1
|
Rodriguez L, Duchez P, Touya N, Debeissat C, Guitart AV, Pasquet JM, Vlaski-Lafarge M, Brunet de la Grange P, Ivanovic Z. α-Tocopherol Attenuates Oxidative Phosphorylation of CD34 + Cells, Enhances Their G0 Phase Fraction and Promotes Hematopoietic Stem and Primitive Progenitor Cell Maintenance. Biomolecules 2021; 11:biom11040558. [PMID: 33920203 PMCID: PMC8070309 DOI: 10.3390/biom11040558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 04/01/2021] [Accepted: 04/07/2021] [Indexed: 11/16/2022] Open
Abstract
Alpha tocopherol acetate (αTOA) is an analogue of alpha tocopherol (αTOC) that exists in the form of an injectable drug. In the context of the metabolic hypothesis of stem cells, we studied the impact of αTOA on the metabolic energetic profile and functional properties of hematopoietic stem and progenitor cells. In ex vivo experiments performed on cord blood CD34+ cells, we found that αTOA effectively attenuates oxidative phosphorylation without affecting the glycolysis rate. This effect concerns complex I and complex II of the mitochondrial respiratory chain and is related to the relatively late increase (3 days) in ROS (Reactive Oxygen Species). The most interesting effect was the inhibition of Hypoxia-Inducible Factor (HIF)-2α (Hexpression, which is a determinant of the most pronounced biological effect-the accumulation of CD34+ cells in the G0 phase of the cell cycle. In parallel, better maintenance of the primitive stem cell activity was revealed by the expansion seen in secondary cultures (higher production of colony forming cells (CFC) and Severe Combined Immunodeficiency-mice (scid)-repopulating cells (SRC)). While the presence of αTOA enhanced the maintenance of Hematopoietic Stem Cells (HSC) and contained their proliferation ex vivo, whether it could play the same role in vivo remained unknown. Creating αTOC deficiency via a vitamin E-free diet in mice, we found an accelerated proliferation of CFC and an expanded compartment of LSK (lineagenegative Sca-1+cKit+) and SLAM (cells expressing Signaling Lymphocytic Activation Molecule family receptors) bone marrow cell populations whose in vivo repopulating capacity was decreased. These in vivo data are in favor of our hypothesis that αTOC may have a physiological role in the maintenance of stem cells. Taking into account that αTOC also exhibits an effect on proliferative capacity, it may also be relevant for the ex vivo manipulation of hematopoietic stem cells. For this purpose, low non-toxic doses of αTOA should be used.
Collapse
Affiliation(s)
- Laura Rodriguez
- Etablissement Français du Sang Nouvelle Aquitaine, Place Amélie Raba Léon, CS22010, CEDEX, 33075 Bordeaux, France
- Inserm Bordeaux UMR 1035, 33000 Bordeaux, France
- Université de Bordeaux, 33000 Bordeaux, France
| | - Pascale Duchez
- Etablissement Français du Sang Nouvelle Aquitaine, Place Amélie Raba Léon, CS22010, CEDEX, 33075 Bordeaux, France
- Inserm Bordeaux UMR 1035, 33000 Bordeaux, France
- Université de Bordeaux, 33000 Bordeaux, France
| | - Nicolas Touya
- Etablissement Français du Sang Nouvelle Aquitaine, Place Amélie Raba Léon, CS22010, CEDEX, 33075 Bordeaux, France
- Inserm Bordeaux UMR 1035, 33000 Bordeaux, France
- Université de Bordeaux, 33000 Bordeaux, France
| | - Christelle Debeissat
- Inserm Bordeaux UMR 1035, 33000 Bordeaux, France
- Université de Bordeaux, 33000 Bordeaux, France
| | - Amélie V Guitart
- Inserm Bordeaux UMR 1035, 33000 Bordeaux, France
- Université de Bordeaux, 33000 Bordeaux, France
| | - Jean-Max Pasquet
- Inserm Bordeaux UMR 1035, 33000 Bordeaux, France
- Université de Bordeaux, 33000 Bordeaux, France
| | - Marija Vlaski-Lafarge
- Etablissement Français du Sang Nouvelle Aquitaine, Place Amélie Raba Léon, CS22010, CEDEX, 33075 Bordeaux, France
- Inserm Bordeaux UMR 1035, 33000 Bordeaux, France
- Université de Bordeaux, 33000 Bordeaux, France
| | - Philippe Brunet de la Grange
- Etablissement Français du Sang Nouvelle Aquitaine, Place Amélie Raba Léon, CS22010, CEDEX, 33075 Bordeaux, France
- Inserm Bordeaux UMR 1035, 33000 Bordeaux, France
- Université de Bordeaux, 33000 Bordeaux, France
| | - Zoran Ivanovic
- Etablissement Français du Sang Nouvelle Aquitaine, Place Amélie Raba Léon, CS22010, CEDEX, 33075 Bordeaux, France
- Inserm Bordeaux UMR 1035, 33000 Bordeaux, France
- Université de Bordeaux, 33000 Bordeaux, France
| |
Collapse
|
2
|
Fiume MM, Bergfeld WF, Belsito DV, Hill RA, Klaassen CD, Liebler DC, Marks JG, Shank RC, Slaga TJ, Snyder PW, Andersen FA, Heldreth B. Safety Assessment of Tocopherols and Tocotrienols as Used in Cosmetics. Int J Toxicol 2019; 37:61S-94S. [PMID: 30235959 DOI: 10.1177/1091581818794455] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The Cosmetic Ingredient Review (CIR) Expert Panel (Panel) assessed the safety of 14 tocopherols and tocotrienols and concluded these ingredients are safe as used in cosmetics. The tocopherols are reported to function in cosmetics as antioxidants or skin-conditioning agents; in contrast, tocotrienols are not reported to function as an antioxidants in cosmetics but as a light stabilizer, oral care agent, or skin-conditioning agent. The Panel reviewed the new and existing animal and clinical data to determine the safety of these ingredients and found it appropriate to extrapolate the existing information to conclude on the safety of all the tocopherols and tocotrienols.
Collapse
Affiliation(s)
- Monice M Fiume
- 1 Cosmetic Ingredient Review Senior Director, Cosmetic Ingredient Review, Washington, DC, USA
| | - Wilma F Bergfeld
- 2 Cosmetic Ingredient Review Expert Panel Member, Cosmetic Ingredient Review, Washington, DC, USA
| | - Donald V Belsito
- 2 Cosmetic Ingredient Review Expert Panel Member, Cosmetic Ingredient Review, Washington, DC, USA
| | - Ronald A Hill
- 2 Cosmetic Ingredient Review Expert Panel Member, Cosmetic Ingredient Review, Washington, DC, USA
| | - Curtis D Klaassen
- 2 Cosmetic Ingredient Review Expert Panel Member, Cosmetic Ingredient Review, Washington, DC, USA
| | - Daniel C Liebler
- 2 Cosmetic Ingredient Review Expert Panel Member, Cosmetic Ingredient Review, Washington, DC, USA
| | - James G Marks
- 2 Cosmetic Ingredient Review Expert Panel Member, Cosmetic Ingredient Review, Washington, DC, USA
| | - Ronald C Shank
- 2 Cosmetic Ingredient Review Expert Panel Member, Cosmetic Ingredient Review, Washington, DC, USA
| | - Thomas J Slaga
- 2 Cosmetic Ingredient Review Expert Panel Member, Cosmetic Ingredient Review, Washington, DC, USA
| | - Paul W Snyder
- 2 Cosmetic Ingredient Review Expert Panel Member, Cosmetic Ingredient Review, Washington, DC, USA
| | - F Alan Andersen
- 3 Cosmetic Ingredient Review Former Director, Cosmetic Ingredient Review, Washington, DC, USA
| | - Bart Heldreth
- 4 Cosmetic Ingredient Review Executive Director, Cosmetic Ingredient Review, Washington, DC, USA
| |
Collapse
|
3
|
Evaluation of the antioxidative capability of commonly used antioxidants in dermocosmetics by in vivo detection of protein carbonylation in human stratum corneum. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2012; 112:7-15. [PMID: 22537778 DOI: 10.1016/j.jphotobiol.2012.03.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2011] [Revised: 03/22/2012] [Accepted: 03/28/2012] [Indexed: 12/31/2022]
Abstract
We present an in vivo test platform to evaluate the antioxidative capability of seven frequently used dermocosmetic antioxidants on the human stratum corneum (SC). It has been reported that the protein carbonylation could be used as a biomarker for oxidative stress. The current study detects the change of the level of exposed protein carbonyl group in the most outer layer of human SC. The concentration of the antioxidant in each subject emulsion formulation was 0.5% (w/w). The data indicated that alpha-tocopherol (α-Vit E) and ascorbic acid (Vit C) have excellent antioxidative capability and α-Vit E-acetate possesses better than the average antioxidative capability. The bioconversion of α-Vit E-acetate to α-Vit E may occur in the human SC during a less than 2 weeks time course test. Lipoic acid possessed moderate antioxidative capability. Ascorbyl 6-palmitate had a low antioxidative capability. Ascorbic acid 2-glucoside represented an insignificant antioxidative capability. Glutathion (GSH) had no effect on reducing oxidative damage to human SC proteins, implying that the GSH recycling system could be absent in human SC. This test platform is an useful tool to evaluate the antioxidative efficiency of antioxidants on human SC proteins.
Collapse
|
4
|
Pérez E, Martín L, Rubio C, Urieta JS, Piera E, Caballero MÁ, Téllez C, Coronas J. Encapsulation of α-Tocopheryl Acetate into Zeolite Y for Textile Application. Ind Eng Chem Res 2010. [DOI: 10.1021/ie100483v] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Eduardo Pérez
- Chemical Engineering Department and Nanoscience Institute of Aragón, Universidad de Zaragoza, 50018 Zaragoza, Spain, Organic and Physical Chemistry Department and I3A (Aragon Institute for Engineering Research), Universidad de Zaragoza, 50009 Zaragoza, Spain, and Research and Development Department, Nurel S.A., 50016 Zaragoza, Spain
| | - Luis Martín
- Chemical Engineering Department and Nanoscience Institute of Aragón, Universidad de Zaragoza, 50018 Zaragoza, Spain, Organic and Physical Chemistry Department and I3A (Aragon Institute for Engineering Research), Universidad de Zaragoza, 50009 Zaragoza, Spain, and Research and Development Department, Nurel S.A., 50016 Zaragoza, Spain
| | - Cesar Rubio
- Chemical Engineering Department and Nanoscience Institute of Aragón, Universidad de Zaragoza, 50018 Zaragoza, Spain, Organic and Physical Chemistry Department and I3A (Aragon Institute for Engineering Research), Universidad de Zaragoza, 50009 Zaragoza, Spain, and Research and Development Department, Nurel S.A., 50016 Zaragoza, Spain
| | - José S. Urieta
- Chemical Engineering Department and Nanoscience Institute of Aragón, Universidad de Zaragoza, 50018 Zaragoza, Spain, Organic and Physical Chemistry Department and I3A (Aragon Institute for Engineering Research), Universidad de Zaragoza, 50009 Zaragoza, Spain, and Research and Development Department, Nurel S.A., 50016 Zaragoza, Spain
| | - Elena Piera
- Chemical Engineering Department and Nanoscience Institute of Aragón, Universidad de Zaragoza, 50018 Zaragoza, Spain, Organic and Physical Chemistry Department and I3A (Aragon Institute for Engineering Research), Universidad de Zaragoza, 50009 Zaragoza, Spain, and Research and Development Department, Nurel S.A., 50016 Zaragoza, Spain
| | - Miguel Ángel Caballero
- Chemical Engineering Department and Nanoscience Institute of Aragón, Universidad de Zaragoza, 50018 Zaragoza, Spain, Organic and Physical Chemistry Department and I3A (Aragon Institute for Engineering Research), Universidad de Zaragoza, 50009 Zaragoza, Spain, and Research and Development Department, Nurel S.A., 50016 Zaragoza, Spain
| | - Carlos Téllez
- Chemical Engineering Department and Nanoscience Institute of Aragón, Universidad de Zaragoza, 50018 Zaragoza, Spain, Organic and Physical Chemistry Department and I3A (Aragon Institute for Engineering Research), Universidad de Zaragoza, 50009 Zaragoza, Spain, and Research and Development Department, Nurel S.A., 50016 Zaragoza, Spain
| | - Joaquín Coronas
- Chemical Engineering Department and Nanoscience Institute of Aragón, Universidad de Zaragoza, 50018 Zaragoza, Spain, Organic and Physical Chemistry Department and I3A (Aragon Institute for Engineering Research), Universidad de Zaragoza, 50009 Zaragoza, Spain, and Research and Development Department, Nurel S.A., 50016 Zaragoza, Spain
| |
Collapse
|
5
|
Yap WN, Zaiden N, Xu CH, Chen A, Ong S, Teo V, Yap YL. Gamma- and delta-tocotrienols inhibit skin melanin synthesis by suppressing constitutive and UV-induced tyrosinase activation. Pigment Cell Melanoma Res 2010; 23:688-92. [PMID: 20609176 DOI: 10.1111/j.1755-148x.2010.00740.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
6
|
Black AT, Gray JP, Shakarjian MP, Laskin DL, Heck DE, Laskin JD. Distinct effects of ultraviolet B light on antioxidant expression in undifferentiated and differentiated mouse keratinocytes. Carcinogenesis 2007; 29:219-25. [PMID: 17984112 DOI: 10.1093/carcin/bgm242] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Ultraviolet (UV) B causes oxidative stress, which has been implicated in carcinogenesis. We determined if the sensitivity of keratinocytes to UVB-induced oxidative stress is dependent on their differentiation state. In primary cultures of undifferentiated and differentiated mouse keratinocytes, UVB (25 mJ/cm(2)) stimulated production of reactive oxygen intermediates. This was associated with increased messenger RNA (mRNA) expression of the antioxidant enzymes glutathione peroxidase, heme oxygenase-1 (HO-1) and the glutathione S-transferase (GST), GSTA1-2. The effects of UVB on GSTA1-2 were greater in undifferentiated when compared with differentiated cells. UVB also induced GSTM1, but only in undifferentiated cells. In contrast, UVB reduced expression of manganese superoxide dismutase, metallothionein-2, GSTA3 and microsomal glutathione S-transferase (mGST)3 in both cell types, whereas it had no major effects on catalase, copper-zinc superoxide dismutase, GSTP1, mGST1 or mGST2. Of note, levels of GSTA4 mRNA were 4- to 5-fold greater in differentiated relative to undifferentiated cells. Moreover, whereas GSTA4 was induced by UVB in undifferentiated cells, it was inhibited in differentiated cells. UVB activated p38 and c-jun N-terminal kinase mitogen-activated protein (MAP) kinases in both undifferentiated and differentiated keratinocytes. Whereas inhibition of these kinases blocked UVB-induced HO-1 in both cell types, GSTA1-2 and GST-4 were only suppressed in undifferentiated cells. In differentiated keratinocytes, p38 inhibition also suppressed GSTA1-2. In contrast, MAP kinase inhibition had no major effects on UVB-induced suppression of GSTA4 in differentiated cells. These data indicate that UVB-induced alterations in antioxidant expression are differentiation dependent. Moreover, MAP kinases are critical regulators of this response. Alterations in antioxidants are likely to be important mechanisms for protecting the skin from UVB-induced oxidative stress.
Collapse
Affiliation(s)
- Adrienne T Black
- Department of Pharmacology and Toxicology, Rutgers University, 170 Frelinghuysen Road, Piscataway, NJ 08854, USA
| | | | | | | | | | | |
Collapse
|
7
|
Thiele JJ, Ekanayake-Mudiyanselage S. Vitamin E in human skin: organ-specific physiology and considerations for its use in dermatology. Mol Aspects Med 2007; 28:646-67. [PMID: 17719081 DOI: 10.1016/j.mam.2007.06.001] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2007] [Revised: 06/12/2007] [Accepted: 06/12/2007] [Indexed: 11/30/2022]
Abstract
Vitamin E has been used for more than 50 years in experimental and clinical dermatology. While a large number of case reports were published in this time, there is still a lack of controlled clinical studies providing a rationale for well defined dosages and clinical indications. In contrast, advances in basic research on the physiology, mechanism of action, penetration, bioconversion and photoprotection of vitamin E in human skin has led to the development of numerous new formulations for use in cosmetics and skin care products. This article reviews basic mechanisms and possible cosmetic as well as clinical implications of the recent advances in cutaneous vitamin E research. Experimental evidence suggests that topical and oral vitamin E has antitumorigenic, photoprotective, and skin barrier stabilizing properties. While the current use of vitamin E is largely limited to cosmetics, controlled clinical studies for indications such as atopic dermatitis or preventions of photocarcinogenesis are needed to evaluate the clinical benefit of vitamin E.
Collapse
Affiliation(s)
- Jens J Thiele
- Department of Dermatology, Boston University Medical Center, 609 Albany Street, Boston, MA 02118, United States.
| | | |
Collapse
|
8
|
Yasuoka S, Takata J, Karube Y, Katoh E, Tsuzuki T, Kizu J, Tsuchiya M, Kobayashi S. Topical Application of a Novel, Water-soluble γ-Tocopherol Derivative Prevents UV-induced Skin Damage in Mice¶. Photochem Photobiol 2007. [DOI: 10.1111/j.1751-1097.2005.tb01461.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
9
|
Thiele JJ, Hsieh SN, Ekanayake-Mudiyanselage S. Vitamin E: Critical Review of Its Current Use in Cosmetic and Clinical Dermatology. Dermatol Surg 2006; 31:805-13; discussion 813. [PMID: 16029671 DOI: 10.1111/j.1524-4725.2005.31724] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND AND OBJECTIVE The lipophilic antioxidant vitamin E has been used for more than 50 years in clinical and experimental dermatology. However, although a large number of case reports were published, there is still a lack of controlled clinical studies providing a rationale for clinical indications and dosage. In contrast, advances in basic research on the physiology, mechanism of action, penetration, bioconversion, and photoprotection of vitamin E in human skin have led to the development of numerous new formulations for use in cosmetics and skin care products. RESULTS This article reviews the basic mechanisms and possible cosmetical and clinical implications of the recent advances in cutaneous vitamin E research. Experimental evidence suggests that topical and oral vitamin E has anticarcinogenic, photoprotective, and skin barrier-stabilizing properties. CONCLUSION Although its current use is largely limited to cosmetics, controlled clinical studies for indications such as atopic dermatitis or prevention of photocarcinogenesis are needed to evaluate the clinical benefit of vitamin E.
Collapse
Affiliation(s)
- Jens J Thiele
- Department of Dermatology, Northwestern University Medical School, Chicago, IL 60611, USA.
| | | | | |
Collapse
|
10
|
Yasuoka S, Takata J, Karube Y, Katoh E, Tsuzuki T, Kizu J, Tsuchiya M, Kobayashi S. Topical Application of a Novel, Water-soluble γ-Tocopherol Derivative Prevents UV-induced Skin Damage in Mice¶. Photochem Photobiol 2005. [DOI: 10.1562/2004-09-02-ra-300r2.1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
11
|
Mavon A, Raufast V, Redoulès D. Skin absorption and metabolism of a new vitamin E prodrug, δ-tocopherol-glucoside: in vitro evaluation in human skin models. J Control Release 2004; 100:221-31. [PMID: 15544870 DOI: 10.1016/j.jconrel.2004.08.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2004] [Accepted: 08/26/2004] [Indexed: 10/26/2022]
Abstract
The aim of this study was to investigate the cutaneous penetration and metabolism of the new vitamin E prodrug delta-tocopherol glucoside (delta-TG), as compared to those of common vitamin E acetate, in vitro, both in reconstituted human epidermis and in viable human skin. Better diffusion was observed with alpha-tocopherol acetate (alpha-TAc) than with delta-tocopherol glucoside in both skin models, at 0.1% and 0.05% in a myritol solution; however, no metabolism was detected with alpha-tocopherol acetate. In all conditions tested (two skin models, two concentrations, three test times, and compartmental analysis) the delta-tocopherol glucoside was metabolized into free tocopherol. In the reconstituted human epidermis, after 18 h, over 90% of the delta-tocopherol glucoside was bioconverted. In the viable human skin, the extent of metabolism was about 20%, with 0.12 and 0.10 microg/cm2 of delta-tocopherol glucoside in the stratum corneum and epidermis, respectively. After topical application, the delta-tocopherol glucoside had a considerable reservoir effect, associated with gradual delivery of free tocopherol. The use of this gluco-conjugated vitamin E at a low concentration shows the capability of the skin to metabolize the prodrug in a slow and prolonged manner, making this gluco-conjugated vitamin E an excellent candidate for continuous reinforcement of antioxidants in the skin.
Collapse
Affiliation(s)
- Alain Mavon
- Laboratoire de Pharmacocinétique Cutanée, Institut de Recherche Pierre Fabre, 31320 Vigoulet-Auzil, France.
| | | | | |
Collapse
|
12
|
Nakayama S, Katoh EM, Tsuzuki T, Kobayashi S. Protective effect of alpha-tocopherol-6-O-phosphate against ultraviolet B-induced damage in cultured mouse skin. J Invest Dermatol 2003; 121:406-11. [PMID: 12880434 DOI: 10.1046/j.1523-1747.2003.12351.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The ability of the novel water-soluble provitamin E, alpha-tocopherol-6-O-phosphate, to protect against ultraviolet B-induced damage in cultured mouse skin was investigated and compared with the protectiveness of alpha-tocopherol acetate in cultured mouse skin. Pretreatment of skin with 0.5% (9.4 mM) alpha-tocopherol-6-O-phosphate in medium for 3 h significantly prevented such photodamage as sunburn cell formation, DNA degradation, and lipid peroxidation, which were induced in control cultured skin by a single dose of ultraviolet B irradiation at 0 to 40 kJ per m2 (290-380 nm, maximum 312 nm). This protection was greater than that seen with alpha-tocopherol acetate, the most common provitamin E that is used in commercial human skin care products. The concentration of alpha-tocopherol in cultured skin pretreated with 0.5% alpha-tocopherol-6-O-phosphate rose to approximately two to three times that found in the control skin and the reduction in cutaneous alpha-tocopherol that was induced by ultraviolet irradiation was significantly inhibited. In the group pretreated with 0.5% alpha-tocopherol acetate, however, conversion of alpha-tocopherol acetate to alpha-tocopherol was not observed, although the level of provitamin incorporated into the cultured skin was the same as that for alpha-tocopherol-6-O-phosphate. These findings indicated that the enhanced ability of alpha-tocopherol-6-O-phosphate to protect against ultraviolet B-induced skin damage compared with alpha-tocopherol acetate may have been due to alpha-tocopherol-6-O-phosphate's conversion to alpha-tocopherol. Moreover, following pretreatment with a 0.5% alpha-tocopherol-6-O-phosphate, alpha-tocopherol-6-O-phosphate was incorporated into the human skin in a three-dimensional model and 5% of the incorporated alpha-tocopherol-6-O-phosphate was converted to alpha-tocopherol. These results suggest that treatment with the novel provitamin E, alpha-tocopherol-6-O-phosphate may be useful in preventing ultraviolet-induced human skin damage.
Collapse
|
13
|
Krol ES, Kramer-Stickland KA, Liebler DC. Photoprotective actions of topically applied vitamin E. Drug Metab Rev 2000; 32:413-20. [PMID: 11139138 DOI: 10.1081/dmr-100102343] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Topical application of vitamin E has been shown to decrease the incidence of ultraviolet (UV)-induced skin cancer in mice. Vitamin E provides protection against UV-induced skin photodamage through a combination of antioxidant and UV absorptive properties. Topical application of alpha-tocopherol on mouse skin inhibits the formation of cyclobutane pyrimidine photoproducts. However, topically applied alpha-tocopherol is rapidly depleted by UVB radiation in a dose-dependent manner. The photooxidative fate of the alpha-tocopherol depends on the local environment of the vitamin E. alpha-Tocopherol quinone and alpha-tocopherol quinone epoxides are principal photoproducts of vitamin E that has penetrated into the epidermal layer of the skin, whereas tocopherol dimers and trimers are formed from alpha-tocopherol in a bulk phase at the skin surface. Dimer and trimer products may participate in prevention of UV-induced photodamage.
Collapse
Affiliation(s)
- E S Krol
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson 85721, USA
| | | | | |
Collapse
|