD might be particularly vulnerable to hypoxia-induced autonomic dysregulation. In a randomised crossover trial, 17 stable patients with PVD (resting PaO2 ≥ 7.3 kPa) were exposed to ambient air (FiO2 = 21%) and normobaric hypoxia (FiO2 = 15%) in random order. Indices of resting HRV were derived from two nonoverlapping 5-10-min three-lead electrocardiography segments. We found a significant increase in all time- and frequency-domain HRV measures in response to normobaric hypoxia. There was a significant increase in root mean squared sum difference of RR intervals (RMSSD; 33.49 (27.14) vs. 20.76 (25.19) ms; p < 0.01) and RR50 count divided by the total number of all RR intervals (pRR50; 2.75 (7.81) vs. 2.24 (3.39) ms; p = 0.03) values in normobaric hypoxia compared to ambient air. Both high-frequency (HF; 431.40 (661.56) vs. 183.70 (251.25) ms2; p < 0.01) and low-frequency (LF; 558.60 (746.10) vs. 203.90 (425.63) ms2; p = 0.02) values were significantly higher in normobaric hypoxia compared to normoxia. These results suggest a parasympathetic dominance during acute exposure to normobaric hypoxia in PVD.
Collapse
Affiliation(s)
- Martina Meszaros
- Department of Pulmonology, University Hospital of Zurich, 8091 Zurich, Switzerland
| | - Simon R. Schneider
- Department of Pulmonology, University Hospital of Zurich, 8091 Zurich, Switzerland
- Department of Health Sciences and Medicine, University of Lucerne, 6002 Lucerne, Switzerland
| | - Laura C. Mayer
- Department of Pulmonology, University Hospital of Zurich, 8091 Zurich, Switzerland
| | - Mona Lichtblau
- Department of Pulmonology, University Hospital of Zurich, 8091 Zurich, Switzerland
| | - Martino F. Pengo
- Istituto Auxologico Italiano IRCCS, Department of Cardiology, San Luca Hospital, 20149 Milan, Italy
- School of Medicine and Surgery, University of Milano-Bicocca, 20122 Milan, Italy
| | - Charlotte Berlier
- Department of Pulmonology, University Hospital of Zurich, 8091 Zurich, Switzerland
| | - Stéphanie Saxer
- Department of Pulmonology, University Hospital of Zurich, 8091 Zurich, Switzerland
| | - Michael Furian
- Department of Pulmonology, University Hospital of Zurich, 8091 Zurich, Switzerland
| | - Konrad E. Bloch
- Department of Pulmonology, University Hospital of Zurich, 8091 Zurich, Switzerland
- Medical Faculty, University of Zurich, 8006 Zurich, Switzerland
| | - Silvia Ulrich
- Department of Pulmonology, University Hospital of Zurich, 8091 Zurich, Switzerland
- Medical Faculty, University of Zurich, 8006 Zurich, Switzerland
| | - Esther I. Schwarz
- Department of Pulmonology, University Hospital of Zurich, 8091 Zurich, Switzerland
- Medical Faculty, University of Zurich, 8006 Zurich, Switzerland
| |
Collapse
|
9
|
Panza GS, Puri S, Lin HS, Badr MS, Mateika JH. Daily Exposure to Mild Intermittent Hypoxia Reduces Blood Pressure in Male Patients with Obstructive Sleep Apnea and Hypertension. Am J Respir Crit Care Med 2022; 205:949-958. [PMID: 35015980 PMCID: PMC9838631 DOI: 10.1164/rccm.202108-1808oc] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Rationale: Daily exposure to mild intermittent hypoxia (MIH) may elicit beneficial cardiovascular outcomes. Objectives: To determine the effect of 15 days of MIH and in-home continuous positive airway pressure treatment on blood pressure in participants with obstructive sleep apnea and hypertension. Methods: We administered MIH during wakefulness 5 days/week for 3 weeks. The protocol consisted of twelve 2-minute bouts of hypoxia interspersed with 2 minutes of normoxia. End-tidal carbon dioxide was maintained 2 mm Hg above baseline values throughout the protocol. Control participants were exposed to a sham protocol (i.e., compressed air). All participants were treated with continuous positive airway pressure over the 3-week period. Results are mean ± SD. Measurements and Main Results: Sixteen male participants completed the study (experimental n = 10; control n = 6). Systolic blood pressure at rest during wakefulness over 24 hours was reduced after 15 days of MIH (142.9 ± 8.6 vs. 132.0 ± 10.7 mm Hg; P < 0.001), but not following the sham protocol (149.9 ± 8.6 vs. 149.7 ± 10.8 mm Hg; P = 0.915). Thus, the reduction in blood pressure from baseline was greater in the experimental group compared with control (-10.91 ± 4.1 vs. -0.17 ± 3.6 mm Hg; P = 0.003). Modifications in blood pressure were accompanied by increased parasympathetic and reduced sympathetic activity in the experimental group, as estimated by blood pressure and heart rate variability analysis. No detrimental neurocognitive and metabolic outcomes were evident following MIH. Conclusions: MIH elicits beneficial cardiovascular and autonomic outcomes in males with OSA and concurrent hypertension. Clinical trial registered with www.clinicaltrials.gov (NCT03736382).
Collapse
Affiliation(s)
- Gino S. Panza
- John D. Dingell Veterans Affairs Medical Center, Detroit, Michigan; and,Department of Physiology
| | - Shipra Puri
- John D. Dingell Veterans Affairs Medical Center, Detroit, Michigan; and,Department of Physiology
| | - Ho-Sheng Lin
- John D. Dingell Veterans Affairs Medical Center, Detroit, Michigan; and,Department of Otolaryngology, and
| | - M. Safwan Badr
- John D. Dingell Veterans Affairs Medical Center, Detroit, Michigan; and,Department of Physiology,,Department of Internal Medicine, School of Medicine, Wayne State University, Detroit, Michigan
| | - Jason H. Mateika
- John D. Dingell Veterans Affairs Medical Center, Detroit, Michigan; and,Department of Physiology,,Department of Internal Medicine, School of Medicine, Wayne State University, Detroit, Michigan
| |
Collapse
|
10
|
Ma C, Xu H, Yan M, Huang J, Yan W, Lan K, Wang J, Zhang Z. Longitudinal Changes and Recovery in Heart Rate Variability of Young Healthy Subjects When Exposure to a Hypobaric Hypoxic Environment. Front Physiol 2022; 12:688921. [PMID: 35095540 PMCID: PMC8793277 DOI: 10.3389/fphys.2021.688921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 11/23/2021] [Indexed: 11/13/2022] Open
Abstract
Background: The autonomic nervous system (ANS) is crucial for acclimatization. Investigating the responses of acute exposure to a hypoxic environment may provide some knowledge of the cardiopulmonary system’s adjustment mechanism.Objective: The present study investigates the longitudinal changes and recovery in heart rate variability (HRV) in a young healthy population when exposed to a simulated plateau environment.Methods: The study followed a strict experimental paradigm in which physiological signals were collected from 33 healthy college students (26 ± 2 years, 171 cm ± 7 cm, 64 ± 11 kg) using a medical-grade wearable device. The subjects were asked to sit in normoxic (approximately 101 kPa) and hypoxic (4,000 m above sea level, about 62 kPa) environments. The whole experimental process was divided into four stable resting measurement segments in chronological order to analyze the longitudinal changes of physical stress and recovery phases. Seventy-six time-domain, frequency-domain, and non-linear indicators characterizing rhythm variability were analyzed in the four groups.Results: Compared to normobaric normoxia, participants in hypobaric hypoxia had significantly lower HRV time-domain metrics, such as RMSSD, MeanNN, and MedianNN (p < 0.01), substantially higher frequency domain metrics such as LF/HF ratio (p < 0.05), significantly lower Poincaré plot parameters such as SD1/SD2 ratio and other Poincaré plot parameters are reduced considerably (p < 0.01), and Refined Composite Multi-Scale Entropy (RCMSE) curves are reduced significantly (p < 0.01).Conclusion: The present study shows that elevated heart rates, sympathetic activation, and reduced overall complexity were observed in healthy subjects exposed to a hypobaric and hypoxic environment. Moreover, the results indicated that Multiscale Entropy (MSE) analysis of RR interval series could characterize the degree of minor physiological changes. This novel index of HRV can better explain changes in the human ANS.
Collapse
Affiliation(s)
- Chenbin Ma
- Center for Artificial Intelligence in Medicine, Medical Innovation Research Department, PLA General Hospital, Beijing, China
- Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, China
- School of Biological Science and Medical Engineering, Beihang University, Beijing, China
- Shenyuan Honors College, Beihang University, Beijing, China
| | - Haoran Xu
- Medical School of Chinese PLA, Beijing, China
| | - Muyang Yan
- Department of Hyperbaric Oxygen Therapy, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Jie Huang
- Department of Hyperbaric Oxygen Therapy, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Wei Yan
- Department of Hyperbaric Oxygen Therapy, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Ke Lan
- Beijing SensEcho Science & Technology Co., Ltd., Beijing, China
| | - Jing Wang
- School of Computer and Information Technology, Beijing Jiaotong University, Beijing, China
- *Correspondence: Jing Wang,
| | - Zhengbo Zhang
- Center for Artificial Intelligence in Medicine, Medical Innovation Research Department, PLA General Hospital, Beijing, China
- Zhengbo Zhang,
| |
Collapse
|
11
|
Post-exercise cardiac autonomic and cardiovascular responses to heart rate-matched and work rate-matched hypoxic exercise. Eur J Appl Physiol 2021; 121:2061-2076. [PMID: 33811558 PMCID: PMC8192382 DOI: 10.1007/s00421-021-04678-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 03/28/2021] [Indexed: 12/30/2022]
Abstract
Purpose This study investigated the effect of performing hypoxic exercise at the same heart rate (HR) or work rate (WR) as normoxic exercise on post-exercise autonomic and cardiovascular responses. Methods Thirteen men performed three interval-type exercise sessions (5 × 5-min; 1-min recovery): normoxic exercise at 80% of the WR at the first ventilatory threshold (N), hypoxic exercise (FiO2 = 14.2%) at the same WR as N (H-WR) and hypoxic exercise at the same HR as N (H-HR). Autonomic and cardiovascular assessments were conducted before and after exercise, both at rest and during active squat–stand manoeuvres (SS). Results Compared to N, H-WR elicited a higher HR response (≈ 83% vs ≈ 75%HRmax, p < 0.001) and H-HR a reduced exercise WR (− 21.1 ± 9.3%, p < 0.001). Cardiac parasympathetic indices were reduced 15 min after exercise and recovered within 60 min in N and H-HR, but not after H-WR (p < 0.05). H-WR altered cardiac baroreflex sensitivity (cBRS) both at rest and during SS (specifically in the control of blood pressure fall during standing phases) in the first 60 min after the exercise bout (p < 0.05). Post-exercise hypotension (PEH) did not occur in H-HR (p > 0.05) but lasted longer in H-WR than in N (p < 0.05). Conclusions Moderate HR-matched hypoxic exercise mimicked post-exercise autonomic responses of normoxic exercise without resulting in significant PEH. This may relate to the reduced WR and the limited associated mechanical/metabolic strain. Conversely, WR-matched hypoxic exercise impacted upon post-exercise autonomic and cardiovascular responses, delaying cardiac autonomic recovery, temporarily decreasing cBRS and evoking prolonged PEH. Supplementary Information The online version contains supplementary material available at 10.1007/s00421-021-04678-5.
Collapse
|
12
|
Autonomic cardiovascular adaptations to acute head-out water immersion, head-down tilt and supine position. Eur J Appl Physiol 2019; 120:337-347. [PMID: 31813043 DOI: 10.1007/s00421-019-04278-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Accepted: 11/30/2019] [Indexed: 01/21/2023]
Abstract
PURPOSE Thermoneutral head-out water immersion (WI) and 6° head-down tilt (HDT) have been considered as suitable models to increase central blood volume and simulate autonomic cardiovascular adaptations to microgravity, swimming or scuba diving. However, any differences in autonomic cardiovascular adaptations are still unclear. In this study, we hypothesized that WI induces a higher activation of arterial baroreceptors and the parasympathetic system. METHODS Ten healthy men underwent 30 min of WI, HDT, and a supine position (SP). RR intervals (RRI) and blood pressure (BP) were continuously monitored. High frequency power (HF), low frequency power (LF) and LF/HF ratio were calculated to study sympathetic and parasympathetic activities, and a spontaneous baroreflex method was used to study arterial baroreflex sensitivity (aBRS). Lung transfer of nitric oxide and carbon monoxide (TLNO/TLCO), vital capacity and alveolar volume (Vc/VA) were measured to study central blood redistribution. RESULTS We observed (1) a similar increase in RRI and decrease in BP; (2) a similar increase in HF power during all experimental conditions, whereas LF increased after; (3) a similar rise in aBRS; (4) a similar increase in Vc/VA and decrease in TLNO/TLCO in all experimental conditions. CONCLUSIONS These results showed a cardiac parasympathetic dominance to the same extent, underpinned by a similar arterial baroreflex activation during WI and HDT as well as control SP. Future studies may address their association with cold or hyperoxia to assess their ability to replicate autonomic cardiovascular adaptations to microgravity, swimming or scuba diving.
Collapse
|
13
|
Heusser K, Thöne A, Lipp A, Menne J, Beige J, Reuter H, Hoffmann F, Halbach M, Eckert S, Wallbach M, Koziolek M, Haarmann H, Joyner MJ, Paton JFR, Diedrich A, Haller H, Jordan J, Tank J. Efficacy of Electrical Baroreflex Activation Is Independent of Peripheral Chemoreceptor Modulation. Hypertension 2019; 75:257-264. [PMID: 31786986 DOI: 10.1161/hypertensionaha.119.13925] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Arterial baroreflex activation through electrical carotid sinus stimulation has been developed for the treatment of resistant hypertension. Previous studies suggested that the peripheral chemoreflex is tonically active in hypertensive patients and may inhibit baroreflex responses. We hypothesized that peripheral chemoreflex activation attenuates baroreflex efficacy evoked by electrical carotid sinus stimulation. We screened 35 patients with an implanted electrical carotid sinus stimulator. Of those, 11 patients with consistent acute depressor response were selected (7 men/4 women, age: 67±8 years, body mass index: 31.6±5.2 kg/m2, 6±2 antihypertensive drug classes). We assessed responses to electrical baroreflex stimulation during normoxia, isocapnic hypoxia (SpO2: 79.0±1.5%), and hyperoxia (40% end-tidal O2 fraction) by measuring heart rate, blood pressure, ventilation, oxygen saturation, end-tidal CO2 and O2 fractions, and muscle sympathetic nerve activity. During normoxia, baroreflex activation reduced systolic blood pressure from 164±27 to 151±25 mm Hg (mean±SD, P<0.001), heart rate from 64±13 to 61±13 bpm (P=0.002), and muscle sympathetic nerve activity from 42±12 to 36±12 bursts/min (P=0.004). Hypoxia increased systolic blood pressure 8±12 mm Hg (P=0.057), heart rate 10±6 bpm (P<0.001), muscle sympathetic nerve activity 7±7 bursts/min (P=0.031), and ventilation 10±7 L/min (P=0.002). However, responses to electrical carotid sinus stimulation did not differ between hypoxic and hyperoxic conditions: systolic blood pressure: -15±7 versus -14±8 mm Hg (P=0.938), heart rate: -2±3 versus -2±2 bpm (P=0.701), and muscle sympathetic nerve activity: -6±4 versus -4±3 bursts/min (P=0.531). We conclude that moderate peripheral chemoreflex activation does not attenuate acute responses to electrical baroreflex activation therapy in patients with resistant hypertension. These patients provided insight into human baroreflex-chemoreflex interactions that could not be gained otherwise.
Collapse
Affiliation(s)
- Karsten Heusser
- From the Institute of Aerospace Medicine, German Aerospace Center, Cologne, Germany (K.H., F.H., J.J., J.T.)
| | | | - Axel Lipp
- Department of Neurology, Park Clinic Weissensee, Berlin, Germany (A.L.)
| | - Jan Menne
- Department of Nephrology and Hypertensiology, Hannover Medical School, Germany (J.M., H. Haller)
| | - Joachim Beige
- Department of Nephrology and KfH Renal Unit, Hospital St. Georg, Leipzig, Germany (J.B.).,Faculty of Medicine, Martin Luther University Halle/Wittenberg, Germany (J.B.)
| | - Hannes Reuter
- Department of Cardiology, Pneumology, and Angiology, Heart Center of the University of Cologne, Germany (H.R., F.H., M.H.).,Department of Internal Medicine, Ev. Klinikum Köln Weyertal, Cologne, Germany (H.R.)
| | - Fabian Hoffmann
- From the Institute of Aerospace Medicine, German Aerospace Center, Cologne, Germany (K.H., F.H., J.J., J.T.).,Department of Cardiology, Pneumology, and Angiology, Heart Center of the University of Cologne, Germany (H.R., F.H., M.H.)
| | - Marcel Halbach
- Department of Cardiology, Pneumology, and Angiology, Heart Center of the University of Cologne, Germany (H.R., F.H., M.H.)
| | - Siegfried Eckert
- Department of Cardiology, Heart and Diabetes Centre North Rhine-Westphalia, University Hospital, Ruhr University Bochum, Bad Oeynhausen, Germany (S.E.)
| | - Manuel Wallbach
- Department of Nephrology & Rheumatology (M.W., M.K.), University Medical Center Göttingen, Germany
| | - Michael Koziolek
- Department of Nephrology & Rheumatology (M.W., M.K.), University Medical Center Göttingen, Germany
| | - Helge Haarmann
- Clinic for Cardiology and Pneumology (H.Haarmann), University Medical Center Göttingen, Germany
| | - Michael J Joyner
- Department of Anesthesiology, Mayo Clinic, Rochester, MN (M.J.J.)
| | - Julian F R Paton
- School of Physiology, Pharmacology, and Neuroscience, University of Bristol, United Kingdom (J.F.R.P.).,Department of Physiology, University of Auckland, Grafton, New Zealand (J.F.R.P.)
| | - André Diedrich
- Department of Medicine, Division of Clinical Pharmacology, Autonomic Dysfunction Center, Vanderbilt University Medical Center, Nashville, TN (A.D.)
| | - Hermann Haller
- Department of Nephrology and Hypertensiology, Hannover Medical School, Germany (J.M., H. Haller)
| | - Jens Jordan
- From the Institute of Aerospace Medicine, German Aerospace Center, Cologne, Germany (K.H., F.H., J.J., J.T.)
| | - Jens Tank
- From the Institute of Aerospace Medicine, German Aerospace Center, Cologne, Germany (K.H., F.H., J.J., J.T.)
| |
Collapse
|
14
|
Bourdillon N, Yazdani S, Subudhi AW, Lovering AT, Roach RC, Vesin JM, Kayser B. AltitudeOmics: Baroreflex Sensitivity During Acclimatization to 5,260 m. Front Physiol 2018; 9:767. [PMID: 29977210 PMCID: PMC6021743 DOI: 10.3389/fphys.2018.00767] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 05/31/2018] [Indexed: 11/13/2022] Open
Abstract
Introduction: Baroreflex sensitivity (BRS) is essential to ensure rapid adjustment to variations in blood pressure (BP). Little is known concerning the adaptive responses of BRS during acclimatization to high altitude at rest and during exercise. Methods: Twenty-one healthy sea-level residents were tested near sea level (SL, 130 m), the 1st (ALT1) and 16th day (ALT16) at 5,260 m using radial artery catheterization. BRS was calculated using the sequence method (direct interpretation of causal link between BP and heartrate). At rest, subjects breathed a hyperoxic mixture (250 mmHg O2, end tidal) to isolate the preponderance of CO2 chemoreceptors. End-tidal CO2 varied from 20 to 50 mmHg to assess peripheral chemoreflex. Rebreathing provoked incremental increase in CO2, increasing BP to assess baroreflex. During incremental cycling exercise to exhaustion, subjects breathed room air. Results: Resting BRS decreased in ALT1 which was exacerbated in ALT16. This decrease in ALT1 was reversible upon additional inspired CO2, but not in ALT16. BRS decrease during exercise was greater and occurred at lower workloads in ALT1 compared to SL. At ALT16, this decrease returned toward SL values. Discussion/Conclusion: This study is the first to report attenuated BRS in acute hypoxia, exacerbated in chronic hypoxia. In ALT1, hypocapnia triggered BRS reduction whilst in ALT16 resetting of chemoreceptor triggered BRS reduction. The exercise BRS resetting was impaired in ALT1 but normalized in ALT16. These BRS decreases indicate decreased control of BP and may explain deteriorations of cardiovascular status during exposure to high altitude.
Collapse
Affiliation(s)
- Nicolas Bourdillon
- Institute of Sports Sciences of the University of Lausanne, Lausanne, Switzerland
| | - Sasan Yazdani
- Applied Signal Processing Group, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Andrew W Subudhi
- Department of Biology, University of Colorado, Colorado Springs, CO, United States.,Altitude Research Center, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Andrew T Lovering
- Department of Human Physiology, University of Oregon, Eugene, OR, United States
| | - Robert C Roach
- Altitude Research Center, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Jean-Marc Vesin
- Applied Signal Processing Group, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Bengt Kayser
- Institute of Sports Sciences of the University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
15
|
Kato K, Morinaga R, Fushuku S, Nakamuta N, Yamamoto Y. Time-dependent changes in cardiorespiratory functions of anesthetized rats exposed to sustained hypoxia. Auton Neurosci 2018; 212:1-9. [PMID: 29778239 DOI: 10.1016/j.autneu.2018.03.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 03/13/2018] [Accepted: 03/13/2018] [Indexed: 11/29/2022]
Abstract
Although cardiovascular responses may be altered by respiratory changes under prolonged hypoxia, the relationship between respiratory and cardiovascular changes remains unknown. The aim of the present study is to clarify cardiorespiratory changes in anesthetized rats during and after hypoxic conditions using simultaneous recordings of cardiorespiratory variables with 20-sec recording intervals. After air breathing for 20 min (pre-exposure period), rats were subjected to 10% O2 for 2 h (hypoxic exposure period) and then air for 30 min (recovery period). Minute ventilation (VE), respiratory frequency, tidal volume, arterial blood pressure (BP), and heart rate (HR) were continuously monitored during the experimental period. Just after hypoxic exposure, VE, BP, and HR exhibited an overshoot, undershoot, and overshoot followed by a decrease, respectively. During the remaining hypoxic exposure period, continuous high VE and low BP were observed, whereas HR re-increased. In the recovery period, VE, BP, and HR showed an undershoot, increase, and decrease followed by an increase, respectively. These results suggest that the continuation of enhanced VE and re-increased HR, probably, due to carotid body excitation and accompanying sympathetic activation, during the late period of hypoxic exposure are protective responses to avoid worsening hypoxemia and further circulatory insufficiencies under sustained hypoxia.
Collapse
Affiliation(s)
- Kouki Kato
- Center for Laboratory Animal Science, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama 359-8513, Japan
| | - Ryosuke Morinaga
- Laboratory of Veterinary Anatomy and Cell Biology, Faculty of Agriculture, Iwate University, 18-8, Ueda 3-chome, Morioka, Iwate 020-8550, Japan; Department of Basic Veterinary Science, United Graduate School of Veterinary Science, Gifu University, 1-1, Yanagido, Gifu 501-1193, Japan
| | - Seigo Fushuku
- Center for Laboratory Animal Science, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama 359-8513, Japan
| | - Nobuaki Nakamuta
- Laboratory of Veterinary Anatomy and Cell Biology, Faculty of Agriculture, Iwate University, 18-8, Ueda 3-chome, Morioka, Iwate 020-8550, Japan; Department of Basic Veterinary Science, United Graduate School of Veterinary Science, Gifu University, 1-1, Yanagido, Gifu 501-1193, Japan
| | - Yoshio Yamamoto
- Laboratory of Veterinary Anatomy and Cell Biology, Faculty of Agriculture, Iwate University, 18-8, Ueda 3-chome, Morioka, Iwate 020-8550, Japan; Department of Basic Veterinary Science, United Graduate School of Veterinary Science, Gifu University, 1-1, Yanagido, Gifu 501-1193, Japan.
| |
Collapse
|
16
|
Botek M, Krejčí J, McKune A. Sex Differences in Autonomic Cardiac Control and Oxygen Saturation Response to Short-Term Normobaric Hypoxia and Following Recovery: Effect of Aerobic Fitness. Front Endocrinol (Lausanne) 2018; 9:697. [PMID: 30532736 PMCID: PMC6265316 DOI: 10.3389/fendo.2018.00697] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 11/05/2018] [Indexed: 01/06/2023] Open
Abstract
Introduction: The main aims of this study were to investigate autonomic nervous system (ANS) and arterial oxygen saturation (SpO2) responses to simulated altitude in males and females, and to determine the association between maximal oxygen uptake (VO2max) and these responses. Materials and Methods: Heart rate variability (HRV) and SpO2 were monitored in a resting supine position during Preliminary (6 min normoxia), Hypoxia (10 min, fraction of inspired oxygen (FiO2) of 9.6%, simulated altitude ~6,200 m) and Recovery (6 min normoxia) phases in 28 males (age 23.7 ± 1.7 years, normoxic VO2max 59.0 ± 7.8 ml.kg-1.min-1, body mass index (BMI) 24.2 ± 2.1 kg.m-2) and 30 females (age 23.8 ± 1.8 years, VO2max 45.1 ± 8.7 ml.kg-1.min-1, BMI 21.8 ± 3.0 kg.m-2). Spectral analysis of HRV quantified the ANS activity by means of low frequency (LF, 0.05-0.15 Hz) and high frequency (HF, 0.15-0.50 Hz) power, transformed by natural logarithm (Ln). Time domain analysis incorporated the square root of the mean of the squares of the successive differences (rMSSD). Results: There were no significant differences in SpO2 level during hypoxia between the males (71.9 ± 7.5%) and females (70.8 ± 7.1%). Vagally-related HRV variables (Ln HF and Ln rMSSD) exhibited no significant differences between sexes across each phase. However, while the sexes demonstrated similar Ln LF/HF values during the Preliminary phase, the males (0.5 ± 1.3) had a relatively higher (p = 0.001) sympathetic activity compared to females (-0.6 ± 1.4) during the Hypoxia phase. Oxygen desaturation during resting hypoxia was significantly correlated with VO2max in males (r = -0.45, p = 0.017) but not in females (r = 0.01, p = 0.952) and difference between regression lines were significant (p = 0.024). Conclusions: Despite similar oxygen desaturation levels, males exhibited a relatively higher sympathetic responses to hypoxia exposure compared with females. In addition, the SpO2 response to resting hypoxia exposure was related to maximal aerobic capacity in males but not females.
Collapse
Affiliation(s)
- Michal Botek
- Department of Natural Sciences in Kinanthropology, Faculty of Physical Culture, Palacký University Olomouc, Olomouc, Czechia
| | - Jakub Krejčí
- Department of Natural Sciences in Kinanthropology, Faculty of Physical Culture, Palacký University Olomouc, Olomouc, Czechia
- *Correspondence: Jakub Krejčí
| | - Andrew McKune
- Discipline of Sport and Exercise Science, School of Rehabilitation and Exercise Sciences, Research Institute for Sport and Exercise Science, University of Canberra, Canberra, ACT, Australia
- Discipline of Biokinetics, Exercise and Leisure Sciences, School of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
17
|
Regan PM, Bleiberg J, Onge PS, Temme L. Feasibility of using normobaric hypoxic stress in mTBI research. Concussion 2017; 2:CNC44. [PMID: 30202585 PMCID: PMC6094798 DOI: 10.2217/cnc-2017-0008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 03/15/2017] [Indexed: 11/21/2022] Open
Abstract
Studies of mild traumatic brain injury (mTBI) recovery generally assess patients in unstressed conditions that permit compensation for impairments through increased effort expenditure. This possibility may explain why a subgroup of individuals report persistent mTBI symptoms yet perform normally on objective assessment. Accordingly, the development and utilization of stress paradigms may be effective for enhancing the sensitivity of mTBI assessment. Previous studies, discussed here, indirectly but plausibly support the use of normobaric hypoxia as a stressor in uncovering latent mTBI symptoms due to the overlapping symptomatology induced by both normobaric hypoxia and mTBI. Limited studies by our group and others further support this plausibility through proof-of-concept demonstrations that hypoxia reversibly induces disproportionately severe impairments of oculomotor, pupillometric, cognitive and autonomic function in mTBI individuals.
Collapse
Affiliation(s)
- Patrick M Regan
- National Intrepid Center of Excellence (NICoE), Walter Reed National Military Medical Center, Bethesda, MD, USA
- Laulima Government Solutions LLC, Orlando, FL 32826, USA
- National Intrepid Center of Excellence (NICoE), Walter Reed National Military Medical Center, Bethesda, MD, USA
- Laulima Government Solutions LLC, Orlando, FL 32826, USA
| | - Joseph Bleiberg
- National Intrepid Center of Excellence (NICoE), Walter Reed National Military Medical Center, Bethesda, MD, USA
- National Intrepid Center of Excellence (NICoE), Walter Reed National Military Medical Center, Bethesda, MD, USA
| | - Paul St Onge
- U.S. Army Aeromedical Research Laboratory, Fort Rucker, AL 36362, USA
- Laulima Government Solutions LLC, Orlando, FL 32826, USA
- U.S. Army Aeromedical Research Laboratory, Fort Rucker, AL 36362, USA
- Laulima Government Solutions LLC, Orlando, FL 32826, USA
| | - Leonard Temme
- U.S. Army Aeromedical Research Laboratory, Fort Rucker, AL 36362, USA
- U.S. Army Aeromedical Research Laboratory, Fort Rucker, AL 36362, USA
| |
Collapse
|
18
|
Macoun T, Botek M, Krejčí J, McKune AJ. Vagal activity and oxygen saturation response to hypoxia: Effects of aerobic fitness and rating of hypoxia tolerance. ACTA GYMNICA 2017. [DOI: 10.5507/ag.2017.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
19
|
Acute and chronic changes in baroreflex sensitivity in hypobaric vs. normobaric hypoxia. Eur J Appl Physiol 2017; 117:2401-2407. [PMID: 28956166 DOI: 10.1007/s00421-017-3726-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 09/21/2017] [Indexed: 12/21/2022]
Abstract
Normobaric hypoxia (NH) is used as a surrogate for hypobaric hypoxia (HH). Recent studies reported physiological differences between NH and HH. Baroreflex sensitivity (BRS) decreases at altitude or following intense training. However, until now no study compared the acute and chronic changes of BRS in NH vs. HH. First, BRS was assessed in 13 healthy male subjects prior and after 20 h of exposure at 3450 m (study 1), and second in 15 well-trained athletes prior and after 18 days of "live-high train-low" (LHTL) at 2250 m (study 2) in NH vs. HH. BRS decreased (p < 0.05) to the same extent in NH and HH after 20 h of hypoxia and after LHTL. These results confirm that altitude decreases BRS but the decrease is similar between HH and NH. The persistence of this decrease after the cessation of a chronic exposure is new and does not differ between HH and NH. The previously reported physiological differences between NH and HH do not appear strong enough to induce different BRS responses.
Collapse
|
20
|
Acute action of rotenone on excitability of catecholaminergic neurons in rostral ventrolateral medulla. Brain Res Bull 2017; 134:151-161. [DOI: 10.1016/j.brainresbull.2017.07.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 07/09/2017] [Accepted: 07/19/2017] [Indexed: 12/21/2022]
|
21
|
Chacaroun S, Borowik A, Morrison SA, Baillieul S, Flore P, Doutreleau S, Verges S. Physiological Responses to Two Hypoxic Conditioning Strategies in Healthy Subjects. Front Physiol 2017; 7:675. [PMID: 28119623 PMCID: PMC5222853 DOI: 10.3389/fphys.2016.00675] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 12/20/2016] [Indexed: 01/22/2023] Open
Abstract
Objective: Hypoxic exposure can be used as a therapeutic tool by inducing various cardiovascular, neuromuscular, and metabolic adaptations. Hypoxic conditioning strategies have been evaluated in patients with chronic diseases using either sustained (SH) or intermittent (IH) hypoxic sessions. Whether hypoxic conditioning via SH or IH may induce different physiological responses remains to be elucidated. Methods: Fourteen healthy active subjects (7 females, age 25 ± 8 years, body mass index 21.5 ± 2.5 kg·m−2) performed two interventions in a single blind, randomized cross-over design, starting with either 3 x SH (48 h apart), or 3 x IH (48 h apart), separated by a 2 week washout period. SH sessions consisted of breathing a gas mixture with reduced inspiratory oxygen fraction (FiO2), continuously adjusted to reach arterial oxygen saturations (SpO2) of 70–80% for 1 h. IH sessions consisted of 5 min with reduced FiO2 (SpO2 = 70–80%), followed by 3-min normoxia, repeated seven times. During the first (S1) and third (S3) sessions of each hypoxic intervention, cardiorespiratory parameters, and muscle and pre-frontal cortex oxygenation (near infrared spectroscopy) were assessed continuously. Results: Minute ventilation increased significantly during IH sessions (+2 ± 2 L·min−1) while heart rate increased during both SH (+11 ± 4 bpm) and IH (+13 ± 5 bpm) sessions. Arterial blood pressure increased during all hypoxic sessions, although baseline normoxic systolic blood pressure was reduced from S1 to S3 in IH only (−8 ± 11 mmHg). Muscle oxygenation decreased significantly during S3 but not S1, for both hypoxic interventions (S3: SH −6 ± 5%, IH −3 ± 4%); pre-frontal oxygenation decreased in S1 and S3, and to a greater extent in SH vs. IH (−13 ± 3% vs. −6 ± 6%). Heart rate variability indices indicated a significantly larger increase in sympathetic activity in SH vs. IH (lower SDNN, PNN50, and RMSSD values in SH). From S1 to S3, further reduction in heart rate variability was observed in SH (SDNN, PNN50, and RMSSD reduction) while heart rate variability increased in IH (SDNN and RMSSD increase). Conclusions: These results showed significant differences in heart rate variability, blood pressure, and tissue oxygenation changes during short-term SH vs. IH conditioning interventions. Heart rate variability may provide useful information about the early adaptations induced by such intervention.
Collapse
Affiliation(s)
- Samarmar Chacaroun
- HP2 Laboratory, University Grenoble AlpesGrenoble, France; U1042, Institut National de la Santé et de la Recherche MédicaleGrenoble, France
| | - Anna Borowik
- HP2 Laboratory, University Grenoble AlpesGrenoble, France; U1042, Institut National de la Santé et de la Recherche MédicaleGrenoble, France
| | | | - Sébastien Baillieul
- HP2 Laboratory, University Grenoble AlpesGrenoble, France; U1042, Institut National de la Santé et de la Recherche MédicaleGrenoble, France; Grenoble Alpes University HospitalGrenoble, France
| | - Patrice Flore
- HP2 Laboratory, University Grenoble AlpesGrenoble, France; U1042, Institut National de la Santé et de la Recherche MédicaleGrenoble, France
| | - Stéphane Doutreleau
- HP2 Laboratory, University Grenoble AlpesGrenoble, France; U1042, Institut National de la Santé et de la Recherche MédicaleGrenoble, France; Grenoble Alpes University HospitalGrenoble, France
| | - Samuel Verges
- HP2 Laboratory, University Grenoble AlpesGrenoble, France; U1042, Institut National de la Santé et de la Recherche MédicaleGrenoble, France
| |
Collapse
|
22
|
Temme LA, St Onge P, Bleiberg J. A History of Mild Traumatic Brain Injury Affects Peripheral Pulse Oximetry during Normobaric Hypoxia. Front Neurol 2016; 7:149. [PMID: 27708611 PMCID: PMC5030829 DOI: 10.3389/fneur.2016.00149] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 08/31/2016] [Indexed: 12/03/2022] Open
Abstract
Introduction Physiological and emotional stressors increase symptoms of concussion in recently injured individuals and both forms of stress-induced symptoms in people recovering from mild traumatic brain injury (mTBI), but who are asymptomatic when not stressed or are at rest. Methods Healthy asymptomatic adults (25.0 ± 5.1 years) with a history of mTBI (n = 36) and matched healthy controls (HC) (n = 36) with no mTBI history were exposed to three levels of normobaric hypoxic stress generated with the Reduced Oxygen Breathing Device (ROBD) (Environics, Inc., Tollande, CT, USA), which reduced the percent O2 by mixing sea level air with nitrogen. The ROBD reduced the percent O2 in the breathable air from the normal 21% to 15.5% O2, 14% O2, and 13% O2. Under these conditions: (a) a standard pulse oximeter recorded peripheral oxygen saturation (SpO2) and pulse rate (beats per minute) and (b) the Functional Impairment Tester (FIT) (PMI, Inc., Rockville, MD, USA) recorded saccadic velocity and pupillary response dynamics to a brief light flash. Results For all three hypoxic stress conditions, the mTBI group had significantly higher SpO2 during the final minute of exposure than did the controls [F(2.17,151.8) = 5.29, p < 0.001, η2 = 0.852] and the rate of SpO2 change over time was significantly shallower for the mTBI than for the controls [F(2.3,161.3) = 2.863, p < 0.001, η2 = 0.569], Greenhouse–Geisser corrected. Overall, mTBI had lower pulse rate but the difference was only significant for the 14% O2 condition. FIT oculomotor measures were not sensitive to group differences. When exposed to mild or moderate normobaric hypoxic stress (15% O2): (1) SpO2 differences emerged between the mTBI and matched HC groups, (2) heart rate trended lower in the mTBI group, and (3) FIT measures were not sensitive to group differences. Conclusion A relatively minor hypoxic challenge can reveal measurable differences in SpO2 and heart rate in otherwise asymptomatic individuals with a history of mTBI.
Collapse
Affiliation(s)
- Leonard A Temme
- U.S. Army Aeromedical Research Laboratory , Fort Rucker, AL , USA
| | - Paul St Onge
- U.S. Army Aeromedical Research Laboratory, Fort Rucker, AL, USA; Laulima Government Solutions, LLC, Orlando, FL, USA
| | - Joseph Bleiberg
- National Intrepid Center of Excellence, Walter Reed National Military Medical Center , Bethesda, MD , USA
| |
Collapse
|
23
|
Mozer MT, Holbein WW, Joyner MJ, Curry TB, Limberg JK. Reductions in carotid chemoreceptor activity with low-dose dopamine improves baroreflex control of heart rate during hypoxia in humans. Physiol Rep 2016; 4:e12859. [PMID: 27418545 PMCID: PMC4945841 DOI: 10.14814/phy2.12859] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 06/13/2016] [Accepted: 06/18/2016] [Indexed: 11/24/2022] Open
Abstract
The purpose of the present investigation was to examine the contribution of the carotid body chemoreceptors to changes in baroreflex control of heart rate with exposure to hypoxia. We hypothesized spontaneous cardiac baroreflex sensitivity (scBRS) would be reduced with hypoxia and this effect would be blunted when carotid chemoreceptor activity was reduced with low-dose dopamine. Fifteen healthy adults (11 M/4 F) completed two visits randomized to intravenous dopamine or placebo (saline). On each visit, subjects were exposed to 5-min normoxia (~99% SpO2), followed by 5-min hypoxia (~84% SpO2). Blood pressure (intra-arterial catheter) and heart rate (ECG) were measured continuously and scBRS was assessed by spectrum and sequence methodologies. scBRS was reduced with hypoxia (P < 0.01). Using the spectrum analysis approach, the fall in scBRS with hypoxia was attenuated with infusion of low-dose dopamine (P < 0.01). The decrease in baroreflex sensitivity to rising pressures (scBRS "up-up") was also attenuated with low-dose dopamine (P < 0.05). However, dopamine did not attenuate the decrease in baroreflex sensitivity to falling pressures (scBRS "down-down"; P > 0.05). Present findings are consistent with a reduction in scBRS with systemic hypoxia. Furthermore, we show this effect is partially mediated by the carotid body chemoreceptors, given the fall in scBRS is attenuated when activity of the chemoreceptors is reduced with low-dose dopamine. However, the improvement in scBRS with dopamine appears to be specific to rising blood pressures. These results may have important implications for impairments in baroreflex function common in disease states of acute and/or chronic hypoxemia, as well as the experimental use of dopamine to assess such changes.
Collapse
Affiliation(s)
- Michael T Mozer
- Department of Anesthesiology, Mayo Clinic, Rochester, Minnesota
| | | | | | - Timothy B Curry
- Department of Anesthesiology, Mayo Clinic, Rochester, Minnesota
| | | |
Collapse
|
24
|
Abstract
This brief review highlights new ideas about the role of the sympathetic nervous system in human blood pressure regulation. We emphasize how this role varies with age and sex and use our findings to raise questions about the sympathetic nervous system and hypertension in humans. We also focus on three additional areas, including (1) novel ideas about the carotid body and sympathoexcitation as it relates to hypertension, (2) clinical trials of renal denervation that attempted to treat hypertension by reducing ongoing sympathoexcitation, and (3) new ideas about resistant hypertension and cerebral blood flow. We further highlight that success of device-based therapy to modulate the sympathetic nervous system relies heavily on patient selection. Furthermore, data suggest that the majority of patients respond to anti-hypertensive therapy and the major cause of "resistant" hypertension is poor patient adherence. While the enthusiasm for device therapy or perhaps even "precision medicine" is high, it is likely that by far the most benefit to the most patients will occur via better screening, more aggressive therapy, and the development of strategies that improve patient adherence to medication regimens and lifestyle changes.
Collapse
Affiliation(s)
- Michael J Joyner
- Department of Anesthesiology, Mayo Clinic, 200 1st Street SW, Rochester, MN, USA.
| | - Jacqueline K Limberg
- Department of Anesthesiology, Mayo Clinic, 200 1st Street SW, Rochester, MN, USA
| |
Collapse
|
25
|
Zhang Z, Du X, Xu H, Xie J, Jiang H. Lesion of medullary catecholaminergic neurons is associated with cardiovascular dysfunction in rotenone-induced Parkinson's disease rats. Eur J Neurosci 2015; 42:2346-55. [PMID: 26153521 DOI: 10.1111/ejn.13012] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Revised: 06/12/2015] [Accepted: 07/02/2015] [Indexed: 12/21/2022]
Abstract
In recent years, non-motor symptoms have been recognised as of vital importance in Parkinson's disease (PD); among these, cardiovascular dysfunctions are commonly seen in PD patients before their motor signs. The role of cardiovascular dysfunction in the progression of PD pathology, and its underlying mechanisms, are largely unknown. In the present study, in rotenone-induced PD rats, there was a gradual reduction in the number of nigral tyrosine hydroxylase-immunoreactive (TH-ir) neurons after 7, 14 and 21 days treatment. With the 56% reduction in striatal dopamine content and 52% loss of TH-ir neurons on the 14th day, the rats showed motor dysfunctions. However, from ECG power spectra, reductions in normalised low-frequency power and in the low-frequency power : high-frequency power ratio, as well as in mean blood pressure, were observed as early as the 3rd day. Plasma norepinephrine (NE) and epinephrine (E) levels were decreased by 39% and 26% respectively at the same time. Pearson's correlation analysis showed that both plasma NE and plasma E levels were positively correlated with MBP. Our results also showed that the loss of catecholaminergic neurons in the rostral ventrolateral medulla (RVLM), but not in the caudal ventrolateral medulla or the nucleus tractus solitarii, emerged earlier than the loss of nigral dopaminergic neurons. This suggests that dysfunction of catecholaminergic neurons in the RVLM might account for the reduced sympathetic activity, MBP and plasma catecholamine levels in the early stages of PD.
Collapse
Affiliation(s)
- Zhaoqiang Zhang
- State Key Disciplines: Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Medical College of Qingdao University, Qingdao, 266001, China.,Department of Physiology, Basic Medical College of Taishan Medical University, Taian, China
| | - Xixun Du
- State Key Disciplines: Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Medical College of Qingdao University, Qingdao, 266001, China
| | - Huamin Xu
- State Key Disciplines: Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Medical College of Qingdao University, Qingdao, 266001, China
| | - Junxia Xie
- State Key Disciplines: Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Medical College of Qingdao University, Qingdao, 266001, China
| | - Hong Jiang
- State Key Disciplines: Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Medical College of Qingdao University, Qingdao, 266001, China
| |
Collapse
|
26
|
Botek M, Krejčí J, De Smet S, Gába A, McKune AJ. Heart rate variability and arterial oxygen saturation response during extreme normobaric hypoxia. Auton Neurosci 2015; 190:40-5. [DOI: 10.1016/j.autneu.2015.04.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Revised: 02/23/2015] [Accepted: 04/01/2015] [Indexed: 11/29/2022]
|
27
|
Zhang D, She J, Yang J, Yu M. Linear and nonlinear dynamics of heart rate variability in the process of exposure to 3600 m in 10 min. AUSTRALASIAN PHYSICAL & ENGINEERING SCIENCES IN MEDICINE 2015; 38:263-70. [DOI: 10.1007/s13246-015-0354-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 06/09/2015] [Indexed: 10/23/2022]
|
28
|
Cavalade M, Papadopoulou V, Theunissen S, Balestra C. Heart rate variability and critical flicker fusion frequency changes during and after parachute jumping in experienced skydivers. Eur J Appl Physiol 2015; 115:1533-45. [PMID: 25715913 DOI: 10.1007/s00421-015-3137-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2014] [Accepted: 02/17/2015] [Indexed: 12/13/2022]
Abstract
PURPOSE The purpose of this study was (1) to further explore the heart rate dynamics and assess a potential cardiovascular risk in response to 4000 m jumps in experienced skydivers; (2) to assess whether there is an impact of such jumps on skydivers' cortical arousal or not, which may impact their decision making processes. METHOD 18 experienced skydivers performed successive jumps from a plane at 4000 m of height. Heart rate dynamics and cortical arousal were assessed by the use of heart rate variability and Critical Flicker Fusion Frequency (CFFF), respectively. RESULTS CFFF did not differ between the three measurement time points (p > 0.05). Mean heart rate increased during the jump (p < 0.001) and came back to pre-jump values after the jump (p < 0.001). Percentage of the differences of successive NN intervals greater than 50 ms (pNN50) decreased during the jump (p < 0.001) and kept lower values after the jump compared to pre-jump (p < 0.05). High-frequency power (HF) did not differ during the jump (p > 0.05) but decreased after the jump compared to both pre-jump (p < 0.01) and jump (p < 0.05). Sample entropy decreased during the jump (p < 0.001) and came back to pre-jump values after the jump (p > 0.05). CONCLUSION These results confirm a vagal input reduction associated with a rise of the sympathetic tone during the jump and suggests that the experienced skydiver is not exposed to a high cardiovascular risk. This study also shows that environmental stresses induced by free fall could not hamper the perceptual vigilance of experienced skydivers.
Collapse
Affiliation(s)
- M Cavalade
- Environmental, Occupational, Ageing and Integrative Physiology Laboratory, Haute Ecole Paul-Henri Spaak, Brussels, Belgium,
| | | | | | | |
Collapse
|
29
|
Zhang P, Downey HF, Chen S, Shi X. Two-week normobaric intermittent hypoxia exposures enhance oxyhemoglobin equilibrium and cardiac responses during hypoxemia. Am J Physiol Regul Integr Comp Physiol 2014; 307:R721-30. [PMID: 25056104 DOI: 10.1152/ajpregu.00191.2014] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Intermittent hypoxia (IH) is extensively applied to challenge cardiovascular and respiratory function, and to induce physiological acclimatization. The purpose of this study was to test the hypothesis that oxyhemoglobin equilibrium and tachycardiac responses during hypoxemia were enhanced after 14-day IH exposures. Normobaric-poikilocapnic hypoxia was induced with inhalation of 10% O2 for 5-6 min interspersed with 4 min recovery on eight nonsmokers. Heart rate (HR), arterial O2 saturation (SaO 2), and end-tidal O2 (PetO 2) were continuously monitored during cyclic normoxia and hypoxia. These variables were compared during the first and fifth hypoxic bouts between day 1 and day 14. There was a rightward shift in the oxyhemoglobin equilibrium response following 14-day IH exposures, as indicated by the greater PetO 2 (an index of arterial Po2) at 50% of SaO 2 on day 14 compared with day 1 [33.9 ± 1.5 vs. 28.2 ± 1.3 mmHg (P = 0.005) during the first hypoxic bout and 39.4 ± 2.4 vs. 31.4 ± 1.5 mmHg (P = 0.006) during the fifth hypoxic bout] and by the augmented gains of ΔSaO 2/ΔPetO 2 (i.e., deoxygenation) during PetO 2 from 65 to 40 mmHg in the first (1.12 ± 0.08 vs. 0.80 ± 0.02%/mmHg, P = 0.001) and the fifth (1.76 ± 0.31 vs. 1.05 ± 0.06%/mmHg, P = 0.024) hypoxic bouts. Repetitive IH exposures attenuated (P = 0.049) the tachycardiac response to hypoxia while significantly enhancing normoxic R-R interval variability in low-frequency and high-frequency spectra without changes in arterial blood pressure at rest or during hypoxia. We conclude that 14-day IH exposures enhance arterial O2 delivery and improve vagal control of HR during hypoxic hypoxemia.
Collapse
Affiliation(s)
- Peizhen Zhang
- Department of Integrative Physiology, University of North Texas Health Science Center at Fort Worth, Fort Worth, Texas; Beijing Sport University, Beijing, China
| | - H Fred Downey
- Department of Integrative Physiology, University of North Texas Health Science Center at Fort Worth, Fort Worth, Texas; Cardiovascular Research Institute, University of North Texas Health Science Center at Fort Worth, Fort Worth, Texas; and
| | - Shande Chen
- Department of Biostatistics, University of North Texas Health Science Center at Fort Worth, Fort Worth, Texas
| | - Xiangrong Shi
- Department of Integrative Physiology, University of North Texas Health Science Center at Fort Worth, Fort Worth, Texas; Cardiovascular Research Institute, University of North Texas Health Science Center at Fort Worth, Fort Worth, Texas; and
| |
Collapse
|
30
|
Zhang D, She J, Zhang Z, Yu M. Effects of acute hypoxia on heart rate variability, sample entropy and cardiorespiratory phase synchronization. Biomed Eng Online 2014; 13:73. [PMID: 24920347 PMCID: PMC4059097 DOI: 10.1186/1475-925x-13-73] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Accepted: 06/06/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Investigating the responses of autonomic nervous system (ANS) in hypoxia may provide some knowledge about the mechanism of neural control and rhythmic adjustment. The integrated cardiac and respiratory system display complicated dynamics that are affected by intrinsic feedback mechanisms controlling their interaction. To probe how the cardiac and respiratory system adjust their rhythms in different simulated altitudes, we studied heart rate variability (HRV) in frequency domain, the complexity of heartbeat series and cardiorespiratory phase synchronization (CRPS) between heartbeat intervals and respiratory cycles. METHODS In this study, twelve male subjects were exposed to simulated altitude of sea level, 3000 m and 4000 m in a hypobaric chamber. HRV was assessed by power spectral analysis. The complexity of heartbeat series was quantified by sample entropy (SampEn). CRPS was determined by cardiorespiratory synchrogram. RESULTS The power spectral HRV indices at all frequency bands depressed according to the increase of altitude. The SampEn of heartbeat series increased significantly with the altitude (P < 0.01). The duration of CRPS epochs at 3000 m was not significantly different from that at sea level. However, it was significantly longer at 4000 m (P < 0.01). CONCLUSIONS Our results suggest the phenomenon of CRPS exists in normal subjects when they expose to acute hypoxia. Further, the autonomic regulation has a significantly stronger influence on CRPS in acute hypoxia. The changes of CRPS and HRV parameters revealed the different regulatory mechanisms of the cardiac and respiratory system at high altitude.
Collapse
Affiliation(s)
| | | | | | - Mengsun Yu
- Research Center of Aviation Medicine Engineering, Institute of Aviation Medicine, Beijing, China.
| |
Collapse
|
31
|
Fan JL, Kayser B. Repeated pre-syncope from increased inspired CO2 in a background of severe hypoxia. High Alt Med Biol 2014; 15:70-7. [PMID: 24559484 DOI: 10.1089/ham.2013.1065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We describe a case of experimentally induced pre-syncope in a healthy young man when exposed to increased inspired CO2 in a background of hypoxia. Acute severe hypoxia (FIO2=0.10) was tolerated, but adding CO2 to the inspirate caused pre-syncope symptoms accompanied by hypotension and large reductions in both mean and diastolic middle cerebral artery velocity, while systolic flow velocity was maintained. The mismatch of cerebral perfusion pressure and vascular tone caused unique retrograde cerebral blood flow at the end of systole and a reduction in cerebral tissue oxygenation. We speculate that this occurrence of pre-syncope was due to hypoxia-induced inhibition of brain regions responsible for compensatory sympathetic activity to relative hypercapnia.
Collapse
Affiliation(s)
- Jui-Lin Fan
- 1 Faculty of Biology and Medicine, Institute of Sports Sciences, University of Lausanne , Lausanne, Switzerland
| | | |
Collapse
|
32
|
Dhar P, Sharma VK, Hota KB, Das SK, Hota SK, Srivastava RB, Singh SB. Autonomic cardiovascular responses in acclimatized lowlanders on prolonged stay at high altitude: a longitudinal follow up study. PLoS One 2014; 9:e84274. [PMID: 24404157 PMCID: PMC3880292 DOI: 10.1371/journal.pone.0084274] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2013] [Accepted: 11/13/2013] [Indexed: 11/19/2022] Open
Abstract
Acute exposure to hypobaric hypoxia at high altitude is reported to cause sympathetic dominance that may contribute to the pathophysiology of high altitude illnesses. The effect of prolonged stay at high altitude on autonomic functions, however, remains to be explored. Thus, the present study aimed at investigating the effect of high altitude on autonomic neural control of cardiovascular responses by monitoring heart rate variability (HRV) during chronic hypobaric hypoxia. Baseline electrocardiography (ECG) data was acquired from the volunteers at mean sea level (MSL) (<250 m) in Rajasthan. Following induction of the study population to high altitude (4500–4800 m) in Ladakh region, ECG data was acquired from the volunteers after 6 months (ALL 6) and 18 months of induction (ALL 18). Out of 159 volunteers who underwent complete investigation during acquisition of baseline data, we have only included the data of 104 volunteers who constantly stayed at high altitude for 18 months to complete the final follow up after 18 months. HRV parameters, physiological indices and biochemical changes in serum were investigated. Our results show sympathetic hyperactivation along with compromise in parasympathetic activity in ALL 6 and ALL 18 when compared to baseline data. Reduction of sympathetic activity and increased parasympathetic response was however observed in ALL 18 when compared to ALL 6. Our findings suggest that autonomic response is regulated by two distinct mechanisms in the ALL 6 and ALL 18. While the autonomic alterations in the ALL 6 group could be attributed to increased sympathetic activity resulting from increased plasma catecholamine concentration, the sympathetic activity in ALL 18 group is associated with increased concentration of serum coronary risk factors and elevated homocysteine. These findings have important clinical implications in assessment of susceptibility to cardio-vascular risks in acclimatized lowlanders staying for prolonged duration at high altitude.
Collapse
Affiliation(s)
- Priyanka Dhar
- Defence Institute of High Altitude Research, Defence Research & Development Organisation, C/o 56 APO, Leh-Ladakh, Jammu and Kashmir, India
| | - Vijay K. Sharma
- Defence Institute of High Altitude Research, Defence Research & Development Organisation, C/o 56 APO, Leh-Ladakh, Jammu and Kashmir, India
| | - Kalpana B. Hota
- Defence Institute of High Altitude Research, Defence Research & Development Organisation, C/o 56 APO, Leh-Ladakh, Jammu and Kashmir, India
| | - Saroj K. Das
- Defence Institute of High Altitude Research, Defence Research & Development Organisation, C/o 56 APO, Leh-Ladakh, Jammu and Kashmir, India
| | - Sunil K. Hota
- Defence Institute of High Altitude Research, Defence Research & Development Organisation, C/o 56 APO, Leh-Ladakh, Jammu and Kashmir, India
| | - Ravi B. Srivastava
- Defence Institute of High Altitude Research, Defence Research & Development Organisation, C/o 56 APO, Leh-Ladakh, Jammu and Kashmir, India
| | - Shashi B. Singh
- Defence Institute of Physiology and Allied Sciences, Defence Research & Development Organisation, Lucknow Road, Timarpur, Delhi, India
- * E-mail:
| |
Collapse
|
33
|
Dergacheva O, Weigand LA, Dyavanapalli J, Mares J, Wang X, Mendelowitz D. Function and modulation of premotor brainstem parasympathetic cardiac neurons that control heart rate by hypoxia-, sleep-, and sleep-related diseases including obstructive sleep apnea. PROGRESS IN BRAIN RESEARCH 2014; 212:39-58. [PMID: 25194192 DOI: 10.1016/b978-0-444-63488-7.00003-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Parasympathetic cardiac vagal neurons (CVNs) in the brainstem dominate the control of heart rate. Previous work has determined that these neurons are inherently silent, and their activity is largely determined by synaptic inputs to CVNs that include four major types of synapses that release glutamate, GABA, glycine, or serotonin. Whereas prior reviews have focused on glutamatergic, GABAergic and glycinergic pathways, and the receptors in CVNs activated by these neurotransmitters, this review focuses on the alterations in CVN activity with hypoxia-, sleep-, and sleep-related cardiovascular diseases including obstructive sleep apnea.
Collapse
Affiliation(s)
- Olga Dergacheva
- Department of Pharmacology and Physiology, School of Medicine, George Washington University, Washington, DC, USA
| | - Letitia A Weigand
- Department of Pharmacology and Physiology, School of Medicine, George Washington University, Washington, DC, USA
| | - Jhansi Dyavanapalli
- Department of Pharmacology and Physiology, School of Medicine, George Washington University, Washington, DC, USA
| | - Jacquelyn Mares
- Department of Pharmacology and Physiology, School of Medicine, George Washington University, Washington, DC, USA
| | - Xin Wang
- Department of Pharmacology and Physiology, School of Medicine, George Washington University, Washington, DC, USA
| | - David Mendelowitz
- Department of Pharmacology and Physiology, School of Medicine, George Washington University, Washington, DC, USA.
| |
Collapse
|
34
|
Cui F, Gao L, Yuan F, Dong ZF, Zhou ZN, Kline DD, Zhang Y, Li DP. Hypobaric intermittent hypoxia attenuates hypoxia-induced depressor response. PLoS One 2012; 7:e41656. [PMID: 22848558 PMCID: PMC3407201 DOI: 10.1371/journal.pone.0041656] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Accepted: 06/25/2012] [Indexed: 11/17/2022] Open
Abstract
Background Hypobaric intermittent hypoxia (HIH) produces many favorable effects in the cardiovascular system such as anti-hypertensive effect. In this study, we showed that HIH significantly attenuated a depressor response induced by acute hypoxia. Methodology/Principal Findings Sprague-Dawley rats received HIH in a hypobaric chamber simulating an altitude of 5000 m. The artery blood pressure (ABP), heart rate (HR) and renal sympathetic nerve activity (RSNA) were recorded in anesthetized control rats and rats received HIH. The baseline ABP, HR and RSNA were not different between HIH and control rats. Acute hypoxia-induced decrease in ABP was significantly attenuated in HIH rat compared with control rats. However, acute hypoxia-induced increases in HR and RSNA were greater in HIH rat than in control rats. After removal of bilateral ascending depressor nerves, acute hypoxia-induced depressor and sympathoexcitatory responses were comparable in control and HIH rats. Furthermore, acute hypoxia-induced depressor and sympathoexcitatory responses did not differ between control and HIH groups after blocking ATP-dependent K+ channels by glibenclamide. The baroreflex function evaluated by intravenous injection of phenylephrine and sodium nitroprusside was markedly augmented in HIH rats compared with control rats. The pressor and sympathoexcitatory responses evoked by intravenous injection of cyanide potassium were also significantly greater in HIH rats than in control rats. Conclusions/Significance Our findings suggest that HIH suppresses acute hypoxia-induced depressor response through enhancement of baroreflex and chemoreflex function, which involves activation of ATP-dependent K+ channels. This study provides new information and underlying mechanism on the beneficiary effect of HIH on maintaining cardiovascular homeostasis.
Collapse
Affiliation(s)
- Fang Cui
- Department of Physiology, Hebei Medical University, Shijiazhuang, China
| | | | | | | | | | | | | | | |
Collapse
|
35
|
|
36
|
Klemenc M, Golja P. Baroreflex sensitivity in acute hypoxia and carbohydrate loading. Eur J Appl Physiol 2011; 111:2509-15. [DOI: 10.1007/s00421-011-1875-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2010] [Accepted: 02/11/2011] [Indexed: 10/18/2022]
|
37
|
Dergacheva O, Griffioen KJ, Neff RA, Mendelowitz D. Respiratory modulation of premotor cardiac vagal neurons in the brainstem. Respir Physiol Neurobiol 2010; 174:102-10. [PMID: 20452467 PMCID: PMC2932818 DOI: 10.1016/j.resp.2010.05.005] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2010] [Revised: 04/30/2010] [Accepted: 05/03/2010] [Indexed: 02/09/2023]
Abstract
The respiratory and cardiovascular systems are highly intertwined, both anatomically and physiologically. Respiratory and cardiovascular neurons are often co-localized in the same brainstem regions, and this is particularly evident in the ventral medulla which contains presympathetic neurons in the rostral ventrolateral medulla, premotor parasympathetic cardioinhibitory neurons in the nucleus ambiguus, and the ventral respiratory group, which includes the pre-Botzinger complex. Anatomical studies of respiratory and cardiovascular neurons have demonstrated that many of these neurons have projections and axon collateral processes which extend into their neighboring cardiorespiratory regions providing an anatomical substrate for cardiorespiratory interactions. As other reports in this Special Issue of Respiratory Physiology & Neurobiology focus on interactions between the respiratory network and baroreceptors, neurons in the nucleus tractus solitarius, presympathetic neurons and sympathetic activity, this report will focus on the respiratory modulation of parasympathetic activity and the neurons that generate parasympathetic activity to the heart, cardiac vagal neurons.
Collapse
Affiliation(s)
- Olga Dergacheva
- Department of Pharmacology and Physiology, The George Washington University, Washington, DC 20037, USA
| | | | | | | |
Collapse
|
38
|
Møller S, Iversen JS, Krag A, Bie P, Kjaer A, Bendtsen F. Reduced baroreflex sensitivity and pulmonary dysfunction in alcoholic cirrhosis: effect of hyperoxia. Am J Physiol Gastrointest Liver Physiol 2010; 299:G784-90. [PMID: 20616307 DOI: 10.1152/ajpgi.00078.2010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Patients with cirrhosis exhibit impaired regulation of the arterial blood pressure, reduced baroreflex sensitivity (BRS), and prolonged QT interval. In addition, a considerable number of patients have a pulmonary dysfunction with hypoxemia, impaired lung diffusing capacity (Dl(CO)), and presence of hepatopulmonary syndrome (HPS). BRS is reduced at exposure to chronic hypoxia such as during sojourn in high altitudes. In this study, we assessed the relation of BRS to pulmonary dysfunction and cardiovascular characteristics and the effects of hyperoxia. Forty-three patients with cirrhosis and 12 healthy matched controls underwent hemodynamic and pulmonary investigations. BRS was assessed by cross-spectral analysis of variabilities between blood pressure and heart rate time series. A 100% oxygen test was performed with the assessment of arterial oxygen tensions (Pa(O(2))) and alveolar-arterial oxygen gradient. Baseline BRS was significantly reduced in the cirrhotic patients compared with the controls (4.7 +/- 0.8 vs. 10.3 +/- 2.0 ms/mmHg; P < 0.001). The frequency-corrected QT interval was significantly prolonged in the cirrhotic patients (P < 0.05). There was no significant difference in BRS according to presence of HPS, Pa(O(2)), Dl(CO), or Child-Turcotte score, but BRS correlated with metabolic and hemodynamic characteristics. After 100% oxygen inhalation, BRS and the QT interval remained unchanged in the cirrhotic patients. In conclusion, BRS is significantly reduced in patients with cirrhosis compared with controls, but it is unrelated to the degree of pulmonary dysfunction and portal hypertension. Acute hyperoxia does not significantly revert the low BRS or the prolonged QT interval in cirrhosis.
Collapse
Affiliation(s)
- Søren Møller
- Dept. of Clinical Physiology, Hvidovre Hospital, Denmark.
| | | | | | | | | | | |
Collapse
|
39
|
DeBeck LD, Petersen SR, Jones KE, Stickland MK. Heart rate variability and muscle sympathetic nerve activity response to acute stress: the effect of breathing. Am J Physiol Regul Integr Comp Physiol 2010; 299:R80-91. [PMID: 20410469 PMCID: PMC5017870 DOI: 10.1152/ajpregu.00246.2009] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Previous research has suggested a relationship between low-frequency power of heart rate variability (HRV; LF in normalized units, LFnu) and muscle sympathetic nerve activity (MSNA). However, investigations have not systematically controlled for breathing, which can modulate both HRV and MSNA. Accordingly, the aims of this experiment were to investigate the possibility of parallel responses in MSNA and HRV (LFnu) to selected acute stressors and the effect of controlled breathing. After data were obtained at rest, 12 healthy males (28 +/- 5 yr) performed isometric handgrip exercise (30% maximal voluntary contraction) and the cold pressor test in random order, and were then exposed to hypoxia (inspired fraction of O(2) = 0.105) for 7 min, during randomly assigned spontaneous and controlled breathing conditions (20 breaths/min, constant tidal volume, isocapnic). MSNA was recorded from the peroneal nerve, whereas HRV was calculated from ECG. At rest, controlled breathing did not alter MSNA but decreased LFnu (P < 0.05 for all) relative to spontaneous breathing. MSNA increased in response to all stressors regardless of breathing. LFnu increased with exercise during both breathing conditions. During cold pressor, LFnu decreased when breathing was spontaneous, whereas in the controlled breathing condition, LFnu was unchanged from baseline. Hypoxia elicited increases in LFnu when breathing was controlled, but not during spontaneous breathing. The parallel changes observed during exercise and controlled breathing during hypoxia suggest that LFnu may be an indication of sympathetic outflow in select conditions. However, since MSNA and LFnu did not change in parallel with all stressors, a cautious approach to the use of LFnu as a marker of sympathetic activity is warranted.
Collapse
Affiliation(s)
- Lindsay D DeBeck
- Faculty of Physical Education and Recreation, University of Alberta, Edmonton, Canada
| | | | | | | |
Collapse
|
40
|
Effects of hypoxia on blood pressure regulation: interval hypoxic training as compared to obstructive sleep apnea – the other side of the coin? J Hypertens 2009; 27:1527-32. [DOI: 10.1097/hjh.0b013e3283300d6d] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
41
|
Pulgar VM, Hong JKS, Jessup JA, Massmann AG, Diz DI, Figueroa JP. Mild chronic hypoxemia modifies expression of brain stem angiotensin peptide receptors and reflex responses in fetal sheep. Am J Physiol Regul Integr Comp Physiol 2009; 297:R446-52. [PMID: 19515988 DOI: 10.1152/ajpregu.00023.2009] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The effects of chronic mild hypoxemia on the binding of angiotensin receptors in selected brain stem nuclei and reflex responses were studied in fetal sheep. Fetal and maternal catheters were placed at 120 days' gestation, and animals received intratracheal maternal administration of nitrogen (n = 16) or compressed air in controls (n = 19). Nitrogen infusion was adjusted to reduce fetal brachial artery PO(2) by 25% during 5 days. Spontaneous baroreflex sensitivity and spectral analysis of the pulse interval were analyzed during the 5 days hypoxemia period using 90 min of daily recording. Brains of control and hypoxemic animals were collected, and brain stem angiotensin receptor binding was studied by in vitro autoradiography at 130 days of gestation. After 5 days of hypoxemia, some animals in each group were submitted to one complete umbilical cord occlusion during 5 min. [(125)I]sarthran binding showed that chronic mild hypoxemia significantly increases angiotensin type 1 receptor, angiotensin type 2 receptor, and ANG-(1-7) angiotensin receptor binding sites in the nucleus tractus solitarius and dorsal motor nucleus of the vagus (P < 0.05). Hypoxemia induced lower baroreflex sensitivity and a higher low frequency-to-high frequency ratio in the fetus, consistent with a shift from vagal to sympathetic autonomic cardiac regulation. Cord occlusion to elicit a chemoreflex response induced a greater bradycardic response in hypoxemic fetuses (slope of the initial fall in heart rate; 11.3 +/- 1.9 vs. 6.4 +/- 1.2 beats x min(-1) x s(-1), P < 0.05). In summary, chronic mild hypoxemia increased binding of angiotensin receptors in brain stem nuclei, decreased spontaneous baroreflex gain, and increased chemoreflex responses to asphyxia in the fetus. These results suggest hypoxemia-induced alterations in brain stem mechanisms for cardiovascular control.
Collapse
Affiliation(s)
- Victor M Pulgar
- Dept. of Obstetrics and Gynecology, Wake Forest Univ. School of Medicine, Winston Salem, NC 27157, USA.
| | | | | | | | | | | |
Collapse
|
42
|
Messerli-Burgy N, Meyer K, Steptoe A, Laederach-Hofmann K. Autonomic and Cardiovascular Effects of Acute High Altitude Exposure After Myocardial Infarction and in Normal Volunteers. Circ J 2009; 73:1485-91. [DOI: 10.1253/circj.cj-09-0004] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Nadine Messerli-Burgy
- Autonomic Laboratory; Department of Endocrinology, Diabetology & Clinical Nutrition, Inselspital, University of Bern
- Department of Clinical Psychology and Psychotherapy, University of Bern
- Swiss Health Observatory (OBSAN)
| | | | - Andrew Steptoe
- Psychobiology Group, Department of Epidemiology and Public Health, University College
| | - Kurt Laederach-Hofmann
- Autonomic Laboratory; Department of Endocrinology, Diabetology & Clinical Nutrition, Inselspital, University of Bern
- Center for Psychobiology and Psychosomatics, University of Trier
| |
Collapse
|
43
|
Steinback CD, Salzer D, Medeiros PJ, Kowalchuk J, Shoemaker JK. Hypercapnic vs. hypoxic control of cardiovascular, cardiovagal, and sympathetic function. Am J Physiol Regul Integr Comp Physiol 2008; 296:R402-10. [PMID: 19091913 DOI: 10.1152/ajpregu.90772.2008] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We compared the integrated cardiovascular and autonomic responses to hypercapnia and hypoxia to test the hypothesis that these stimuli differentially affect muscle sympathetic nerve activity (MSNA) discharge patterns and cardiovagal and sympathetic baroreflex function in a manner related to ventilatory chemoreflex sensitivity. Six males and six females underwent 5 min of hypoxia (end-tidal Po2 = 45 Torr) and 5 min of hypercapnia (end-tidal Pco2 = +8 Torr from baseline), causing similar ventilatory responses. A downward right shift in cardiovagal set point was observed during both conditions, which was strongly related to the change in inspiratory time (Ti) from baseline to hypercapnia (r2 = 0.67, P = 0.007) and hypoxia (r2 = 0.79, P < 0.001). Cardiovagal baroreflex gain was decreased during hypoxia (20.1 +/- 6.9 vs. 8.9 +/- 5.1 ms/mmHg, P < 0.001) but not hypercapnia (26.7 +/- 12.7 vs. 23.0 +/- 9.1 ms/mmHg). Both hypoxia and hypercapnia increased MSNA burst amplitude, whereas hypoxia, but not hypercapnia, also increased in MSNA burst frequency (21 +/- 9 vs. 28 +/- 7 bursts/min, P = 0.03) and total MSNA (4.56 +/- 3.07 vs. 7.37 +/- 3.26 mV/min, P = 0.002). However, neither hypercapnia nor hypoxia affected sympathetic burst probability or baroreflex gain. Hypoxia also caused a greater reduction in total peripheral resistance (P = 0.04), a greater increase in heart rate (P = 0.002), and a trend for a greater cardiac output response (P = 0.06) compared with hypercapnia. Nonetheless, central venous pressure remained unchanged during either condition. These results suggest that hypercapnia and hypoxia exert differential effects on cardiovagal, but not sympathetic, baroreflex gain and set point in a manner not related to ventilatory chemoreflex sensitivity. Furthermore, the data suggest that the individual's respiratory pattern to hypoxia or hypercapnia, as reflected in the inspiratory time, was a strong determinant of cardiovagal baroreflex set- point rather than the total ventilatory chemoreflex gain per se.
Collapse
Affiliation(s)
- Craig D Steinback
- School of Kinesiology, The University of Western Ontario, London, ON, N6A 3K7, Canada
| | | | | | | | | |
Collapse
|
44
|
Serebrovskaya TV, Manukhina EB, Smith ML, Downey HF, Mallet RT. Intermittent hypoxia: cause of or therapy for systemic hypertension? Exp Biol Med (Maywood) 2008; 233:627-50. [PMID: 18408145 DOI: 10.3181/0710-mr-267] [Citation(s) in RCA: 124] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
During acute episodes of hypoxia, chemoreceptor-mediated sympathetic activity increases heart rate, cardiac output, peripheral resistance and systemic arterial pressure. However, different intermittent hypoxia paradigms produce remarkably divergent effects on systemic arterial pressure in the post-hypoxic steady state. The hypertensive effects of obstructive sleep apnea (OSA) vs. the depressor effects of therapeutic hypoxia exemplify this divergence. OSA, a condition afflicting 15-25% of American men and 5-10% of women, has been implicated in the pathogenesis of systemic hypertension and is a major risk factor for heart disease and stroke. OSA imposes a series of brief, intense episodes of hypoxia and hypercapnia, leading to persistent, maladaptive chemoreflex-mediated activation of the sympathetic nervous system which culminates in hypertension. Conversely, extensive evidence in animals and humans has shown controlled intermittent hypoxia conditioning programs to be safe, efficacious modalities for prevention and treatment of hypertension. This article reviews the pertinent literature in an attempt to reconcile the divergent effects of intermittent hypoxia therapy and obstructive sleep apnea on hypertension. Special emphasis is placed on research conducted in the nations of the former Soviet Union, where intermittent hypoxia conditioning programs are being applied therapeutically to treat hypertension in patients. Also reviewed is evidence regarding mechanisms of the pro- and anti-hypertensive effects of intermittent hypoxia.
Collapse
|
45
|
Kamendi HW, Cheng Q, Dergacheva O, Frank JG, Gorini C, Jameson HS, Pinol RA, Wang X, Mendelowitz D. Recruitment of excitatory serotonergic neurotransmission to cardiac vagal neurons in the nucleus ambiguus post hypoxia and hypercapnia. J Neurophysiol 2008; 99:1163-8. [PMID: 18184887 DOI: 10.1152/jn.01178.2007] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Inhibitory GABAergic and glycinergic neurotransmission to cardioinhibitory cardiac vagal neurons (CVNs) increase during inspiratory activity and likely mediate respiratory sinus arrhythmia, while the frequency of excitatory postsynaptic currents (EPSCs) in CVNs are unaltered during the different phases of respiration. However, following hypoxia and hypercapnia (H/H), the parasympathetic activity to the heart increases and thus far, identification of the pathways and neurotransmitters that are responsible for exciting CVNs post H/H are unclear. This study identifies different excitatory pathways to CVNs recruited post H/H. Spontaneous and inspiratory-related EPSCs were recorded in CVNs before, during, and after 10 min of H/H in an in vitro slice preparation that retains rhythmic respiratory activity. Before and during H/H, EPSCs in CVNs were completely blocked by 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) and d(-)-2-amino-5-phosphonopentanoic acid (AP5), selective AMPA/kainate and N-methyl-d-apartate (NMDA) receptor blockers, respectively. However, after H/H, there was a significant increase in EPSCs during each inspiratory burst. While some of the inspiratory-related EPSCs were blocked by the broad purinergic receptor antagonist pyridoxalphosphate-6-azophenyl-2', 4'-disulphonic acid (PPADS) and the specific P2X receptor antagonist 2',3'-O-(2,4,6-trinitrophenyl) adenosine 5'-triphosphate monolithium trisodium salt (TNP-ATP) a P2X receptor blocker, most of the recruited excitatory neurotransmission to CVNs is serotonergic because odansetron, a selective 5-HT3 antagonist, abolished the majority of the spontaneous and inspiratory-related EPSCs evoked during recovery from H/H. The results from this study suggest that following episodes of H/H, two nonglutamatergic excitatory pathways, purinergic and serotonergic, activating P2X and 5-HT3 receptors, respectively, are recruited to excite CVNs in the post H/H recovery period.
Collapse
Affiliation(s)
- H W Kamendi
- Department of Pharmacology and Physiology, George Washington University, 2300 Eye St. NW, Washington, DC 20037, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Hainsworth R, Drinkhill MJ. Cardiovascular adjustments for life at high altitude. Respir Physiol Neurobiol 2007; 158:204-11. [PMID: 17597013 DOI: 10.1016/j.resp.2007.05.006] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2007] [Revised: 05/08/2007] [Accepted: 05/09/2007] [Indexed: 11/19/2022]
Abstract
The effects of hypobaric hypoxia in visitors depend not only on the actual elevation but also on the rate of ascent. There are increases in sympathetic activity resulting in increases in systemic vascular resistance, blood pressure and heart rate. Pulmonary vasoconstriction leads to pulmonary hypertension, particularly during exercise. The sympathetic excitation results from hypoxia, partly through chemoreceptor reflexes and partly through altered baroreceptor function. Systemic vasoconstriction may also occur as a reflex response to the high pulmonary arterial pressures. Many communities live permanently at high altitude and most dwellers show excellent adaptation although there are differences between populations in the extent of the ventilatory drive and the erythropoiesis. Despite living all their lives at altitude, some dwellers, particularly Andeans, may develop a maladaptation syndrome known as chronic mountain sickness. The most prominent characteristic of this is excessive polycythaemia, the cause of which has been attributed to peripheral chemoreceptor dysfunction. The hyperviscous blood leads to pulmonary hypertension, symptoms of cerebral hypoperfusion, and eventually right heart failure and death.
Collapse
Affiliation(s)
- Roger Hainsworth
- Institute for Cardiovascular Research, University of Leeds, Leeds LS2 9JT, UK.
| | | |
Collapse
|
47
|
Povea C, Schmitt L, Brugniaux J, Nicolet G, Richalet JP, Fouillot JP. Effects of intermittent hypoxia on heart rate variability during rest and exercise. High Alt Med Biol 2005; 6:215-25. [PMID: 16185139 DOI: 10.1089/ham.2005.6.215] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Changes in heart rate variability induced by an intermittent exposure to hypoxia were evaluated in athletes unacclimatized to altitude. Twenty national elite athletes trained for 13 days at 1200 m and either lived and slept at 1200 m (live low, train low, LLTL) or between 2500 and 3000 m (live high, train low, LHTL). Subjects were investigated at 1200 m prior to and at the end of the 13-day training camp. Exposure to acute hypoxia (11.5% O(2)) during exercise resulted in a significant decrease in spectral components of heart rate variability in comparison with exercise in normoxia: total power (p < 0.001), low-frequency component. LF (p < 0.001), high-frequency component, HF (p < 0.05). Following acclimatization, the LHTL group increased its LF component (p < 0.01) and LF/HF ratio during exercise in hypoxia after the training period. In parallel, exposure to intermittent hypoxia caused an increased ventilatory response to hypoxia. Acclimatization modified the correlation between the ventilatory response to hypoxia at rest and the difference in total power between normoxia and hypoxia (r (2) = 0.65, p < 0.001). The increase in total power, LF component, and LF/HF ratio suggests that intermittent hypoxic training increased the response of the autonomic nervous system mainly through increased sympathetic activity.
Collapse
Affiliation(s)
- Camilo Povea
- Université Paris 13, Faculté de Médecine, Bobigny, France
| | | | | | | | | | | |
Collapse
|
48
|
Cooper VL, Pearson SB, Bowker CM, Elliott MW, Hainsworth R. Interaction of chemoreceptor and baroreceptor reflexes by hypoxia and hypercapnia - a mechanism for promoting hypertension in obstructive sleep apnoea. J Physiol 2005; 568:677-87. [PMID: 16109727 PMCID: PMC1474745 DOI: 10.1113/jphysiol.2005.094151] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Asphyxia, which occurs during obstructive sleep apnoeic events, alters the baroreceptor reflex and this may lead to hypertension. We have recently reported that breathing an asphyxic gas resets the baroreceptor-vascular resistance reflex towards higher pressures. The present study was designed to determine whether this effect was caused by the reduced oxygen tension, which affects mainly peripheral chemoreceptors, or by the increased carbon dioxide, which acts mainly on central chemoreceptors. We studied 11 healthy volunteer subjects aged between 20 and 55 years old (6 male). The stimulus to the carotid baroreceptors was changed using graded pressures of -40 to +60 mmHg applied to a neck chamber. Responses of vascular resistance were assessed in the forearm from changes in blood pressure (Finapres) divided by brachial blood flow velocity (Doppler) and cardiac responses from the changes in RR interval and heart rate. Stimulus-response curves were defined during (i) air breathing, (ii) hypoxia (12% O(2) in N(2)), and (iii) hypercapnia (5% CO(2) in 95% O(2)). Responses during air breathing were assessed both prior to and after either hypoxia or hypercapnia. We applied a sigmoid function or third order polynomial to the curves and determined the maximal differential (equivalent to peak sensitivity) and the corresponding carotid sinus pressure (equivalent to 'set point'). Hypoxia resulted in an increase in heart rate but no significant change in mean blood pressure or vascular resistance. However, there was an increase in vascular resistance in the post-stimulus period. Hypoxia had no significant effect on baroreflex sensitivity or 'set point' for the control of RR interval, heart rate or mean arterial pressure. Peak sensitivity of the vascular resistance response to baroreceptor stimulation was significantly reduced from -2.5 +/- 0.4 units to -1.4 +/- 0.1 units (P < 0.05) and this was restored in the post-stimulus period to -2.6 +/- 0.5 units. There was no effect on 'set point'. Hypercapnia, on the other hand, resulted in a decrease in heart rate, which remained reduced in the post-stimulus period and significantly increased mean blood pressure. Baseline vascular resistance was significantly increased and then further increased in the post-control period. Like hypoxia, hypercapnia had no effect on baroreflex control of RR interval, heart rate or mean arterial pressure. There was, also no significant change in the sensitivity of the vascular resistance responses, however, 'set point' was significantly increased from 74.7 +/- 4 to 87.0 +/- 2 mmHg (P < 0.02). This was not completely restored to pre-stimulus control levels in the post-stimulus control period (82.2 +/- 3 mmHg). These results suggest that the hypoxic component of asphyxia reduces baroreceptor-vascular resistance reflex sensitivity, whilst the hypercapnic component is responsible for increasing blood pressure and reflex 'set point'. Hypercapnia appears to have a lasting effect after the removal of the stimulus. Thus the effect of both peripheral and central chemoreceptors on baroreflex function may contribute to promoting hypertension in patients with obstructive sleep apnoea.
Collapse
Affiliation(s)
- V L Cooper
- Institute for Cardiovascular Research, University of Leeds, UK.
| | | | | | | | | |
Collapse
|